最新勾股定理单元测试题及答案
- 格式:doc
- 大小:106.50 KB
- 文档页数:5
《勾股定理》单元测试题出题人:姜明一. 选择题:1.在△ABC 中,∠C =90°,周长为60,斜边与一直角边比是13∶5,则这个三角形三边长分别是( )A .5,4,3B .13,12,5C .10,8,6D .26,24,102.在△ABC 中,已知AB =12cm ,AC =9cm ,BC =15cm ,则△ABC 的面积等于( )A .108cm 2B .90cm 2C .180cm 2D .54cm 23.在直角坐标系中,点P (-2,3)到原点的距离是( )A .5B .13C .11D .24. 在△ABC 中,∠A =90°,∠A 、∠B 、∠C 的对边长分别为a 、b 、c ,则下列结论错误的是( )A .a 2+b 2=c 2B .b 2+c 2=a 2C .222a b c -=D .222a cb -= 5..如图1,2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的《勾股圆方图》(也称《赵爽弦图》),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形式面积是1,直角三角形的短直角边为a ,较长直角边为b ,那么2()a b +的值为 ( ) A .13 B .19 C .25 D .1696.如图2,分别以直角△ABC 的三边AB ,BC ,CA 为直径向外作半圆.设直线AB 左边阴影部分的面积为S 1,右边阴影部分的面积和为S 2,则( ) A .S 1=S 2 B .S 1<S 2 C .S 1>S 2 D .无法确定 7. 直角三角形有一条直角边长为13,另外两条边长是连续自然数,则周长为( ) A .182 B .183 C .184 D .1858.在ABC △中,::1:1:2A B C ∠∠∠=,则下列说法错误的是( ) A .90C ∠=B .222a b c =-C .222c a = D .a b =9.如图3,一块直角三角形的纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A .2cm B .3cm C .4cm D .5cm10.在下列以线段a ,b ,c 的长为三边的三角形中,不能构成直角三角形的是( )AB C 图2图1 C D BA 、a =11,b =12,c =15B 、a =b =5,c =25C 、 a :b :c =1:1:2D 、a =1,b =3,c =2 11. 如图5、点A 表示的实数是( )A 、3B 、5C 、5-D 、3-12. 等边△ABC 的边长是2cm ,则等边△ABC 的高是( )厘米。
勾股定理测试题一、相信你的选择1、如图,在Rt△ABC中,∠B=90°,BC=15,AC=17,以AB为直径作半圆,则此半圆的面积为().A.16πB.12πC.10πD.8π2、已知直角三角形两边的长为3和4,则此三角形的周长为().A.12B.7+7C.12或7+7D.以上都不对3、如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B到地面的距离为7m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3m.同时梯子的顶端B下降至B′,那么BB′().A.小于1m B.大于1m C.等于1m D.小于或等于1m4、将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为h cm,则h的取值范围是().A.h≤17cm B.h≥8cmC.15cm≤h≤16cm D.7cm≤h≤16cm二、试试你的身手5、在Rt △ABC 中,∠C =90°,且2a =3b ,c =213,则a =_____,b =_____.6、如图,矩形零件上两孔中心A 、B 的距离是_____(精确到个位).7、如图,△ABC 中,AC =6,AB =BC =5,则BC 边上的高AD =______.8、某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要 元.三、挑战你的技能如图,某公园内有一棵大树,为测量树高,小明C处用侧角仪测得树顶端A 的仰角为30°,已知侧角仪高DC =, BC =30米,请帮助小明计算出树高AB .(3取,结果保留 三个有效数字)参考答案与提示一、相信你的选择 150o 20米30米1、D (提示:在Rt △ABC 中,AB 2=AC 2-BC 2=172-152=82,∴AB =8.∴S 半圆=21πR 2=21π×(28)2=8π.故选D );2、C (提示:因直角三角形的斜边不明确,结合勾股定理可求得第三边的长为5或7,所以直角三角形的周长为3+4+5=12或3+4+7=7+7,故选C );3、A (提示:移动前后梯子的长度不变,即Rt △AOB 和Rt △A ′OB ′的斜边相等.由勾股定理,得32+B ′O 2=22+72,B ′O =44,6<B ′O <7,则O <BB ′<1.故应选A );4、D (提示:筷子在杯中的最大长度为22815+=17cm ,最短长度为8cm ,则筷子露在杯子外面的长度为24-17≤h ≤24-8,即7cm≤h ≤16cm ,故选D ).二、试试你的身手5.a =b ,b =4(提示:设a =3k ,b =2k ,由勾股定理,有 (3k )2+(2k )2=(213)2,解得a =b ,b =4.);6.43(提示:做矩形两边的垂线,构造Rt △ABC ,利用勾股定理,AB 2=AC 2+BC 2=192+392=1882,AB ≈43);7.(提示:设DC =x ,则BD =5-x .在Rt △ABD 中,AD 2=52-(5-x )2,在Rt △ADC 中,AD 2=62-x 2,∴52-(5-x )2=62-x 2,x =.故AD =226.36-=);8、150a .三、挑战你的技能10、解析:构造直角三角形,利用勾股定理建立方程可求得.过点D作DE⊥AB于点E,则ED=BC=30米,EB=DC=米.设AE=x 米,在Rt△ADE中,∠ADE=30°,则AD=2x.由勾股定理得:AE2+ED2=AD2,即x2+302=(2x)2,解得x=103≈.∴AB=AE+EB≈+≈(米).答:树高AB约为米.。
(第6题)AB D C(第12题)307米5米八年级下勾股定理测试题一、耐心填一填每小题3分,共36分1、在Rt △ABC 中,∠C=90°,AC=3,BC=4,则AB=___________;2、如图,小明的爸爸在院子的门板上钉了一个加固板,从数学的角度看, 这样做的道理是 .3、小明同学要做一个直角三角形小铁架,他现有4根长度分别为4cm 、6cm 、8cm 、10cm 的铁棒,可用于制作成直角三角形铁架的三条铁棒分别是________________________;4、若三角形三条边的长分别为7,24,25,则这个三角形的最大内角是 度.5、在△ABC 中,∠C =90°,若c =10,a ∶b =3∶4,则ab = .6、如图,在等腰△ABC 中,AB=AC=10,BC=12,则高AD=________;7、等腰△ABC 的面积为12cm 2,底上的高AD =3cm, 则它的周长为________.8、在Rt △ABC 中,斜边AB =2,则AB 2+BC 2+CA 2=________.9、有一个三角形的两边长是4和5,要使这个三角形成为直角三角形,则第三边长为 ;10、有两棵树,一棵高6米,另一棵高3米,两树相距4米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了________米.11、一个三角形的三边的比为5∶12∶13,它的周长为60cm,则它的面积是________. 12、如图,今年第8号台风“桑美”是50多年以来登陆我国大陆地区 最大的一次台风,一棵大树受“桑美”袭击于离地面5米 处折断倒下,倒下部分的树梢到树的距离为7米, 则这棵大树折断前有__________米保留到0.1米; 二、精心选一选每小题4分,共24分13、下列各组数据为边的三角形中,是直角三角形的是A 、 错误!、错误!、7B 、5、4、8C 、错误!、2、1D 、错误!、3、错误! 14、正方形ABCD 中,AC=4,则正方形ABCD 面积为A 、 4B 、8C 、 16D 、32 15、已知Rt △ABC 中,∠A,∠B,∠C 的对边分别为a,b,c,若∠B=90○,则 A 、b2= a2+ c2;B 、c2= a2+ b2;C 、a2+b2=c2;D 、a +b =c16、三角形的三边长a,b,c满足2ab=a+b2-c2,则此三角形是 . A 、钝角三角形 B 、锐角三角形 C 、直角三角形 D 、等边三角形 17、将Rt △ABC 的三边都扩大为原来的2倍,得△A ’B ’C ’,则△A ’B ’C ’为 A 、 直角三角形 B 、锐角三角形 C 、钝角三角形 D 、无法确定AB D CdabD CB A N O MAM O N B 图图图18、一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5米,消防车的云梯最大升长为13米,则云梯可以达该建筑物的最大高度是 A 、 12米 B 、 13米 C 、 14米 D 、15米 三、决心试一试19、12分如右图,等边△ABC 的边长6cm; ①求高AD ②求△ABC 的面积 20、12分如图,ABC ∆中,3590,12,,22CCD BD ∠=︒∠=∠==,求AC 的长;21、12分某菜农要修建一个塑料大棚,如图所示,若棚宽a=4m,高b=3m,长d=40m;求覆盖在顶上如右图阴影部分的逆料薄膜的面积;22、12分如图3-2,在△ABD 中,∠A 是直角,AB=3,AD=4,BC=12,DC=13,求四边形ABCD 的面积. 23、12分如图,一架长为5米的梯子AB 斜靠在与地面OM 垂直的墙ON 上,梯子底端距离墙ON 有3米;①求梯子顶端与地面的距离OA 的长; ②若梯子顶点A 下滑1米到C 点, 求梯子的底端向右滑到D 的距离;24、15分如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少25、15分如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形涂上阴影.⑴在图1中,画一个三角形,使它的三边长都是有理数;⑵在图2、图3中,分别画一个直角三角形,使它的三边长都是无理数.两个三角形不全等答案一、1. 5 2. 三角形的稳定性意思对就可以了 3. 6cm 、8cm 、10cm 4. 90 5. 48 6. 87. 18 8.8 cm9. 34111. 120 cm 212. 13.6 二、13-18 CBACAA三、19`. ①3错误!或 ②9错误!或15.59cm220. AC=3ABCDL21. 200m222. 3623. ①AO=错误! =4②OD=错误! =4 BD=OD-OB=4-3=1米24. 作A关于CD的对称点A’,连接A’B与CD的交点为M点为所求点可求得AM+BM=A’B=50千米,总费用为50×3=150万元25. 仅供参考每个5分。
勾股定理单元测试卷一、选择题(共10小题,每小题3分,共30分)1.下列命题的逆命题成立的是()A.全等三角形的对应角相等B.如果两个数相等,那么它们的绝对值相等C.两条直线平行,同位角相等D.对顶角相等2.观察下列几组数据:①3,4,5;②4,5,6;③6,8,10;④7,24,25.其中能作为直角三角形三边长的有()A.1组B.2组C.3组D.4组3.如图,点C所表示的数是()A B.C.1D.4.如图,ABC∆中,90ACB∠=︒,4AC=,3BC=,将ADE∆沿DE翻折,使点A与点B重合,则AE的长为()A.78B.3 C.254D.2585.如图,大正方形是由边长为1的小正方形拼成的,A,B,C,D四个点是小正方形的顶点,以其中三个点为顶点,可以构成直角三角形的个数是()A .2B .1C .4D .36.已知ABC ∆的三边分别为a 、b 、c 2(12)|13|0b c -+-=,则ABC ∆的面积为( )A .30B .60C .65D .无法计算7.如图所示的24⨯的正方形网格中,ABC ∆的顶点都在小正方形的格点上,这样的三角形称为格点三角形,则点A 到BC 的距离等于( )A B .CD8.如图,由两个直角三角形和三个大正方形组成的图形,其中阴影部分面积是( )A .16B .25C .144D .1699.如图,一棵大树被台风挂断,若树在离地面3m 处折断,树顶端落在离树底部4m 处,则树折断之前高( )A .5mB .7mC .8mD .10m10.如图,长方体的高为9dm ,底面是边长为6dm 的正方形.一只蚂蚁从顶点A 开始爬向顶点B ,那么它爬行的最短路程为( )A .10dmB .12dmC .15dmD .20dm二、填空题(共5小题,每小题3分,共15分)11.在高5m ,长13m 的一段台阶上铺上地毯,台阶的剖面图如图所示,地毯的长度至少需要 m .12.如图,在ABC ∆中,10AB cm =,6AC cm =,8BC cm =,若将AC 沿AE 折叠,使得点C 与AB 上的点D 重合,则AEB ∆的面积为 2cm .13.如图,1OP =,过点P 作1PP OP ⊥,且11PP =,得1OP ;再过点1P 作121PP OP ⊥且121PP =,得2OP =;又过点2P 作232P P OP ⊥且231P P =,得32OP =⋯,依此法继续作下去,得2022OP = .14.如图,Rt ABC ∆中,90ACB ∠=︒,4AB =,分别以AC 和BC 为边,向外作等腰直角三角形ACD ∆和BCE ∆,则图中的阴影部分的面积是 .15.已知ABCAC=,BC边上的高8AD=.则边BC的长为.AB=,10∆中,17三、解答题(共8小题,共75分)16.如图,一根直立的旗杆高8米,一阵大风吹过,旗杆从点C处折断,顶部(B)着地,离旗杆底部(A)4米,工人在修复的过程中,发现在折断点C的下方1.25米D处,有一明显裂痕,若下次大风将旗杆从D处吹断,则距离杆脚周围多大范围内有被砸伤的危险?17.如图,某人划船横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点25B m,结果他在水中实际划了65m,求该河流的宽度.18.如图,在ABCBD=.==,1AB AC∆中,CD AB⊥,垂足为D,13(1)求CD的长;(2)求BC的长.19.如图,每个小正方形的边长为1,A,B,C是小正方形的顶点.(1)求AB 和BC ;(2)求ABC ∠的度数.20.如果直角三角形的三边的长都是正整数,这样的三个正整数叫做勾股数组.我国清代数学家罗士琳对勾股数组进行了深入研究,提出了各种有关公式400多个.他提出:当m ,n 为正整数,且m n >时,22m n -,2mn ,22m n +为一组勾股数组,直到现在,人们都普遍采用他的这一公式.(1)除勾股数3,4,5外,请再写出两组勾股数组 , ;(2)若令22x m n =-,2y mn =,22z m n =+,请你证明x ,y ,z 为一组勾股数.21.如图,在一条东西走向河流的一侧有一村庄C ,河边原有两个取水点A ,B ,其中AB AC =,由于某种原因,由C 到A 的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点(H A 、H 、B 在同一条直线上),并新修一条路CH ,测得 1.5CB =千米, 1.2CH =千米,0.9HB =千米.(1)问CH 是否为从村庄C 到河边的最近路?请通过计算加以说明;(2)求新路CH 比原路CA 少多少千米?22.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.23.如图,在ABC ∆中,AB AC =,AD BC ⊥于点D ,45CBE ∠=︒,BE 分别交AC ,AD 于点E 、F .(1)如图1,若13AB =,10BC =,求AF 的长度;(2)如图2,若AF BC =,求证:222BF EF AE +=.。
勾股定理单元测试题一、选择题1、下列各组数中,能构成直角三角形的是( )A :4,5,6B :1,1:6,8,11 D :5,12,23 2、在Rt △ABC 中,∠C =90°,a =12,b =16,则c 的长为( ) A :26 B :18 C :20 D :213、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( ) A :3 B :4 C :5 D :74、在Rt △ABC 中,∠C =90°,∠B =45°,c =10,则a 的长为( ) A :5 B :10 C :25 D :55、等边三角形的边长为2,则该三角形的面积为( )A、、、36、若等腰三角形的腰长为10,底边长为12,则底边上的高为( )A 、6B 、7C 、8D 、9 7、已知,如图长方形ABCD 中,AB=3cm , AD=9cm ,将此长方形折叠,使点B 与点D 重合, 折痕为EF ,则△ABE 的面积为( ) A 、3cm 2B 、4cm 2C 、6cm 2D 、12cm 28、若△ABC 中,13,15AB cm AC cm ==,高AD=12,则BC 的长为( ) A 、14 B 、4 C 、14或4 D 、以上都不对 二、填空题1、若一个三角形的三边满足222c a b -=,则这个三角形是 。
2、木工师傅要做一个长方形桌面,做好后量得长为80cm ,宽为60cm ,对角线为100cm ,则这个桌面 。
(填“合格”或“不合格” )3、直角三角形两直角边长分别为3和4,则它斜边上的高为__________。
D CBA4、如右图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正 方形的边长为5,则正方形A ,B ,C ,D 的 面积的和为 。
5、如右图将矩形ABCD 沿直线AE 折叠,顶点D 恰好落 在BC 边上F 处,已知CE=3,AB=8,则BF=___________。
勾股定理测试题及答案一、选择题(每题 5 分,共 30 分)1、直角三角形的两直角边分别为 5 厘米、12 厘米,则斜边长是()A 13 厘米B 14 厘米C 15 厘米D 16 厘米答案:A解析:根据勾股定理 a²+ b²= c²(其中 a、b 为直角边,c 为斜边),可得斜边 c =√(5²+ 12²) =√(25 + 144) =√169 = 13 厘米。
2、以下列各组数为边长,能组成直角三角形的是()A 3,4,6B 5,12,13C 5,11,12D 2,3,4答案:B解析:选项 A,3²+ 4²= 9 + 16 = 25,6²= 36,25 ≠ 36,所以不能组成直角三角形;选项 B,5²+ 12²= 25 + 144 = 169,13²=169,所以能组成直角三角形;选项 C,5²+ 11²= 25 + 121 = 146,12²= 144,146 ≠ 144,所以不能组成直角三角形;选项 D,2²+ 3²=4 + 9 = 13,4²= 16,13 ≠ 16,所以不能组成直角三角形。
3、一个直角三角形,两直角边长分别为 3 和 4,下列说法正确的是()A 斜边长为 25B 三角形的周长为 12C 斜边长为 5D 三角形的面积为 6答案:C解析:根据勾股定理,斜边长为√(3²+ 4²) =√25 = 5,选项 A 错误,选项 C 正确;三角形的周长为 3 + 4 + 5 = 12,选项 B 错误;三角形的面积为 1/2 × 3 × 4 = 6,选项 D 正确。
4、若直角三角形的三边长分别为 2,4,x,则 x 的值可能有()A 1 个B 2 个C 3 个D 无数个答案:B解析:当 x 为斜边时,x =√(2²+ 4²) =√20 =2√5;当 4 为斜边时,x =√(4² 2²) =√12 =2√3。
《第17章勾股定理》单元测试卷一.选择题(每小题3分,共51分)姓名________成绩______1.如果直角三角形的两直角边长是9,12,那么斜边长为()A. 15B. . 13C. 17D. 192.下面四组数,其中是勾股数的是()A. 3,4,5B. 0.3,0.4,0.5C. 32,42,52D. 6,7,83.下列各组数是勾股数的是()A. 3,4,5B. 1.5,2,2.5C. 32,42,52D. ,,4.下面四组数据中,不能作为直角三角形的三边长是( )A. 6、8、10B. 7、24、25C. 2、5、7D. 9、12、155.若一个三角形的三边长分别为3、4、5,则这个三角形最长边上的中线为()A. 1.8B. 2C. 2.4D. 2.56.直角三角形的两直角边均扩大到原来的3倍,则斜边扩大到原来的()倍.A. 3B. 6C. 9D. 127.如图,在△ABC中,∠C=90°,则下列结论正确的是( )A. AB=AC+BCB. AB=AC·BCC. AB2=AC2+ BC2D. AC2=AB2+BC2(第7题)(第8题)(第9题)(第10题)(第13题)8.如图是一个直角三角形,它的未知边的长x等于A. 13B.C. 5D.9.如图,在Rt△O BC中,OC=1,OB=2,数轴上点A所表示的数为a,则a的值是()A. --2B. -C. ﹣2D. ﹣+210.如图,在直角中,,,,则点到斜边的距离是()A. B. C. D.11.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( )A. 4B. 16C.D. 4或12.在直角坐标系中,已知点P的坐标为(5,12),则点P到原点的距离是()A. 5B. 12C. 13D. 1713.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的边长为()A. 4B. 8C. 16D. 6414.如图,一次飓风灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是()A. 5米B. 6米C. 7米D. 8米15.如图,有一个池塘,其底面是边长为10尺的正方形,一个芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B′.则这根芦苇的长度是()A. 10尺B. 11尺C. 12尺D. 13尺16.如图,有一只小鸟从小树顶飞到大树顶上,它飞行的最短路程是()A. 13米B. 12米C. 5米D. 米17.如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两直角边长分别为和,则小正方形的面积为()A. 4B. 3C. 2D. 1二.填空题(每小题4分,共16分)18.有一组勾股数,知道其中的两个数分别是17和8,则第三个数是 .19.满足a2+b2=c2的三个正整数,称为勾股数.写出你比较熟悉的两组勾股数:①_____;②_____.20.下列各组数:①1、2、3;②6、8、10;③0.3、0.4、0.5;④9、40、41;其中是勾股数的有________(填序号).21.如图,已知∠A=90°,AC=AB=4,CD=2,BD=6.则∠ACD=________度.22.游泳员小明横渡一条河,由于水流的影响,实际上岸地点C偏离欲达到点B60米,结果他在水中实际游了100米,这条河宽为_______米.三.解答题23.(本题12分)如图所示,△ABC中.(1)若∠A:∠B:∠C=2:3:4,求∠C的度数;(2)若AB=2,AC=6,BC=2,求BC边上的高.24.(本题9分)如图,在四边形ABCD中,∠B=∠D=90°,AB=BC=2,CD=1,求AD的长.25.(本题12分)如图,长7.5m的梯子靠在墙上,梯子的底部离墙的底端4.5m.(1)求梯子的顶端到地面的距离;(2)由于地面有水,梯子底部向右滑动1.5m,则梯子顶端向下滑多少米?。
AB第一章勾股定理单元测试北师大版2024—2025学年八年级上册一、选择题1、在下列长度的四组线段中,不能组成直角三角形的是( ). A .a=9 b=41 c=40 B .a=b=5 C=52 C .a:b:c=3:4:5 D .a=11 b=12 c=152、下列说法正确的有( )①△ABC 是直角三角形,∠C=90°,则222c b a =+ ②△ABC 中,222c b a ≠+,则△ABC 不是直角三角形.③若△ABC 中,222c b a =-,则△ABC 是直角三角形.④若△ABC 是直角三角形,则()()2c b a b a =-+A.4个B.3个C.2个D.1个3、小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m ,当他把绳子的下端拉开5m 后,发现下端刚好接触地面,则旗杆的高为( )A.8mB.10mC.12mD.14m4、如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程(π取3)是 ( )A.20cmB.10cmC.14cmD.无法确定.5、将直角三角形的三条边长同时扩大同一倍数,得到的三角形是( ) A.钝角三角形 B.直角三角形 C.锐角三角形 D.等腰三角形6、在△ABC 中,AB=12cm , BC=16cm , AC=20cm , 则△ABC 的面积是( ) A 、962cm B 、1202cm C 、1602cm D 、2002cm7、如图,四边形ABCD 中,AB=3cm ,BC=4cm ,CD=12cm ,DA=13cm ,且∠ABC=900,则四边形ABCD 的面积是( ).A .84B .36C .251D .无法确定 8、若△ABC 中,AB=13,AC=15,高AD=12,则BC 的长是( ).A .14B .4C .14或4D .以上都不对9、如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C /处,B C /交AD 于E ,AD=8,AB=4,则DE 的长为( ).A .3B .4C .5D .610、2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小小正方形拼成的一个大正方形(如图2所示),如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a ,较长直角边为b ,那么2)(b a +的值为( ).A .13B .19C .25D .169图2BCDEAB二、解答题11.(1)如图所示,90B OAF ∠=∠=︒,BO =3 cm ,AB =4 cm ,AF =12 cm ,求图中半圆的面积.(2)如图,在Rt △ABC 中,∠C =90°,AC =8,在△ABE 中,DE 是AB 边上的高,DE =12,S △ABE=60,求BC 的长.12.如图,一艘货轮在B 处向正东方向航行,船速为25 n mile/h ,此时,一艘快艇在B 的正南方向120 n mile 的A 处,以65 n mile/h 的速度要将一批货物送到货轮上,问快艇最快需要多少时间?13.一架梯子的长度为25米,如图斜靠在墙上,梯子顶端离墙底端为7米。
第3章《勾股定理》单元测试(含答案)第3章《勾股定理》单元测试(满分100分时间90分钟)⼀、单选题(共8题;共24分)1.要登上某建筑物,靠墙有⼀架梯⼦,底端离建筑物3m,顶端离地⾯4m,则梯⼦的长度为()A.2mB.3mC.4mD.5m2.若直⾓三⾓形的两边长分别为a,b,且满⾜a2-6a+9+|b﹣4|=0,则该直⾓三⾓形的第三边长为()A.5B.7C.4D.5或73.在△ABC中,AB=15,AC=13,⾼AD=12,则△ABC的周长为()A.42 B.32 C.42或32D.37或334.⼀直⾓三⾓形两边分别为3和5,则第三边为()A、4B、C、4或D、25.两只⼩鼹⿏在地下从同⼀处开始打洞,⼀只朝北⾯挖,每分钟挖8cm,另⼀只朝东⾯挖,每分钟挖6cm,10分钟之后两只⼩鼹⿏相距()A.100cmB.50cmC.140cmD.80cm6.如图,阴影部分是⼀个长⽅形,它的⾯积是()A、3cm2B、4cm2C、5cm2D、6cm27. 已知,如图长⽅形ABCD中,AB=3cm,AD=9cm,将此长⽅形折叠,使点B 与点D重合,折痕为EF,则△ABE的⾯积为()A.3cm2B.4cm2C.6cm2D.12cm28.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC、BC为直径作半圆,⾯积分别记为S1、S2,则S1+S2等于________.A.3πB.2πC.6πD.4π⼆、填空题(每题3分,共30分)9. 如果三⾓形三边长分别为3,4,5,那么最长边上的中线长为.10.若⼀个三⾓形的三边长之⽐为5:12:13,且周长为60 cm,则它的⾯积为cm2.11.⼀根旗杆在离底部4.5⽶的地⽅折断,旗杆顶端落在离旗杆底部6⽶处,则旗杆折断前⾼为______12.如图中阴影部分是⼀个正⽅形,如果正⽅形的⾯积为64厘⽶2,则x的长为___厘⽶.13.⼀个直⾓三⾓形,两直⾓边长分别为3和2,则三⾓形的周长为________.14.在RT△ABC中,∠ACB=90°,且c+a=9,c-a=4,则b=。
第一章 勾股定理单元测试题一、选择题(每小题3分,共30分)1. 下列各组中,不能构成直角三角形的是 ( ).(A )9,12,15 (B )15,32,39 (C )16,30,32 (D )9,40,41 2. 如图1,直角三角形ABC 的周长为24,且AB :BC=5:3,则AC= ( ).(A )6 (B )8 (C )10 (D )123. 已知:如图2,以Rt △ABC 的三边为斜边分别向外作等腰直角三角形.若斜边AB =3,则图中阴影部分的面积为 ( ). (A )9 (B )3 (C )49 (D )29 4. 如图3,在△ABC 中,AD ⊥BC 与D ,AB=17,BD=15,DC=6,则AC 的长为( ).(A )11 (B )10 (C )9 (D )85. 若三角形三边长为a 、b 、c ,且满足等式ab c b a 2)(22=-+,则此三角形是( ).(A )锐角三角形 (B )钝角三角形 (C )等腰直角三角形 (D )直角三角形 6. 直角三角形两直角边分别为5、12,则这个直角三角形斜边上的高为 ( ).(A )6 (B )8.5 (C )1320 (D )1360 7. 高为3,底边长为8的等腰三角形腰长为 ( ).(A )3 (B )4 (C )5 (D )68. 一只蚂蚁沿直角三角形的边长爬行一周需2秒,如果将直角三角形的边长扩大1倍,那么这只蚂蚁再沿边长爬行一周需 ( ). (A )6秒 (B )5秒 (C )4秒 (D )3秒9. 我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图1所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 、b ,那么2)(b a + 的值为 ( ).(A )49 (B )25 (C )13 (D )110. 如图5所示,在长方形ABCD 中,E 、F 分别是AB 、BC 上的点,且BE=12,BF=16,则由点E 到F 的最短距离为 ( ). (A )20 (B )24 (C )28 (D )32 二、填空题(每小题3分,共30分)11. 写出两组直角三角形的三边长 .(要求都是勾股数) 12. 如图6(1)、(2)中,(1)正方形A 的面积为 . (2)斜边x= .13. 如图7,已知在Rt ABC △中,Rt ACB ∠=∠,4AB =,分别以AC ,BC 为直径作半圆,面积分别记为1S ,2S ,则1S +2S 的值等于 .14. 四根小木棒的长分别为5cm ,8cm ,12cm ,13cm ,任选三根组成三角形,其中有 个直角三角形.15. 如图8,有一块直角三角形纸片,两直角边AC=6cm ,BC=8cm ,现直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 的长为 . 三、简答题(50分)16.(8分)如图9,AB=4,BC=3,CD=13,AD=12,∠B=90°,求四边形ABCD 的面积.17.(8分)如图10,方格纸上每个小正方形的面积为1个单位.(1)在方格纸上,以线段AB为边画正方形并计算所画正方形的面积,解释你的计算方法.(2)你能在图上画出面积依次为5个单位、10个单位、13个单位的正方形吗?18.(8分)如图11,这是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4m的半圆,其边缘AB=CD=20m,点E在CD上,CE=2m,一滑行爱好者从A点到E点,则他滑行的最短距离是多少?(边缘部分的厚度可以忽略不计,结果取整数)19.(8分)如图12,飞机在空中水平飞行,某一时刻刚好飞到一男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩头顶50000米.飞机每小时飞行多少千米?20.(8分)如图13(1)所示为一个无盖的正方体纸盒,现将其展开成平面图,如图13(2)所示.已知展开图中每个正方形的边长为1.(1)求该展开图中可画出最长线段的长度,并求出这样的线段可画几条. (2)试比较立体图中∠ABC 与平面展开图中///C B A 的大小关系.21.(8分)如图14,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米.(1)这个梯子底端离墙有多少米?(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗?,8.现在要将绿地22.(8分)有一块直角三角形的绿地,量得两直角边长分别为6m m扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.参考答案一、选择题1.C2.B3.C4.B5.D6.D7.C8.C9.A 10.A 二、填空题11.略 12.(1)36,(2)13 13. 2π 14. 1 15. 415 三、简答题16. 在Rt △ABC 中,AC=54322=+. 又因为22213125=+,即222CD AC AD =+.所以∠DAC=90°.所以125214321⨯⨯+⨯⨯=+=∆∆ABC Rt ACD Rt ABCD S S S 四边形=6+30=36. 17.略18. 约22米.根据半圆柱的展开图可计算得:AE=22)4(1822≈+π米. 19. 如图12,在Rt △ABC 中,根据勾股 定理可知,BC=30004000500022=-(米). 3000÷20=150米/秒=540千米/小时. 所以飞机每小时飞行540千米. 20. (1)10;(2)4条21. (1)7米;(2)不是.设滑动后梯子的底端到墙的距离为x 米,得方程, 222)424(25--=x ,解得x=15,所以梯子向后滑动了8米.22.在Rt ABC △中,9086ACB AC BC ∠===°,,由勾股定理有:10AB =,扩充部分为Rt ACD △,扩充成等腰ABD △,应分以下三种情况:①如图1,当10AB AD ==时,可求6CD CB ==,得ABD △的周长为32m .②如图2,当10AB BD ==时,可求4CD =,由勾股定理得:45AD =,得ABD △的周长为()2045m +.③如图3,当AB 为底时,设AD BD x ==,则6CD x =-,由勾股定理得:253x=,得ABD△的周长为80m3.备用题:1. 我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图1所示),如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边分别是a、b,那么2)(ba+的值为().(A)1(B)12(C)13(D)252. 以下列各组数为边长,能构成直角三角形的是().(A)532、(B)1086、(C)222543、、(D)1、2、33. 如图2,等腰三角形ABC中,AB=AC,AD是底边上的高.若AB=5cm,BC=6cm,那么AD= cm.4. 正方体的棱长为2cm,用经过A、B、C三点平面截这个正方体,所得截面的周长是cm.5. 如图4,这是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去ADCBAD BCAD BC图1图2 图3图1掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4m 的半圆,其边缘AB=CD=20m , 点E 在CD 上,CE=2m ,一滑行爱好者从A 点到E 点,则他滑行的最短距离是多少?(边缘部分的厚度可以忽略不计,结果取整数)6. 为了打击索马里海盗,保护各国商船顺利通行,我海军某部奉命前往某海域执行保航任务.某天我护航舰正在某小岛A 北偏西45°并距该岛20海里的B 处待命.位于该岛正西方向C 出的某外国商船招到海盗袭击,船长发现在其北偏东60°方向有我军护航舰(图5),便发出紧急求救信号.我护航舰接警后,立即沿BC 航线以每小时60海里的速度前去救援. 该船舰需要多少分钟可以达到商船所在位置处?(结果精确到个位)答案提示:1. D2. A3. 44. 65. 约22米.根据半圆柱的展开图可计算得:AE=22)4(1822≈+π米. 6. 约38分.提示:过点A 作AM ⊥BC 于D ,根据勾股定理分别在Rt △ ABD 和 Rt △ACD 中求出BD 和CD 的长,即BD+CD 为航程.S4S3S2S1图1L321勾股定理新题型赏析一、 图形信息题例1. 在直线L 上依次摆放着七个正方形(如图1所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S3、S4,则S 1+S 2+S 3+S 4= .分析: 经过观察图形,可以看出正放着正方形面积与斜放置的正方形之间关系为: S 1+S 2=1; S 2+S 3=2; S 3+S 4=3;这样数形结合可把问题解决.解: S 1代表的面积为S 1的正方形边长的平方, S 2代表的面积为S 2的正方形边长的平方,所以S 1+S 2=斜放置的正方形面积为1;同理S 3+S 4=斜放置的正方形面积为3,故S 1+S 2+S 3+S 4=1+3=4. 二、规律探究题例 2.张老师在一次“探究性学习”课中,设计了如下表:(1)请你分别观察a 、b 、c 与n (n >1) 之间的关系,并分别用含n 的代数式表示a 、b 、c :a= ,b= ,c= ; (2)猜想以a 、b 、c 为边的三角形是否 为直角三角形,并验证你的猜想. 解:(1)12-n ;2n ;12+n(2)猜想以a 、b 、c 为边的三角形是直角三角形. 验证:由于2222)1(n n +-1241224224++=++-=n n n n n ,因为,12)1(2422++=+n n n 所以图222222222121c b a n n n =++=+-,即)()(.故以a 、b 、c 为边的三角形是直角三角形.三、开放题例3.如图2所示,是由边长为1的小正方形组成的正方形网格,以线段AB (A ,B 为格点)为一条直角边任1C 意画一个Rt △ABC ,且点C 为格点,并求出以BC 为边的正方形的面积.分析:这是一道结论开放题,据题意经过分析,符合要求的点C 有多个,如图2所示,1C ,2C ,3C ,4C ,5C ,6C 都是符合要求的点.解:画出的Rt △ABC 如图2中所示,41624222+=+=BC =20,所以以BC 为边的正方形面积为20. 四、方案设计题例4. 如图3所示,MN 表示一条铁路,A,B 是两个城市,它们到铁路所在直线,它们到铁路所在直线MN 的垂直距离分别为1AA =20km ,1BB =40km ,且11B A =80km.现要在11,B A 之间设一个中转站P ,使两个城市到中转站的距离之和最短.请你设计一个方案确定P点的位置,并求出这个最短距离.分析:本题为最佳方案设计题,要寻找点P 的思路根据“两点之间线段最段”,只要将点A 移到MN 的另一侧即可,也就是A 与点'A 关于MN 对称,此时PA=P 'A ,因此PA+PB= P 'A +PB='A B ,故点P 到点A ,B 距离之和最短.解:如图3,作点A 关于MN 的对称点'A ,连接'A B ,交MN 于点P ,则点P 就是要确定的中转站的位置,最短距离即为PA+PB.过点'A 作'A 'B ⊥1BB ,交1BB 的延长线于'B 点.在Rt △'A B 'B 中,'A 'B =11B A =80km ,'BB =1BB +1'B B =1BB +'1A A =1BB +1AA =40+20=60(km ),所以2222''2'1006080=+==B A B A ,所以'A B=100km ,由点的对称性可知AP+BP= P 'A +PB='A B=100km ,所以这个最短距离为100km.。
勾股定理单元测试题 一、相信你的选择 1、如图,在Rt △ABC 中,∠B =90°,BC =15,AC =17,以
AB 为直径作半圆,则此半圆的面积为( ).
A .16π
B .12π
C .10π
D .8π
2、已知直角三角形两边的长为3和4,则此三角形的周长为( ).
A .12
B .7+7
C .12或7+7
D .以上都不对
3、如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2m ,
梯子的顶端B 到地面的距离为7m ,现将梯子的底端A 向外移动到A ′,
使梯子的底端A ′到墙根O 的距离等于3m .同时梯子的顶端B 下降
至B ′,那么BB ′( ).
A .小于1m
B .大于1m
C .等于1m
D .小于或等于1m
4、将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱
形水杯中,如图所示,设筷子露在杯子外面的长度为h cm ,则h 的取
值范围是( ).
A .h ≤17cm
B .h ≥8cm
C .15cm ≤h ≤16cm
D .7cm ≤h ≤16cm
二、试试你的身手
5、在Rt △ABC 中,∠C =90°,且2a =3b ,c =213,则a =_____,b =_____.
6、如图,矩形零件上两孔中心A 、B 的距离是_____(精确到个位).
7、如图,△ABC 中,AC =6,AB =BC =5,则BC 边上的高AD =______.
8、某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要 元.
三、挑战你的技能
9、如图,设四边形ABCD 是边长为1的正方形,以对角线
AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正
方形AEGH ,如此下去.
(1)记正方形ABCD 的边长为a 1=1,按上述方法所作的正
150o 20米30米
方形的边长依次为a2,a3,a4,……,a n,请求出a2,a3,a4的值;
(2)根据以上规律写出a n的表达式.
10、如图,某公园内有一棵大树,为测量树高,小明C
处用侧角仪测得树顶端A的仰角为30°,已知侧角仪高DC=1.4m,
BC=30米,请帮助小明计算出树高AB.(3取1.732,结果保留
三个有效数字)
11、如图,甲船以16海里/时的速度离开港口,向东南航行,
乙船在同时同地向西南方向航行,已知他们离开港口一个半小时后
分别到达B、A两点,且知AB=30海里,问乙船每小时航行多少
海里?
12、去年某省将地处A、B两地的两所大学合并成了一所综合性
大学,为了方便A、B两地师生的交往,学校准备在相距2.732km的A、B两地之间修筑一条笔直公路(即图中的线段AB),经测量,在A地
的北偏东60°方向、B地的西偏北45°方向C处有一个半径为0.7km
的公园,问计划修筑的这条公路会不会穿过公园?为什么?(3≈1.732)
参考答案与提示
一、相信你的选择
1、D (提示:在Rt △ABC 中,AB 2=AC 2-BC 2=172-152=82,∴AB =8.∴S 半圆=
21πR 2=21π×(2
8)2=8π.故选D ); 2、C (提示:因直角三角形的斜边不明确,结合勾股定理可求得第三边的长为5或7,所以直角三角形的周长为3+4+5=12或3+4+7=7+7,故选C );
3、A (提示:移动前后梯子的长度不变,即Rt △AOB 和Rt △A ′OB ′的斜边相等.由勾股定理,得32+B ′O 2=22+72,B ′O =44,6<B ′O <7,则O <BB ′<1.故应选A );
4、D (提示:筷子在杯中的最大长度为22815+=17cm ,最短长度为8cm ,则筷子露在杯子外面的长度为24-17≤h ≤24-8,即7cm ≤h ≤16cm ,故选D ).
二、试试你的身手
5.a =b ,b =4(提示:设a =3k ,b =2k ,由勾股定理,有
(3k )2+(2k )2=(213)2,解得a =b ,b =4.);
6.43(提示:做矩形两边的垂线,构造Rt △ABC ,利用勾股定理,AB 2=AC 2+BC 2=192+392=1882,AB ≈43);
7.3.6(提示:设DC =x ,则BD =5-x .在Rt △ABD 中,AD 2=52-(5-x )2,在Rt △ADC
中,AD 2=62-x 2,∴52-(5-x )2=62-x 2,x =3.6.故AD =226.36-=4.8);
8、150a .
三、挑战你的技能
9、解析:利用勾股定理求斜边长.
(1)∵四边形ABCD 是正方形,∴AB =BC =1,∠B =90°.∴在Rt △ABC 中,AC =22BC AB +=2211+=2.同理:AE =2,EH =22,…,即a 2=2,a 3=2,a 4=22.
(2)a n =12-n (n 为正整数).
10、解析:构造直角三角形,利用勾股定理建立方程可求得.过点D 作DE ⊥AB 于点E ,则ED =BC =30米,EB =DC =1.4米.设AE =x 米,在Rt △ADE 中,∠ADE =30°,则AD =2x .由勾股定理得:AE 2+ED 2=AD 2,即x 2+302=(2x )2,解得x =103≈17.32.∴AB =AE +EB ≈17.32+1.4≈18.7(米).
答:树高AB 约为18.7米.
11、解析:本题要注意判断角的大小,根据题意知:∠1=∠2=45°,从而证明△ABC 为直角三角形,这是解题的前提,然后可运用勾股定理求解.B 在O 的东南方向,A 在O
的西南方向,所以∠1=∠2=45°,所以∠AOB =90°,即△AOB 为Rt △.BO =16×23=24(海里),AB =30海里,根据勾股定理,得AO 2=AB 2-BO 2=302-242=182,所以AO =18.所以乙船的速度=18÷23=18×32=12(海里/时).
答:乙船每小时航行12海里.
12、解 如图所示,过点C 作CD ⊥AB ,垂足为点D ,由题意可得∠CAB =30°,∠CBA =45°,在Rt △CDB 中,∠BCD =45°,∴∠CBA =∠BCD ,∴BD =CD .在Rt △ACD 中,∠CAB =30°,∴AC =2CD .设CD =DB =x ,∴AC =2x .由勾股定理
得AD =22CD AC -=224x x -=3x .∵AD +DB =2.732,
∴3x +x =2.732,∴x ≈1.即CD ≈1>0.7,
∴计划修筑的这条公路不会穿过公园.
户外活动教案
活动目标:
1、练习用纸球击目标,发展幼儿投掷能力和目测力。
2、学习遵守游戏规则,体验规则在活动中的重要性。
活动准备:
1、用报纸、皱纸做成的只求若干只。
2、小脸盆若干只,盆内调好颜料,一盆一种颜色。
活动过程:
1、启发提问,引起兴趣:
(1)、教师启发提问:
——“如果不用笔,你能怎样在板上画出一幅美丽的画?”
(2)、幼儿讨论交流。
(3)、激发游戏兴趣:
——“今天我们做小猴投彩球的游戏,用纸团蘸上颜色投到板上看看会不会变成一幅美丽
的图案?”
2、提供材料,自由探索:
(1)、“小猴”玩纸球:
幼儿每人拿一只纸球,分散自由的地玩球(抛接,投掷)。
(2)、“小猴”投纸球:
按幼儿意愿,将幼儿分成人数相等的四队。
提问:
——“今天的比赛分成四队进行,可以怎么分?”。