纤维乙醇的生产工艺及生产进程和所面临的问题
- 格式:doc
- 大小:35.00 KB
- 文档页数:5
>>专家观点<<2018年6月·第3卷·第3期石油石化绿色低碳Green Petroleum & Petrochemicals摘 要:纤维素燃料乙醇是充分利用纤维素原料中的纤维素和半纤维素,使之水解糖化后,通过糖发酵生产的燃料乙醇。
目前我国纤维素燃料乙醇产业发展较慢,纤维素燃料乙醇在秸秆收储运、秸秆原料预处理、纤维素酶发酵制乙醇等环节还存在亟待突破的技术瓶颈。
由于缺乏完善的秸秆原料收储运体系,原料供应难以保障,已建成的纤维素燃料乙醇示范装置大多因技术和成本问题未能正常开工运行。
当前技术条件下,纤维素燃料乙醇投资较大,秸秆收储成本高,原料预处理过程产生的污水量大,污水处理成本高,乙醇生产过程中的酶制剂成本较高,致使纤维素燃料乙醇成本远高于粮食燃料乙醇成本。
我国发展纤维素燃料乙醇需加强对秸秆收储运体系的研究、开发高效的纤维素酶菌,有效降低纤维素燃料乙醇成本以提高竞争力。
关键词:纤维素 燃料乙醇 工艺技术 成本 经济性分析我国纤维素燃料乙醇工艺概况和经济性分析朱青,王庆申,赵书阳,杨晓帆(中国石油化工集团公司经济技术研究院,北京 100029)收稿日期:2018-4-27作者简介:朱青,学士,高级经济师。
1989年毕业于北京建筑工程学院工业与民用建筑专业,长期从事项目经济评价工作,曾多次参与生物燃料定价及生物燃料的专题研究工作。
2017年9月十五部委联合发布的《关于扩大生物燃料乙醇生产和推广使用车用乙醇汽油的实施方案》提出,到2025年,力争纤维素燃料乙醇实现规模化生产,先进生物液体燃料技术、装备和产业整体达到国际领先水平,形成更加完善的市场化运行机制。
纤维素广泛分布于农作物秸秆、皮壳当中,秸秆的能源化利用对加强我国环境保护以及促进能源结构调整等具有比较现实的意义。
从目前的工艺技术看,纤维素燃料乙醇达到规模化生产仍将有一段距离。
由于纤维素燃料乙醇成本较高,与粮食燃料乙醇相比没有竞争力,为推动纤维素燃料乙醇产业的发展,需要国家出台相关的财税扶持政策。
纤维素乙醇的研究现状及其发展趋势引言能源问题是当今世界各国都面临的关系国家安全和经济社会可持续发展的中心议题,已经成为全球关注的焦点。
因此,人们开始把目光转移到有利于社会可持续发展的可再生能源体系。
专家认为,生物质资源转化体系是引领第三次世界能源革命的技术平台。
在此背景下,燃料乙醇已经被视为替代和节约汽油的最佳燃料,其高效的转换技术和洁净利用日益受到全世界的重视,已经被广泛认为是21世纪发展循环经济的有效途径。
在中国,燃料乙醇的主要原料是玉米和小麦。
随着燃料乙醇的快速发展,原料问题日益突出,成为制约燃料乙醇发展的瓶颈;另外,以粮食作物为原料的燃料乙醇产业发展还有可能引发国家粮食安全问题。
因此,中国政府提出生物乙醇坚持非粮之路,即“不与人争粮,不与粮争地”。
经济分析显示,中国发展纤维素乙醇有更大的优势。
木质纤维素是地球上最丰富的可再生资源,也是当前利用率最低的资源,是各国新资源战略的重点。
中国可利用的木质纤维素每年在7亿吨左右,这些丰富而廉价的自然资源主要来源于农林业废弃物、工业废弃物和城市废弃物。
所以,纤维素乙醇是未来发展的必然方向。
1、木质纤维素原料组成及性质木质纤维素是由纤维素、半纤维素、木质素和少量的可溶性固形物组成。
纤维素大分子是由葡萄糖脱水,通过β-1,4葡萄糖苷键连接而成的直链聚合体。
在常温下不发生水解,高温下水解也很缓慢。
只有在催化剂的作用下,纤维素的水解反应才显著进行。
常用的催化剂是无机酸或纤维素酶,由此分别形成了酸水解和酶水解工艺。
半纤维素是由不同的多聚糖构成的混合物,这些多聚糖由不同单糖聚合而成,有直链也有支链,上面连接有不同数量的乙酰基和甲基。
半纤维素的水解产物主要有己糖、葡萄糖、半乳糖、甘露糖、戊糖和阿拉伯糖等几种不同的糖。
半纤维素的聚合度较低,相对比较容易降解成单糖。
二者的水解机理可以用下列方程式简单地表示:(C6H10O5)n + nH2O→nC6H10O6(C5H804) n + nH2O→nC5H10O52、国外纤维素乙醇的研究与应用现状随着现代工业的迅速发展,大规模开发利用作为清洁能源的可再生资源显得日益重要。
乙醇生产技术及发展对策一、原料选择与优化乙醇生产的第一步是选择合适的原料。
常用的原料包括玉米、小麦、稻谷等农作物,以及甘蔗、甜菜等糖类作物。
随着技术的发展,非粮食作物的纤维素类废弃物,如秸秆、木屑等也逐步被用于乙醇生产。
原料选择的原则是保证有足够的淀粉或糖类物质,同时尽量减少生产过程中的能量消耗和环境污染。
针对这一问题,未来发展的重点在于进一步探索和优化非粮食作物的种植和利用,提高原料的利用率和生产效率。
二、发酵技术发酵技术是乙醇生产的核心环节,其主要目标是提高乙醇的产量和效率。
传统的发酵方法通常采用酵母菌进行发酵,但近年来一些新的发酵方法如固定化细胞发酵、酶法发酵等也逐渐得到应用。
未来发展的重点在于进一步优化发酵工艺,提高乙醇的产量和效率。
同时,针对不同原料和生产环境,也需要探索和开发更加适应的发酵技术。
三、蒸馏与精馏技术蒸馏和精馏技术是乙醇生产中重要的分离和提纯环节。
蒸馏是将乙醇从混合液中分离出来的过程,而精馏则是对乙醇进行高纯度提纯的过程。
未来发展的重点在于提高蒸馏和精馏的效率,减少能源消耗和环境污染。
同时,还需要开发更加高效和环保的设备和技术,如膜分离、离子交换等。
四、催化剂与反应条件催化剂和反应条件对乙醇的生产效率和能源消耗有重要影响。
在催化剂方面,目前常用的催化剂包括硫酸、酶等。
未来发展的重点在于开发更加高效、环保和耐用的催化剂。
在反应条件方面,主要涉及温度、压力、湿度等参数的优化。
五、能效与环保能效和环保是乙醇生产中需要特别关注的问题。
能效方面,主要关注的是如何降低生产过程中的能源消耗,提高能源利用效率。
环保方面,主要关注的是如何减少生产过程中的污染排放,实现绿色生产。
未来发展的重点在于开发更加高效、环保的生产技术和设备,同时加强能源管理和环保监管,实现乙醇生产的可持续发展。
六、生产安全与质量控制生产安全和质量控制是乙醇生产中不可或缺的环节。
生产安全方面,需要加强设备维护和安全管理,预防事故发生。
目前,我国在经济快速发展的同时,能源短缺和能源消费所引起的问题也成为人们所担忧的问题。
如何能够获得无污染的可再生能源是重中之重。
用生物法制取纤维素乙醇技术,不仅有广泛的原料来源,而且制作过程环保无污染,是最有前景的制作乙醇的方法。
1 纤维素的水解发酵工艺(1)浓酸水解工艺 浓酸水解的原理是将结晶纤维素在较低温度下可以在浓硫酸溶液完全溶解为低聚糖。
然后再在此基础上加水加热并稀释,经过一定的时间就可以水解为单个的葡萄糖了。
浓酸水解有很大的优点,它可以溶解不同的的原料,回收率非常高,溶解速度也非常快。
但是浓酸水解往往条件苛刻,对设备的要求极高,因此造成了成本高。
而且浓酸用完之后一定要做好残余物的回收工作,不然极其容易造成严重的环境污染。
(2)稀酸水解工艺 稀酸水解主要是利用化学反应,它的原理是稀酸溶液中的氢离子是自由的,它可以与纤维素反应,从而破坏纤维素的稳定性,使其与水反应,从而实现纤维素长链的连续解聚,直到纤维素最终分解成为一个一个的葡萄糖单元。
稀酸水解的优点是时间短,比较适合工业化生产,但是由于稀酸水解的产物不彻底,产生的糖会继续分解,影响糖收率。
因此为了减少单糖的分解,一般稀酸水解工艺不可以直接进行,要分为两个步骤。
首先是分解半纤维素,分解条件为低温,产物以木糖为主。
第二个步骤是分解纤维素,分解条件为高温,产物主要是葡萄糖。
这一步的高温条件对设备的要求极高,因此稀酸溶解也不适合大产量的工业化生产。
(3)酶水解工艺 在化学反应中,酶是一种能促进反应进行的活性物质。
在纤维素的酶水解工艺中最不可或缺的物质就是纤维素酶。
纤维素酶并不是单一的一种酶,它是促进纤维素分解为单糖的一类酶的统称。
主要包括内切葡萄糖酶、外切葡萄糖酶和纤维素二糖酶。
在纤维素的水解过程中,这三种酶在不同的阶段发挥着不同的作用。
纤维素的水解需要这三种酶的共同协同作用来完成。
酶水解工艺相对于浓酸水解和稀酸水解工艺而言,因为它所需要的条件(如酸碱度和温度)都比较温和,因此对设备的要求不是很高。
生物质纤维素乙醇燃料生产技术开发与应用方案一、实施背景:随着全球能源需求的不断增长和对传统化石燃料的限制,生物质纤维素乙醇作为一种可再生、清洁的燃料逐渐受到关注。
然而,目前生物质纤维素乙醇生产技术仍面临着诸多挑战,如原料成本高、生产效率低等问题。
因此,开发一种高效、低成本的生物质纤维素乙醇生产技术,具有重要的现实意义和广阔的市场前景。
二、工作原理:生物质纤维素乙醇燃料生产技术的工作原理主要包括生物质预处理、纤维素降解、糖化、发酵和乙醇分离等环节。
首先,通过物理、化学或生物方法对生物质进行预处理,去除其中的非纤维素成分,以提高纤维素降解效率。
然后,利用酶或酸碱等方法将纤维素降解为可发酵的糖类物质。
接下来,将糖化产物进行发酵,利用适当的微生物将糖转化为乙醇。
最后,通过蒸馏等分离技术将乙醇从发酵液中分离出来,得到纯度较高的乙醇产品。
三、实施计划步骤:1. 研究生物质纤维素乙醇生产技术的最新进展和研究成果,明确技术瓶颈和改进方向。
2. 设计并建立生物质预处理、纤维素降解、糖化、发酵和乙醇分离等关键环节的实验室规模试验装置。
3. 优化各环节的操作条件和工艺参数,提高生物质纤维素乙醇生产效率。
4. 进行中试规模的生产实验,验证技术的可行性和稳定性。
5. 在实际工业生产中应用该技术,进行规模化生产,并进行经济效益评估。
四、适用范围:生物质纤维素乙醇生产技术适用于利用各类植物纤维素作为原料,如农作物秸秆、木材废弃物、蔗渣等。
同时,该技术也适用于不同规模的生产,从实验室规模到工业化规模均可实施。
五、创新要点:1. 针对生物质纤维素乙醇生产过程中的瓶颈问题,采用先进的预处理技术,提高纤维素降解效率。
2. 优化发酵过程中的微生物菌种选择和培养条件,提高乙醇产量和发酵效率。
3. 引入高效的分离技术,提高乙醇的纯度和回收率。
六、预期效果:1. 提高生物质纤维素乙醇的生产效率,降低生产成本。
2. 减少对传统化石燃料的依赖,推动可持续发展。
乙醇生产技术及发展对策乙醇是一种重要的化工产品,具有广泛的用途。
乙醇作为清洁能源的替代品,正在逐渐受到人们的重视和青睐。
本文将针对乙醇生产技术及发展对策进行深入探讨,旨在探讨乙醇生产技术的现状和未来发展趋势,同时提出相应的发展对策。
乙醇生产技术的现状目前,乙醇常见的生产方法是以玉米、甘蔗、小麦等作为原料,经过酵母菌发酵后得到的生物乙醇。
传统的乙醇生产技术主要集中在粮食型乙醇和玉米颗粒乙醇两大领域。
粮食型乙醇生产工艺包括原料的粉碎、糖化、发酵、蒸馏和脱水等过程;而玉米颗粒乙醇生产工艺主要包括粉碎、糖化、酵母发酵和蒸馏脱水等环节。
这两种生产工艺具有成熟的技术和设备,同时也面临着原料资源、环境污染等方面的问题。
乙醇生产技术的发展对策随着石油资源的日益枯竭和环境污染问题的日益严重,乙醇作为可再生清洁能源备受瞩目。
在乙醇生产技术的研究与发展中,需要采取一系列有效的对策。
1. 多元化原料来源针对传统的乙醇生产原料主要依赖于玉米、甘蔗等情况,可以考虑引入更多的新型原料,如木质纤维素、废弃物等。
多元化的原料来源可以有效解决乙醇生产过程中存在的原料短缺问题,降低生产成本,同时减少对粮食资源的竞争,有利于促进乙醇生产技术的可持续发展。
2. 提高生产技术效率在乙醇生产过程中,糖化、发酵、蒸馏、脱水等环节的效率直接影响着生产成本和质量。
需要加强对这些关键环节的技术研发,采用先进的生产设备和生产工艺,提高生产效率,降低生产成本,确保乙醇的品质和产量。
3. 推广生物质乙醇技术生物质乙醇是利用生物质原料如秸秆、木屑等进行生产的一种新型乙醇生产技术。
相比传统的玉米乙醇和甘蔗乙醇,生物质乙醇具有潜在的优势:生产成本相对较低、原料来源丰富、对环境友好等。
应该大力推广生物质乙醇技术,加大投入研发力度,提高生产技术水平,实现规模化生产。
4. 合理利用废弃物资源废弃物包括农业、工业、城市生活等方面的废弃物,其中含有大量的有机物。
合理利用废弃物资源进行乙醇生产,不仅可以减少环境污染,还可以充分利用资源,实现资源的循环利用。
2023年纤维素乙醇行业市场分析现状纤维素乙醇是一种可再生能源,是利用植物纤维素资源进行酶解、发酵等过程生产的乙醇燃料。
纤维素乙醇具有植物资源丰富、环境友好、产能高等优点,被认为是能源替代的重要选择之一。
目前,纤维素乙醇行业在全球范围内发展迅速,但在中国的市场规模相对较小。
本文将对纤维素乙醇行业市场现状进行详细分析。
首先,纤维素乙醇行业市场规模相对较小。
目前全球纤维素乙醇产能约为50万吨/年,但仅有少数国家和地区实现了商业化生产。
纤维素乙醇在欧美等发达国家得到了较为广泛的应用,而在中国尚处于起步阶段。
据统计,2019年中国纤维素乙醇产能约为10万吨/年,市场规模有限。
尽管如此,随着中国政府对可再生能源的重视以及相关政策的出台,纤维素乙醇行业在中国有望迎来更大的发展机遇。
其次,纤维素乙醇生产技术不断改进。
纤维素乙醇的生产过程包括纤维素的预处理、酶解、发酵和蒸馏等环节。
其中,纤维素的酶解和发酵是纤维素乙醇生产的关键环节。
随着生物技术和工艺的不断进步,纤维素酶的稳定性和活性得到了显著提高,发酵菌株的选育和培养技术也取得了重大突破,大大降低了生产成本和能源消耗。
此外,新型的纤维素乙醇生产技术,如混合酸法、气相酶法等的研发和应用也在不断开展。
这些技术的不断改进为纤维素乙醇行业的发展提供了有力的支持。
再次,纤维素乙醇行业面临着一些挑战。
首先,纤维素乙醇生产设备投资大、运维成本高,且目前生产规模较小,难以形成经济规模效应。
其次,纤维素乙醇的生产过程复杂,涉及到多个环节,技术要求高,生产周期长。
另外,纤维素资源的采集和预处理也是一项具有挑战性的任务。
此外,纤维素乙醇生产会产生大量的废弃物和废水,对环境造成一定的污染。
这些问题需要在技术、政策和市场等多个方面得到解决,以促进纤维素乙醇行业的可持续发展。
最后,纤维素乙醇行业具有广阔的市场前景。
纤维素乙醇是一种清洁能源,可广泛用于汽车燃料、航空燃料、工业燃料等领域,替代传统的石油乙醇。
木质纤维生物质炼制燃料乙醇技术进展摘要:本文介绍了木质纤维生物质各成分的生物分解过程以及生物炼制技术,包括生物转化燃料乙醇、木糖醇和副产物利用等的研究现状、存在问题及发展趋势,为木质纤维生物质的应用研究提供理论基础。
关键词:纤维生物质,生物炼制,燃料乙醇木质纤维生物质是地球上最丰富、最廉价的可再生资源,指植物通过光合作用生成的有机资源,如树木、农作物秸秆等。
燃料乙醇由于其成熟的生产应用技术和丰富的原料来源成为世界各国首选的生物能源。
燃料乙醇的发展应立足于中国国情,走以非粮作物木质纤维素生物质为原料的生产路线。
每年全球光合作用产生的木质纤维生物质高达2000亿吨,相当于全世界每年消费能源的10倍,其中89%目前尚未被人类利用。
我国的木质纤维原料非常丰富,每年仅农作物秸秆就有7亿多吨。
纤维素类物质主要由纤维素、半纤维素和木质素组成,采用生物炼制技术将它们充分利用,对我国经济和社会的可持续发展具有十分重大的意义。
以生物炼制为核心的生物技术第三次浪潮,将解决人类社会目前面临的资源、能源与环境等诸多重要问题。
一、木质纤维生物质简介及生物炼制技术木质生物质主要由纤维素、半纤维素和木质素组成,其中纤维素约占干重的35-45%,半纤维素约占20-40%,木质素约占15-30%。
纤维素是由D-吡喃葡萄糖基以β-1,4糖苷键连接而成天然链状高分子化合物,完全水解后得到葡萄糖。
半纤维素是一大类结构不同的多聚糖的总称,主要是由木糖、葡萄糖、甘露糖、半乳糖和阿拉伯糖等连接而成的高分枝非均一聚糖。
各种糖所占比例随原料不同而变化,一般木糖占一半以上。
半纤维素排列松散,无晶体结构,故比较容易被水解成单糖。
木质素是以苯基丙烷为基本结构单元连接的高分枝多分散性高聚物。
木质素有一定的塑性,不溶于水,一定浓度的酸或碱可使其部分溶解。
纤维素乙醇生产成本比粮食乙醇高的部分原因是,目前研究中的木质纤维素类物质转化为乙醇的工艺加工过程复杂,但目标产物单一。
纤维素乙醇的研究进展燃料乙醇作为可再生的生物能源之一,其发展前景是十分广阔的。
然而,纵观世界各国燃料乙醇发展的历程和现状,可以看出燃料乙醇生产过程的经济性始终是突出问题,其生产成本一直难以同成品油的价格相竞争,其中原料成本和能耗成本占燃料乙醇生产总成本的比例高达90%。
因此使用木质纤维素类物质作为燃料乙醇的生产原料,逐步替代日益减少的石油资源,是各国政府的战略发展目标[77]。
国内外纤维素乙醇的进展早在20世纪70年代的第一次石油危机时,美国就开始了用秸秆等木质纤维素类物质生产乙醇的研究。
在政府大力倡导下,酒精燃料在美国燃料市场上份额已达8%。
第一家商业性转化纤维质为酒精工厂1998年l0月由B C International在路易斯安那Jennings破土动工,该厂以蔗渣和稻壳为原料,年产酒精20×106加仑。
2006年1月,布什总统提出“先进能源计划”,为美国能源部的清洁能源研究增加22%的投入。
因此2007年2月28日美国能源部部长宣布:在今后4年中,能源部将投资3.85亿美元,用于支持包括上述两家加拿大和西班牙公司在内的6个非传统原料(木片、秸秆、柳枝稷等)生物精炼化工厂项目[77]。
在巴西在生产纤维素乙醇方面也走在了世界前列,政府一方面制定政策限制石油消费,一方面开辟大量土地种植糖蔗,利用榨汁后蔗渣发酵生产燃料酒精[78]。
在巴西,3/4新车既可以使用乙醇又可以使用汽油作燃料。
2003年巴西的双燃料汽车还只占市场总销量的6%,2005年就高达73%。
此外,加拿大艾欧基(Iogen)公司和西班牙的Abengoa生物能源公司都在积极尝试大规模工业化生产纤维素乙醇。
我国国内很早关注纤维素乙醇的生产研究,中国科学院早在1980年在广州召开“全国纤维素化学学术会议”,把开发利用纤维素资源作为动力燃料提到议事日程[79]。
进入“九五”、“十五”期间,秸秆转化乙醇技术再次受到国家重视。
华东理工大学能源化工系颜涌捷教授及其课题组开发的纤维素废弃物稀盐酸水解法制取乙醇技术,被列为国家863重点科研项目。
纤维乙醇的生产工艺及生产进程和所面临的问题
木质纤维素是地球上最丰富的可再生资源,据测算年总产量高达1500亿吨,蕴储着巨大的生物质能(6.9×1015千卡)。
我国是一个农业大国,作物秸秆(如稻草、麦秆等)的年产量非常巨大(年产可达7亿吨左右,相当于5亿吨标煤),据统计,目前的秸秆利用率33%,但经过一定技术处理后利用的仅占2.6%,其余大部分只是作为燃料等直接利用,开发前景非常广阔。
纤维素原料生产乙醇的过程可以分为两步。
第一步,把纤维素水解为可发酵的糖,即糖化。
第二步,将发酵液发酵为乙醇。
1、木质纤维素的降解技术
木质纤维素降解可以采用酸水解和酶水解两条不同的技术路线来实现。
(1)酸水解技术
纤维素的结构单位的D-葡萄糖,是无分支的链状分子,结构单位之间以糖苷键结合而成长链。
纤维素经水解后可生成葡萄糖。
纤维素分子中的化学键在酸性条件下是不稳定的。
在酸性水溶液中纤维素的化学键断裂,聚合度下降,其完全水解产物是葡萄糖。
纤维素酸水解的发展已经历了较长时间,水解中常用无机盐,可分为浓酸水解和稀酸水解。
(2)酶水解技术
同植物纤维酸法水解工艺相比,酶法水解具有反应条件温和、不生成有毒降解产物、糖得率高和设备投资低等优点。
而妨碍木质纤维素资源酶法生物转化技术实用化的主要障碍之一,是纤维素酶的生产效率低、成本较高。
目前使用的纤维素酶的比活力较低,单位原料用酶量很大,酶解效率低,产酶和酶解技术都需要改进。
为了满足竞争的需要,生产每加仑乙醇的纤维素酶的成本应该不超过7 美分。
但在目前产酶技术条件下,生产
1加仑乙醇需用纤维素酶的生产费用约为30~50 美分。
要实现纤维素物质到再生能源的转化主要有两点:
首先可以寻找适合于工业生产的高比活力的纤维素酶。
细菌和真菌产生的纤维素酶均可以水解木质纤维素物质,细菌和真菌中都存在有复杂的纤维素酶水解系统,虽然其水解微晶纤维素的能力非常强,但是由于其复合物的分子量十分巨大,并且单个组份又不具有水解微晶纤维素的能力,所以人们一直试图从其他物种中寻找更符合工业应用以及更具有应用前景的纤维素酶。
日本一家实验室从甲虫中得到一种葡聚糖内切酶水解羧甲基纤维素(CMC-Na)的比活力可高达150IU/mg。
中国科学院上海生命科学研究院生物化学与细胞生物所的研究人员从福寿螺中发现了一种纤维素酶EGX,它不仅具有很高的比活力,而且具有多种酶的活性,这些结果可能提示动物纤维素酶不但具有应用前景,还具有理论研究意义。
其次应用微生物酶工程技术提高酶活性。
2. 发酵技术
利用木质纤维素原料生物转化酒精主要有几种途径:分步水解和发酵(SHF)、同时糖化和发酵(SSF)和直接微生物转化(DMC)。
(1)分步水解和发酵(SHF)
分步水解和发酵即纤维素酶法水解与乙醇发酵分步进行,这种方法最大的优点就是各步都可以在各自的最适温度下进行,45~50℃酶解,30~35 ℃乙醇发酵。
而其最大也是致命的缺点是在酶解过程中释放出来的糖会反馈抑制酶的活性,因此纤维素的浓度无法提高,相应的要求提高酶用量才能得到一定的乙醇产量。
(2)同时糖化和发酵(SSF)
同时糖化和发酵即纤维素酶解与葡萄糖的乙醇发酵在同一个反应器中进行,酶解
过程中产生的葡萄搪被微生物所迅速利用,解除了葡萄糖对纤维素酶的反馈抑制作用,提高了酶解效率,SSF是目前典型的木质纤维素生产乙醇的方法,国内外的中间试验基本都采用的此法。
一方面工厂大罐发酵生产纤维素酶,另一方面将原材料进行预处理后加入纤维素酶和酵母菌株进行同时糖化发酵,不水解的木质素和纤维素残渣分离开来燃烧提供能量,乙醇则通过传统蒸馏工艺回收。
这种方法相应的要求纤维素酶生产成本和周期的降低,能同时发酵五碳糖和六碳糖的转基因酵母,优化的预处理手段以及连续工艺的开发和使用。
在经济和技术可行性确定之前,示范性工厂的长期运行是必然的。
SSF 工艺的主要问题是水解和发酵所需的最佳温度不能匹配,45~50℃酶解,30~35℃乙醇发酵。
SSF常在35~38℃下操作,这一折中处理使酶的活性和发酵的效率都不能达到最大,Zbangwen等设计了非等温的SSF工艺(NSSF),它包含一个水解塔和一个发酵罐,不含酵母细胞的流体在两者之间循环。
(3) 直接微生物转化(DMC)
直接微生物转化即作物秸秆中的纤维素成分通过某些微生物的直接发酵可以转换为酒精。
这些微生物既能产生纤维素酶系水解纤维素又能发酵糖产生乙醇。
前两种方法都要求有独立的纤维素酶生产,而这种方法则一步包括了所有这三个步骤:纤维素酶生产、纤维素水解和发酵糖为酒精。
粗糙脉孢菌和尖镰孢菌是直接转化木质纤维素材料为乙醇研究较多的两种真菌。
这两种菌都能同时具有产生纤维素酶、半纤维素酶,发酵葡萄糖和木糖产生乙醇的能力,在有氧条件下产生纤维素酶水解底物,在半通氧条件下发酵糖产生乙醇。
与目前的广被接受的SSF相比,直接发酵产乙醇有着独特的优势:
首先,此举似乎比基因工程菌更值得研究。
一方面前者不需添加额外的酶,而后
者需要酶基因的转入;另一方面前者既可发酵六碳糖又可利用五碳糖,后者则需重组质粒,而基因工程菌共同的致命弱点是遗传稳定性差,目前还很难解决。
其次,SSF依赖于对酵母的改造和生产纤维素酶的成本的进一步降低。
在目前产酶技术条件下,生产1加仑乙醇需用纤维素酶的生产费用约为30~50 美分,有更多研究致力于将之进一步降低。
但从能量角度而言,似乎直接法是最终更节省能量的做法。
再次,SSF发酵的过程中,乙醇对纤维素酶的非竞争性抑制是不容忽视的,而DMC 菌种的纤维素酶活力在整个半通氧发酵过程中都保持稳定的水平。
虽然目前直接法的转化率仍低于酵母,但由于原位的纤维素酶生产和纤维素发酵,天然的五碳糖发酵能力以及对糖和乙醇的耐受都使得能直接转化木质纤维素为乙醇的几种微生物备受关注,尤其是粗糙脉孢菌和尖镰孢菌对它们在不同预处理原料下的产酶和发酵能力的研究对于生物质资源的全利用有很大意义。
3.精馏和脱水技术
精馏和脱水可以借鉴淀粉质原料燃料乙醇生产工艺中已经发展成熟的工业化技术,木质纤维素类原料发酵液中乙醇浓度比较低,一般情况下均在5%(V)以下,致使精馏操作能耗高。
有研究者建议,在木质纤维素水解液乙醇发酵工艺中耦合渗透蒸发技术来提高进入精馏系统发酵液中乙醇浓度,但是渗透蒸发系统本身的动力消耗也比较大,而且渗透蒸发所用的透醇膜容易被发酵醪和菌体污染的问题也很突出。
4.预处理
由于纤维素被难以降解的木质素所包裹,且纤维素本身也存在晶体结构,阻止纤维素酶接近纤维素表面,使酶难以起作用,所以纤维素直接酶水解的效率很低。
因此,需要采取预处理措施,出去木质素,溶解半纤维素或破坏纤维素的晶体结构。
预处理必须满足以下的要求:①促进糖的形成,或者提高续酶水解形成糖的能力;②避免碳水化合
物的降解或损失;③避免副产物形成阻碍后续水解和发酵过程;④具体成本效益。
秸秆发酵生产燃料乙醇与用粮食转化乙醇相比,能节约大量粮食,有利于国家粮食安全。
目前,每生产1t 乙醇要消耗玉米3t 到4t 。
而我国目前大年产生农作物秸秆6 亿多t ,除少量用作青储饲料和燃料外,大量秸秆成为农业废弃物。
有关研究指出,随着以基因技术为代表的现代科技的推
广应用,纤维质生产乙醇在未来10 年内有望完成工业化进程。
纤维质是地球上资源量最丰富的可再生资源,主要包括草、甘蔗、红薯等不与口粮争地、争水的高产、高糖或耐旱、耐碱经济作物,还包括秸秆、农作物壳皮、树枝、落叶、林业边脚余料和城乡固体垃圾。
据测算,我国每年秸秆资源一半转化
为乙醇,其数量就可以超过我国汽油消费量的112 倍以上。
对于50 年后生物质生物炼制技术的发展状况,可以做出这样的展望:届时将实现淀粉、糖类、纤维素、木素等生物质原料的全部利用,产品多元化,形成生物质炼制巨型行业,部分替代不可再生的一次性矿产资源,初步实现以碳水化合物为
基础的经济与社会可持续发展。
国家发改委委托中国国际3工程咨询公司对重点省份进行燃料乙醇专项规划评估,中国国际工程咨询公司对湖北、河北、江苏、江西、重庆5 省市的专题评估报告认为,利用薯类等非粮作物作为原料生产燃料乙醇略具经济性,建议在上述5省市优先推进燃料乙醇产业发展。
至此,非粮燃料乙醇将迎来黄金期。
国家发改委要求适时推进项目核准,成熟一个,建设一个,加快燃料乙醇产业发展。
我国非粮燃料乙醇项目即将进入大规模产业化阶段。
可以预见,在不远的未来,纤维素乙醇生产将会取得更大突破而快速发展。