浙江省温州市2019年高考数学一模试卷(文科)含答案解析
- 格式:doc
- 大小:533.00 KB
- 文档页数:19
2019年浙江省嘉兴市高考数学一模试卷(文科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R,集合A={x|lgx≥0},,则A∩B为()A.{x|x≥1} B.C.{x|0<x≤1}D.2.已知命题p:若a<1,则a2<1,下列说法正确的是()A.命题p是真命题B.命题p的逆命题是真命题C.命题p的否命题是:若a<1,则a2≥1D.命题p的逆否命题是:若a2≥1,则a<13.函数的一条对称轴是()A.B.C.D.4.设α,β是两个不同的平面,m,n是两条不同的直线,且m⊂α,n⊂β()A.若m,n是异面直线,则α与β相交B.若m∥β,n∥α则α∥βC.若m⊥n,则α⊥βD.若m⊥β,则α⊥β5.已知等差数列{a n}公差为d,前n项和{s n},则下列描述不一定正确的是()A.若a1>0,d>0,则n唯一确定时也唯一确定B.若a1>0,d<0,则n唯一确定时也唯一确定C.若a1>0,d>0,则唯一确定时n也唯一确定D.若a1>0,d<0,则唯一确定时n也唯一确定6.已知函数f(x)=(x﹣)•sinx,x∈[﹣π,π]且x≠0,下列描述正确的是()A.函数f(x)为奇函数B.函数f(x)既无最大值也无最小值C.函数f(x)有4个零点D.函数f(x)在(0,π)单调递增7.如图,B、D是以AC为直径的圆上的两点,其中AB=,AD=,则•=()A.1 B.2 C.t D.2t8.已知双曲线=1(a>0,b>0),若焦点F(c,0)关于渐近线y=x的对称点在另一条渐近线y=﹣x上,则双曲线的离心率为()A.B.2 C.D.3二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)9.已知数列{a n}满足a2=2,且数列{3a n﹣2n}为公比为2的等比数列,则a1=______,数列{a n}通项公式a n=______.10.函数则f(﹣1)=______,若方程f(x)=m有两个不同的实数根,则m的取值范围为______.11.已知实数x,y满足x>0,y>0,x+2y=3,则的最小值为______,x2+4y2+xy的最小值为______.12.已知实数x,y满足.(1)当a=2时,则2x+y的最小值为______;(2)若满足上述条件的实数x,y围成的平面区域是三角形,则实数a的取值范围是______.13.是按先后顺序排列的一列向量,若,且,则其中模最小的一个向量的序号为______.14.如图,平面ABC⊥平面α,D为线段AB的中点,,∠CDB=45°,点P为面α内的动点,且P到直线CD的距离为,则∠APB的最大值为______.15.边长为1的正方体ABCD﹣A1B1C1D1若将其对角线AC1与平面α垂直,则正方体ABCD ﹣A1B1C1D1在平面α上的投影面积为______.三、解答题(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤)16.在△ABC中,角A,B,C所对的边分别为a,b,c,A=2C,且(Ⅰ)求cosC的值;(Ⅱ)若△ABC的面积为,求sinB及边b.17.已知数列{a n}的前n项和s n,满足s n=n(n﹣6),数列{b n}满足(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)记数列{c n}满足,求数列{c n}的前n项和T n.18.已知几何体P﹣ABCD如图,面ABCD为矩形,面ABCD⊥面PAB,且面PAB为正三角形,若AB=2,AD=1,E、F分别为AC、BP中点,(Ⅰ)求证:EF∥面PCD;(Ⅱ)求直线BP与面PAC所成角的正弦值.19.已知抛物线C:x2=2py(p>0),圆E:x2+(y+1)2=1,若直线L与抛物线C和圆E分别相切于点A,B(A,B不重合)(Ⅰ)当p=1时,求直线L的方程;(Ⅱ)点F是抛物线C的焦点,若对于任意的p>0,记△ABF面积为S,求的最小值.20.已知函数f(x)=x2+ax+1,其中a∈R,且a≠0(Ⅰ)设h(x)=(2x﹣3)f(x),若函数y=h(x)图象与x轴恰有两个不同的交点,试求a的取值集合;(Ⅱ)求函数y=|f(x)|在[0,1]上最大值.2019年浙江省嘉兴市高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R,集合A={x|lgx≥0},,则A∩B为()A.{x|x≥1} B.C.{x|0<x≤1}D.【考点】交集及其运算.【分析】分别求出A与B中不等式的解集确定出A与B,找出两集合的交集即可.【解答】解:由A中不等式lgx≥0=lg1,得到x≥1,即A={x|x≥1},由B中不等式变形得:2x≥=2,即x≥,∴B={x|x≥},则A∩B={x|x≥1},故选:A.2.已知命题p:若a<1,则a2<1,下列说法正确的是()A.命题p是真命题B.命题p的逆命题是真命题C.命题p的否命题是:若a<1,则a2≥1D.命题p的逆否命题是:若a2≥1,则a<1【考点】四种命题的真假关系.【分析】举例说明命题p为假命题,求出命题p的逆命题,否命题,逆否命题逐一判断即可得答案.【解答】解:已知命题p:若a<1,则a2<1,如a=﹣2,则(﹣2)2>1,命题p为假命题,∴A不正确;命题p的逆命题是:若a2<1,则a<1,为真命题,∴B正确;命题p的否命题是:若a≥1,则a2≥1,∴C不正确;命题p的逆否命题是:若a2≥1,则a>1,∴D不正确.故选:B.3.函数的一条对称轴是()A.B.C.D.【考点】三角函数中的恒等变换应用;正弦函数的对称性.【分析】由三角函数公式化简可得f(x)=2sin(x+),由三角函数的对称性可得.【解答】解:由三角函数公式化简可得f(x)=sinx+sin(+x)=sinx+cosx=2(sinx+cosx)=2sin(x+),由x+=kπ+可x=kπ+,k∈Z.结合选项可得当k=0时,函数的一条对称轴为x=.故选:B.4.设α,β是两个不同的平面,m,n是两条不同的直线,且m⊂α,n⊂β()A.若m,n是异面直线,则α与β相交B.若m∥β,n∥α则α∥βC.若m⊥n,则α⊥βD.若m⊥β,则α⊥β【考点】空间中直线与平面之间的位置关系;平面与平面之间的位置关系.【分析】在A中,α与β相交或平行;在B中,α与β相交或平行;在C中,α与β相交或平行;在D中,由面面垂直的判定定理得α⊥β.【解答】解:由α,β是两个不同的平面,m,n是两条不同的直线,且m⊂α,n⊂β,知:在A中,若m,n是异面直线,则α与β相交或平行,故A错误;在B中,若m∥β,n∥α,则α与β相交或平行,故B错误;在C中,若m⊥n,则α与β相交或平行,故C错误;在D中,若m⊥β,则由面面垂直的判定定理得α⊥β,故D正确.故选:D.5.已知等差数列{a n}公差为d,前n项和{s n},则下列描述不一定正确的是()A.若a1>0,d>0,则n唯一确定时也唯一确定B.若a1>0,d<0,则n唯一确定时也唯一确定C.若a1>0,d>0,则唯一确定时n也唯一确定D.若a1>0,d<0,则唯一确定时n也唯一确定【考点】等差数列的性质.【分析】S n=na1+=+,利用二次函数的性质即可得出.【解答】解:S n=na1+=+,可知:a1>0,d<0,则唯一确定时n不一定唯一确定,可能有两个值,故选:D.6.已知函数f(x)=(x﹣)•sinx,x∈[﹣π,π]且x≠0,下列描述正确的是()A.函数f(x)为奇函数B.函数f(x)既无最大值也无最小值C.函数f(x)有4个零点D.函数f(x)在(0,π)单调递增【考点】函数的图象.【分析】判断函数的奇偶性,求出函数的零点,利用导数判断单调性.【解答】解:∵f(﹣x)=(﹣x+)sin(﹣x)=(x﹣)•sinx=f(x).∴f(x)是偶函数.故A错误.令f(x)=0得x﹣=0或sinx=0,∵x∈[﹣π,π],∴x=±1或x=±π.∴f(x)有4个零点.故C正确.故选:C.7.如图,B、D是以AC为直径的圆上的两点,其中AB=,AD=,则•=()A.1 B.2 C.t D.2t【考点】平面向量数量积的运算.【分析】连结BC,CD,则=AB2,=AD2.于是•==.【解答】解:连结BC,CD.则AD⊥CD,AB⊥BC.∴=AB×AC×cos∠BAC=AB2=t+1.=AD×AC×cos∠CAD=AD2=t+2.∵,∴•===1.故选:A.8.已知双曲线=1(a>0,b>0),若焦点F(c,0)关于渐近线y=x的对称点在另一条渐近线y=﹣x上,则双曲线的离心率为()A.B.2 C.D.3【考点】双曲线的简单性质.【分析】首先求出F1到渐近线的距离,利用焦点F(c,0)关于渐近线y=x的对称点在另一条渐近线y=﹣x上,可得直角三角形,即可求出双曲线的离心率.【解答】解:由题意,F1(﹣c,0),F2(c,0),设一条渐近线方程为y=x,则F1到渐近线的距离为=b.设F1关于渐近线的对称点为M,F1M与渐近线交于A,∴|MF1|=2b,A为F1M的中点,又焦点F(c,0)关于渐近线y=x的对称点在另一条渐近线y=﹣x上,∴OA∥F2M,∴∠F1MF2为直角,∴△MF1F2为直角三角形,∴由勾股定理得4c2=c2+4b2∴3c2=4(c2﹣a2),∴c2=4a2,∴c=2a,∴e=2.故选:B.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)9.已知数列{a n}满足a2=2,且数列{3a n﹣2n}为公比为2的等比数列,则a1=1,数列{a n}通项公式a n=.【考点】等比数列的通项公式.【分析】由于3a2﹣4=2.利用等比数列的通项公式可得3a n﹣2n,即可得出.【解答】解:3a2﹣4=2.∴3a n﹣2n=2×2n﹣2=2n﹣1.∴3a1﹣2=1,解得a1=1.∴a n=.故答案分别为:1;.10.函数则f(﹣1)=2﹣,若方程f(x)=m有两个不同的实数根,则m的取值范围为(0,2).【考点】函数的零点与方程根的关系;函数的值.【分析】根据分段函数的表达式代入求解即可,作出函数f(x)的图象,利用数形结合进行求解即可.【解答】解:由分段函数的表达式得f(﹣1)=|﹣2|=2﹣,故答案为:2﹣,作出函数f(x)的图象如图:当x<0时,f(x)=2﹣e x∈(1,2),∴当x≤1时,f(x)∈[0,2),当x≥1时,f(x)≥0,若方程f(x)=m有两个不同的实数根,则0<m<2,即实数m的取值范围是(0,2),故答案为:2﹣,(0,2).11.已知实数x,y满足x>0,y>0,x+2y=3,则的最小值为,x2+4y2+xy的最小值为.【考点】函数的最值及其几何意义.【分析】根据基本不等式进行转化求解得的最小值,利用换元法转化为一元二次函数,利用一元二次函数的性质即可求x2+4y2+xy的最小值.【解答】解:由x+2y=3得+=1,则=+=(+)×1=(+)(+)=2+++≥+2=+=,当且仅当=,即3x2=2y2取等号,即的最小值为.由x+2y=3得x=3﹣2y,由x=3﹣2y>0得0<y<,则x2+4y2+xy=(3﹣2y)2+4y2+(3﹣2y)y=6y2﹣9y+9=6(y﹣)2+,即当y=时,x2+4y2+xy的最小值为,故答案为:,.12.已知实数x,y满足.(1)当a=2时,则2x+y的最小值为5;(2)若满足上述条件的实数x,y围成的平面区域是三角形,则实数a的取值范围是1<a或a<.【考点】简单线性规划.【分析】(1)作出不等式组表示的平面区域;作出目标函数对应的直线;结合图象知当直线过B(5,3)时,z最大,当直线过C时,z最小.(2)作出不等式组.表示的平面区域,从而解出.【解答】解:(1)画出不等式表示的平面区域:将目标函数变形为z=2x+y,作出目标函数对应的直线,,解得A(1,3),直线过A(1,3)时,直线的纵截距最大,z最小,最小值为5;则目标函数z=2x+y的最小值为:5.故答案为:5.(2).如下图:y=a(x﹣3)恒过(3,0),则若不等式组表示的平面区域是一个三角形,K AB==﹣,则实数a的取值范围,1<a或a<,故答案为:1<a或a<.13.是按先后顺序排列的一列向量,若,且,则其中模最小的一个向量的序号为1002.【考点】数列与向量的综合;向量的模.【分析】根据题意,求出x n与y n的通项公式,计算的模长最小值即可.【解答】解:是按先后顺序排列的一列向量,且,,∴+(1,1),即(x n,y n)=(x n﹣1,y n﹣1)+(1,1)=(x n﹣1+1,y n﹣1+1);∴,∴,∴||===;∴当n==1002,即n=1002时,其模最小.故答案为:1002.14.如图,平面ABC⊥平面α,D为线段AB的中点,,∠CDB=45°,点P为面α内的动点,且P到直线CD的距离为,则∠APB的最大值为90°.【考点】点、线、面间的距离计算.【分析】空间中到直线CD的距离为1的点构成一个圆柱面,它和面α相交得一椭圆,所以P在α内的轨迹为一个椭圆,D为椭圆的中心,且c=,b=,a=2.利用椭圆的性质:椭圆上点关于两焦点的张角在短轴的端点取得最大,即可得出.【解答】解:空间中到直线CD的距离为1的点构成一个圆柱面,它和面α相交得一椭圆,所以P在α内的轨迹为一个椭圆,D为椭圆的中心,c=,b=,a=2,于是A,B为椭圆的焦点,椭圆上点关于两焦点的张角在短轴的端点取得最大,∴∠APB=2∠APD=90°.故答案为:90°.15.边长为1的正方体ABCD﹣A1B1C1D1若将其对角线AC1与平面α垂直,则正方体ABCD﹣A1B1C1D1在平面α上的投影面积为.【考点】平行投影及平行投影作图法.【分析】根据题意,画出图形,找出与AC1垂直的平面去截正方体ABCD﹣A1B1C1D1所得的截面是什么,再求正方体在该平面上的投影面积.【解答】解:如图所示,连接BB1,DD1的中点MN,交AC1于点O,在对角面ACC1A1中,过点O作OP⊥AC,交AC1于点P,则平面MOP是对角线AC1的垂面;该平面截正方体ABCD﹣A1B1C1D1所得的截面是六边形MGHNFE;则正方体在该平面上的投影面积是MN•2OR=××2×=.故答案为:.三、解答题(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤)16.在△ABC中,角A,B,C所对的边分别为a,b,c,A=2C,且(Ⅰ)求cosC的值;(Ⅱ)若△ABC的面积为,求sinB及边b.【考点】正弦定理;两角和与差的正弦函数.【分析】(I)使用二倍角公式得出关于cosC的方程解出;(II)使用和角公式计算sinB,利用正弦定理和面积公式计算b.【解答】解:(I)∵cosA=cos2C=2cos2C﹣1=,∴cosC=±.∵A=2C,∴C是锐角,∴cosC=.(II)∵cosA=,cosC=,∴sinA=,sinC=.∴sinB=sin(A+C)=sinAcosC+cosAsinC=.由正弦定理得.∴a=∵S△ABC==5,∴b=5.17.已知数列{a n}的前n项和s n,满足s n=n(n﹣6),数列{b n}满足(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)记数列{c n}满足,求数列{c n}的前n项和T n.【考点】数列的求和;等比数列的通项公式;等比数列的前n项和.【分析】(Ⅰ)当n≥2时,利用a n=S n﹣S n计算,进而可知a n=2n﹣7;通过b n+1=3b n可知﹣1数列{b n}为等比数列,利用b n=b2•3n﹣2计算即得结论;(Ⅱ)通过(I)可知c n=,进而分n为奇数、偶数两种情况讨论即可.【解答】解:(Ⅰ)当n=1时,a1=S1=﹣5,=2n﹣7,当n≥2时,a n=S n﹣S n﹣1又∵当n=1时满足上式,∴a n=2n﹣7;∵b n+1=3b n,b2=3,∴数列{b n}为等比数列,故其通项公式b n=b2•3n﹣2=3n﹣1;(Ⅱ)由(I)可知c n=,当n为偶数是,T n=+=+;当n为奇数时,T n=+=+;综上所述,T n=.18.已知几何体P﹣ABCD如图,面ABCD为矩形,面ABCD⊥面PAB,且面PAB为正三角形,若AB=2,AD=1,E、F分别为AC、BP中点,(Ⅰ)求证:EF∥面PCD;(Ⅱ)求直线BP与面PAC所成角的正弦值.【考点】直线与平面所成的角;直线与平面平行的判定.【分析】(I)连结BD,则E为BD的中点,利用中位线定理得出EF∥PD,故而EF∥面PCD;(II)取AP的中点H,连结HB,HC,过B作BO⊥HC于O,连结OP.则可证AP⊥平面BCH,于是AP⊥OB,结合OB⊥CH得出OB⊥平面PAC,于是∠BPO为PB与平面PAC所成的角.利用勾股定理计算BH,CH,OB,得出sin∠BPO=.【解答】证明:(I)连结BD,∵四边形ABCD是矩形,E是AC的中点,∴E是BD的中点.又F是BP的中点,∴EF∥PD,又EF⊄平面PCD,PD⊂平面PBD,∴EF∥平面PCD.(II)取AP的中点H,连结HB,HC,过B作BO⊥HC于O,连结OP.∵面ABCD⊥面PAB,面ABCD∩面PAB=AB,BC⊥AB,∴BC⊥平面PAB,∵AP⊂平面PAB,∴BC⊥AP,∵△PAB是等边三角形,∴AP⊥HB,又BC⊂平面BCH,BH⊂平面BCH,BC∩BH=B,∴AP⊥平面BCH,又OB⊂平面BCH,∴AP⊥OB,又OB⊥CH,CH⊂平面PAC,AP⊂平面PAC,CH∩AP=H,∴OB⊥平面PAC.∴∠BPO为PB与平面PAC所成的角.∵AB=2,BC=1,∴BH=,CH==2,∴BO==,∴sin∠BPO==.即直线BP与面PAC所成角的正弦值为.19.已知抛物线C:x2=2py(p>0),圆E:x2+(y+1)2=1,若直线L与抛物线C和圆E分别相切于点A,B(A,B不重合)(Ⅰ)当p=1时,求直线L的方程;(Ⅱ)点F是抛物线C的焦点,若对于任意的p>0,记△ABF面积为S,求的最小值.【考点】直线与圆锥曲线的综合问题;直线的一般式方程.【分析】(Ⅰ)设直线L的方程为y=kx+b,由点到直线距离公式和相切性质得k2+1=(1+b)2,联立,得x2﹣2kx﹣2b=0,由根的判别式得k2+2b=0,由此能求出直线L的方程.(Ⅱ)联立方程,得x2﹣2px﹣2pb=0,由此利用根的判别式、弦长公式、点到直线距离公式,结合已知能求出的最小值.【解答】解:(Ⅰ)当P=1时,抛物线x2=2y,由题意直线L的斜率存在,设直线L的方程为y=kx+b,即kx﹣y+b=0,由题意得=1,即k2+1=(1+b)2,①联立,得x2﹣2kx﹣2b=0,由△=0,得k2+2b=0,②由①②得k=±2,b=﹣4,故直线L的方程为y=,(Ⅱ)联立方程,得x2﹣2px﹣2pb=0,(*)由△=0,得pk2+2p=0,③∴b=﹣,代入(*)式,得x=pk,故点A(pk,),由①②得b=﹣,k2=,故A(pk,),∴|AB|===2•,点F到直线L的距离d==•=,∴S=|AB|•d==,∴==≥,当且仅当p=时,有最小值(2).20.已知函数f(x)=x2+ax+1,其中a∈R,且a≠0(Ⅰ)设h(x)=(2x﹣3)f(x),若函数y=h(x)图象与x轴恰有两个不同的交点,试求a的取值集合;(Ⅱ)求函数y=|f(x)|在[0,1]上最大值.【考点】函数与方程的综合运用;函数的最值及其几何意义.【分析】(Ⅰ)分类讨论,从而由f(x)=0恰有一解及f(x)=0有两个不同的解求得;(Ⅱ)分类讨论,从而确定二次函数的单调性及最值,从而确定函数y=|f(x)|在[0,1]上的最大值.【解答】解:(Ⅰ)(1)若f(x)=0恰有一解,且解不为,即a2﹣4=0,解得a=±2;(2)若f(x)=0有两个不同的解,且其中一个解为,代入得+a+1=0,解得a=﹣,检验满足△>0;综上所述,a的取值集合为{﹣,﹣2,2}.(Ⅱ)(1)若﹣≤0,即a≥0时,函数y=|f(x)|在[0,1]上单调递增,故y max=f(1)=2+a;(2)若0<﹣<1,即﹣2<a<0时,此时△=a2﹣4<0,且f(x)的图象的对称轴在(0,1)上,且开口向上;故y max=max{f(0),f(1)}=max{1,a+2}=,(3)若﹣≥1,即a≤﹣2时,此时f(1)=2+a≤0,y max=max{f(0),﹣f(1)}=max{1,﹣a﹣2}=,综上所述,y max=.2019年9月18日。
完整)2019年高考文科数学全国1卷(附答案)12B-SX-xxxxxxx2019年普通高等学校招生全国统一考试文科数学全国I卷注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1.设z=(3-i)/(1+2i),则z=(B)2.2.已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则A∩B={2,3,4,5},所以A'∩B'={1,6,7},故选项为(B){1,7}。
3.已知a=log0.2 2,b=2,c=0.20.3,则a<c<b,故选项为(D)b<c<a。
4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是黄金分割比例,即(5-1)/2≈0.618.最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是黄金分割比例。
设身高为x,则x/(5x/8)= (5-1)/2,解得x=1.85m,即(C)185cm。
5.函数f(x)=sinx+x/cosx+x^2在[-π,π]的图像大致为(C)。
注:文章中的格式错误已删除,明显有问题的段落已删除,每段话进行了小幅度的改写。
已删除明显有问题的段落。
6.某学校为了解1,000名新生的身体素质,采用系统抽样方法等距抽取100名学生进行体质测验。
如果46号学生被抽到,那么下面4名学生中被抽到的是哪个?解答:由于是等距抽取,因此每隔10个学生抽取一个,因此46号学生是第5组中的学生。
要求下面4名学生中被抽到的,就是在第5组中再选4个学生,因此答案是C.616号学生。
2019年浙江省高三(下)期初数学试卷(文科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R,A={y|y=2x+1},B={x|lnx<0},则(∁U A)∩B=()A.∅B.{x|<x≤1} C.{x|x<1} D.{x|0<x<1}2.已知a=log34,b=()0,c=10,则下列关系中正确的是()A.a>b>c B.b>a>c C.a>c>b D.c>a>b3.等差数列{a n}的前n项和为S n,若a1=2,S3=12,则a6等于()A.8 B.10 C.12 D.144.已知E,F,G,H是空间四点,命题甲:E,F,G,H四点不共面,命题乙:直线EF和GH不相交,则甲是乙成立的()A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件5.已知sinφ=,且φ∈(,π),函数f(x)=sin(ωx+φ)(ω>0)的图象的相邻两条对称轴之间的距离等于,则f()的值为()A.﹣B.﹣C.D.6.如图,F1,F2是双曲线C1:x2﹣=1与椭圆C2的公共焦点,点A是C1,C2在第一象限的公共点.若|F1F2|=|F1A|,则C2的离心率是()A.B.C.D.7.如图,在平行四边形ABCD中,AB=BC=2,∠BAD=45°,E为线段AB的动点,将△ADE沿直线DE翻折成△A′DE,使平面A′DE ⊥平面BCD,则直线DC与平面A′DE所成角的最小值为()A. B. C. D.8.设函数y=f(x)的定义域为D,若对于任意x1、x2∈D,当x1+x2=2a 时,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究函数f(x)=x+sinπx﹣3的某一个对称中心,并利用对称中心的上述定义,可得到的值为()A.﹣4031 B.4031 C.﹣8062 D.8062二、填空题:(本大题共7小题,前4小题每题6分,后3小题每题4分,共36分).9.已知直线,且l1⊥l2,则l1的倾斜角为,原点到l2的距离为.10.函数f(x)=lg(9﹣x2)的定义域为,单调递增区间为.11.设变量x,y满足约束条件,则满足条件的可行域的面积为,z=|x﹣3y|的最大值为.12.记公差d不为0的等差数列{a n}的前n项和为S n,S3=9,a3,a5,a8成等比数列,则公差d=;数列{a n}的前n项和为S n=.13.如图,正六边形ABCDEF的边长为2,P是线段DE上的任意一点,则•的取值范围为.14.已知直线ax+by=(a,b是实数)与圆O:x2+y2=1(O是坐标原点)相交于A,B两点,且△AOB是等边三角形,点P(a,b)是以点M(0,)为圆心的圆M上的任意一点,则圆M的面积的最大值为.15.设a,b,c是正实数,满足b+c≥a,则的最小值为.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.已知△ABC的三个内角A,B,C的对边分别为a,b,c,且△ABC的面积为S=accosB.(1)若c=2a,求角A,B,C的大小;(2)若a=2,且≤A≤,求边c的取值范围.17.在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥BD,∠DAB=60°,AE⊥BD,CB=CD=AE=DE=1;(Ⅰ)求证:BD⊥平面AED;(2)求直线AB与平面BDE所成角的正弦值.18.已知数列{a n}的前n项和为S n,且对于任意n∈N*,总有S n=2(a n ﹣1).(1)求数列{a n}的通项公式;(2)在a k与a k+1之间插入k个数,使这k+2个数组成等差数列,当公差d满足3<d<4时,求k的值并求这个等差数列所有项的和T.19.已知点P(1,m)在抛物线C:y2=2Px(P>0)上,F为焦点,且|PF|=3.(Ⅰ)求抛物线C的方程;(Ⅱ)过点T(4,0)的直线l交抛物线C于A,B两点,O为坐标原点.(ⅰ)求•的值;(ⅱ)若以A为圆心,|AT|为半径的圆与y轴交于M,N两点,求△MNF的面积.20.已知f(x)=x|x﹣a|+b,x∈R.(1)当a=1,b=1时,若,求x的值;(2)若b<0,且对任何x∈(0,1]不等式f(x)<0恒成立,求实数a的取值范围.参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R,A={y|y=2x+1},B={x|lnx<0},则(∁U A)∩B=()A.∅B.{x|<x≤1} C.{x|x<1} D.{x|0<x<1}【考点】补集及其运算;交集及其运算.【分析】本题求集合的交集,由题设条件知可先对两个集合进行化简,再进行交补的运算,集合A由求指数函数的值域进行化简,集合B 通过求集合的定义域进行化简【解答】解:由题意A={y|y=2x+1}={y|y>1},B={x|lnx<0}={x|0<x<1},故C U A={y|y≤1}∴(C U A)∩B={x|0<x<1}故选D2.已知a=log34,b=()0,c=10,则下列关系中正确的是()A.a>b>c B.b>a>c C.a>c>b D.c>a>b【考点】对数值大小的比较.【分析】根据对数函数的性质,分别求出a,b,c的范围,即可得到结论.【解答】解:a=log34>1,b=()0=1,c=10<0,∴a>b>0,故选:A.3.等差数列{a n}的前n项和为S n,若a1=2,S3=12,则a6等于()A.8 B.10 C.12 D.14【考点】等差数列的前n项和.【分析】由等差数列的性质和已知可得a2,进而可得公差,可得a6【解答】解:由题意可得S3=a1+a2+a3=3a2=12,解得a2=4,∴公差d=a2﹣a1=4﹣2=2,∴a6=a1+5d=2+5×2=12,故选:C.4.已知E,F,G,H是空间四点,命题甲:E,F,G,H四点不共面,命题乙:直线EF和GH不相交,则甲是乙成立的()A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义分别判断充分性和必要性,从而得到答案.【解答】解:命题甲能推出命题乙,是充分条件,命题乙:直线EF和GH不相交,可能平行,命题乙推不出命题甲,不是必要条件,故选:B,5.已知sinφ=,且φ∈(,π),函数f(x)=sin(ωx+φ)(ω>0)的图象的相邻两条对称轴之间的距离等于,则f()的值为()A.﹣B.﹣C.D.【考点】正弦函数的图象.【分析】由周期求出ω,由条件求出cosφ的值,从而求得f()的值.【解答】解:根据函数f(x)=sin(ωx+φ)(ω>0)的图象的相邻两条对称轴之间的距离等于,可得==,∴ω=2.由sinφ=,且φ∈(,π),可得cosφ=﹣,∴则f()=sin(+φ)=cosφ=﹣,故选:B.6.如图,F1,F2是双曲线C1:x2﹣=1与椭圆C2的公共焦点,点A是C1,C2在第一象限的公共点.若|F1F2|=|F1A|,则C2的离心率是()A.B.C.D.【考点】双曲线的简单性质.【分析】利用双曲线的定义,可求出|F2A|=2,|F1F2|=4,进而有|F1A|+|F2A|=6,由此可求C2的离心率.【解答】解:由题意知,|F1F2|=|F1A|=4,∵|F1A|﹣|F2A|=2,∴|F2A|=2,∴|F1A|+|F2A|=6,∵|F1F2|=4,∴C2的离心率是=.故选B.7.如图,在平行四边形ABCD中,AB=BC=2,∠BAD=45°,E为线段AB的动点,将△ADE沿直线DE翻折成△A′DE,使平面A′DE ⊥平面BCD,则直线DC与平面A′DE所成角的最小值为()A. B. C. D.【考点】直线与平面所成的角.【分析】过A作AH⊥DE,则AH⊥平面A′DE,于是∠AEH为AE 与平面A′DE所成的角,也是CD与平面A′DE所成的角,在△ADE 中使用正弦定理用DE表示出sin∠AED,根据DE的范围即可得出所求线面角的范围.【解答】解:∵四边形ABCD是平行四边形,AB=BC=2,∠BAD=45°,∴AD=,过A作AH⊥DE,∵平面A′DE⊥平面BCD,平面A′DE∩平面BCD=DE,AH⊂平面ABCD,∴AH⊥平面A′DE,∴∠AEH为AE与平面A′DE所成的角.∵CD∥AE,∴∠AEH为CD与平面A′DE所成的角.∴∠AED为CD与平面A′DE所成的角或其补角.在△ADE,由正弦定理得,即,∴sin∠AED=.∵E在线段AB上,∴当E与B重合时,DE最大,sin∠AED取得最小值.∵BD==.∴sin∠AED==.∴线DC与平面A′DE所成角的最小值为.故选:C.8.设函数y=f(x)的定义域为D,若对于任意x1、x2∈D,当x1+x2=2a 时,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究函数f(x)=x+sinπx﹣3的某一个对称中心,并利用对称中心的上述定义,可得到的值为()A.﹣4031 B.4031 C.﹣8062 D.8062【考点】函数的值;抽象函数及其应用.【分析】利用函数对称中心的性质得到当x1+x2=2时,恒有f(x1)+f (x2)=﹣4,能此能求出结果.【解答】解:∵f(x)=x+sinπx﹣3,∴当x=1时,f(1)=1+sinπ﹣3=﹣2,∴根据对称中心的定义,可得当x1+x2=2时,恒有f(x1)+f(x2)=﹣4,∴=2015[f()+f()]+f()=2015×(﹣4)﹣2=﹣8062.故选:C.二、填空题:(本大题共7小题,前4小题每题6分,后3小题每题4分,共36分).9.已知直线,且l1⊥l2,则l1的倾斜角为,原点到l2的距离为.【考点】点到直线的距离公式;直线的倾斜角.【分析】求出直线l1的斜率,根据斜率得出倾斜角;根据垂直关系求出a的值,再计算原点O到l2的距离.:x+y﹣1=0可化为y=﹣x+1,【解答】解:直线l其斜率为k=tanα=﹣,且α∈[0,π),∴α=,即l1的倾斜角为;又l2:ax+y=1,且l1⊥l2,∴×a+1×1=0,解得a=,∴原点O(0,0)到l2的距离为:d==.故答案为:,.10.函数f(x)=lg(9﹣x2)的定义域为(﹣3,3),单调递增区间为(﹣3,0] .【考点】复合函数的单调性;函数的定义域及其求法.【分析】令t=9﹣x2>0,求得x的范围,可得函数的定义域,求出函数t在定义域内的增区间,即为所求.【解答】解:对于函数f(x)=lg(9﹣x2),令t=9﹣x2>0,求得﹣3<x<3,可得函数的定义域为(﹣3,3).令t=9﹣x2,则函数f(x)=lgt,本题即求函数t在定义域内的增区间.再利用二次函数的性质求得t在定义域内的增区间为(﹣3,0],故答案为:(﹣3,3);(﹣3,0].11.设变量x,y满足约束条件,则满足条件的可行域的面积为6,z=|x﹣3y|的最大值为8.【考点】简单线性规划.【分析】先根据约束条件画出可行域,判断可行域的形状,然后求解三角形的面积,设z=|x﹣3y|,再利用z的几何意义求最值,只需求出直线z=x﹣3y过可行域内的点A时,从而得到z=|x﹣3y|的最大值即可.【解答】解:依题意,画出可行域(如图示),,可得B(﹣2,﹣2),,可得A(﹣2,2);,可得C(1,1);可行域是三角形,面积为:=6;则对于目标函数z=x﹣3y,当直线经过A(﹣2,2)时,z=|x﹣3y|,取到最大值,Z max=8.故答案为:6;8.12.记公差d不为0的等差数列{a n}的前n项和为S n,S3=9,a3,a5,a8成等比数列,则公差d=1;数列{a n}的前n项和为S n=.【考点】等差数列与等比数列的综合.【分析】由a3,a5,a8成等比数列,即有a52=a3a8,运用等差数列的通项公式和求和公式,解方程可得首项和公差,再由等差数列的求和公式,即可得到所求.【解答】解:a3,a5,a8成等比数列,即有a52=a3a8,即为(a1+4d)2=(a1+2d)(a1+7d),化简可得2d2=a1d,(d≠0),即有a1=2d,又S3=9,可得3a1+d=9,即a1+d=3,解方程可得a1=2,d=1,S n=na1+n(n﹣1)d=2n+n(n﹣1)=.故答案为:1,.13.如图,正六边形ABCDEF的边长为2,P是线段DE上的任意一点,则•的取值范围为[0,6]..【考点】平面向量数量积的运算.【分析】建立直角坐标系,由已知可求=(0,2),=(2,0),=(﹣3,),设λ=∈[0,1],可求=(2λ,2),利用平面向量数量积的坐标运算可得•=﹣6λ+6,结合λ的范围即可得解.【解答】解:建立如图坐标系,设AB=2,则A(0,0),B(2,0),C(3,),D(2,2),E(0,2),F(﹣1,),则:=(0,2),=(2,0),=(﹣3,),设λ=∈[0,1],则:=+=+λ=(0,2)+λ(2,0)=(2λ,2),则•=(2λ,2)•(﹣3,)=﹣6λ+6∈[0,6].故答案为:[0,6].14.已知直线ax+by=(a,b是实数)与圆O:x2+y2=1(O是坐标原点)相交于A,B两点,且△AOB是等边三角形,点P(a,b)是以点M(0,)为圆心的圆M上的任意一点,则圆M的面积的最大值为(6+4)π.【考点】直线与圆的位置关系.【分析】根据圆的方程找出圆心坐标和半径,由△AOB是等边三角形得到a与b的轨迹方程为一个椭圆,圆M的面积最大时,所求半径为椭圆2a2+b2=4上点P(a,b)到焦点(0,)的距离最大值,即可得出结论.【解答】解:由圆x2+y2=1,所以圆心(0,0),半径为1所以|OA|=|OB|=1,因为△AOB是等边三角形,所以圆心(0,0)到直线ax+by=的距离为=,所以2a2+b2=4.因此,圆M的面积最大时,所求半径为椭圆2a2+b2=4上点P(a,b)到焦点(0,)的距离最大值,由椭圆的性质,可知最大值为2+.所以圆M的面积最大值为π(2+)2=(6+4)π.故答案为:(6+4)π.15.设a,b,c是正实数,满足b+c≥a,则的最小值为.【考点】基本不等式.【分析】利用放缩法和基本不等式的性质进行求解.【解答】解:∵a,b,c是正实数,满足b+c≥a∴≥+=+=(+﹣(当且仅当b+c=a且时取等号)故答案为:.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.已知△ABC的三个内角A,B,C的对边分别为a,b,c,且△ABC的面积为S=accosB.(1)若c=2a,求角A,B,C的大小;(2)若a=2,且≤A≤,求边c的取值范围.【考点】正弦定理;余弦定理.【分析】(1)法一:根据正弦定理,建立条件关系,即可求出角A,B,C的大小;法二:根据余弦定理,建立条件关系,即可求出角A,B,C的大小.(2)根据正弦定理表示出c,根据三角函数的图象和性质即可得到结论.【解答】解:由已知及三角形面积公式得S=acsinB=accosB,化简得sinB=cosB,即tanB=,又0<B<π,∴B=.(1)解法1:由c=2a,及正弦定理得,sinC=2sinA,又∵A+B=,∴sin(﹣A)=2sinA,化简可得tanA=,而0<A<,∴A=,C=.解法2:由余弦定理得,b2=a2+c2﹣2accosB=a2+4a2﹣2a2=3a2,∴b=,∴a:b:c=1:,知A=,C=.(2)由正弦定理得,即c=,由C=﹣A,得===+1又由≤A≤,知1≤tanA≤,故c∈[2,].17.在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥BD,∠DAB=60°,AE⊥BD,CB=CD=AE=DE=1;(Ⅰ)求证:BD⊥平面AED;(2)求直线AB与平面BDE所成角的正弦值.【考点】直线与平面所成的角;直线与平面垂直的判定.【分析】(1)利用等腰梯形知识得出AD⊥BD,结合AE⊥BD得出BD⊥平面ADE;(2)取DE的中点F,连结AF,BF,则可证AF⊥平面BDE,故∠ABF为AB与平面BDE所成的角,利用勾股定理计算出AF,AB即可得出sin∠ABF.【解答】证明:(1)∵等腰梯形ABCD中,AB∥BD,∠DAB=60°,∴∠ADC=∠DCB=120°,∵BC=CD,∴∠CDB=∠DBC=30°,∴∠ADB=120°﹣30°=90°,∴AD⊥BD.又AE⊥BD,AE⊂平面ADE,AD⊂平面ADE,AE∩AD=A,∴BD⊥平面ADE.(2)取DE的中点F,连结AF,BF.∵BD⊥平面ADE,AF⊂平面ADE,∴AF⊥BD,AE=DE=AD,∴AF⊥DE,又DE⊂平面BDE,BD⊂平面BDE,BD∩DE=D,∴AF⊥平面BDE,∴∠ABF为AB与平面BDE所成的角.∵AD=1,∠DAB=60°,AD⊥BD,∴AB=2AD=2,∵△ADE为边长为1的等边三角形,∴AF=.∴sin∠ABF==.18.已知数列{a n}的前n项和为S n,且对于任意n∈N*,总有S n=2(a n ﹣1).(1)求数列{a n}的通项公式;(2)在a k与a k+1之间插入k个数,使这k+2个数组成等差数列,当公差d满足3<d<4时,求k的值并求这个等差数列所有项的和T.【考点】数列递推式.【分析】(1)由S n=2a n﹣2,利用递推关系:当n≥2时,a n=S n﹣S n﹣1,化为a n=2a n﹣1,当n=1时,a1=2a1﹣2,解得a1.利用等比数列的通项公式即可得出.(2)由题意可得等差数列:a k,a k+d,a k+2d,…,a k+kd,a k+1,利用a k+1=a k+(k+1)d,及其3<d<4,可得3<<4,解出k,d,再利用求和公式即可得出.【解答】解:(1)∵S n=2a n﹣2,∴当n≥2时,S n﹣1=2a n﹣1﹣2,a n=S n﹣S n﹣1=2a n﹣2a n﹣1,化为a n=2a n﹣1,当n=1时,a1=2a1﹣2,解得a1=2.∴数列{a n}是等比数列,首项为2,公比为2.∴a n=2n.(2)由题意可得等差数列:a k,a k+d,a k+2d,…,a k+kd,a k+1,∴a k+1=a k+(k+1)d,∴2k+1=2k+(k+1)d,∴2k=(k+1)d,∴3<<4,解得k=4,d=.∴此等差数列为:24,24+,24+2×,24+3×,24+4×,25,∴这个等差数列所有项的和T==144.19.已知点P(1,m)在抛物线C:y2=2Px(P>0)上,F为焦点,且|PF|=3.(Ⅰ)求抛物线C的方程;(Ⅱ)过点T(4,0)的直线l交抛物线C于A,B两点,O为坐标原点.(ⅰ)求•的值;(ⅱ)若以A为圆心,|AT|为半径的圆与y轴交于M,N两点,求△MNF的面积.【考点】直线与圆锥曲线的综合问题.【分析】(I)由抛物线定义得:|PF|=1+=3,由此能求出抛物线C 的方程.(II)(i)依题意设过点T(4,0)的直线l的方程为x=ty+4,由,得y2﹣8ty﹣32=0,由此利用韦达定理能求出=﹣16.(ii)设A(x1,y1),M(0,y M),N(0,y N),则,以A为圆心,|AT|为半径的圆的方程为,由此能求出△MNF的面积.【解答】满分.解:(I)抛物线C:y2=2px(p>0),∴焦点F().…由抛物线定义得:|PF|=1+=3,解得p=4,∴抛物线C的方程为y2=8x.…(II)(i)依题意可设过点T(4,0)的直线l的方程为x=ty+4,…由,得y2﹣8ty﹣32=0,…设A(x1,y1),B(x2,y2),则y1+y2=8t,y1y2=﹣32,…∴,…∴=+=16﹣32=﹣16.…(ii)设A(x1,y1),M(0,y M),N(0,y N),则,①以A为圆心,|AT|为半径的圆的方程为,…令x=0,则+(y﹣y1)2=(4﹣x1)2+,②把①代入②得(y﹣y1)2=16,∴y=y1+4或y=y1﹣4,∴|MN|=|y M﹣y N|=8,…∴S△MNF=•|MN|•|OF|==8.…20.已知f(x)=x|x﹣a|+b,x∈R.(1)当a=1,b=1时,若,求x的值;(2)若b<0,且对任何x∈(0,1]不等式f(x)<0恒成立,求实数a的取值范围.【考点】函数恒成立问题.【分析】(1)把a=1,b=1代入函数解析式,在函数解析式中,然后分类去绝对值,求解关于x 的方程后得答案;(2)在b<0的前提下,在x∈(0,1]时,把不等式恒成立转化为,由单调性求得左侧函数的最大值和右侧函数的最小值得a的取值范围.【解答】解:(1)当a=1,b=1时,f(x)=x|x﹣1|+1,由,得x|x﹣1|+1=,即x|x﹣1|=若x≥1时,方程等价为x2﹣x=,即4x2﹣4x﹣1=0,得x=或x=(舍),若x<1时,方程等价为﹣x2+x=,即4x2﹣4x+1=0,得x=,综上x=或x=;(2)当x∈(0,1],此时原不等式变为,即,故,∵b<0,∴函数在(0,1]上单调递增,∴,令h(x)=x﹣,则h(x)在(0,)上单调递减,[,+∞)单调递增当b<﹣1时,h(x)=x﹣在0<x≤1上单调递减;∴a<h min(x)=h(1)=1﹣b,∴1+b<a<1﹣b.而﹣1≤b<0时,h(x)=x﹣≥2=2.∴a<h min(x)=2.∴1+b<a<2,∴此时a的取值范围是(1+b,2).。
2019年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设312iz i-=+,则||(z = )A .2B C D .12.(5分)已知集合{1U =,2,3,4,5,6,7},{2A =,3,4,5},{2B =,3,6,7},则(U BA =ð )A .{1,6}B .{1,7}C .{6,7}D .{1,6,7}3.(5分)已知2log 0.2a =,0.22b =,0.30.2c =,则( ) A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是0.618≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( )A .165cmB .175cmC .185cmD .190cm5.(5分)函数2sin ()cos x xf x x x+=+的图象在[π-,]π的大致为( ) A .B .C .D .6.(5分)某学校为了解1000名新生的身体素质,将这些学生编号1,2,⋯,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( ) A .8号学生B .200号学生C .616号学生D .815号学生7.(5分)tan 255(︒= ) A.2-B.2-+C.2D.2+8.(5分)已知非零向量a ,b 满足||2||a b =,且()a b b -⊥,则a 与b 的夹角为( ) A .6πB .3π C .23π D .56π 9.(5分)如图是求112122++的程序框图,图中空白框中应填入( )A .12A A=+ B .12A A=+C .112A A=+ D .112A A=+10.(5分)双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线的倾斜角为130︒,则C 的离心率为( ) A .2sin40︒B .2cos40︒C .1sin50︒D .1cos50︒11.(5分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 4sin a A b B c C -=,1cos 4A =-,则(bc= )A .6B .5C .4D .312.(5分)已知椭圆C 的焦点为1(1,0)F -,2(1,0)F ,过2F 的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为( )A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
2019年普通高等学校招生全国统一考试(全国 I 卷)文科数学1.设312i z i-=+,则z =( )A .2BCD .1 答案:C解析: 因为3(3)(12)1712(12)(12)5i i i i z i i i ----===++-所以z ==2.已知集合}7,6,5,4,3,2,1{=U ,5}43{2,,,=A ,7}63{2,,,=B ,则=A C B U ( ) A . }6,1{ B .}7,1{ C .}7,6{ D . }7,6,1{答案:C解析:}7,6,5,4,3,2,1{=U ,5}43{2,,,=A ,则7}6{1,,=A C U ,又 7}63{2,,,=B ,则7}{6,=A C B U ,故选C .3.已知2log 0.2a =,0.22b =,0.30.2c =,则( )A .a b c <<B .a c b <<C .c a b <<D .b c a << 答案:B解答:由对数函数的图像可知:2log 0.20a =<;再有指数函数的图像可知:0.221b =>,0.300.21c <=<,于是可得到:a c b <<.4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是215-(618.0215≈-称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是215- .若某人满足上述两个黄金分割比例,且腿长为cm 105,头顶至脖子下端的长度为cm 26,则其身高可能是( )A .cm 165B .cm 175C .cm 185D .cm 190 答案:B解析:方法一:设头顶处为点A ,咽喉处为点B ,脖子下端处为点C ,肚脐处为点D ,腿根处为点E ,足底处为F ,t BD =,λ=-215, 根据题意可知λ=BD AB ,故t AB λ=;又t BD AB AD )1(+=+=λ,λ=DF AD ,故t DF λλ1+=; 所以身高t DF AD h λλ2)1(+=+=,将618.0215≈-=λ代入可得t h 24.4≈. 根据腿长为cm 105,头顶至脖子下端的长度为cm 26可得AC AB <,EF DF >;即26<t λ,1051>+t λλ,将618.0215≈-=λ代入可得4240<<t 所以08.1786.169<<h ,故选B .方法二:由于头顶至咽喉的长度与头顶至脖子下端的长度极为接近,故头顶至脖子下端的长度cm 26可估值为头顶至咽喉的长度;根据人体的头顶至咽喉的长度与咽喉至肚脐的长度之比是215-(618.0215≈-称为黄金分割比例)可计算出咽喉至肚脐的长度约为cm 42;将人体的头顶至咽喉的长度与咽喉至肚脐的长度相加可得头顶至肚脐的长度为cm 68,头顶至肚脐的长度与肚脐至足底的长度之比是215-可计算出肚脐至足底的长度约为110;将头顶至肚脐的长度与肚脐至足底的长度相加即可得到身高约为cm 178,与答案cm 175更为接近,故选B .5.函数2sin ()cos x x f x x x +=+在[,]ππ-的图像大致为( ) A .B .C .D .答案:D解答:∵()()()2sin ()cos x xf x x x ---=-+-=2sin cos x x x x+-+()f x =-, ∴()f x 为奇函数,排除A . 又22sin 4222()02cos 22f πππππππ++==>⎛⎫+ ⎪⎝⎭,排除C , ()22sin ()01cos f πππππππ+==>++,排除B ,故选D . 6.某学校为了解1000名新生的身体素质,将这些学生编号为1,2,3,,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是( ). A .8号学生 B .200号学生 C .616号学生 D .815号学生 答案:C解答:从1000名学生中抽取100名,每10人抽一个,46号学生被抽到,则抽取的号数就为106(099,)n n n N +≤≤∈,可得出616号学生被抽到.7.tan 255︒=( )A.2- B.2- C.2 D.2答案:D解析:因为tan 255tan(18075)tan 75︒=︒+︒=︒tan 45tan 30tan(4530)1tan 45tan 30︒+︒=︒+︒=-︒⋅︒化简可得tan 2552︒=8.已知非零向量a ,b 满足||2||b a =,且b b a ⊥-)(,则a 与b 的夹角为( )A .6πB .3πC .32πD .65π 答案:B解答:||2||b a =,且b b a ⊥-)(,∴0)(=⋅-b b a ,有0||2=-⋅b b a ,设a 与b 的夹角为θ,则有0||cos ||||2=-⋅b b a θ,即0||c o s ||222=-b b θ,0)1cos 2(||2=-θb , 0||≠b ,∴21cos =θ,3πθ=,故a 与b 的夹角为3π,选B . 9.右图是求112+12+2的程序框图,图中空白框中应填入( )A .12A A =+B .12A A =+C .112A A =+D .112A A =+ 答案:A解答:把选项代入模拟运行很容易得出结论选项A 代入运算可得1=12+12+2A ,满足条件,选项B 代入运算可得1=2+12+2A ,不符合条件,选项C 代入运算可得12A =,不符合条件, 选项D 代入运算可得11+4A =,不符合条件. 10.双曲线)0,0(12222>>=-b a by a x C :的一条渐近线的倾斜角为︒130,则C 的离心率为( ) A .︒40sin 2 B .︒40cos 2 C .︒50sin 1 D .︒50cos 1 答案:D解答: 根据题意可知︒=-130tan a b ,所以︒︒=︒=50cos 50sin 50tan a b , 离心率︒=︒=︒︒+︒=︒︒+=+=50cos 150cos 150cos 50sin 50cos 50cos 50sin 1122222222a b e . 11.ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sin sin 4sin a A b B c C -=,1cos 4A =-,则b c=( )A .6B .5C .4D .3答案:A解答:由正弦定理可得到:222sin sin 4sin 4a A b B c C a b c -=⇒-=,即2224a c b =+, 又由余弦定理可得到:2221cos 24b c a A bc +-==-,于是可得到6b c = 12.已知椭圆C 的焦点坐标为1(1,0)F -,2(1,0)F ,过2F 的直线与C 交于A ,B 两点,若222AF F B =,1AB BF =,则C 的方程为( )A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y += 答案:B解答: 由222AF F B =,1AB BF =,设2F B x =,则22A F x =,13BF x =,根据椭圆的定义21212F B BF AF AF a +=+=,所以12AF x =,因此点A 即为椭圆的下顶点,因为222AF F B =,1c =所以点B 坐标为3(,)22b ,将坐标代入椭圆方程得291144a +=,解得 223,2ab ==,故答案选B .13.曲线23()x y x x e =+在点(0,0)处的切线方程为 .答案:3y x =解答:∵23(21)3()x x y x e x x e '=+++23(31)x x x e =++,∴结合导数的几何意义曲线在点(0,0)处的切线方程的斜率3k =,∴切线方程为3y x =.14.记n S 为等比数列{}n a 的前n 项和,若11a =,334S =,则4S = . 答案:58解析: 11a =,312334S a a a =++=设等比数列公比为q ∴211134a a q a q ++= ∴12q =-所以4S =58 15.函数3()sin(2)3cos 2f x x x π=+-的最小值为___________. 答案:4-解答:23()sin(2)3cos cos 23cos 2cos 3cos 12f x x x x x x x π=+-=--=--+, 因为cos [1,1]x ∈-,知当cos 1x =时()f x 取最小值, 则3()sin(2)3cos 2f x x x π=+-的最小值为4-.16.已知90ACB ∠=︒,P 为平面ABC 外一点,2PC =,点P 到ACB ∠两边,AC BC ,那么P 到平面ABC 的距离为 .解答:如图,过P 点做平面ABC 的垂线段,垂足为O ,则PO 的长度即为所求,再做,PE CB PF CA ⊥⊥,由线面的垂直判定及性质定理可得出,OE CB OF CA ⊥⊥,在Rt PCF ∆中,由2,PC PF ==1CF =,同理在Rt PCE ∆中可得出1CE =,结合90ACB ∠=︒,,OE CB OF CA ⊥⊥可得出1OE OF ==,OC =PO =17.某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bc a b c d a c b d κ-=++++答案:(1)男顾客的的满意概率为404505P == 女顾客的的满意概率为303505P == (2) 有95%的把握认为男、女顾客对该商场服务的评价有差异. 解答:(1)男顾客的的满意概率为404505P == 女顾客的的满意概率为303505P ==. (2) 22100(40201030) 4.762(4010)(3020)(4030)(1020)κ⨯-⨯==++++ 4.762 3.841>有95%的把握认为男、女顾客对该商场服务的评价有差异.18.记n S 为等差数列{}n a 的前n 项和,已知59a S -=;(1)若43=a ,求{}n a 的通项公式;(2)若01>a ,求使得n n a S ≥的n 的取值范围.答案:(1)102+-=n a n(2){}N n n n ∈≤≤,101解答:(1)由59a S -=结合591992)(9a a a S =+=可得05=a ,联立43=a 得2-=d ,所以102)3(3+-=-+=n d n a a n(2)由59a S -=可得d a 41-=,故d n a n )5(-=,2)9(d n n S n -=. 由01>a 知0<d ,故n n a S ≥等价于010112≤+-n n ,解得101≤≤n , 所以n 的取值范围是{}N n n n ∈≤≤,10119.如图直四棱柱1111ABCD A B C D -的底面是菱形,14,2AA AB ==,60BAD ∠=,,,E M N 分别是11,,BC BB A D 的中点.(1)证明://MN 平面1C DE(2)求点C 到平面1C DE 的距离.答案:见解析解答:(1)连结1111,AC B D 相交于点G ,再过点M 作1//MH C E 交11B C 于点H ,再连结GH ,NG . ,,E M N 分别是11,,BC BB A D 的中点.于是可得到1//NG C D ,//GH DE ,于是得到平面//NGHM 平面1C DE ,由MN ⊂平面NGHM ,于是得到//MN 平面1C DE(2)E 为BC 中点,ABCD 为菱形且60BAD ∠=DE BC ∴⊥,又1111ABCD A B C D -为直四棱柱,1DE CC ∴⊥ 1DE C E ∴⊥,又12,4AB AA ==,1DE C E ∴=,设点C 到平面1C DE 的距离为h由11C C DE C DCE V V --=得1111143232h ⨯=⨯⨯解得h =所以点C 到平面1C DE 20.已知函数()2sin cos f x x x x x =--,()f x '是()f x 的导数. (1)证明:()f x '在区间(0,)π存在唯一零点;(2)若[0,]x π∈时,()f x ax ≥,求a 的取值范围.答案:略解答:(1)由题意得()2cos [cos (sin )]1f x x x x x '=-+--cos sin 1x x x =+- 令()cos sin 1g x x x x =+-,∴()cos g x x x '= 当(0,]2x π∈时,()0g x '>,()g x 单调递增, 当(,)2x ππ∈时,()0g x '<,()g x 单调递减,∴()g x 的最大值为()122g ππ=-,又()2g π=-,(0)0g = ∴()()02g g ππ⋅<,即()()02f f ππ''⋅<, ∴()f x '在区间(0,)π存在唯一零点.(2)令()()F x f x ax =-2sin cos x x x x ax =---,∴()F x 'cos sin 1x x x =+-a -,由(1)知()f x '在(0,)π上先增后减,存在(,)2m ππ∈,使得()0f m '=,且(0)0f '=,()=1022f ππ'->,()2f π'=-,∴()F x '在(0,)π上先增后减,(0)F a '=-,()122F a ππ'=--,()2F a π'=--, 当()02F π'≤时,()F x '在(0,)π上小于0,()F x 单调递减,又(0)0F =,则()(0)0F x F ≤=不合题意, 当()02F π'>时,即102a π-->,12a π<-时,若(0)0F '≥,()0F π'≤,()F x 在(0,)m 上单调递增,在(,)m π上单调递减,则(0)0()0F F π≥⎧⎨≥⎩解得0a ≤, 而(0)0()20F a F a π'=-≥⎧⎨'=--≤⎩解得20a -≤≤,故20a -≤≤, 若(0)0F '≥,()0F π'≥,()F x 在(0,)π上单调递增,且(0)0F =,故只需(0)0()20F a F a π'=-≥⎧⎨'=--≥⎩解得2a ≤-; 若(0)0F '≤,()0F π'≤,()F x 在(0,)2π上单调递增,且(0)0F =, 故存在(0,)2x π∈时,()(0)0F x F ≤=,不合题意,综上所述,a 的取值范围为(],0-∞.21.已知点,A B 关于坐标原点O 对称,4AB =,M e 过点,A B 且与直线20x +=相切.(1)若A 在直线0x y +=上,求M e 的半径;(2)是否存在定点P ,使得当A 运动时,MA MP -为定值?并说明理由.答案:(1)2或6;(2)见解析.解答:(1)∵M e 过点,A B ,∴圆心在AB 的中垂线上即直线y x =上,设圆的方程为222()()x a y a r -+-=,又4AB =,根据222AO MO r +=得2242a r +=;∵M e 与直线20x +=相切,∴2a r +=,联解方程得0,2a r ==或4,6a r ==.(2)设M 的坐标为(,)x y ,根据条件22222AO MO r x +==+即22242x y x ++=+化简得24y x =,即M 的轨迹是以(1,0)为焦点,以1x =-为准线的抛物线,所以存在定点(1,0)P ,使(2)(1)1MA MP x x -=+-+=.22.在直角坐标系xOy 中,曲线C 的参数方程为22211()41t x t t ty t ⎧-=⎪⎪+⎨⎪=⎪+⎩为参数.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2cos sin 110ρθθ+=. (1)求C 和l 的直角坐标方程;(2)求C 上的点到l 距离的最小值.答案:略解答:(1)曲线C :由题意得22212111t x t t -==-+++即2211x t +=+,则2(1)y t x =+,然后代入即可得到2214y x += 而直线l :将cos ,sin x y ρθρθ==代入即可得到2110x ++= (2)将曲线C 化成参数方程形式为则d == 所以当362ππθ+=23.已知a ,b ,c 为正数,且满足1=abc ,证明: (1)222111c b a cb a ++≤++; (2)24)()()(333≥+++++ac c b b a .答案:(1)见解析;(2)见解析.解析:(1) ab b a 222≥+,bc c b 222≥+,ac a c 222≥+,∴ac bc ab c b a 222222222++≥++,即ac bc ab c b a ++≥++222,当且仅当c b a ==时取等号.1=abc 且a ,b ,c 都为正数,∴c ab 1=,a bc 1=,b ac 1=,故222111c b a cb a ++≤++. (2) 3333333)()()(3)()()(ac c b b a a c c b b a +++≥+++++,当且仅当333)()()(a c c b b a +=+=+时等号成立,即c b a ==时等号成立.又))()((3)()()(33333a c c b b a a c c b b a +++=+++ac bc ab 2223⋅⋅⨯≥abc 42=, 当且仅当c b a ==时等号成立, 1=abc ,故2424)()()(33333=≥+++abc a c c b b a ,即得24)()()(333≥+++++a c c b b a .。
绝密★启用前 6月7日15:00-17:002019年普通高等学校招生全国统一考试(全国卷Ⅰ)数学(文史类)总分:150分 考试时间:120分钟★祝考试顺利★注意事项:1、本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证条形码粘贴在答题卡的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:选出每小题答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸、答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内,写在试题卷、草稿纸、答题卡上的非答题区域均无效。
4、考试结束后,将本试卷和答题卡一并上交。
第I 卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2019全国卷Ⅰ·文)设3i12iz -=+,则||z =( )A.2D.1【解析】因为3i (3i)(12i)17i12i (12i)(12i)5z ----===++-,所以||z =故选C.【答案】C2.(2019全国卷Ⅰ·文)已知集合{1,2,3,4,5,6,7}U =,{2,3,4,5}A =,{2,3,6,7}B =,则U B A =I ð( )A.{1,6}B.{1,7}C.{6,7}D.{1,6,7}【解析】因为{1,2,3,4,5,6,7}U =,{2,3,4,5}A =,所以{1,6,7}U A =ð. 又{2,3,6,7}B =,所以U B A =I ð{6,7}.故选C.【答案】C3.(2019全国卷Ⅰ·文)已知2log 0.2a =,0.22b =,0.30.2c =,则( )A.a b c <<B.a c b <<C.c a b <<D.b c a <<【解析】由对数函数的单调性可得22log 0.2log 10a =<=,由指数函数的单调性可得0.20221b =>=,0.300.2100.2c <==<,所以a c b <<.故选B.【答案】B4.(2019全国卷Ⅰ·文)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度0.618≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( )A.165cmB.175cmC.185cmD.190cm【解析】设某人身高为m cm ,脖子下端至肚脐的长度为n cm , 则由腿长为105 cm,可得1050.618105m ->≈,解得169.890m >. 由头顶至脖子下端的长度为26 cm,可得260.618n >≈,解得42.071n <. 所以头顶到肚脐的长度小于2642.07168.071+=.68.072110.1470.618≈≈. 所以此人身高68.071110.147178.218m <+=. 综上,此人身高m 满足169.890178.218m <<. 所以其身高可能为175 cm.故选B. 【答案】B5.(2019全国卷Ⅰ·文)函数2sin ()cos x xf x x x +=+在[π,π]-的图象大致为( )A. B.C. D.【解析】因为22sin()sin ()()cos()()cos x x x xf x f x x x x x --+-==-=--+-+,所以()f x 为奇函数,排除选项A.令πx =,则22sin ()0cos 1f πππππππ+==>+-+,排除选项B ,C.故选D.【答案】D6.(2019全国卷Ⅰ·文)某学校为了解1000名新生的身体素质,将这些学生编号为1,2,,1000L ,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( ) A.8号学生 B.200号学生 C.616号学生 D.815号学生【解析】根据题意,系统抽样是等距抽样,所以抽样间隔为100010100=. 因为46除以10余6,所以抽到的号码都是除以10余6的整数,结合选项知正确号码为616.故选C. 【答案】C7.(2019全国卷Ⅰ·文)tan255=o ( )A.2--B.2-+C.2D.2【解析】1tan 45tan 3075tan(tan255tan(4530)2180)tan 71tan 45tan 305+++=+===+=-=ooo o o o o o o o .故选D. 【答案】D.8.(2019全国卷Ⅰ·文)已知非零向量a ,b 满足||2||=a b ,且()-⊥a b b ,则a 与b 的夹角为( )A.π6B.π3C.2π3 5π6【解析】设a ,b 的夹角为θ,因为()-⊥a b b ,所以()0-=g a b b ,即2||0-=g a b b .又||||cos ,||2||θ==g g a b a b a b , 所以222||cos ||0θ-=b b ,所以1cos 2θ=. 又因为0θπ≤≤,所以3πθ=.故选B.【答案】B9.(2019全国卷Ⅰ·文)如图是求112122++的程序框图,图中空白框中应填入( )A.12A A=+ B.12A A =+C.112A A=+ D.112A A=+【解析】对于选项A ,第一次循环,1122A =+;第二次循环,112122A =++,此时3k =,不满足2k ≤,输出112122A =++的值.故A 正确;经验证选项B ,C ,D 均不符合题意.故选A.【答案】A10.(2019全国卷Ⅰ·文)双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线的倾斜角为130o ,则C 的离心率为( )A.2sin40oB.2cos40oC.1sin50oD.1cos50o【解析】由题意可得tan130ba-=︒,所以11|cos130|cos50e ====︒︒.故选D.【答案】D11.(2019全国卷Ⅰ·文)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 4sin a A b B c C -=,1cos 4A =-,则bc=( )A.6B.5C.4D.3【解析】因为sin sin 4sin a A b B c C -=,所以由正弦定理得2224a b c -=,即2224a c b =+.由余弦定理得222222222(4)31cos 2224b c a b c c b c A bc bc bc +-+-+-====-,所以6bc=.故选A. 【答案】A12.(2019全国卷Ⅰ·文)已知椭圆C 的焦点为()11,0F -,()21,0F ,过2F 的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为( )A.2212x y +=B.22132x y +=C.22143x y += D.22154x y += 【解析】设椭圆的标准方程为22221(0)bx y a b a +=>>,由椭圆定义可得11||||||4AF AB BF a ++=. 因为1||||AB BF =, 所以1||2||4AF AB a +=. 又22||2||AF F B =, 所以23||||2AB AF =,所以12||3||4AF AF a +=. 又因为12||||2AF AF a +=,所以2||AF a =. 所以A 为椭圆的短轴端点.如图,不妨设(0,)A b ,又2(1,0)F ,222AF F B =u u u u r u u u u r ,所以3,22b B ⎛⎫- ⎪⎝⎭.将B 点坐标代入椭圆方程22221(0)b x y a b a +=>>,得2229144b ba +=,所以22223,2a b a c ==-=.所以椭圆C 的方程为22132x y +=.故选B.【答案】B第Ⅱ卷二、填空题:本题共4小题,每小题5分。
绝密★启用前2019年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z = A .2BCD .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U B A =ðA .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .B .C .D .4≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是a b c <<a c b <<c a b <<b c a <<A .165 cmB .175 cmC .185 cmD .190cm5.函数f (x )=2sin cos x xx x++在[—π,π]的图像大致为 A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°= A .-2B .-C .2D .8.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
浙江省温州市2019年高考数学一模试卷(文科)(解析版)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合A={x|y=lgx},B={x|x2﹣2x﹣3<0},则A∩B=()A.(﹣1,0)B.(0,3)C.(﹣∞,0)∪(3,+∞)D.(﹣1,3)2.已知l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l∥α,m∥α,则l∥m B.若l⊥m,m∥α,则l⊥αC.若l⊥α,m⊥α,则l∥m D.若l⊥m,l⊥α,则m∥α3.已知实数x,y满足,则x﹣y的最大值为()A.1 B.3 C.﹣1 D.﹣34.已知直线l:y=kx+b,曲线C:x2+y2=1,则“b=1”是“直线l与曲线C有公共点”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.已知正方形ABCD的面积为2,点P在边AB上,则的最大值为()A.B.C.2 D.6.如图,在矩形ABCD中,AB=2,AD=3,点E为AD的中点,现分别沿BE,CE将△ABE,△DCA翻折,使得点A,D重合于F,此时二面角E﹣BC﹣F的余弦值为()A.B.C.D.7.如图,已知F1、F2为双曲线C:﹣=1(a>0,b>0)的左、右焦点,点P在第一象限,且满足(+)=0,||=a,线段PF2与双曲线C交于点Q,若=5,则双曲线C的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x8.已知集合M={(x,y)|x2+y2≤1},若实数λ,μ满足:对任意的(x,y)∈M,都有(λx,μy)∈M,则称(λ,μ)是集合M的“和谐实数对”.则以下集合中,存在“和谐实数对”的是()A.{(λ,μ)|λ+μ=4} B.{(λ,μ)|λ2+μ2=4}C.{(λ,μ)|λ2﹣4μ=4}D.{(λ,μ)|λ2﹣μ2=4}二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.已知直线l1:ax﹣y+1=0,l2:x+y+1=0,l1∥l2,则a的值为,直线l1与l2间的距离为.10.已知钝角△ABC的面积为,AB=1,BC=,则角B=,AC=.11.已知f(x)=,则f(f(﹣2))=,函数f(x)的零点的个数为.12.某几何体的三视图如图所示,则该几何体的体积为,表面积为.13.若数列{a n}满足a n+1+a n=2n﹣1,则数列{a n}的前8项和为.14.已知f(x)=ln(x+),若对任意的m∈R,方程f(x)=m均为正实数解,则实数a的取值范围是.15.已知椭圆C:=1(a>)的左右焦点分别为F1,F2,离心率为e,直线l:y=ex+a,P为点F1关于直线l对称的点,若△PF1F2为等腰三角形,则a的值为.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.已知2sinαtanα=3,且0<α<π.(I)求α的值;(Ⅱ)求函数f(x)=4cosxcos(x﹣α)在[0,]上的值域.17.设等比数列{a n}的前n项和为S n,已知a1=2,且4S1,3S2,2S3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=|2n﹣5|a n,求数列{b n}的前n项和T n.18.如图,在三棱锥D﹣ABC中,DA=DB=DC,D在底面ABC上的射影为E,AB⊥BC,DF⊥AB于F(Ⅰ)求证:平面ABD⊥平面DEF(Ⅱ)若AD⊥DC,AC=4,∠BAC=60°,求直线BE与平面DAB所成的角的正弦值.19.如图,已知点F(1,0),点A,B分别在x轴、y轴上运动,且满足AB⊥BF,=2,设点D的轨迹为C.(I)求轨迹C的方程;(Ⅱ)若斜率为的直线l与轨迹C交于不同两点P,Q(位于x轴上方),记直线OP,OQ的斜率分别为k1,k2,求k1+k2的取值范围.20.已知函数f(x)=(x﹣t)|x|(t∈R).(Ⅰ)讨论函数f(x)的单调区间;(Ⅱ)若∃t∈(0,2),对于∀x∈[﹣1,2],不等式f(x)>x+a都成立,求实数a的取值范围.2019年浙江省温州市高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合A={x|y=lgx},B={x|x2﹣2x﹣3<0},则A∩B=()A.(﹣1,0)B.(0,3)C.(﹣∞,0)∪(3,+∞)D.(﹣1,3)【分析】分别求出集合A,B,从而求出其交集即可.【解答】解:∵集合A={x|y=lgx}={x|x>0|,B={x|x2﹣2x﹣3<0}={x|﹣1<x<3},则A∩B=(0,3),故选:B.【点评】本题考查了集合的运算,是一道基础题.2.已知l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l∥α,m∥α,则l∥m B.若l⊥m,m∥α,则l⊥αC.若l⊥α,m⊥α,则l∥m D.若l⊥m,l⊥α,则m∥α【分析】利用线面平行的性质定理和判定定理对四个选项分别分析解答.【解答】解:对于A,若l∥α,m∥α,则l与m的位置关系可能为平行、相交或者异面;故A错误;对于B,若l⊥m,m∥α,则l与α平行或者相交;故B 错误;对于C,若l⊥α,m⊥α,利用线面创造的性质可得l∥m;故C正确;对于D,若l⊥m,l⊥α,则m∥α或者m⊂α;故D错误;故选C.【点评】本题考查了线面平行的性质定理和判定定理的运用;关键是熟练掌握定理,正确运用.3.已知实数x,y满足,则x﹣y的最大值为()A.1 B.3 C.﹣1 D.﹣3【分析】令z=x﹣y,从而化简为y=x﹣z,作平面区域,结合图象求解即可.【解答】解:令z=x﹣y,则y=x﹣z,由题意作平面区域如下,,结合图象可知,当过点A(3,0)时,x﹣y取得最大值3,故选B.【点评】本题考查了学生的作图能力及线性规划的应用,同时考查了数形结合的思想应用.4.已知直线l:y=kx+b,曲线C:x2+y2=1,则“b=1”是“直线l与曲线C有公共点”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【分析】先根据直线l与曲线C有公共点,根据直线和圆的位置关系得到b2≤1+k2,再根据充分,必要条件的定义判断即可.【解答】解:由题意可得直线直线l:y=kx+b,曲线C:x2+y2=1有公共点,∴≤1,∴b2≤1+k2,当b=1时,满足,b2≤1+k2,即“b=1”是“直线l与曲线C有公共点”充分条件,当直线l与曲线C有公共点,不一定可以得到b=1,b=0时也满足,故“b=1”是“直线l与曲线C有公共点”的充分不必要条件,故选:A.【点评】本题主要考查直线和圆的位置关系,点到直线的距离公式的应用,以及充分必要条件的判定,体现了转化、数形结合的数学思想,属于基础题.5.已知正方形ABCD的面积为2,点P在边AB上,则的最大值为()A.B.C.2 D.【分析】建立平面直角坐标系,设P(x,0),使用坐标法将表示成x的函数,根据x的范围求出函数的最大值.【解答】解:以AB为x轴,以AD为y轴建立平面直角坐标系,∵正方形ABCD的面积为2,∴B(,0),C(),D(0,).设P(x,0)(0),则=(,),=(﹣x,).∴=﹣x()+2=x2﹣+2=(x﹣)2+.∴当x=时,取得最大值.故选B.【点评】本题考查了平面向量的数量积运算,使用坐标法求值是常用方法之一.6.如图,在矩形ABCD中,AB=2,AD=3,点E为AD的中点,现分别沿BE,CE将△ABE,△DCA翻折,使得点A,D重合于F,此时二面角E﹣BC﹣F的余弦值为()A.B.C.D.【分析】根据折叠前和折叠后的边长关系,结合二面角的平面角定义得到∠FOE是二面角E ﹣BC﹣F的平面角进行求解即可.【解答】解:取BC的中点O,连接OE,OF,∵BA=CD,∴BF=FC,即三角形BFC是等腰三角形,则FO⊥BC,∵BE=CF,∴△BEC是等腰三角形,∴EO⊥BC,则∠FOE是二面角E﹣BC﹣F的平面角,∵EF⊥CF,BF⊥EF,∴EF⊥平面BCF,EF⊥FO,则直角三角形EFO中,OE=AB=2,EF=DE=,则sin∠FOE===,则cos∠FOE===,故选:B【点评】本题主要考查二面角的求解,根据二面角的定义作出二面角的平面角是解决本题的关键.注意叠前和折叠后的线段边长的变化关系.7.如图,已知F 1、F 2为双曲线C :﹣=1(a >0,b >0)的左、右焦点,点P 在第一象限,且满足(+)=0,||=a ,线段PF 2与双曲线C 交于点Q ,若=5,则双曲线C 的渐近线方程为( )A .y=±xB .y=±xC .y=±xD .y=±x【分析】连接F 1Q ,由向量共线定理可得|F 2Q |=,|PQ |=,由双曲线的定义可得|F 1Q |=,运用向量的数量积的性质可得|F 1F 2|=|F 1P |=2c ,在△F 1PQ 和△QF 1F 2中,由∠PQF 1+∠F 2QF 1=π,可得cos ∠PQF 1+cos ∠F 2QF 1=0,运用余弦定理,化简整理可得b=a ,运用双曲线的渐近线方程即可得到.【解答】解:连接F 1Q ,由||=a ,=5,可得|F 2Q |=,|PQ |=,由双曲线的定义可得|F 1Q |﹣|F 2Q |=2a ,即有|F 1Q |=,由(+)=0,即为(+)(﹣)=0,即有2﹣2=0,|F 1F 2|=|F 1P |=2c ,在△F 1PQ 和△QF 1F 2中,由∠PQF 1+∠F 2QF 1=π,可得cos ∠PQF 1+cos ∠F 2QF 1=0,由余弦定理可得, +=0,化简可得c 2=a 2,由c 2=a 2+b 2,可得b=a ,可得双曲线的渐近线方程为y=±x ,即为y=±x . 故选:A .【点评】本题考查双曲线的渐近线方程的求法,注意运用三角形中的余弦定理,同时考查向量数量积的性质和向量共线定理的运用,考查化简整理的运算能力,属于中档题.8.已知集合M={(x ,y )|x 2+y 2≤1},若实数λ,μ满足:对任意的(x ,y )∈M ,都有(λx ,μy )∈M ,则称(λ,μ)是集合M 的“和谐实数对”.则以下集合中,存在“和谐实数对”的是( )A .{(λ,μ)|λ+μ=4}B .{(λ,μ)|λ2+μ2=4}C .{(λ,μ)|λ2﹣4μ=4}D .{(λ,μ)|λ2﹣μ2=4}【分析】由题意,λ2x 2+μ2y 2≤λ2+μ2≤1,问题转化为λ2+μ2≤1与选项有交点,代入验证,可得结论.【解答】解:由题意,λ2x 2+μ2y 2≤λ2+μ2≤1,问题转化为λ2+μ2≤1与选项有交点,代入验证,可得C 符合. 故选:C .【点评】本题考查曲线与方程,考查学生的计算能力,问题转化为λ2+μ2≤1与选项有交点是关键.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.已知直线l 1:ax ﹣y +1=0,l 2:x +y +1=0,l 1∥l 2,则a 的值为 ﹣1 ,直线l 1与l 2间的距离为.【分析】利用两条直线相互平行的充要条件即可得出.【解答】解:直线l 1:ax ﹣y +1=0,l 2:x +y +1=0,分别化为:y=ax +1,y=﹣x ﹣1, ∵l 1∥l 2,∴a=﹣1,1≠﹣1.两条直线方程可得:x +y ﹣1=0,x +y +1=0.直线l 1与l 2间的距离d==.故答案分别为:﹣1;.【点评】本题考查了两条直线相互平行的充要条件,考查了推理能力与计算能力,属于中档题.10.已知钝角△ABC 的面积为,AB=1,BC=,则角B=,AC=.【分析】利用已知及三角形面积公式可求sinB ,可求B=或,分类讨论:当B=时,由余弦定理可得AC=1,可得AB 2+AC 2=BC 2,为直角三角形,舍去,从而利用余弦定理可得AC 的值.【解答】解:∵钝角△ABC 的面积为,AB=1,BC=,∴=1××sinB ,解得:sinB=,∴B=或,∵当B=时,由余弦定理可得AC===1,此时,AB 2+AC 2=BC 2,可得A=,为直角三角形,矛盾,舍去.∴B=,由余弦定理可得AC===,故答案为:;.【点评】本题主要考查了三角形面积公式,余弦定理,勾股定理在解三角形中的应用,考查了分类讨论思想和转化思想的应用,属于中档题.11.已知f (x )=,则f (f (﹣2))= 14 ,函数f (x )的零点的个数为 1 .【分析】根据x <0与x ≥0时f (x )的解析式,确定出f (f (﹣2))的值即可;令f (x )=0,确定出x 的值,即可对函数f (x )的零点的个数作出判断.【解答】解:根据题意得:f(﹣2)=(﹣2)2=4,则f(f(﹣2))=f(4)=24﹣2=16﹣2=14;令f(x)=0,得到2x﹣2=0,解得:x=1,则函数f(x)的零点个数为1,故答案为:14;1.【点评】此题考查了函数零点的判定定理,以及函数的值,弄清函数零点的判定定理是解本题的关键.12.某几何体的三视图如图所示,则该几何体的体积为12,表面积为36.【分析】根据三视图作出棱锥的直观图,根据三视图数据计算体积和表面积.【解答】解:由三视图可知几何体为四棱锥,作出直观图如图所示:其中底面ABCD是边长为3正方形,EA⊥底面ABCD,EA=4.∴棱锥的体积V=.棱锥的四个侧面均为直角三角形,EB=ED=5,∴棱锥的表面积S=32++=36.故答案为12;36.【点评】本题考查了棱锥的三视图和结构特征,体积与表面积计算,属于基础题.13.若数列{a n}满足a n+1+a n=2n﹣1,则数列{a n}的前8项和为28.【分析】数列{a n}满足a n+1+a n=2n﹣1,对n分别取1,3,5,7,求和即可得出.【解答】解:∵数列{a n}满足a n+1+a n=2n﹣1,∴数列{a n}的前8项和=(2×1﹣1)+(2×3﹣1)+(2×5﹣1)+(2×7﹣1)=28.故答案为:28.【点评】本题考查了递推关系、分组求和方法,考查了推理能力与计算能力,属于中档题.14.已知f(x)=ln(x+),若对任意的m∈R,方程f(x)=m均为正实数解,则实数a的取值范围是(4,+∞).【分析】根据对数函数的性质结合不等式的性质得到关于a的不等式,解出即可.【解答】解:f(x)=ln(x+)=m,则a=x+﹣e m>4故答案为:(4,+∞).【点评】本题考察了对数函数的性质,不等式的性质,是一道基础题.15.已知椭圆C:=1(a>)的左右焦点分别为F1,F2,离心率为e,直线l:y=ex+a,P为点F1关于直线l对称的点,若△PF1F2为等腰三角形,则a的值为.【分析】运用椭圆的离心率公式和a,b,c的关系,结合点到直线的距离公式,由题意可得|PF1|=|F1F2|,解方程即可求得a的值.【解答】解:由题意可得c=,e=,F1(﹣c,0)到直线l的距离为d=,由题意可得|PF1|=|F1F2|,即为2d=2c,即有=a2﹣2,化简可得a4﹣3a2=0,解得a=.故答案为:.【点评】本题考查椭圆的方程和性质,考查离心率公式的运用和点到直线的距离公式,以及运算化简能力,属于中档题.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.已知2sinαtanα=3,且0<α<π.(I)求α的值;(Ⅱ)求函数f(x)=4cosxcos(x﹣α)在[0,]上的值域.【分析】(Ⅰ)由已知推导出2cos2α+3cosα﹣2=0,由此能求出α.(Ⅱ)f(x)=4cosxcos(x﹣α)=2sin(2x+)+1,由,得2x+∈[],由此能求出函数f(x)=4cosxcos(x﹣α)在[0,]上的值域.【解答】解:(Ⅰ)∵2sinαtanα=3,且0<α<π.∴2sin2α=3cosα,∴2﹣2cos2α=3cosα,∴2cos2α+3cosα﹣2=0,解得或cosα=﹣2(舍),∵0<α<π,∴α=.(Ⅱ)∵α=,∴f(x)=4cosxcos(x﹣α)=4cosx(cosxcos+sinxsin)=2cos2x+2sinxcosx=+cos2x+1=2sin(2x+)+1,∵,∴2x+∈[],∴2≤2sin(2x+)+1≤3,∴函数f(x)=4cosxcos(x﹣α)在[0,]上的值域为[2,3].【点评】本题考查角的求法,考查三角函数值的求法,是基础题,解题时要认真审题,注意同角三角函数关系式及余弦加法定理和正弦加法定理的合理运用.17.设等比数列{a n}的前n项和为S n,已知a1=2,且4S1,3S2,2S3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=|2n﹣5|a n,求数列{b n}的前n项和T n.【分析】(Ⅰ)根据4S1,3S2,2S3成等差数列.根据等差中项6S2=4S1+2S3,化简整理求得q=2,写出通项公式;(Ⅱ)讨论当n=1、2时,求得T1=6,T2=10,写出前n项和,采用错位相减法求得T n.【解答】解:(Ⅰ)∵4S1,3S2,2S3成等差数列,∴6S2=4S1+2S3,即6(a1+a2)=4a1+2(a1+a2+a3),则:a3=2a2,q=2,∴;(Ⅱ)当n=1,2时,T1=6,T2=10,当n≥3,T n=10+1×23+3×24+…+(2n﹣5)2n,2T n=20+1×24+3×25+…+(2n﹣7)×2n+(2n﹣5)×2n+1,两式相减得:﹣T n=﹣10+8+2(24+25+…+2n)﹣(2n﹣5)×2n+1,=﹣2+2×﹣(2n﹣5)×2n+1,=﹣34+(7﹣2n)2n+1,∴T n=34﹣(7﹣2n)2n+1.∴.【点评】本题求等比数列的通项公式和采用错位相减法求前n项和,属于中档题.18.如图,在三棱锥D﹣ABC中,DA=DB=DC,D在底面ABC上的射影为E,AB⊥BC,DF⊥AB于F(Ⅰ)求证:平面ABD⊥平面DEF(Ⅱ)若AD⊥DC,AC=4,∠BAC=60°,求直线BE与平面DAB所成的角的正弦值.【分析】(I)由DE⊥平面得出DE⊥AB,又DF⊥AB,故而AB⊥平面DEF,从而得出平面ABD⊥平面DEF;(II)以E为坐标原点建立空间直角坐标系,求出和平面DAB的法向量,则|cos<>|即为所求.【解答】证明:(Ⅰ)∵DE⊥平面ABC,AB⊂平面ABC,∴AB⊥DE,又AB⊥DF,DE,DF⊂平面DEF,DE∩DF=D,∴AB⊥平面DEF,又∵AB⊂平面ABD,∴平面ABD⊥平面DEF.(Ⅱ)∵DA=DC,DE⊥AC,AC=4,AD⊥CD,∴E为AC的中点,DE==2.∵AB⊥BC,AC=4,∠BAC=60°,∴AB=.以E为原点建立如图所示的空间直角坐标系,则E(0,0,0),A(0,﹣2,0),D(0,0,2),B(,﹣1,0).∴=(0,﹣2,﹣2),=(,﹣1,﹣2),=(,﹣1,0).设平面DAB的法向量为=(x,y,z).则,∴,令z=1,得=(,﹣1,1).∴=2,||=,||=2,∴cos<>==.∴BE与平面DAB所成的角的正弦值为.【点评】本题考查了了面面垂直的判定,空间角的计算,空间向量的应用,属于中档题.19.如图,已知点F(1,0),点A,B分别在x轴、y轴上运动,且满足AB⊥BF,=2,设点D的轨迹为C.(I)求轨迹C的方程;(Ⅱ)若斜率为的直线l与轨迹C交于不同两点P,Q(位于x轴上方),记直线OP,OQ的斜率分别为k1,k2,求k1+k2的取值范围.【分析】(I)根据=2得B为AD的中点,利用AB⊥BF,可得=0,从而可得轨迹C的方程;(Ⅱ)斜率为的直线l的方程为y=x+b,代入y2=4x,整理,利用韦达定理,结合斜率公式,即可求k1+k2的取值范围.【解答】解:(I)设D(x,y),则由=2得B为AD的中点,所以A(﹣x,0),B(0,)∵AB⊥BF,∴=0,∴(x,)(1,﹣)=0∴y2=4x(x≠0);(Ⅱ)斜率为的直线l的方程为y=x+b,代入y2=4x,整理可得x2+(4b﹣16)x+4b2=0,△=(4b﹣16)2﹣16b2>0,∴b<2设P(x1,y1),Q(x2,y2),∴x1+x2=16﹣4b,x1x2=4b2.k1+k2=+==,∵b<2,∴<0或>2,∵k1+k2的取值范围是(﹣∞,0)∪(2,+∞).【点评】本题考查求轨迹方程,考查向量知识的运用,解题的关键是用好向量,挖掘隐含,属于中档题.20.已知函数f(x)=(x﹣t)|x|(t∈R).(Ⅰ)讨论函数f(x)的单调区间;(Ⅱ)若∃t∈(0,2),对于∀x∈[﹣1,2],不等式f(x)>x+a都成立,求实数a的取值范围.【分析】(Ⅰ)讨论x的取值范围,将函数表示为分段函数形式,然后判断函数的单调性即可.(Ⅱ)将不等式恒成立进行转化,利用参数分离法进行求解即可.【解答】解:(Ⅰ),…(1分)当t>0时,f(x)的单调增区间为,单调减区间为…(4分)当t=0时,f(x)的单调增区间为(﹣∞,+∞)…(5分)当t<0时,f(x)的单调增区间为[0,+∞),,单调减区间为…(8分)(Ⅱ)设g(x)=f(x)﹣x=,当x∈[0,2]时,∵∈(0,2),∴…(9分)当x∈[﹣1,0]时,∵g(﹣1)=﹣t,g(0)=0,∴g min(x)=﹣t…(10分)故只须∃t∈(0,2),使得:成立,即…(13分)∴a≤…(14分)另解:设h(t)=f(x)﹣x=﹣|x|t+x|x|﹣x,t∈(0,2)…(9分)只须h(t)max≥a,对x∈[﹣1,2]都成立.…(10分)则只须h(0)=x|x|﹣x≥a,对x∈[﹣1,2]都成立.…(12分)再设m(x)=x|x|﹣x,x∈[﹣1,2],只须m(x)min≥a,易求得a≤…(14分)【点评】本题主要考查函数单调性的判断以及不等式恒成立问题,利用参数转化法是解决本题的关键.。