最新湖北省黄冈市中考数学模拟试卷(A)(解析版)
- 格式:doc
- 大小:610.50 KB
- 文档页数:31
湖北省黄冈市中考模拟数学考试卷(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】某地一天的最高气温是8℃,最低气温是﹣2℃,则该地这天的温差是()A. 10℃B. ﹣10℃C. 6℃D. ﹣6℃【答案】D【解析】试题分析:根据题意算式,计算即可得到结果.根据题意得:8﹣(﹣2)=8+2=10,则该地这天的温差是10℃,考点:有理数的减法【题文】下列运算正确的是()A. B. C. D.【答案】A【解析】试题分析:根据同底数幂的除法,底数不变,指数相减,可知,故A正确;根据幂的乘方,底数不变,指数相乘,可知,故B不正确;根据完全平方公式,可知,故C不正确;根据合并同类项法则,可知,故D不正确.故选:A.【题文】世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,用科学记数法表示是A、7.6×108克B、7.6×10-7克C、7.6×10-8克D、7.6×10-9克【答案】C.【解析】试题解析:0.000000076=7.6×10-8,故选C.考点:科学记数法----表示较小的数.【题文】下列图形中,是中心对称图形,但不是轴对称图形的是()A. B. C. D.【答案】A【解析】试题分析:根据中心对称图形和轴对称图形的意义,可知A是中心对称图形,不是轴对称图形;B 是中心对称图形,也是轴对称图形;C不是中心对称图形,是轴对称图形;D不是中心对称图形,是轴对称图形.故选:A点睛:此题主要考查了中心对称图形和轴对称图形,解题关键是灵活应用中心对称图形和轴对称图形的概念判断即可.中心对称图形:延某点旋转180°能和原图形完全重合的图形,这个点叫对称中心;轴对称图形:延某条直线对折能够完全重合的图形,这条直线叫对称轴.【题文】如图,直线BD∥EF,AE与BD交于点C,若∠ABC=30°,∠BAC=75°,则∠CEF的大小为()A.60°lA. 4B. 5C. 6D. 7【答案】B【解析】试题解析:综合三视图可知,这个几何体的底层应该有3+1=4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+1=5个,所以这个几何体的体积是5.故选B.【点睛】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.【题文】分解因式:a3﹣4a2b+4ab2=___________.【答案】a(a﹣2b)2【解析】试题分析:根据因式分解的步骤和方法,先提公因式,再用完全平方公式分解为:a3﹣4a2b+4ab2=a(a2-4ab+4b2)=a(a-2b)2.故答案为:a(a-2b)2点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式,完全平方公式)、三检查(彻底分解).【题文】计算: = ___________.【答案】3【解析】试题分析:根据零指数幂的性质和绝对值、特殊角的三角函数值直接可计算为:=1+2-+2×=3.【题文】化简:(1+)÷的结果为________.【答案】【解析】试题分析:根据分式的混合运算的法则,先对括号里面的式子通分,然后把除法转化为乘法,再计算为:(1+)÷==.【题文】某校五个绿化小组一天的植树的棵数如下:10,10,12,x,8.已知这组数据的平均数是10,那么这组数据的方差是.【答案】1.6.【解析】试题分析:∵数据10,10,12,x,8的平均数是10,∴,解得.∴这组数据的方差是.考点:1. 平均数和方差的计算;2.方程思想的应用.【题文】如果圆锥的底面周长为20π,侧面展开后所得扇形的圆心角为120°,则该圆锥的全面积为.【答案】400π.【解析】试题分析:根据底面周长可求得底面半径,进而可求得底面积,根据扇形的弧长=圆锥的底面周长可得到母线长,进而求得侧面积.试题解析:设底面半径为r,母线长为R,则底面周长=2πr=20π,所以r=10;,所以底面面积=100π,R=30,侧面面积=300π,所以全面积=300π+100π=400π.考点:圆锥的计算.【题文】如图,在边长为3的菱形ABCD中,点E在边CD上,点F为BE延长线与AD延长线的交点.若DE=1,则DF的长为___________.【答案】1.5【解析】试题分析:根据菱形的性质可知AB∥CD,AB=AD=3,然后可得△ABF∽△DEF,由相似三角形的性质可知,代入可得,解得DF=1.5.点睛:此题主要考查了相似三角形的判定与性质,解题关键是根据菱形的性质证明△ABF∽△DEF,然后根据相似三角形的性质可求解.【题文】一条排水管的截面如图所示,已知排水管的半径,水面宽,某天下雨后,水管水面上升了,则此时排水管水面宽等于.【答案】1.6.【解析】试题分析:如图:∵AB=1.2m,OE⊥AB,OA=1m,∴OE=0.8m,∵水管水面上升了0.2m,∴OF=0.8-0.2=0.6m,∴CF====0.8m,∴CD=1.6m.故答案为:1.6.考点:垂径定理的应用;勾股定理.【题文】已知函数与函数的图象之间的距离等于3,则b的值为___________.【答案】6或-4【解析】试题分析:根据两直线的k值相同,可知两直线平行,设直线与x轴的交点为C,与y轴的交点为A,过A作AD⊥直线,与D点,如图:由此可知A为(0,-1),C为(,0),所以OA=1,AC=,所以可得cos∠ACO=,然后根据互余的特点可知∠BAD=∠ACO,由AD=3,cos∠BAC=,可得AB=5,然后由B点的坐标为(0,-b)可知|-b-(-1)|=5,解得b=-4或b=6.【题文】解不等式【答案】﹣2<x≤1.【解析】试题分析:根据不等式的解法,分别解两个不等式,然后取其公共部分即可.试题解析:,∵解不等式①得:x≤1,解不等式②得:x>﹣2,∴不等式组的解集为﹣2<x≤1.点睛:此题主要考查了不等式组的解法,解题关键是利用一元一次不等式的解法,分别解不等式,然后根据不等式组的解集确定法:“都大取大,都小取小,大小小大取中间,大大小小无解了”,确定其解集即可.【题文】如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.【答案】详见解析.【解析】试题分析:根据平行线的性质可得∠B=∠FED,再由ASA判定△ABF≌△DEF,根据全等三角形的性质即可得AF=DF.试题解析:证明:∵AB∥CD,∴∠B=∠FED,在△ABF和△DEF中,,∴△ABF≌△DEF,∴AF=DF.考点:全等三角形的判定与性质.【题文】关于x的一元二次方程x2+3x+m-1=0的两个实数根分别为x1,x2.(1)求m的取值范围;(2)若2(x1+x2)+x1x2+10=0,求m的值.【答案】(1)m≤;(2)-3.【解析】试题分析:(1)根据判别式的意义得到△=32-4(m-1)≥0,然后解不等式即可;(2)根据根与系数的关系得到x1+x2=-3,x1x2=m-1,再由2(x1+x2)+x1x2+10=0得到2×(-3)+m-1+10=0,然后解一次方程即可.试题解析:(1)根据题意得△=32-4(m-1)≥0,解得m≤;(2)根据题意得x1+x2=-3,x1x2=m-1,∵2(x1+x2)+x1x2+10=0,∴2×(-3)+m-1+10=0,∴m=-3.考点:1.根的判别式;2.根与系数的关系.【题文】某中心城市有一楼盘,开发商准备以每平方米7000元价格出售,由于国家出台了有关调控房地产的政策,开发商经过两次下调销售价格后,决定以每平方米5670元的价格销售.(1)求平均每次下调的百分率;(2)房产销售经理向开发商建议:先公布下调5%,再下调15%,这样更有吸引力,请问房产销售经理的方案对购房者是否更优惠?为什么?【答案】(1)平均每次下调的百分率为10%.(2)房产销售经理的方案对购房者更优惠.【解析】试题分析:(1)根据利用一元二次方程解决增长率问题的要求,设出未知数,然后列方程求解即可;(2)分别求出两种方式的增长率,然后比较即可.试题解析:(1)7000(1﹣x)2=5670,解得:x1=10%,x2=190%(不合题意,舍去);答:平均每次下调的百分率为10%.(2)(1﹣5%)×(1﹣15%)=95%×85%=80.75%,(1﹣x)2=(1﹣10%)2=81%.∵80.75%<81%,∴房产销售经理的方案对购房者更优惠.【题文】(12分)实施新课程改革后,学生的自主学习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期三个月的跟踪调查,并将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调查了名同学,其中C类女生有名,D类男生有名;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.【答案】(1)1,11;(2)补充图形见解析;(3).【解析】试题分析:(1)由条形统计图与扇形统计图,即可求得调查的总人数,继而分别求得C类女生与D类男生数;(2)由(1)可补全条形统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两位同学恰好是一位男同学和一位女同学的情况,再利用概率公式即可求得答案.试题解析:(1)本次调查中,王老师一共调查了:(4+6)÷50%=20(名);其中C类女生有:20×25%﹣3=2(名),D类男生有:20﹣1﹣2﹣4﹣6﹣3﹣2﹣1=1(名);(2)如图:(3)画树状图得:∵共有6种等可能的结果,所选两位同学恰好是一位男同学和一位女同学的有3种情况,∴所选两位同学恰好是一位男同学和一位女同学的概率为:.考点:1、列表法与树状图法;2、扇形统计图;3、条形统计图【题文】如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=4,DE=2,求AD的长.【答案】(1)证明过程见解析;(2)6.【解析】试题分析:(1)连接OD,由CD是⊙O切线,得到∠ODC=90°,根据AB为⊙O的直径,得到∠ADB=90°,等量代换得到∠BDC=∠ADO,根据等腰直角三角形的性质得到∠ADO=∠A,即可得到结论;(2)根据垂直的定义得到∠E=∠ADB=90°,根据平行线的性质得到∠DCE=∠BDC,根据相似三角形的性质得到,解方程即可得到结论.试题解析:(1)连接OD,∵CD是⊙O切线,∴∠ODC=90°,即∠ODB+∠BDC=90°,∵AB为⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°,∴∠BDC=∠ADO,∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A;(2)∵CE⊥AE,∴∠E=∠ADB=90°,∴DB∥EC,∴∠DCE=∠BDC,∵∠BDC=∠A,∴∠A=∠DCE,∵∠E=∠E,∴△AEC∽△CED,∴,∴EC2=DE•AE,∴16=2(2+AD),∴AD=6.考点:(1)切线的性质;(2)相似三角形的判定与性质.【题文】反比例函数在第一象限的图象如图所示,过点A(1,0)作x轴的垂线,交反比例函数的图象于点M,△AOM的面积为3.(1)求反比例函数的解析式;(2)设点B的坐标为(t,0),其中t>1.若以AB为一边的正方形有一个顶点在反比例函数的图象上,求t的值【答案】(1)y=;(2)t的值为7或3.【解析】试题分析:(1)根据反比例函数k的几何意义得到|k|=3,可得到满足条件的k=6,于是得到反比例函数解析式为y=;(2)分类讨论:当以AB为一边的正方形Al而k>0,∴k=6,∴反比例函数解析式为y=;(2)当以AB为一边的正方形ABCD的顶点D在反比例函数y=的图象上,则D点与M点重合,即AB=AM,把x=1代入y=得y=6,∴M点坐标为(1,6),∴AB=AM=6,∴t=1+6=7;当以AB为一边的正方形ABCD的顶点C在反比例函数y=的图象上,则AB=BC=t-1,∴C点坐标为(t,t-1),∴t(t-1)=6,整理为t2-t-6=0,解得t1=3,t2=-2(舍去),∴t=3,∴以AB为一边的正方形有一个顶点在反比例函数y=的图象上时,t的值为7或3.考点:反比例函数综合题.【题文】如图,在一条笔直的东西向海岸线l上有一长为1.5km的码头MN和灯塔C,灯塔C距码头的东端N有20km.以轮船以36km/h的速度航行,上午10:00在A处测得灯塔C位于轮船的北偏西30°方向,上午10:40在B处测得灯塔C位于轮船的北偏东60°方向,且与灯塔C相距12km.(1)若轮船照此速度与航向航向,何时到达海岸线?(2)若轮船不改变航向,该轮船能否停靠在码头?请说明理由.(参考数据:≈1.4,≈1.7)【答案】(1)轮船照此速度与航向航向,上午11::00到达海岸线;(2)轮船不改变航向,轮船可以停靠在码头,理由详见解析.【解析】试题分析:(1)延长AB交海岸线l于点D,过点B作BE⊥海岸线l于点E,过点A作AF⊥l于F,易证△ABC是直角三角形,再证明∠BAC=30°,再求出BD的长即可解决问题.(2)在RT△BEC中,求出CD的长度,和CN、CM比较即可解决问题.试题解析:(1)延长AB交海岸线l于点D,过点B作BE⊥海岸线l于点E,过点A作AF⊥l于F,如图所示.∵∠BEC=∠AFC=90°,∠EBC=60°,∠CAF=30°,∴∠ECB=30°,∠ACF=60°,∴∠BCA=90°,∵BC=12,AB=36×=24,∴AB=2BC,∴∠BAC=30°,∠ABC=60°,∵∠ABC=∠BDC+∠BCD=60°,∴∠BDC=∠BCD=30°,∴BD=BC=12,∴时间t==小时=20分钟,∴轮船照此速度与航向航向,上午11::00到达海岸线.(2)∵BD=BC,BE⊥CD,∴DE=EC,在RT△BEC中,∵BC=12,∠BCE=30°,∴BE=6,EC=6≈10.2,∴CD=20.4,∵20<20.4<21.5,∴轮船不改变航向,轮船可以停靠在码头.考点:解直角三角形的应用.【题文】生物科技发展公司投资2000万元,研制出一种绿色保健食品.已知该产品的成本为40元/件,试销时,售价不低于成本价,又不高于180元/件.经市场调查知,年销售量y(万件)与销售单价 (元/件)的关系满足下表所示的规律.(1)y与之间的函数关系式是____________,自变量的取值范围为__________;(2)经测算:年销售量不低于90万件时,每件产品成本降低2元,设销售该产品年获利润为 (万元)(年销售额一成本一投资),l(3)根据两个函数解析式,利用二次函数的最值求解即可.试题解析:由题意得:(1)y=-x+200(40≤x≤180)(2)当y<90,即-x+200<90时,x>110W=(x-40)(-x+200)-2000=-x2+240x-10000当y≥90,即-x+200≥90时,x≤110W=(x-38)(-x+200)-2000=-x2+238x-9600∴W=(3)当110<x≤180时,由W=-x2+240x-10000=-(x-120)2+4400得W最大=4400当38≤x≤110时,W=-x2+238x-9600,∴该函数图象是抛物线的一部分,该抛物线开口向下,它的对称轴是直线x=119,在对称轴左侧W随x的增大而增大.∴当x=110,W最大=(110-38)×(-110+200)-2000=72×90-2000=4480答:当销售单位定为110元时,年获利润最大,最大利润为4480万元.【题文】在四边形OABC中,AB∥OC,BC⊥x轴于C,A(1,-1),B(3,-1),动点P从O点出发,沿x 轴正方向以2个单位/秒的速度运动.过P作PQ⊥OA于Q.设P点运动的时间为t秒(0 < t < 2),ΔOPQ与四边形OABC重叠的面积为S.(1)求经过O、A、B三点的抛物线的解析式并确定顶点M的坐标;(2)用含t的代数式表示P、Q两点的坐标;(3)将ΔOPQ绕P点逆时针旋转90°,是否存在t,使得ΔOPQ的顶点O或Q落在抛物线上?若存在,直接写出t的值;若不存在,请说明理由;(4)求S与t的函数解析式;【答案】(1)顶点M(2)(3)或(4)当时,当时,当时,【解析】试题分析:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),然后根据A、B两点的坐标求出a、b 的值,得到解析式,然后根据顶点式或配方为顶点式求顶点即可;(2)根据P的速度求出OP,即可得到点P的坐标,再根据点A的坐标求出∠AOC=45°,然后判断出△POQ 是等腰直角三角形,根据等腰直角三角形的性质求出Q点的坐标即可;(3)根据旋转的性质求出O、Q的坐标,然后分别带入抛物线解析式即可求解;(4)求出点Q与点A重合时的t=1,点P与点C重合时的t=1.5,t=2是PQ经过点B,然后分①0<t≤1时,重叠部分的面积等于△POQ的面积,②当1<t≤1.5时,重叠部分的面积等于两个等腰直角三角形的面积的差,③1.5<t<2时,重叠部分的面积等于梯形的面积减去一个等腰直角三角形的面积,分别列式整理即可为求解.试题解析:(1)顶点M(2)(3)或(4)当时,当时,当时,。
湖北省黄冈市中考模拟试题数学A卷【含答案】试卷总分:120分考试时间:120分钟一、选择题(共6小题,每小题3分,共18分)1. 7-的倒数是( )A.17- B. 7 C.17D. -72.如图所示的几何体的俯视图是()3.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间平均距离,即1.4960亿千米,用科学记数法表示1个天文单位应是( )A. 71.496010⨯千米 B. 714.96010⨯千米C. 81.496010⨯千米 D. 90.1496010⨯千米4.下列运算正确的是()A.π﹣3.14=0 B .+=.C.a•a=2a D.a3÷a=a25.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2的度数为()A.53° B .55°C.57°D.60°6.在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A. B .C.D.二、填空题(共8小题,每小题3分,共24分)7.|23+-|= .8.分解因式:1-x2+4xy-4y2= .9.使函数)1(12-++=xxy有意义的自变量x的取值范围是 .10.如图,AB和⊙O切于点B,AB=5,OB=3,则tan A=.C DBA正面(第2题图)(第5题图) (第10题图) (第14题图)11.若关于x 的函数221y kx x =+-与x 轴仅有一个公共点,则实数k 的值为 . 12.已知直角三角形ABC 的一条直角边12AB cm =,另一条直角边5BC cm =,则以AB 为轴旋转一周,所得到的圆锥的表面积是 . 13.若关于x 的方程1242+-=-x x ax 无解,则a 的值 . 14.如图,正方形ABCD 的边长是16,点E 在边AB 上,AE =3,点F 是边BC 上不与点B 、C 重合的一个动点,把△EBF 沿EF 折叠,点B 落在B ′处,若△CDB ′恰为等腰三角形,则DB ′的长为 .三、解答题(共10道题,共78分)15.(满分4分)解不等式组⎩⎨⎧≥->+x x x 3)1(203,在数轴上表示解集,并判断3=x 是否为该不等式组的解.16.(满分5分)今年“五一”小长假期间,据统计黄冈市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求该市今年外来和外出旅游的人数.17.(满分6分)如图,在四边形ABCD 中,AD ∥BC ,E 是AB 的中点,连接DE 并延长交CB 的延长线于点F ,点G 在BC 边上,且∠GDF=∠ADF. (1)求证:△ADE ≌△BFE ;(2)连接EG ,判断EG 与DF 的位置关系,并说明理由.(第17题图)18.(满分8分)如图,反比例函数kyx=(0k≠,0x>)的图象与直线3y x=相交于点C,过直线上点A(1,3)作AB⊥x轴于点B,交反比例函数图象于点D,且AB=3B D.(1) 求k的值;(2) 求点C的坐标;(3) 在y轴上确实一点M,使点M到C、D两点距离之和d=MC+MD,求点M的坐标.(第18题图)19.(满分8分)“中国梦”关乎每个人的幸福生活, 为进一步感知我们身边的幸福,展现黄冈人追梦的风采,我市小河中学开展了以“梦想中国,逐梦黄冈”为主题的演讲大赛.为确定演讲顺序,在一个不透明的盒子中放有三张卡片,每张卡片上写有一个实数,分别为32,26.(卡片除了实数不同外,其余均相同),每组三位参赛学生以抽取的实数大小来决定先后顺序.(1)从盒子中随机抽取一张卡片,请直接..写出卡片上的实数是3的概率;(2)先从盒子中随机抽取一张卡片,将卡片上的实数作为被减数;卡片不放回,再随机抽取一张卡片,将卡片上的实数作为减数,请你用列表法或树状图(树形图)法,求出两次抽取的卡片上的实数之差为有理数的概率.20.(满分8分)如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,AC 和BD 相交于点E ,且DC 2=CE•CA .(1)求证:BC=CD ;(2)分别延长AB ,DC 交于点P ,过点A 作AF ⊥CD 交CD 的延长线于点F ,若PB=OB ,CD=,求DF 的长.(第20题图)21.(满分7分)青少年“心理健康”问题越来越引起社会的关注,我市小河中学为了了解学校600名学生的心理健康状况,举行了一次“心理健康”知识测试,并随机抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本,绘制了下面尚未完成的频率分布表和频分 组 频数 频率50.5~60.5 4 0.08 60.5~70.5 14 0.28 70.5~80.5 16 80.5~90. 5 90.5~100.5 10 0.20 合 计1.00(1)填写频率分布表中的空格,并补全频率分布直方图;(2)若成绩在70分以上(不含70分)为心理健康状况良好,同时,若心理健康状况良好的人数占总人数的70%以上,就表示该校学生的心理健康状况正常,否则就需要加强心理辅导.请根据上述数据分析该校学生是否需要加强心理辅导,并说明理由.50.5 60.5 70.5 80.5 90.5 100.5 x O频率组距22. (满分7分)如图所示,小河中学九年级数学活动小组选定测量学校前面小河对岸大树BC 的高度,他们在斜坡上D 处测得大树顶端B 的仰角是30°,朝大树方向下坡走6米到达坡底A 处,在A 处测得大树顶端B 的仰角是48°. 若斜坡FA 的坡比3:1 i ,求大树的高度. (结果保留整数,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,3≈1.73)(第22题图)23.(满分10分)一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为1y 千米,出租车离甲地的距离为2y 千米,两车行驶的时间为x 小时,1y 、2y 关于x 的函数图像如图所示:(1)根据图像,直接写出1y 、2y 关于x 的函数关系式;(2)若两车之间的距离为S 千米,请写出S 关于x 的函数关系式;(3)甲、乙两地间有A 、B 两个加油站,相距200千米,若客车进入A 加油站时,出租车恰好进入B 加油站,求A 加油站离甲地的距离.(第23题图)y (千米)x (小时)10 6 O600出租车客车24.(满分15分)如图,抛物线233384y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求点A 、B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标;(3)若直线l 过点E (4, 0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有....三个时,求直线l 的解析式.(第24题图) (备用图1) (备用图2)参考答案一、选择题(共6小题,每小题3分,共18分) 1.A 2.B 3.C 4.D 5.C 6.C.二、填空题(共8小题,每小题3分,共24分)7.32-; 8.)21)(21(y x y x +--+; 9. 12≠-≥x x 且; 10.53; 11.0k =或1k =- 12.290cm π; 13. 1或2; 14.16或54. 三、解答题(78分) 15.(满分4分) 解:,由①得,x >﹣3,由②得,x ≤1,故此不等式组的解集为:﹣3<x ≤1,(表示解集略) ∵>1,∴x =是该不等式组的解.16.(满分5分)解:设该市去年外来人数为x 万人,外出旅游的人数为y 万人, 由题意得,,解得:,则今年外来人数为:100×(1+30%)=130(万人), 今年外出旅游人数为:80×(1+20%)=96(万人).答:该市今年外来人数为130万人,外出旅游的人数为96万人.17.(满分6分)解:(1)证明:∵AD ∥BC ,∴∠ADE=∠BFE (两直线平行,内错角相等). ∵E 是AB 的中点,∴AE=BE 。
2024届湖北省黄州区部分学校中考数学全真模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)1.运用乘法公式计算(3﹣a)(a+3)的结果是()A.a2﹣6a+9 B.a2﹣9 C.9﹣a2D.a2﹣3a+92.下列事件中为必然事件的是()A.打开电视机,正在播放茂名新闻B.早晨的太阳从东方升起C.随机掷一枚硬币,落地后正面朝上D.下雨后,天空出现彩虹3.如图,在平面直角坐标系中,△ABC与△A1B1C1是以点P为位似中心的位似图形,且顶点都在格点上,则点P的坐标为()A.(﹣4,﹣3)B.(﹣3,﹣4)C.(﹣3,﹣3)D.(﹣4,﹣4)4.若关于x的一元二次方程x2﹣2x+m=0没有实数根,则实数m的取值是( )A.m<1 B.m>﹣1 C.m>1 D.m<﹣15.下列命题正确的是()A.对角线相等的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直且相等的四边形是正方形6.下列图案是轴对称图形的是()A .B .C .D .7.计算(﹣3)﹣(﹣6)的结果等于( )A .3B .﹣3C .9D .188.如图,△ABC 是等边三角形,点P 是三角形内的任意一点,PD ∥AB ,PE ∥BC ,PF ∥AC ,若△ABC 的周长为12,则PD +PE +PF =( )A .12B .8C .4D .39.一元二次方程x 2﹣3x+1=0的根的情况( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .以上答案都不对 10.已知反比例函数y=k x 的图象在一、三象限,那么直线y=kx ﹣k 不经过第( )象限. A .一 B .二C .三D .四 二、填空题(本大题共6个小题,每小题3分,共18分)11.ABC 中,15AB =,13AC =,高12AD =,则ABC 的周长为______。
2023年湖北省黄冈市中考模拟数学试题学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.34-的倒数是( )A .34-B .43C .43-D .342.已知三角形两边的长分别是3和8,则此三角形第三边的长可能是( ) A .4B .5C .10D .113.如图,CD 是ABC 的中线,E ,F 分别是AC ,DC 的中点,1EF =,则BD 的长为( )A .1B .2C .3D .44.下列运算正确的是( ) A .236a a a ⋅= B .()236x x =C .632x x x ÷=D .222()a b a b +=+5.若,a b 方程2230x x --=的两个根,则a b +=( ) A .2B .2-C .3D .3-6.在学校举办的学习强国演讲比赛中,李华根据九位评委所给的分数制作了如下表格:如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是( )A .平均数B .众数C .方差D .中位数7.同一时刻,小明在阳光下的影长为2米,与他邻近的旗杆的影长为6米,小明的身高为1.6米,则旗杆的高为( ) A .3.2米B .4.8米C .5.2米D .5.6米8.如图,已知正方形ABCD 的边长为1,P 为正方形内一点,且△PBC 为等边三角形,某同学根据条件得出四个结论:①P AD 为等腰三角形;①PBC①22AP =①PBD .其中正确的是( )A .①①B .①①C .①①①D .①①①①二、填空题 9.若分式1xx -有意义,则x 的取值范围是________. 10.201(2022)π-+-=_________.11.为了解晋州市文苑社区20~60岁居民最常用的支付方式,嘉嘉和淇淇对该社区相应年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成两幅不完整的统计图.请根据图中信息回答,在参与调查的居民中,处于41-60岁且最常用微信支付的人数为___________人.12.如图,△ABC 中,AB =AC =10,BC =12,AD 平分①BAC 交BC 于点D ,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M 和点N ,作直线MN ,交AD 于点E ,则DE 的长为 _____.13.不等式组5741423x x x x >+⎧⎪-+⎨≤⎪⎩的最小整数解是____.14.如图,某传送带与地面所成斜坡的坡度为1:2.4i =,它把物品从地面A 送到离地面5米高的B 处,则物体从A 到B 所经过的路程为______.15.如图,在平面直角坐标系xOy 中,ABC 为等腰三角形,5AC AB ==,8BC =,点A 与坐标原点重合,点C 在x 轴正半轴上,将ABC 绕点C 顺时针旋转一定的角度后得到11A B C ,使得点B 对应点1B 在x 轴上,记为第一次旋转,再将11A B C 绕点1B 顺时针旋转一定的角度后得到211A B C ,使得点1A 对应点2A 在x 轴上,以此规律旋转,则第2023次旋转后钝角顶点坐标为___________.16.矩形ABCD 中,点P 从点A 出发,沿AB 边以每秒1个单位的速度向B 点运动,至B 点停止;同时点Q 也从A 点出发,以同样的速度沿A -D -C -B 的路径运动,至B 点停止,在此过程中①APQ 的面积y 与运动时间t 的函数关系图象如图所示,则m 的值为________三、解答题17.先化简,再求值:()()2262234a ab a ab --+,其中1,2a b ==-.18.我市在创建全国文明城市过程中,决定购买A ,B 两种树苗对某路段道路进行绿化改造,已知购买A 种树苗8棵,B 种树苗3棵,要950元若购买A 种树苗5棵,B 种树苗6棵,则需要800元.(1)求购买A ,B 两种树苗每棵各需多少元(2)考虑到绿化效果和资金周转,购进A 种树苗不能少于52棵,且用于购买这两种树苗的资金不能超过7650元,若购进这两种树苗共100棵则有哪几种购买方案? 19.两个可以自由转动的转盘A 、B 都被分成3等份的扇形区域,并在每一小区域内标上数字(如图所示),指针的位置固定.游戏规则:同时转动两个转盘,当转盘停止后,将指针所指两个区域内的数字相乘(若指针落在分割线上,则需重新转动转盘).(1)试用列表或画树状图的方法,求数字之积为3的倍数的概率;(2)小亮和小芸想用这两个转盘做游戏,他们规定:数字之积为3的倍数时,小亮得2分;数字之积为5的倍数时,小芸得3分.你认为这个游戏对双方公平吗?若公平,请说明理由;若不公平,请修改得分规定,使游戏对双方公平. 20.如图,在平面直角坐标系xOy 中,直线2y x =+与函数(0)ky k x=>的图象交于A ,B 两点,且点A 的坐标为(,1)a -.(1)求a ,k 的值;(2)已知点(,0)P m ,过点P 作平行于y 轴的直线,交直线2y x =+于点C ,交函数(0)ky k x=>的图象于点D . ①当2m =时,求线段CD 的长;①若PC PD >,通过探究函数的图象,直接写出m 的取值范围.21.如图,在Rt ABC 中,90ACB ∠=︒,E 是BC 的中点,以AC 为直径的O 与AB 边交于点D ,连接DE .(1)求证:DE 是O 的切线;(2)若53cm cm 3CD DE ==,,求O 直径的长.22.某水果经销商以19元/千克的价格新进一批芒果进行销售,因为芒果不耐储存,在运输储存过程损耗率为5%.为了得到日销售量y (千克)与销售价格x (元/千克)之间的关系,经过市场调查获得部分数据如下表:(1)这批芒果的实际成本为 元千克;[实际成本=进价÷(1﹣损耗率)](2)①请你根据表中的数据直接出写出y 与x 之间的函数表达式,标出x 的取值范围; ①该水果经销商应该如何确定这批芒果的销售价格,才能使日销售利润W 1最大? (3)该水果经销商参与电商平台助农活动,开展网上直销,可以完全避免运输储存过程中的损耗成本,但每销售1千克芒果需支出a 元(a >0)的相关费用,销售量与销售价格之间关系不变.当25≤x≤29,该水果经销商日获利W2的最大值为2090元,求a 的值.23.(1)如图1,O是等边①ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将①BAO绕点B顺时针旋转后得到①BCD,连接OD.求:①旋转角的度数;①线段OD的长;①求①BDC的度数.(2)如图2所示,O是等腰直角①ABC(①ABC=90°)内一点,连接OA、OB、OC,将①BAO绕点B顺时针旋转后得到①BCD,连接OD.当OA、OB、OC满足什么条件时,①ODC=90°?请给出证明.24.如图,已知抛物线y=x2﹣5x+4与x轴交于点A和点B(点A在点B的左侧),与y轴交于点C.(1)求A、B、C三点的坐标;(2)如图1,若点P是线段BC上的一个动点(不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,连接OQ,当线段PQ长度最大时,判断四边形OCPQ的形状,并说明理由;(3)如图2,在(2)的条件下,D是OC的中点,过点Q的直线与抛物线交于点E,且①DQE=2①ODQ.在y轴上是否存在点F,使得△BEF为等腰三角形?若存在,求点F 的坐标;若不存在,请说明理由.参考答案:1.C 【解析】 【分析】直接利用倒数的定义得出答案. 【详解】解:34-的倒数是43-.故选:C . 【点睛】本题考查了倒数.倒数的定义:乘积是1的两个数互为倒数,注意:零没有倒数.解题的关键是掌握倒数的定义. 2.C 【解析】 【分析】根据三角形的三边的关系逐个判断三角形的三边看是否符合三角形的三边关系即可. 【详解】根据三角形的三边关系可得三角形的第三边大于835-=,小于3811+=,因此可得10符合三边关系,故C 正确. 故选C. 【点睛】本题主要考查三角形的三边关系,关键在于理解三角形的任意两边之和大于第三边,任意两边之差小于第三边. 3.B 【解析】 【分析】先利用中位线性质求得AD ,再由中线知BD =AD 即可解答. 【详解】解:①点E 、F 分别是AC 、DC 的中点, ①EF 是①ACD 的中位线, ①AD =2EF =2,①CD是①ABC的中线,①BD=AD=2故选:B.【点睛】本题考查了三角形的中线和中位线,熟练掌握中位线的性质是解答的关键.4.B【解析】【分析】根据同底数幂的乘法,幂的乘方,同底数幂的除法,完全平方公式逐项分析判断即可求解.【详解】解:A. 235a a a⋅=,故该选项不正确,不符合题意;B. ()236x x=,故该选项正确,符合题意;C. 633x x x÷=,故该选项不正确,不符合题意;D. 222()2a b a ab b+=++,故该选项不正确,不符合题意;故选B【点睛】本题考查了同底数幂的乘法,幂的乘方,同底数幂的除法,完全平方公式,掌握幂的运算法则与完全平方公式是解题的关键.5.A【解析】【分析】根据一元二次方程的根与系数的关系x1+x2=ba-可以直接求得x1+x2的值,即本题中a b+的值【详解】解:①一元二次方程x2-2x-3=0的二次项系数是1,一次项系数-2,①由韦达定理,得x1+x2=2.即a b+=2故选:A.【点睛】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.6.D【解析】【详解】去掉一个最高分和一个最低分对中位数没有影响,故选D.7.B【解析】【详解】试题分析:同一时刻,物体长度与影长成比例,所以是=,解得旗杆的高为4.8米.故选B.考点:比例的应用.8.C【解析】【分析】过点P作EF AD⊥,交AD于点E,交BC于点F,根据正方形的性质与等边三角形的性质,逐项分析计算判断即可.【详解】解:如图,过点P作EF AD⊥,交AD于点E,交BC于点F,四边形ABCD 是正方形,90BAD ADC ∴∠=∠=︒,45ABD ADB ∠=∠=︒,AB BC CD AD ===∴四边形ABFE 是矩形1EF AB ∴==PBC 是等边三角形,60BPC CPB PCB ∴∠=∠=∠=︒,PB PC BC == 906030ABP PCD ∴∠=∠=︒-︒=︒EF BC ⊥BF FC =∴12AE ED ∴==PB PA PC PD ===()118030752BAP CDP ∴∠=∠=︒-︒=︒ 15PAD PDA ∴∠=∠=︒ ∴APD △是等腰三角形故①正确60,30PBF BPF ∠=︒∠=︒PF ∴==11122PBCSBC PE ∴=⋅⋅=⨯=故①不正确1EP EF PF ∴=-= 12AE AD =12=2222113112444AP AE EP ⎛∴=+=+=++= ⎝⎭故①正确PDB ADB EPD ABPE S S S S =--梯形111111*********⎛⎛⎫=⨯⨯-⨯⨯-⨯⨯ ⎪ ⎪⎝⎭⎝⎭=故①正确故选C【点睛】本题考查了正方形与等边三角形的性质,勾股定理,等腰三角形的性质与判定,掌握正方形与等边三角形的性质是解题的关键.9.1x ≠【解析】【分析】根据分式有意义的条件是分母不等于0,故分母x-1≠0,解得x 的范围.【详解】解:根据题意得:x-1≠0,解得:x≠1,故答案为:x≠1.【点睛】本题考查了分式的意义.要使分式有意义,必须满足分母不等于0.10.2【解析】【分析】根据负整数指数幂及零指数幂的运算法则,即可求得其结果.【详解】解:201(2022)π-+-=1+1=2故答案为:2【点睛】本题考查了负整数指数幂及零指数幂的运算法则,熟练掌握和运用各运算法则是解决本题的关键.11.80【解析】【分析】由C的人数与占比求得总人数,根据总人数乘以45%即可求得B组的人数,进而即可求解.【详解】解:总人数为1050400 15%+=人,使用微信支付的人有40045%180⨯=人,∴处于41-60岁且最常用微信支付的人数为18010080-=人.故答案为:80.【点睛】本题考查了条形统计图与扇形统计信息关联,根据统计图获取信息是解题的关键.12.74##314##1.75【解析】【分析】连接CE,如图,利用基本作图得到MN垂直平分AC,则根据线段垂直平分线的性质得到EA=EC,再利用等腰三角形的性质得到AD①BC,BD=CD=6,则利用勾股定理可计算出AD=8,设DE=x,则AE=CE=8-x,在Rt△DEC中利用勾股定理得到x2+62=(8-x)2,然后解方程即可.【详解】解:连接CE,如图,由作法得MN垂直平分AC,①EA=EC,①AB=AC=10,AD平分①BAC交BC于点D,①AD①BC,BD=CD=12BC=6,在Rt△ACD中,AD,设DE=x,则AE=CE=8-x,在Rt△DEC中,x2+62=(8-x)2,解得x=74,即DE的长为74.故答案为:74.【点睛】本题考查了作图-基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了勾股定理、线段垂直平分线的性质和等腰三角形的性质.13.8【解析】【分析】分别解两个不等式,得到不等式组的解集,从中找出最小整数解.【详解】解:5741423x xx x>+⎧⎪⎨-+≤⎪⎩①②,解①,得x>7,解①,得x≤11,①不等式组的解集为,7<x≤11,①不等式组的整数解为,8,9,10,11,①不等式组的最小整数解为8.故答案为8.【点睛】本题考查了不等式组的最小整数解,熟练掌握解不等式组的一般方法是解决此类问题的关键.14.13m##13米【解析】【分析】根据坡度的概念求出AF ,然后根据勾股定理计算即可.【详解】解:如图,过B 作BF ①AF 于F ,由题意得,BF =5米,①斜坡的坡度i =1①2.4, ①BF AF =12.4,即512.4AF =, 解得:AF =12(米),由勾股定理得,AB 13(米).故答案是:13米.【点睛】本题主要考查了解直角三角形、坡比的计算、勾股定理等知识点,将坡度问题转化为解直角三角形的问题成为解答本题的关键.15.(12141,3)【解析】【分析】过点A 作AD ①BC 于点D ,根据AB =AC =5,BC =8,得到BD =CD =12BC =4,推出3AD ==,根据1(9,3)A ,()218,0A ,3(18,0)A ,4(27,3)A ,5(36,0)A ,6(36,0)A ,()745,3A ,…,得到每3次是一个循环组,根据202336741÷=⋅⋅⋅,得到2023A 在竖直方向的位置与1A 的位置相同,纵坐标为3,第2023次旋转后钝角顶点的横坐标为67418912141⨯+=,得到第2023次旋转后钝角顶点坐标为(12141,3).【详解】过点A 作AD ①BC 于点D ,①AB =AC =5,BC =8,①BD =CD =12BC =4,①3AD ==,由题意1(9,3)A ,()218,0A ,3(18,0)A ,4(27,3)A ,5(36,0)A ,6(36,0)A ,()745,3A ,…, 每3次是一个循环组,202336741÷=⋅⋅⋅,①2023A 在竖直方向的位置与1A 的位置相同,纵坐标为3,①第2023次旋转后钝角顶点的横坐标为67418912141⨯+=,①第2023次旋转后钝角顶点坐标为(12141,3).故答案为(12141,3)【点睛】本题主要考查了等腰三角形在坐标轴上无滑动的滚动,解决问题的关键是熟练掌握等腰三角形三线合一的性质,勾股定理,熟练运用旋转性质探究滚动的循环组的规律,运用得到的规律解答.16.24【解析】【分析】根据①APQ 的面积y 与运动时间t 的函数关系图象先算出矩形ABCD 中AD 边的长,然后根据最后运动时间为20s 时,①APQ 的面积为0,得出此时点Q 运动到了点B 上,得出20AD DC CB ++=,从而求出DC 的长度,即可求出m 的值.【详解】当点Q 在AD 上时,①APQ 的面积y 与运动时间t 的函数关系式为:212y t =, 根据函数图象可知,当点Q 运动到D 上时,18y =,即21182t =, 解得1=6t ,26t =-(不合题意舍去)①6AD =,①根据函数图象可知,Q 点运动到B 点用的时间为20s ,①20AD DC CB ++=,①20668DC =--=,①点P 从A 点运动到B 点用的时间为:()881s =, ①8b =,①此时APQ 的面积为:186242⨯⨯=,即24m =.故答案为:24.【点睛】本题主要考查了动点图象问题,涉及矩形的性质,三角形面积的计算,解决本题的关键是弄清楚不同时段,图象和图形的对应关系.17.10ab -,20【解析】【分析】根据整式的加减运算法则进行计算,然后将a 、b 的值代入即可求出答案.【详解】 ()()2262234a ab a ab --+226268a ab a ab =---10ab =-.当1,2a b ==-时,原式101(2)20=-⨯⨯-=.【点睛】本题考查整式的加减运算,解题关键是熟练运用整式的加减运算法则.18.(1)A 种树苗每棵100元,B 种树苗每棵50元(2)①进A 种树苗52棵,种树苗48棵;①购进A 种树苗53棵,种树苗47棵【解析】【分析】(1)设A 种树苗每棵x 元,B 种树苗每棵y 元,根据“购买A 种树苗8棵,B 种树苗3棵,要950元若购买A 种树苗5棵,B 种树苗6棵,则需要800元”列出相应的二元一次方程组,从而可以解答本题;(2)设购进A 种树苗m 棵,则购进B 种树苗()100m -棵,根据“A 种树苗不能少于52棵,且用于购买这两种树苗的资金不能超过7650元”列出相应的一元一次不等式组,从而可以解答本题.(1)解:设A 种树苗每棵x 元,B 种树苗每棵y 元,根据题意,得:8395056800x y x y +=⎧⎨+=⎩, 解得:10050x y =⎧⎨=⎩, 答:A 种树苗每棵100元,B 种树苗每棵50元;(2)设购进A 种树苗m 棵,则购进B 种树苗()100m -棵,根据题意,得:()521000100501007650m m m m ⎧≥⎪-≥⎨⎪+-≤⎩,解得:5253m ≤≤,所以购买的方案有:①进A 种树苗52棵,种树苗48棵;①购进A 种树苗53棵,种树苗47棵.【点睛】本题考察一元一次不等式组的应用、二元一次方程组的应用,解题的关键是根据题意列出相应的方程组或不等式组.19.(1)5 9(2)不公平,见解析【解析】【分析】(1)选择列表或画树状图法,计算概率即可;(2)先计算规则下的各自得分概率,比较概率大小,相等,则判定游戏公平.(1)利用表格或树状图列出所有可能出现的结果:总共有9种等可能的结果,数字之积为3的倍数的有5种,其概率为59.(2)这个游戏对双方不公平.理由如下:①数字之积为5的倍数的有3种,其概率为31 93 =,数字之积为3的倍数的有5种,其概率为59.①5323 99⨯≠⨯,①游戏对双方不公平.修改得分规定为:若数字之积为3的倍数时,小亮得3分,若数字之积为5的倍数时,小芸得5分.【点睛】本题考查了概率的计算,熟练掌握列表或画树状图法求概率是解题的关键.20.(1)3a =-,3k = (2)①12;①1m 或3m <- 【解析】【分析】(1)将点A 坐标代入直线解析式可求出a 的值,再将点A 坐标代入反比例函数解析式可求k 的值;(2)①将点P 坐标分别代入直线解析式和反比例函数解析式,可求出点C ,点D 的坐标,即可求出CD 的长;①根据图象即可求解.(1)将A (a ,-1)代入y =x +2中,得:a =-3,①点A 坐标为(-3,-1),将A (-3,-1)代入(0)k y k x =>,得: k =3,①反比例函数解析式为:3y x =,故答案为:a =-3,k =3;(2)①将x =2代入y =x +2,得:y =4,①点C 坐标为(2,4),将x =2代入3y x =,得:32y =, ①点D 坐标为(2,32), ①CD 的长为:4-32=52, ①如图,①直线y =x +2与反比例函数3y x=的图象交于A ,B 两点,①点A 坐标为(-3,-1),点B 坐标为(1,3),①当m >1或m <-3时,PC >PD .【点睛】本题考查一次函数与反比例函数交点问题,待定系数法求解析式,利用函数图象性质解决问题是解题的关键.21.(1)见解析【解析】【分析】(1)连接OD ,先证明①BDC =90°,ODC OCD ∠=∠,再由直角三角形斜边上的中线等于斜边的一半推出EDC ECD ∠=∠,从而推出90ODE ∠=︒,即可证明结论;(2)先求出BC 的长,从而求出BD 的长,然后证明①ABC ①①CBD 得到AC BC CD BD=,据此求解即可.(1)解:连接OD ,AC 为圆O 的直径,90ADC ∴∠=︒,①①BDC =90°,OD OC =,ODC OCD ∴∠=∠,在Rt BCD 中,E 为BC 中点,12DE BC CE ∴==, EDC ECD ∴∠=∠,90ODC EDC OCD ECD ∴∠+∠=∠+=︒,即90ODE ∠=︒,OD DE ∴⊥,DE ∴是圆O 的切线;(2)解:在Rt BCD 中,E 为BC 中点,102cm 3BC DE ∴==, 3cm CD =,BD ∴==, AC 为直径,90ADC ACB BDC ∴∠=∠=∠=︒,又B B ∠∠=,ABC CBD ∴∽△△,AC BC CD BD∴=,103AC ∴=AC ∴=. 【点睛】本题主要考查了圆切线的判定,等腰三角形的性质与判定,相似三角形的性质与判定,勾股定理,直角三角形斜边上的中线,直径所对的圆周角是直角等等,熟知圆的相关知识是解题的关键.22.(1)20;(2)①20800(2040)y x x =-+≤≤;①这批芒果的价格为30元时,才能使日销售利润最大;(3)0.5a =【解析】【分析】(1)根据芒果进价19元/千克,在运输过程中损耗率为5%,芒果的实际进价为:1910.05-,得出结论; (2)①根据表中数据可得日销售量y 与销售价格x 满足一次函数,设出函数解析式,用待定系数法求出函数解析式即可;①根据日销售利润=(销售单价﹣实际成本)×日销售量列出二次函数关系式,根据函数的性质以及x 的取值范围求函数最值;(3)根据日获利=日销售利润﹣日支出费用列出二次函数关系式,然后根据函数的性质当x =29时,函数取得最大值,解方程求出a 的值.(1) 解:由题意知:这批芒果的实际成本为:1910.05=-20(元/千克). 故答案为:20.(2)解:①根据表中数据可以发现,销售价格每增加5元,日销售量减少100千克, ①日销售量y 与销售价格x 满足一次函数,设y 与x 的函数关系为y =kx +b ,把(20,400)与(25,300)代入解析式得: 2040025300k b k b +=⎧⎨+=⎩, 解得:20800k b =-⎧⎨=⎩, ①y 与x 之间的函数表达式y =﹣20x +800(20≤x ≤40),①W 1=(x ﹣20)(﹣20x +800)=﹣20x 2+1200x ﹣16000=﹣20(x 2﹣60x +900﹣900)﹣16000=﹣20(x ﹣30)2+2000,①a =﹣20<0,①抛物线开口向下,又①20≤x ≤40,对称轴x =30,①当x=30时,W1最大=2000(元),答:这批芒果的价格为30元时,才能使日销售利润最大.(3)W2=(x﹣19)(﹣20x+800)﹣a(﹣20x+800)=﹣20x2+(1180+20a)x﹣15200﹣800a,对称轴:x11802040a+=-=29.5+0.5a,又①a>0,①x=29.5+0.5a>29.5,又①抛物线开口向下,25≤x≤29,①当x=29时,W2最大=2090,即:﹣20×292+(1180+20a)×29﹣15200﹣800a=2090,解得:a=0.5,答:a的值为0.5.【点睛】本题考查了二次函数在实际生活中的应用以及解一元一次方程,关键是根据日获利=日销售利润﹣日支出费用列出函数关系式.23.(1)①60°;①4;①150°;(2)当OA、OB、OC满足OA2+2OB2=OC2时,①ODC=90°,见解析【解析】【分析】(1)①根据等边三角形的性质得BA=BC,①ABC=60°,再根据旋转的性质得①OBD=①ABC=60°,于是可确定旋转角的度数为60°;①由旋转的性质得BO=BD,加上①OBD=60°,则可判断△OBD为等边三角形,所以OD =OB=4;①由△BOD为等边三角形得到①BDO=60°,再利用旋转的性质得CD=AO=3,然后根据勾股定理的逆定理可证明△OCD为直角三角形,①ODC=90°,所以①BDC=①BDO+①ODC =150°;(2)根据旋转的性质得①OBD=①ABC=90°,BO=BD,CD=AO,则可判断△OBD为等腰直角三角形,则OD,然后根据勾股定理的逆定理,当222CD OD OC+=时,△OCD为直角三角形,①ODC=90°.【详解】解:(1)①①①ABC为等边三角形,①BA=BC,①ABC=60°,①①BAO绕点B顺时针旋转后得到①BCD,①①OBD=①ABC=60°,①旋转角的度数为60°;①①①BAO绕点B顺时针旋转后得到①BCD,①BO=BD,而①OBD=60°,①①OBD为等边三角形;①OD=OB=4;①①①BOD为等边三角形,①①BDO=60°,①①BAO绕点B顺时针旋转后得到①BCD,①CD=AO=3,在①OCD中,CD=3,OD=4,OC=5,①32+42=52,①CD2+OD2=OC2,①①OCD为直角三角形,①ODC=90°,①①BDC=①BDO+①ODC=60°+90°=150°;(2)OA2+2OB2=OC2时,①ODC=90°.理由如下:①①BAO绕点B顺时针旋转后得到①BCD,①①OBD=①ABC=90°,BO=BD,CD=AO,①①OBD为等腰直角三角形,①OD,①当CD2+OD2=OC2时,①OCD为直角三角形,①ODC=90°,①OA2+2OB2=OC2,①当OA、OB、OC满足OA2+2OB2=OC2时,①ODC=90°.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的判断与性质和勾股定理的逆定理.24.(1)点A(1,0),点B(4,0),点C(0,4)(2)平行四边形,理由见解析(3)存在;F(0,1)或(0,﹣1)或(0,258)【解析】【分析】(1)令x=0和y=0,解方程可求解;(2)设点P的坐标为(x,﹣x+4),则点Q的坐标为(x,x2﹣5x+4),则PQ=(﹣x+4)﹣(x2﹣5x+4)=﹣x2+4x,进而求解;(3)当①DQE=2①ODQ,则①HQA=①HQE,则直线AQ和直线QE关于直线QH对称,进而求出点E的坐标为(5,4),再分BE=BF、BE=EF、BF=EF三种情况,分别求解即可.(1)解:对于y=x2﹣5x+4,令y=0,则0=x2﹣5x+4,①x1=4,x2=1,①点A(1,0),点B(4,0),令x=0,则y=4,①点C(0,4);(2)解:四边形OCPQ为平行四边形,理由如下:①点B的坐标为(4,0),点C(0,4),设直线BC的表达式为y=kx+b,则404k bb+=⎧⎨=⎩,解得14kb=-⎧⎨=⎩,①直线BC的表达式为y=﹣x+4,设点P的坐标为(x,﹣x+4),则点Q的坐标为(x,x2﹣5x+4),则PQ=(﹣x+4)﹣(x2﹣5x+4)=﹣x2+4x=﹣(x﹣2)2+4,①﹣1<0,故PQ有最大值,当x=2时,PQ的最大值为4=CO,①PQ=CO,PQ OC,①四边形OCPQ为平行四边形;(3)解:①D是OC的中点,点C(0,4),①点D(0,2),由(2)知:当x=2时,PQ的最大值为4,当x=2时,y=x2﹣5x+4=﹣2,①Q(2,﹣2),由点D、Q的坐标,同理可得,直线DQ的表达式为y=﹣2x+2,过点Q作QH①x轴于点H,则QH CO,故①AQH=①ODQ,而①DQE=2①ODQ.①①HQA =①HQE ,则直线AQ 和直线QE 关于直线QH 对称,①设直线QE 的表达式为y =2x +r ,将点Q 的坐标代入上式并解得r =﹣6,①直线QE 的表达式为y =2x ﹣6,联立y =x 2﹣5x +4得,22654y x y x x =-⎧⎨=-+⎩解得54x y =⎧⎨=⎩或22x y =⎧⎨=-⎩(不合题意,舍去), ①点E 的坐标为(5,4),设点F 的坐标为(0,m ),①BE 2=(5﹣4)2+(4﹣0)2=17,BF 2=m 2+42=m 2+16,EF 2=(m ﹣4)2+52,当BE =BF 时,即16+m 2=17,解得m =±1;当BE =EF 时,即25+(m ﹣4)2=17,方程无解;当BF =EF 时,即16+m 2=25+(m ﹣4)2,解得m =258 ; 故点F 的坐标为(0,1)或(0,﹣1)或(0,258). 【点睛】此题是二次函数的综合题,主要考查了二次函数图象的性质,抛物线上点的坐标的特征,一次函数图象的性质,勾股定理,等腰三角形的判定与性质,函数的最值,利用点的坐标表示出相应线段的长度是解题的关键.。
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:-2的相反数是A. 2B. -2C. -D.试题2:下列运算结果正确的是A. a2+a2=a2B. a2·a3=a6C. a3÷a2=aD. (a2)3=a5试题3:如图,直线a∥b,∠1=55°,则∠2= 1A. 35°B. 45°C. 55°D. 65°2评卷人得分若方程3x2-4x-4=0的两个实数根分别为x1, x2,则x1+ x2=A. -4B. 3C. -D.试题5:如下左图,是由四个大小相同的小正方体拼成的几何体,则这个几何体的左视图是从正面看 A B CD(第5题)试题6:在函数y=中,自变量x的取值范围是A.x>0B. x≥-4C. x≥-4且x≠0D. x>0且≠-4试题7:的算术平方根是_______________.试题8:分解因式:4ax2-ay2=_______________________.试题9:计算:|1-|-=_____________________.试题10:计算(a-)÷的结果是______________________.如图,⊙O是△ABC的外接圆,∠AOB=70°,AB=AC,则∠ABC=_______________.试题12:需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不是标准的克数记为负数。
现取8个排球,通过检测所得数据如下(单位:克):+1,-2,+1,0,+2,-3,0,+1,则这组数据的方差是___________.试题13:如图,在矩形ABCD中,点E,F分别在边CD,BC上,且DC=3DE=3a,将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP=_______.A P(C) DEB F C(第13题)试题14:如图,已知△ABC, △DCE, △FEG, △HGI是4个全等的等腰三角形,底边BC,CE,EG,GI在同一条直线上,且AB=2,BC=1. 连接AI,交FG于点Q,则QI=_____________.A DF HQB C E G I(第14题)试题15:解不等式≥3(x-1)-4试题16:在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?试题17:如图,在 ABCD中,E,F分别为边AD,BC的中点,对角线AC分别交BE,DF于点G,H.求证:AG=CHA E DGHB F C(第17题)试题18:小明、小林是三河中学九年级的同班同学。
黄冈教育网2022年中考模拟试题数学A卷【附答案】黄冈教育网2022年中考模拟试题数学A卷试卷总分:120分考试时间:120分钟一、选择题〔每题3分,共24分〕11、的绝对值是〔〕.311D.332、以下条件中,不能判定四边形ABCD是平行四边形的是〔〕.A. ∠A=∠C,∠B=∠DB. ∠A=∠B=∠C=90°C. ∠A+∠B=180°,∠B+∠C=180°D. ∠A+∠B=180°,∠C+∠D=180° 3、以下图形中,是中心对称图形,但不是轴对称图形的是〔〕.A. B. C. D.4、以下计算,正确的选项是〔〕.A. -3B. 3C.A. 2x+2y=5xyB. 5m2m3 5m3C. (a b)2 a2 b2D. m3m3 m65、关于x的方程x2 10x m 0有两个相等的实数根,那么m= 〔〕.A. 10B. 25C. -25D. ±25 6、以下四个几何体中,俯视图为四边形的是〔〕.7、如图,测得BD=120 m,DC=60 m,EC=50 m,那么河宽AB为〔〕.A. 120 mB. 100 mC. 75 mD. 25 m第7题图第8题图8、小文、小亮从学校出发到青少年宫参加书法比赛,小文步行一段时间后, 小亮骑自行车沿相同路线行进,两人均匀速前行. 他们的路差s(米)与小文出发时间t(分)之间的函数关系如下图.以下说法: ①小亮先到达青少年宫; ②小亮的速度是小文速度的2.5倍; ③a=24; ④b=480.其中正确的选项是的〔〕. A.①②③ B. ①②④ C. ①③④ D. ①②③④二、填空题〔每题3分,共21分〕91( ) 2 2310、分解因式x 9x .。
2024年湖北省中考数学真题本试卷共6页,满分120分,考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置.2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效,作图一律用2B铅笔或黑色签字笔.4.考试结束后,请将试卷和答题卡一并交回.一、选择题(共10题,每题3分,共30分.在每题给出的四个选项中,只有一项符合题目要求)1.在生产生活中,正数和负数都有现实意义.例如收入20元记作+20元,则支出10元记作()A.+10元B.—10元C.+20元D.—20元2.如图是一个由4个相同的正方体组成的立体图形,它的主视图是(正面「A.IC.D3.2x-3x2的值是()A.5x2B. 5x3C.6x2D. 6x34如图,一条公路的两侧铺设了AB,CD两条平行管道,并有纵向管道AC连通.若乙1=120°'则乙2的度数是()A BCA 50°DB. 60C 70°D 80°5 不等式x +1�2的解集在数轴上表示正确的是()�I)I,A-112B. -12c厂�,.-1]2D. -I O 1 26. 在下列事件中,必然事件是(A. 掷一次骰子,向上一面的点数是3B. 篮球队员在罚球线上投篮一次,未投中C. 经过有交通信号灯的路口,遇到红灯D. 任意画一个三角形,其内角和180°7 我国古代数学著作《九章算术》中记载了一个关千”方程”的问题:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.问牛羊各直金几何?"译文:“今有牛5头,羊2头,共值金10两.牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?“若设牛每头值金x两,羊每头值金y两,则可列方程组是()5x +2y =l0 A. {2x+Sy =8 C. {5x +5y =10 2x +5y =8 B. {2x +5y =I O5x+2y = 8 D. {5x +2y =I O 2x +2y =88. 如图,AB是半圆0的直径,C为半圆0上一点,以点B 为圆心,适当长为半径画弧,交BA 千点M,交1BC 千点N,分别以点M,N 为圆心,大千-MN 的长为半径画弧,两弧在乙ABC 的内部相交千点D,画2射线BD,连接AC.若乙CAB =50°,则乙CED 的度数是()A 30B 25°C 20°D. 15°9.如图,点A的坐标是(-4,6)'将线段O A绕点0顺时针旋转90°,点A的对应点的坐标是(y』A。
2024届湖北省黄冈市中考数学全真模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)1.下列由左边到右边的变形,属于因式分解的是().A.(x+1)(x-1)=x2-1B.x2-2x+1=x(x-2)+1C.a2-b2=(a+b)(a-b)D.mx+my+nx+ny=m(x+y)+n(x+y)2.下列图形中,线段MN的长度表示点M到直线l的距离的是()A.B.C. D.3.半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是()A.3B.4C.5D.74.如图所示,点E是正方形ABCD内一点,把△BEC绕点C旋转至△DFC位置,则∠EFC的度数是( )A.90°B.30°C.45°D.60°5.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线. 不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t 0 1 2 3 4 5 6 7 …h 0 8 14 18 20 20 18 14 …下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线92t ;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m. 其中正确结论的个数是()A.1 B.2 C.3 D.46.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()A.2332π-B.233π-C.32π-D.3π-7.已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数y=6x的图象上,则y1、y2、y3的大小关系是( )A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y28.已知y关于x的函数图象如图所示,则当y<0时,自变量x的取值范围是()A.x<0 B.﹣1<x<1或x>2 C.x>﹣1 D.x<﹣1或1<x<2 9.下列实数中是无理数的是()A.227B.πC.9D.13-10.如图,在平面直角坐标系xOy中,△A B C'''由△ABC绕点P旋转得到,则点P的坐标为()A.(0,1)B.(1,-1)C.(0,-1)D.(1,0)二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,直线y1=kx+n(k≠0)与抛物线y2=ax2+bx+c(a≠0)分别交于A(﹣1,0),B(2,﹣3)两点,那么当y1>y2时,x的取值范围是_____.12.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为_____.13.如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连接CE,则CE的长是________.14.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是__________________________.15.如图,在矩形ABCD中,过点A的圆O交边AB于点E,交边AD于点F,已知AD=5,AE=2,AF=1.如果以点D为圆心,r为半径的圆D与圆O有两个公共点,那么r的取值范围是______.16.如图,在矩形ABCD中,AB=2,AD=6,E.F分别是线段AD,BC上的点,连接EF,使四边形ABFE为正方形,若点G是AD上的动点,连接FG,将矩形沿FG折叠使得点C落在正方形ABFE的对角线所在的直线上,对应点为P,则线段AP的长为______.三、解答题(共8题,共72分)17.(8分)如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN 上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的距离.18.(8分)如图1,在直角梯形ABCD中,AB⊥BC,AD∥BC,点P为DC上一点,且AP=AB,过点C作CE⊥BP 交直线BP于E.(1) 若,求证:;(2) 若AB=BC.①如图2,当点P与E重合时,求的值;②如图3,设∠DAP的平分线AF交直线BP于F,当CE=1,时,直接写出线段AF的长.19.(8分)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB 的延长线相交于点P,弦CE平分∠ACB,交AB点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:PC=PF;(3)若tan∠ABC=43,AB=14,求线段PC的长.20.(8分)动画片《小猪佩奇》分靡全球,受到孩子们的喜爱.现有4张《小猪佩奇》角色卡片,分别是A佩奇,B乔治,C佩奇妈妈,D佩奇爸爸(四张卡片除字母和内容外,其余完全相同).姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好.(1)姐姐从中随机抽取一张卡片,恰好抽到A佩奇的概率为;(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的分方法求出恰好姐姐抽到A佩奇弟弟抽到B乔治的概率.21.(8分)如图,已知AB是圆O的直径,弦CD⊥AB,垂足H在半径OB上,AH=5,CD=45,点E在弧AD 上,射线AE与CD的延长线交于点F.(1)求圆O的半径;(2)如果AE=6,求EF的长.22.(10分)为了预防“甲型H1N1”,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例,如图所示,现测得药物8min燃毕,此时室内空气每立方米的含药量为6mg,请你根据题中提供的信息,解答下列问题:药物燃烧时,求y关于x的函数关系式?自变量x的取值范围是什么?药物燃烧后y与x的函数关系式呢?研究表明,当空气中每立方米的含药量低于1.6mg时,学生方可进教室,那么从消毒开始,至少需要几分钟后,学生才能进入教室?研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?23.(12分)某渔业养殖场,对每天打捞上来的鱼,一部分由工人运到集贸市场按10元/斤销售,剩下的全部按3元/斤的购销合同直接包销给外面的某公司:养殖场共有30名工人,每名工人只能参与打捞与到集贸市场销售中的一项工作,且每人每天可以打捞鱼100斤或销售鱼50斤,设安排x名员工负责打捞,剩下的负责到市场销售.(1)若养殖场一天的总销售收入为y元,求y与x的函数关系式;(2)若合同要求每天销售给外面某公司的鱼至少200斤,在遵守合同的前提下,问如何分配工人,才能使一天的销售收入最大?并求出最大值.24.如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长(结果保留小数点后≈≈).一位,参考数据:2 1.41,?3 1.73参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解题分析】因式分解是把一个多项式化为几个整式的积的形式,据此进行解答即可.【题目详解】解:A、B、D三个选项均不是把一个多项式化为几个整式的积的形式,故都不是因式分解,只有C选项符合因式分解的定义,故选择C.【题目点拨】本题考查了因式分解的定义,牢记定义是解题关键.2、A【解题分析】解:图B、C、D中,线段MN不与直线l垂直,故线段MN的长度不能表示点M到直线l的距离;图A中,线段MN与直线l垂直,垂足为点N,故线段MN的长度能表示点M到直线l的距离.故选A.3、C【解题分析】如图所示:过点O作OD⊥AB于点D,∵OB=3,AB=4,OD⊥AB,∴BD=12AB=12×4=2,在Rt△BOD中,OD2222325OB BD-=-=故选C.4、C【解题分析】根据正方形的每一个角都是直角可得∠BCD=90°,再根据旋转的性质求出∠ECF=∠BCD=90°,CE=CF,然后求出△CEF是等腰直角三角形,然后根据等腰直角三角形的性质解答.【题目详解】∵四边形ABCD是正方形,∴∠BCD=90°,∵△BEC绕点C旋转至△DFC的位置,∴∠ECF=∠BCD=90°,CE=CF,∴△CEF是等腰直角三角形,∴∠EFC=45°.故选:C.【题目点拨】本题目是一道考查旋转的性质问题——每对对应点到旋转中心的连线的夹角都等于旋转角度,每对对应边相等,故CEF∆为等腰直角三角形.5、B【解题分析】试题解析:由题意,抛物线的解析式为y =ax (x ﹣9),把(1,8)代入可得a =﹣1,∴y =﹣t 2+9t =﹣(t ﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m ,故①错误,∴抛物线的对称轴t =4.5,故②正确,∵t =9时,y =0,∴足球被踢出9s 时落地,故③正确,∵t =1.5时,y =11.25,故④错误,∴正确的有②③,故选B .6、B【解题分析】根据菱形的性质得出△DAB 是等边三角形,进而利用全等三角形的判定得出△ABG ≌△DBH ,得出四边形GBHD 的面积等于△ABD 的面积,进而求出即可.【题目详解】连接BD ,∵四边形ABCD 是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB 是等边三角形,∵AB=2,∴△ABD 3∵扇形BEF 的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =26021233602π⨯-⨯=23π 故选B .7、B【解题分析】分别把各点代入反比例函数的解析式,求出y 1,y 2,y 3的值,再比较出其大小即可.【题目详解】∵点A (1,y 1),B (2,y 2),C (﹣3,y 3)都在反比例函数y=6x 的图象上, ∴y 1=61=6,y 2=62=3,y 3=63-=-2, ∵﹣2<3<6,∴y 3<y 2<y 1,故选B .【题目点拨】本题考查了反比例函数图象上点的坐标特征,反比例函数值的大小比较,熟练掌握反比例函数图象上的点的坐标满足函数的解析式是解题的关键.8、B【解题分析】y <0时,即x 轴下方的部分,∴自变量x 的取值范围分两个部分是−1<x <1或x >2.故选B.9、B【解题分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【题目详解】A 、227是分数,属于有理数; B 、π是无理数;C ,是整数,属于有理数;D 、-13是分数,属于有理数;故选B.【题目点拨】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.10、B【解题分析】试题分析:根据网格结构,找出对应点连线的垂直平分线的交点即为旋转中心.试题解析:由图形可知,对应点的连线CC′、AA′的垂直平分线过点(0,-1),根据旋转变换的性质,点(1,-1)即为旋转中心.故旋转中心坐标是P(1,-1)故选B.考点:坐标与图形变化—旋转.二、填空题(本大题共6个小题,每小题3分,共18分)11、﹣1<x<2【解题分析】根据图象得出取值范围即可.【题目详解】解:因为直线y1=kx+n(k≠0)与抛物线y2=ax2+bx+c(a≠0)分别交于A(﹣1,0),B(2,﹣3)两点,所以当y1>y2时,﹣1<x<2,故答案为﹣1<x<2【题目点拨】此题考查二次函数与不等式,关键是根据图象得出取值范围.12、25【解题分析】试题解析:由题意10DB CD BC =+=11·1052522ABD S BD AB =⨯=⨯⨯=扇形13、3105【解题分析】解:连接AG ,由旋转变换的性质可知,∠ABG =∠CBE ,BA =BG =5,BC =BE ,由勾股定理得,CG =22BG BC -=4, ∴DG =DC ﹣CG =1,则AG =22AD DG +=10,∵BA BGBC BE =,∠ABG =∠CBE , ∴△ABG ∽△CBE , ∴35CE BC AG AB ==, 解得,CE =3105,故答案为3105.【题目点拨】本题考查的是旋转变换的性质、相似三角形的判定和性质,掌握勾股定理、矩形的性质、旋转变换的性质是解题的关键.14、50(1﹣x )2=1. 【解题分析】 由题意可得, 50(1−x)²=1,故答案为50(1−x)²=1.15、105105r -<<+ 【解题分析】因为以点D 为圆心,r 为半径的圆D 与圆O 有两个公共点,则圆D 与圆O 相交,圆心距满足关系式:|R-r|<d<R+r ,求得圆D 与圆O 的半径代入计算即可. 【题目详解】连接OA 、OD ,过O 点作ON ⊥AE ,OM ⊥AF. AN=12AE=1,AM=12AF=2,MD=AD-AM=3 ∵四边形ABCD 是矩形∴∠BAD=∠ANO=∠AMO=90°, ∴四边形OMAN 是矩形 ∴OM=AN=1∴OA=22215+=,OD=221310+=∵以点D 为圆心,r 为半径的圆D 与圆O 有两个公共点,则圆D 与圆O 相交 ∴105105r -<<+【题目点拨】本题考查了圆与圆相交的条件,熟记圆与圆相交时圆的半径与圆心距的关系是关键. 16、1或1﹣2【解题分析】当点P 在AF 上时,由翻折的性质可求得PF=FC=1,然后再求得正方形的对角线AF 的长,从而可得到PA 的长;当点P 在BE 上时,由正方形的性质可知BP 为AF 的垂直平分线,则AP=PF ,由翻折的性质可求得PF=FC=1,故此可得到AP 的值. 【题目详解】 解:如图1所示:由翻折的性质可知PF=CF=1,∵ABFE为正方形,边长为2,∴AF=22.∴PA=1﹣22.如图2所示:由翻折的性质可知PF=FC=1.∵ABFE为正方形,∴BE为AF的垂直平分线.∴AP=PF=1.故答案为:1或1﹣2.【题目点拨】本题主要考查的是翻折的性质、正方形的性质的应用,根据题意画出符合题意的图形是解题的关键.三、解答题(共8题,共72分)17、1.5千米【解题分析】先根据相似三角形的判定得出△ABC∽△AMN,再利用相似三角形的性质解答即可【题目详解】在△ABC与△AMN中,305549ACAB==,151.89AMAN==,∴AC AM AB AN=,∵∠A=∠A,∴△ABC∽△ANM,∴AC AMBC MN=,即30145MN=,解得MN=1.5(千米) ,因此,M、N两点之间的直线距离是1.5千米.【题目点拨】此题考查相似三角形的应用,解题关键在于掌握运算法则18、(1)证明见解析;(2)①;②3.【解题分析】(1) 过点A作AF⊥BP于F,根据等腰三角形的性质得到BF=BP,易证Rt△ABF∽Rt△BCE,根据相似三角形的性质得到,即可证明BP=CE.(2) ①延长BP、AD交于点F,过点A作AG⊥BP于G,证明△ABG≌△BCP,根据全等三角形的性质得BG=CP,设BG=1,则PG=PC=1,BC=AB=,在Rt△ABF中,由射影定理知,AB2=BG·BF=5,即可求出BF=5,PF=5-1-1=3,即可求出的值;②延长BF、AD交于点G,过点A作AH⊥BE于H,证明△ABH≌△BCE,根据全等三角形的性质得BG=CP,设BH=BP=CE=1,又,得到PG=,BG=,根据射影定理得到AB2=BH·BG ,即可求出AB=,根据勾股定理得到,根据等腰直角三角形的性质得到.【题目详解】解:(1) 过点A作AF⊥BP于F∵AB=AP∴BF=BP,∵Rt△ABF∽Rt△BCE∴∴BP=CE.(2) ①延长BP、AD交于点F,过点A作AG⊥BP于G∵AB=BC∴△ABG≌△BCP(AAS)∴BG=CP设BG=1,则PG=PC=1∴BC=AB=在Rt△ABF中,由射影定理知,AB2=BG·BF=5∴BF=5,PF=5-1-1=3∴②延长BF、AD交于点G,过点A作AH⊥BE于H∵AB=BC∴△ABH≌△BCE(AAS)设BH=BP=CE=1∵∴PG=,BG=∵AB2=BH·BG∴AB=∴∵AF平分∠PAD,AH平分∠BAP∴∠FAH=∠BAD=45°∴△AFH为等腰直角三角形∴【题目点拨】考查等腰三角形的性质,勾股定理,射影定理,平行线分线段成比例定理等,解题的关键是作出辅助线.难度较大.19、(1)(2)证明见解析;(3)1.【解题分析】(1)由PD切⊙O于点C,AD与过点C的切线垂直,易证得OC∥AD,继而证得AC平分∠DAB;(2)由条件可得∠CAO=∠PCB,结合条件可得∠PCF=∠PFC,即可证得PC=PF;(3)易证△PAC∽△PCB,由相似三角形的性质可得到PC APPB PC,又因为tan∠ABC=43,所以可得ACBC=43,进而可得到PCPB=43,设PC=4k,PB=3k,则在Rt△POC中,利用勾股定理可得PC2+OC2=OP2,进而可建立关于k的方程,解方程求出k的值即可求出PC的长.【题目详解】(1)证明:∵PD切⊙O于点C,∴OC⊥PD,又∵AD⊥PD,∴OC∥AD,∴∠A CO=∠DAC.∵OC=OA,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB;(2)证明:∵AD⊥PD,∴∠DAC+∠ACD=90°.又∵AB为⊙O的直径,∴∠ACB=90°.∴∠PCB+∠ACD=90°,∴∠DAC=∠PCB.又∵∠DAC=∠CAO,∴∠CAO=∠PCB.∵CE平分∠ACB,∴∠ACF=∠BCF,∴∠CAO+∠ACF=∠PCB+∠BCF,∴∠PFC=∠PCF,∴PC=PF;(3)解:∵∠PAC=∠PCB,∠P=∠P,∴△PAC∽△PCB,∴.又∵tan∠ABC=,∴,∴,设PC=4k,PB=3k,则在Rt△POC中,PO=3k+7,OC=7,∵PC2+OC2=OP2,∴(4k)2+72=(3k+7)2,∴k=6 (k=0不合题意,舍去).∴PC=4k=4×6=1.【题目点拨】此题考查了和圆有关的综合性题目,用到的知识点有:切线的性质、相似三角形的判定与性质、垂径定理、圆周角定理、勾股定理以及等腰三角形的判定与性质.20、(1)14;(2)112【解题分析】(1)直接利用求概率公式计算即可;(2)画树状图(或列表格)列出所有等可能结果,根据概率公式即可解答.【题目详解】(1)14;(2)方法1:根据题意可画树状图如下:方法2:根据题意可列表格如下:弟弟姐姐A B C DA (A,B)(A,C) (A,D)B (B,A) (B,C) (B,D)C (C,A) (C,B) (C,D)D (D,A) (D,B) (D,C)由列表(树状图)可知,总共有12种结果,每种结果出现的可能性相同,其中姐姐抽到A佩奇,弟弟抽到B乔治的结果有1种:(A,B).∴P(姐姐抽到A佩奇,弟弟抽到B乔治)1 12【题目点拨】本题考查的是用列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解决问题用到概率公式:概率=所求情况数与总情况数之比.21、(1) 圆的半径为4.5;(2) EF=32.【解题分析】(1)连接OD,根据垂径定理得:DH5O的半径为r,根据勾股定理列方程可得结论;(2)过O作OG⊥AE于G,证明△AGO∽△AHF,列比例式可得AF的长,从而得EF的长.【题目详解】(1)连接OD,∵直径AB⊥弦CD,CD=4,∴DH=CH=CD=2,在Rt△ODH中,AH=5,设圆O的半径为r,根据勾股定理得:OD2=(AH﹣OA)2+DH2,即r2=(5﹣r)2+20,解得:r=4.5,则圆的半径为4.5;(2)过O作OG⊥AE于G,∴AG=AE=×6=3,∵∠A=∠A,∠AGO=∠AHF,∴△AGO∽△AHF,∴,∴,∴AF=,∴EF=AF﹣AE=﹣6=.【题目点拨】本题考查了垂径定理,勾股定理,相似三角形的判定与性质,解答本题的关键是正确添加辅助线并熟练掌握垂径定理和相似三角形的判定与性质.22、(1)()3084{?48(8)x xyxx≤≤=>;(2)至少需要30分钟后生才能进入教室.(3)这次消毒是有效的.【解题分析】(1)药物燃烧时,设出y与x之间的解析式y=k1x,把点(8,6)代入即可,从图上读出x的取值范围;药物燃烧后,设出y 与x 之间的解析式y=2k x,把点(8,6)代入即可; (2)把y=1.6代入反比例函数解析式,求出相应的x ;(3)把y=3代入正比例函数解析式和反比例函数解析式,求出相应的x ,两数之差与10进行比较,大于或等于10就有效. 【题目详解】解:(1)设药物燃烧时y 关于x 的函数关系式为y=k 1x (k 1>0)代入(8,6)为6=8k 1 ∴k 1=34设药物燃烧后y 关于x 的函数关系式为y=2k x (k 2>0)代入(8,6)为6=2k 8, ∴k 2=48∴药物燃烧时y 关于x 的函数关系式为3y x 4=(0≤x≤8)药物燃烧后y 关于x 的函数关系式为48y x=(x >8) ∴()30x 84y 48(8)xx x ⎧≤≤⎪⎪⎨=⎪>⎪⎩(2)结合实际,令48y x=中y≤1.6得x≥30 即从消毒开始,至少需要30分钟后生才能进入教室. (3)把y=3代入3y x 4=,得:x=4 把y=3代入48y x=,得:x=16 ∵16﹣4=12所以这次消毒是有效的. 【题目点拨】现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.23、(1)y=﹣50x+10500;(2)安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元. 【解题分析】(1)根据题意可以得到y 关于x 的函数解析式,本题得以解决;(2)根据题意可以得到x 的不等式组,从而可以求得x 的取值范围,从而可以得到y 的最大值,本题得以解决. 【题目详解】(1)由题意可得,y=10×50(30﹣x)+3[100x﹣50(30﹣x)]=﹣50x+10500,即y与x的函数关系式为y=﹣50x+10500;(2)由题意可得,()()10050301005030200x xx x⎧≥-⎪⎨--≥⎪⎩,得x343≥,∵x是整数,y=﹣50x+10500,∴当x=12时,y取得最大值,此时,y=﹣50×12+10500=9900,30﹣x=18,答:安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元.【题目点拨】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用函数和不等式的性质解答.24、5.7米.【解题分析】试题分析:由题意,过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED 中,求出CE的长.试题解析:解:如答图,过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6.在Rt△ACH中,CH=AH•tan∠CAH=6tan30°=6×3233=,∵DH=1.5,∴CD=23+1.5.在Rt△CDE中,∵∠CED=60°,∴CE=23 1.55.7sin6032CD+=≈︒(米).答:拉线CE的长约为5.7米.考点:1.解直角三角形的应用(仰角俯角问题);2.锐角三角函数定义;3.特殊角的三角函数值;4.矩形的判定和性质.。
湖北省黄冈地区2024年中考数学模拟试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在ABC ∆中,90ACB ∠=,6AC =,8BC =,点,P Q 分别在,AB BC 上,AQ CP ⊥于D ,45CQ BP =则ACP ∆的面积为( )A .232B .252C .272D .2922.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣53.2016的相反数是( )A .12016-B .12016C .2016-D .20164.正方形ABCD 和正方形BPQR 的面积分别为16、25,它们重叠的情形如图所示,其中R 点在AD 上,CD 与QR 相交于S 点,则四边形RBCS 的面积为( )A .8B .172C .283D .7785.若正比例函数y=3x 的图象经过A (﹣2,y 1),B (﹣1,y 2)两点,则y 1与y 2的大小关系为( ) A .y 1<y 2 B .y 1>y 2 C .y 1≤y 2 D .y 1≥y 26.如图,等腰直角三角形的顶点A 、C 分别在直线a 、b 上,若a ∥b ,∠1=30°,则∠2的度数为( )A .30°B .15°C .10°D .20°7.在如图所示的正方形网格中,网格线的交点称为格点,已知A 、B 是两格点,如果 C 也是图中的格点,且使得△ABC为等腰直角三角形,则这样的点C 有( )A .6个B .7个C .8个D .9个8.如图,3个形状大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角为60°,A 、B 、C 都在格点上,点D 在过A 、B 、C 三点的圆弧上,若E 也在格点上,且∠AED =∠ACD ,则∠AEC 度数为 ( )A .75°B .60°C .45°D .30°9.甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路xm.依题意,下面所列方程正确的是A .120100x x 10=-B .120100x x 10=+C .120100x 10x =-D .120100x 10x=+ 10.如图,在Rt △ABC 中,∠ACB=90°,AC=BC=1,将绕点A 逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积是( )A .6πB .3πC .2π-12D .1211.已知一次函数y=﹣2x+3,当0≤x≤5时,函数y 的最大值是( )A .0B .3C .﹣3D .﹣712.如图,一个斜边长为10cm 的红色三角形纸片,一个斜边长为6cm 的蓝色三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形,则红、蓝两张纸片的面积之和是( )A .60cm 2B .50cm 2C .40cm 2D .30cm 2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:(32+1)(32﹣1)= .14.若关于x 的方程x 2﹣8x +m =0有两个相等的实数根,则m =_____.15.分解因式:34x x =______.16.若x a y 与3x 2y b 是同类项,则ab 的值为_____.17.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,其中方程术是重要的数学成就.书中有一个方程问题:今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?意思是:今有美酒一斗,价格是50钱;普通酒一斗,价格是10钱.现在买两种酒2斗共付30钱,问买美酒、普通酒各多少?设买美酒x 斗,买普通酒y 斗,则可列方程组为______________.18.如图,△ABC 中,过重心G 的直线平行于BC ,且交边AB 于点D ,交边AC 于点E ,如果设AB =a ,AC =b ,用a ,b 表示GE ,那么GE =___.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列各题:×(1)该班级女生人数是__________,女生收看“两会”新闻次数的中位数是________;(2)对于某个群体,我们把一周内收看某热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低5%,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).统计量平均数(次)中位数(次)众数(次)方差…该班级男生3342…根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小. 20.(6分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:本次抽样调查共抽取了多少名学生?求测试结果为C等级的学生数,并补全条形图;若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.21.(6分)如图,点是反比例函数与一次函数在轴上方的图象的交点,过点作轴,垂足是点,.一次函数的图象与轴的正半轴交于点.求点的坐标;若梯形的面积是3,求一次函数的解析式;结合这两个函数的完整..图象:当时,写出的取值范围.22.(8分)如图,在东西方向的海岸线MN上有A,B两港口,海上有一座小岛P,渔民每天都乘轮船从A,B两港口沿AP,BP的路线去小岛捕鱼作业.已知小岛P在A港的北偏东60°方向,在B港的北偏西45°方向,小岛P距海岸线MN的距离为30海里.求AP,BP的长(参考数据:2≈1.4,3≈1.7,5≈2.2);甲、乙两船分别从A,B两港口同时出发去小岛P捕鱼作业,甲船比乙船晚到小岛24分钟.已知甲船速度是乙船速度的1.2倍,利用(1)中的结果求甲、乙两船的速度各是多少海里/时?23.(8分)如图,小华和同伴在春游期间,发现在某地小山坡的点E处有一棵盛开的桃花的小桃树,他想利用平面镜测量的方式计算一下小桃树到山脚下的距离,即DE的长度,小华站在点B的位置,让同伴移动平面镜至点C处,此时小华在平面镜内可以看到点E,且BC=2.7米,CD=11.5米,∠CDE=120°,已知小华的身高为1.8米,请你利用以上的数据求出DE的长度.(结果保留根号)24.(10分)如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.(1)求证:DF⊥AC;(2)求tan∠E的值.25.(10分)《如果想毁掉一个孩子,就给他一部手机!》这是2017年微信圈一篇热传的文章.国际上,法国教育部宣布从2018年9月新学期起小学和初中禁止学生使用手机.为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.请你根据以上信息解答下列问题:在扇形统计图中,“玩游戏”对应的百分比为,圆心角度数是度;补全条形统计图;该校共有学生2100人,估计每周使用手机时间在2小时以上(不含2小时)的人数.26.(12分)如图,已知∠AOB与点M、N求作一点P,使点P到边OA、OB的距离相等,且PM=PN(保留作图痕迹,不写作法)27.(12分)解方程:1322xx x+=--.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解题分析】先利用三角函数求出BE=4m,同(1)的方法判断出∠1=∠3,进而得出△ACQ∽△CEP,得出比例式求出PE,最后用面积的差即可得出结论;【题目详解】∵45 CQBP=,∴CQ=4m,BP=5m,在Rt△ABC中,sinB=35,tanB=34,如图2,过点P作PE⊥BC于E,在Rt△BPE中,PE=BP•sinB=5m×35=3m,tanB=PEBE,∴334 mBE=,∴BE=4m,CE=BC-BE=8-4m,同(1)的方法得,∠1=∠3,∵∠ACQ=∠CEP,∴△ACQ∽△CEP,∴CQ AC PE CE=,∴46384mm m=-,∴m=78,∴PE=3m=218,∴S△ACP=S△ACB-S△PCB=12BC×AC-12BC×PE=12BC(AC-PE)=12×8×(6-218)=272,故选C.【题目点拨】本题是相似形综合题,主要考查了相似三角形的判定和性质,三角形的面积的计算方法,判断出△ACQ∽△CEP是解题的关键.2、A【解题分析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.3、C【解题分析】根据相反数的定义“只有符号不同的两个数互为相反数”可知:2016的相反数是-2016.故选C.4、D【解题分析】根据正方形的边长,根据勾股定理求出AR,求出△ABR∽△DRS,求出DS,根据面积公式求出即可.【题目详解】∵正方形ABCD的面积为16,正方形BPQR面积为25,∴正方形ABCD的边长为4,正方形BPQR的边长为5,在Rt△ABR中,AB=4,BR=5,由勾股定理得:AR=3,∵四边形ABCD是正方形,∴∠A=∠D=∠BRQ=90°,∴∠ABR+∠ARB=90°,∠ARB+∠DRS=90°,∴∠ABR=∠DRS,∵∠A=∠D,∴△ABR∽△DRS,∴AB AR DR DS=,∴431DS =,∴DS=34,∴∴阴影部分的面积S=S正方形ABCD-S△ABR-S△RDS=4×4-12×4×3-12×34×1=778,故选:D.【题目点拨】本题考查了正方形的性质,相似三角形的性质和判定,能求出△ABR和△RDS的面积是解此题的关键.5、A【解题分析】分别把点A(−1,y1),点B(−1,y1)代入函数y=3x,求出点y1,y1的值,并比较出其大小即可.【题目详解】解:∵点A(−1,y1),点B(−1,y1)是函数y=3x图象上的点,∴y1=−6,y1=−3,∵−3>−6,∴y1<y1.故选A.【题目点拨】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.6、B【解题分析】分析:由等腰直角三角形的性质和平行线的性质求出∠ACD=60°,即可得出∠2的度数.详解:如图所示:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=30°+90°=120°,∵a∥b,∴∠ACD=180°-120°=60°,∴∠2=∠ACD-∠ACB=60°-45°=15°;故选B.点睛:本题考查了平行线的性质、等腰直角三角形的性质;熟练掌握等腰直角三角形的性质,由平行线的性质求出∠ACD的度数是解决问题的关键.7、A【解题分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.【题目详解】如图:分情况讨论:①AB为等腰直角△ABC底边时,符合条件的C点有2个;②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有4个.故选:C.【题目点拨】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.8、B【解题分析】将圆补充完整,利用圆周角定理找出点E的位置,再根据菱形的性质即可得出△CME为等边三角形,进而即可得出∠AEC的值.【题目详解】将圆补充完整,找出点E的位置,如图所示.∵弧AD所对的圆周角为∠ACD、∠AEC,∴图中所标点E符合题意.∵四边形∠CMEN为菱形,且∠CME=60°,∴△CME为等边三角形,∴∠AEC=60°.故选B.【题目点拨】本题考查了菱形的性质、等边三角形的判定依据圆周角定理,根据圆周角定理结合图形找出点E的位置是解题的关键.9、A【解题分析】分析:甲队每天修路xm ,则乙队每天修(x -10)m ,因为甲、乙两队所用的天数相同,所以,120100x x 10=-。
2024年湖北省新中考数学模拟试题(省统考)(解析)本试卷满分120分,考试时间120分钟.一、选择题(共10题,每题3分,共30分,在每题给出的四个选项中,只有一项符合题目要求)1.下列实数:1−,0,12−,其中最小的是( )A. 1−B. 0C.D. 12− 【答案】A【解析】【分析】根据实数大小比较的法则解答.【详解】解:∵1102−<−<<, ∴最小的数是1−,故选:A .【点睛】此题考查了实数的大小比较:正数大于零,零大于负数,两个负数绝对值大的反而小,熟练掌握实数的大小比较法则是解题的关键.2. 下列图形是轴对称图形而不是中心对图形的是( )A. B. C. D.【答案】A【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:A .既是轴对称图形,不是中心对称图形,故本选项符合题意;B .是轴对称图形,也是中心对称图形,故本选项不符合题意;C .是轴对称图形,也是中心对称图形,故本选项不符合题意;D .不是轴对称图形,是中心对称图形,故本选项不符合题意.故选:A .【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度与自身重合.3.不等式组1313x x −< +>的解集为( ) A. 4x <B. 2x >C. 24x <<D. 无解 【答案】C【解析】【分析】本题考查了解不等式组,先分别解出各个不等式的解,再求出公共部分,即可作答.【详解】解:∵1313x x −< +> ∴42x x < >即24x <<故选:C4.下列说法正确的是( )A .对参加中考进入考场考生的安检用随机抽样抽查B .某次竞赛6人得100分,2人得98分,这8人的平均成绩是99分C .某种彩票中奖的概率是1%,那么买100张这种彩票一定中奖D .“射击运动员射击一次,命中靶心”是随机事件 【分析】分别利用随机事件的定义和加权平均数的计算公式,分别对每一项进行分析,即可得出答案.【解答】解:A 、对参加中考进入考场考生的安检用全面调查,故本选项错误;B 、这8人的平均成绩是:99.5,故本选项错误;C 、某种彩票中奖的概率为1%,那么买100张这种彩票不一定会中奖,故本选项错误;D 、“射击运动员射击一次,命中靶心”是随机事件,故本选项正确;故选:D .【点评】此题主要考查了随机事件以及确定时间和加权平均数的计算公式等知识,正确把握相关定义是解题关键.5. 某校举行“交通安全”知识竞赛,甲、乙两班的参加人数均为40人,平均分均为91分(满分100分),甲班中位数87,乙班中位数91,甲班方差4.9,乙班方差3.2,规定成绩大于或等于90分为优异.下列说法正确的是( )A. 甲班的成绩比乙班的成绩稳定B. 甲班的优异成绩与乙班一样多C. 乙班的成绩比甲班的成绩稳定D. 小亮得90分将排在乙班的前20名【答案】C【解析】 【分析】本题考查了平均数、中位数、方差的意义,根据平均数、中位数、方差的意义逐项分析判断即可,掌握平均数、中位数、方差的意义是解题的关键.【详解】解:A 、甲班方差4.9,乙班方差3.2,故乙班的成绩稳定,故此选项不符合题意;B 、成绩大于或等于90分为优异,甲班中位数87,乙班中位数91,则乙班成绩优异的人数比甲班多,故此选项不符合题意;C 、甲班方差4.9,乙班方差3.2,故甲班的成绩稳定,故此选项符合题意;D 、由乙班中位数91,则小亮得90分将排在乙班的后20名,故此选项不符合题意;故选:C .6. 分式方程131x x x x +=−−的解是( ) A. 3x =B. 3x =−C. 2x =D. 0x =【答案】B【解析】【分析】把分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【详解】由131x x x x +=−−得: ()()()113x x x x −=+−,2223x x x x −=−−,3x =−,经检验:3x =−是原分式方程的解,故选:B .【点睛】此题考查了解分式方程,利用了转化的思想,解题的关键是解分式方程注意要检验,避免出现增根.7. 如图,在平面直角坐标系中,已知()1.50A ,,()4.50D ,,ABC 与DEF 位似,原点O 是位似中心.若()13C ,,则点F 的坐标是( )A. ()26,B. ()2.54.5,C. ()39,D. ()48,【答案】C【解析】 【分析】根据位似图形的性质得出求出13OC OA OF OD ==,根据位似变换的性质计算,得到答案. 【详解】解:∵()1.5,0A ,()4.5,0D ,∴ 1.5 4.5OA OD ==,,∵ABC 与DEF 位似, ∴13OCOA OF OD ==, ∴ABC 与DEF 的位似比为1:3,∵点()13C ,, ∴F 点的坐标为()1333××,, 即F 点的坐标为(3,9),故选:C .【点睛】本题考查的是位似图形的概念、相似三角形的性质,根据相似三角形的性质求出ABC 与DEF 的位似比是解题的关键.8.关于一次函数21y x =−的图象,下列说法不正确的是( ) A. 直线不经过第二象限B. 直线与y 轴的交点是()0,1−C. 直线经过点()1,3−D. 当0x >时,1y >−【答案】C【解析】【分析】本题考查了一次函数的图象与性质,直线与x 轴的交点等知识,掌握一次函数的图象与性质是关键.根据一次函数的图象与性质逐项分析即可.【详解】解:A .20k => ,10b =−<,∴一次函数21y x =−的图象经过第一、三、四象限,即一次函数21y x =−的图象不经过第二象限,选项A 不符合题意; B .当0x =时,1y =−,∴直线与y 轴的交点是()0,1−,选项B 不符合题意;C .当=1x −时,21213y x =−=−−=−, ∴直线经过点()1,3−−,选项C 符合题意;D .∵20k =>∴y 随x 的增大而增大,∵当0x =时,1y =−,∴当0x >时,1y >−,选项D 不符合题意.故选:C .9.如图,AB 是⊙O 的弦,且AB =6,点C 是弧AB 中点,点D 是优弧AB 上的一点,∠ADC =30°,则圆心O 到弦AB 的距离等于( )A .B .C .D .【分析】根据题意连接OA 、OC ,OC 交AB 于点E ,根据垂径定理推出OC ⊥AB ,且AE =BE =3,再由圆周角定理推出∠AOC =2∠ADC =60°,从而根据直角三角形的性质进行求解即可.【解答】解:如图,连接OA 、OC ,OC 交AB 于点E ,∵点C 是弧AB 中点,AB =6,∴OC ⊥AB ,且AE =BE =3,∵∠ADC =30°,∴∠AOC =2∠ADC =60°,∴OE AE ,故圆心O 到弦AB 的距离为. 故选:C .【点评】本题考查圆周角定理及垂径定理,解题的关键是根据题意作出辅助线OA ,OC ,从而根据垂径定理和圆周角定理进行求解,注意数形结合思想方法的运用.10. 已知抛物线2y ax bx c ++(,,a b c 是常数,0a ≠)经过点(1,1),(0,1)−−,当2x =−时,与其对应的函数值1y >.有下列结论:①0abc >;②关于x 的方程230ax bx c ++−=有两个不等的实数根;③7a b c ++>.其中,正确结论的个数是( )A. 0B. 1C. 2D. 3【答案】D【解析】【分析】根据函数与点的关系,一元二次方程根的判别式,不等式的性质,逐一计算判断即可【详解】∵抛物线2y ax bx c ++(,,a b c 是常数,0a ≠)经过点(1,1),(0,1)−−,当2x =−时,与其对应的函数值1y >.∴c =1>0,a -b +c = -1,4a -2b +c >1,∴a -b = -2,2a -b >0,∴2a -a -2>0,∴a >2>0,∴b =a +2>0,∴abc >0,∵230ax bx c ++−=,∴△=24(3)b a c −−=28b a +>0,∴230ax bx c ++−=有两个不等的实数根;∵b =a +2,a >2,c =1,∴a +b +c =a +a +2+1=2a +3,∵a >2,∴2a >4,∴2a +3>4+3>7,故选D .【点睛】本题考查了二次函数的性质,一元二次方程根的判别式,不等式的基本性质,熟练掌握二次函数的性质,灵活使用根的判别式,准确掌握不等式的基本性质是解题的关键.二、填空题(本大题共5个小题,每小题3分,满分15分)11. 9的算术平方根是_____.【答案】3【解析】【分析】根据一个正数的算术平方根就是其正的平方根即可得出.【详解】∵239=,∴9算术平方根为3.故答案为:3.【点睛】本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.12. 有3张看上去无差别的卡片,上面分别写着2,3,4.随机抽取1张后,放回并混在一起,再随机抽取1张,则两次取出的数字之和是奇数的概率为_________. 【答案】49 【解析】【分析】根据题意列出表格,找出所有可能结果和满足条件的结果即可求出.【详解】依题意列的表格如下:由表格看出共有9种结果,奇数的结果是4种. 故答案是49. 【点睛】本次主要考查了概率知识点,准确的找出所有结果和满足条件的结果是解题关键.13.如图,点A 在反比例函数3y x=−的图象上,AB x ⊥轴于点B ,已知点B ,C 关于原点对称,则ABC 的面积为______.【答案】3【解析】【分析】根据题意先求出ABO S =△,再根据点B ,C 关于原点对称得到2ABC ABO S S = 计算即可.本题考查了反比例函数k 值的几何意义,熟练掌握k 值几何意义是关键.【详解】解: 点A 在反比例函数3y x−=的图象上,AB x ⊥轴于点B , 32ABO S ∴= , 点B ,C 关于原点对称,BO CO ∴=,32232ABC ABO S S ∴==×= . 故答案为:3.14.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名的算术题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”其意思就是:100个和尚分100个馒头,正好分完,其中,大和尚一人分3个,小和尚三人分1个.那么大和尚有 人,小和尚有 人.【分析】设小和尚有x人,大和尚有y人,由题意:100个和尚分100个馒头,正好分完,其中,大和尚一人分3个,小和尚三人分1个.列出二元一次方程组,解方程组即可.【解答】解:设小和尚有x人,大和尚有y人,由题意得:,解得:,即大和尚有25人,小和尚有75人,故答案为:25,75.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.15. 如图,在Rt△ACB中,∠ACB=90°,AC=BC,D是AB上的一个动点(不与点A,B重合),连接CD,将CD绕点C顺时针旋转90°得到CE,连接DE,DE与AC相交于点F,连接AE.下列结论:①△ACE≌△BCD;②若∠BCD=25°,则∠AED=65°;③DE2=2CF•CA;④若AD=2BD,则AF=53.其中正确的结论是______.(填写所有正确结论的序号)【答案】①②③【解析】【分析】先判断出∠BCD=∠ACE,即可判断出①正确;先求出∠BDC=110°,进而得出∠AEC=110°,即可判断出②正确;先判断出∠CAE=∠CEF,进而得出△CEF∽△CAE,即可得出CE2=CF•AC,最后用勾股定理即可得出③正确;先求出BC=AC=3,再求出,进而求出CF=53,即可判断出④错误.【详解】∵∠ACB=90°,由旋转知,CD=CE,∠DCE=90°=∠ACB,∴∠BCD=∠ACE,在△BCD和△ACE中,BC AC BCD ACE CD CE ∠∠===,∴△BCD ≌△ACE ,故①正确; ∵∠ACB=90°,BC=AC ,∴∠B=45°∵∠BCD=25°,∴∠BDC=180°-45°-25°=110°, ∵△BCD ≌△ACE ,∴∠AEC=∠BDC=110°,∵∠DCE=90°,CD=CE ,∴∠CED=45°,则∠AED=∠AEC-∠CED=65°,故②正确; ∵△BCD ≌△ACE ,∴∠CAE=∠CBD=45°=∠CEF , ∵∠ECF=∠ACE ,∴△CEF ∽△CAE , ∴CE CF AC CE= , ∴CE 2=CF•AC ,在等腰直角三角形CDE 中,DE 2=2CE 2=2CF•AC ,故③正确; 如图,过点D 作DG ⊥BC 于G ,∵,∴AC=BC=3,∵AD=2BD ,∴BD=13,∴DG=BG=1,∴CG=BC-BG=3-1=2,在Rt △CDG 中,根据勾股定理得,∵△BCD ≌△ACE ,∴∵CE 2=CF•AC ,∴CF=253CE AC =, ∴AF=AC-CF=3-53=43,故④错误, 故答案为①②③.【点睛】此题是三角形综合题,主要考查了等腰直角三角形的性质,旋转的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,判断出△BCD ≌△ACE 是解本题的关键.三、解答题(本大题共9个题,满分75分)16. 先化简,再求值:222414816a a a a a −−−÷+++,其中2a =−.【答案】22−+a , 【解析】【分析】先对分式进行化简,然后再代入进行求解即可. 【详解】解:原式=()()()242421142222a a a a a a a a +−+−+−×=−=−+++;把2a =−代入得:原式=. 【点睛】本题主要考查二次根式的运算及分式的化简求值,熟练掌握分式的运算及二次根式的运算是解题的关键.17. 如图,在平行四边形ABCD 中,E 、F 分别是边AB 、DC 上的点,且AE CF =,90DEB ∠=°.(1)求证ADE CBF ∠∠=;(2)求证四边形DEBF 是矩形.【答案】(1)证明见解析(2)证明见解析【解析】【分析】() 1由平行四边形的性质得AD CB =,A C ∠=∠,再由SAS 证ADE CBF ≌即可; ()2由平行四边形的性质得AB CD =,AB CD ,再证BE DF =,则四边形DEBF 是平行四边形,然后由矩形的判定即可得出结论.【小问1详解】证明: 四边形ABCD 是平行四边形,AD CB ∴=,A C ∠=∠, 在ADE 和CBF 中,AD CB A C AE CF = ∠=∠ =, ()SAS ADE CBF ∴≌△△;∴ADE CBF ∠∠=;【小问2详解】四边形ABCD 是平行四边形,AB CD ∴=,AB CD ,∴DF BE ∥,AE CF = ,AB AE CD CF ∴−=−,即BE DF =,∴四边形DEBF 是平行四边形,又90DEB ∠=°,∴四边形DEBF 是矩形.【点睛】本题考查了矩形的判定、平行四边形的判定与性质以及全等三角形的判定等知识,熟练掌握矩形的判定和平行四边形的判定与性质是解题的关键.18.某商场以1200元购进一批商品,很快销售完了,由于商品畅销,商场又用1200元购进第二批这种商品,但第二批商品单价比第一批商品的单价上涨了20%,结果比第一批少购进5件这种商品,求第一批和第二批商品的购进单价分别是多少元.【分析】设第一批商品的单价为x 元,根据结果比第一批少购进5件这种商品得:5,解方程并检验可得答案.【解答】解:设第一批商品的单价为x 元,则第二批商品的单价为(1+20%)x 元; 根据题意得:5,解得x =40, 经检验,x =40是原方程的解,也符合题意,∴(1+20%)x =1.2×40=48,∴第一批商品的单价为40元,第二批商品的单价为48元.【点评】本题考查分式方程的应用,解题的关键是读懂题意,找到等量关系列方程.19. 近来,由于智能聊天机器人ChatGPT 的横空出世,大型语言模型成为人工智能领域的热门话题.有关人员开展了A ,B 两款AI 聊天机器人的使用满意度评分测验,并从中各随机抽取20份,对数据进行整理、描述和分析(评分分数用x 表示,分为四个等级:不满意70x <,比较满意7080x ≤<,满意8090x ≤<,非常满意90x ≥),下面给出了部分信息:抽取的对A 款AI 聊天机器人的评分数据中“满意”的数据:84,86,86,87,88,89;抽取的对B 款AI 聊天机器人的评分数据:66,68,69,81,84,85,86,87,87,87,88,89,95,97,98,98,98,98,99,100.抽取的对A ,B 款AI 聊天机器人的评分统计表 设备平均数 中位数 众数 “非常满意”所占百分比 A 88 b 96 45%B 88 87 c 40%根据以上信息,解答下列问题:(1)上述图表中=a ,=b ,=c ;(2)根据以上数据,你认为哪款AI 聊天机器人更受用户喜爱?请说明理由(写出一条理由即可);(3)在此次测验中,有200人对A 款AI 聊天机器人进行评分、160人对B 款AI 聊天机器人进行评分,估计此次测验中对AI 聊天机器人不满意的共有多少人?【答案】(1)15,88.5,98(2)A 款AI 聊天机器人更受用户喜爱,理由见解析(3)44人【解析】【分析】(1)由A 款AI 评分数据中可知等级“满意”的有6份,则“满意”所占的百分比为620,由评分统计表中可知,A 款的“非常满意”所占百分比为45%,最后由扇形统计图可得出a 的数据;把A 款的评分数据从小到大排列找到中间两个数据求其平均值;B 款数据中出现次数最多的就是众数.(2)比较两款的平均数、中位数或者众数,然后依据一定的标准进行判断.(3)由抽取的样本中“不满意”所占的百分比来估计200人不满意的人数.本题考查了平均数、众数、中位数、统计图、样本与总体等,解题的关键是熟知以上概念并能灵活进行分析和计算.【小问1详解】由题意得,6%110%45%100%15%20a =−−−×=,即15a =, 把A 款的评分数据从小到大排列,排在中间的两个数是88,89,故中位数8889=88.52b +=, 在B 款的评分数据中,98出现的次数最多,故众数98c =;故答案为:1588.598,,;【小问2详解】A 款AI 聊天机器人更受用户喜爱,理由如下:因为两款的评分数据的平均数相同,但A 款评分数据的中位数比B 款高,所以A 款AI 聊天机器人更受用户喜爱(答案不唯一).【小问3详解】320010%1604420×+×=(名), 答:估计此次测验中对AI 聊天机器人不满意的共有44人. 20. 在直角坐标系中,已知120k k ≠,设函数11k y x =与函数()2225y k x =−+的图象交于点A 和点B .已知点A 的横坐标是2,点B 的纵坐标是4−.(1)求函数11k y x=与函数()2225y k x =−+的表达式; (2)过点A 作y 轴的垂线,过点B 作x 轴的垂线,在第二象限交于点C ;过点A 作x 轴的垂线,过点B 作y 轴的垂线,在第四象限交于点D .求证:直线CD 经过原点.【答案】(1)110y x =,221y x =+ (2)见解析【解析】【分析】本题考查了反比例函数和一次函数综合,待定系数法求函数表达式等知识,解题的关键是熟练掌握以上知识点.(1)根据函数11k y x=与函数()2225y k x =−+的图象交于点A 和点B .将点A 的横坐标代入()2225y k x =−+中,求出其纵坐标,利用点A 的坐标求出1k ,利用反比例函数得到点B 的坐标,进而得到2k 即可解题;(2)首先根据题意画出图形,得到C 、D 坐标,设CD 所在直线的表达式为y kx b =+,利用待定系数法求出直线表达式,再利用解析式判断即可解题.【小问1详解】解: 点A 的横坐标是2,∴将2x =代入()22255y k x =−+=. ()2,5A ∴.∴将()2,5A 代入11k y x=得:110k =. 110y x∴=. 点B 的纵坐标是4−, ∴将4y =−代入110y x =,得52x =−. 5,42B ∴−−. ∴将5,42B −− 代入()2225y k x =−+得:254252k −=−−+. 解得:22k =.()222521y x x ∴−++.【小问2详解】证明:如图所示, 由题意可得:5,52C −,()2,4D −. 设CD 所在直线的表达式为y kx b =+, 55224k b k b −+= ∴ +=− .解得:20k b =− =. CD ∴所在直线的表达式为2y x =−.∴当0x =时,0y =.∴直线CD 经过原点.21. “互联网+”让我国经济更具活力,直播助销就是运用“互联网+”的生机勃勃的销售方式,让大山深处的农产品远销全国各地.甲为当地特色花生与茶叶两种产品助销.已知每千克花生的售价比每千克茶叶的售价低40元,销售50千克花生与销售10千克茶叶的总售价相同.(1)求每千克花生、茶叶的售价;(2)已知花生的成本为6元/千克,茶叶的成本为36元/千克.甲计划两种产品共助销60千克,总成本不高于1260元,且花生的数量不高于茶叶数量的2倍.则花生、茶叶各销售多少千克可获得最大利润?最大利润是多少?【答案】(1)每千克花生的售价为10元,每千克的茶叶售价为50元;(2)花生销售30千克,茶叶也销售30千克时可获得最大利润,最大利润为540元.【解析】【分析】(1)设每千克花生的售价为(x -40)元,每千克的茶叶售价为x 元,然后根据题意可列出方程进行求解;(2)设茶叶销售了m 千克,则花生销售了(60-m )千克,所获得利润为w 元,由题意可得()660361260602m m m m −+≤ −≤,10240w m =+,然后求出不等式组的解集,进而根据一次函数的性质可求解. 【详解】解:(1)设每千克花生的售价为(x -40)元,每千克的茶叶售价为x 元,由题意得:()504010x x −=,解得:50x =,∴花生每千克的售价为50-40=10元;答:每千克花生的售价为10元,每千克的茶叶售价为50元(2)设茶叶销售了m 千克,则花生销售了(60-m )千克,所获得利润为w 元,由题意得:()660361260602m m m m −+≤ −≤ ,解得:2030m ≤≤,∴()()()10660503610240w m m m =−−+−=+,∵10>0,∴w 随m 的增大而增大,∴当m =30时,w 有最大值,最大值为1030240540w =×+=;答:当花生销售30千克,茶叶也销售30千克时可获得最大利润,最大利润为540元.【点睛】本题主要考查一次函数及一元一次不等式组的实际应用,熟练掌握一次函数及一元一次不等式组的实际应用是解题的关键.22.如图,点C 在以AB 为直径的⊙O 上,AD 垂直过点C 的直线CD ,垂足为D 点,并且AC 平分∠DAB ,AD 交⊙O 于点E .(1)求证:直线CD 是⊙O 的切线;(2)连接BE 交AC 于点F ,若sin ∠CAD 35=,求AF AC 的值.【答案】(1)证明见解析;(2716. 【解析】 【分析】(1)连接OC ,证∠OCA =∠DAC ,AD ∥OC ,由AD ⊥CD ,可证CD ⊥OC ,可得结论; (2)连接CE ,由CD 是⊙O 的切线可知∠OCA =∠CAD ,证△ACD ∽△CED ,根据相似三角形性质得CD 2=DE •AD ,设CD =3x ,AC =5x ,则则AD =4x ,推出DE =94x ,AE =74x ,证BE ∥CD ,可得AF AC =AE AD =74x :4x ,求x 可得.【详解】(1)证明:连接OC ,∵OA=OC,∴∠OAC=∠OCA∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠OCA=∠DAC,∴AD∥OC又∵AD⊥CD,∴CD⊥OC,∴直线CD是⊙O的切线(2)连接CE,由CD是⊙O的切线可知∠OCA=∠CAD.∵∠D=∠D,∴△ACD∽△CED,∴CD:DE=AD:CD,∴CD2=DE•AD∵sin∠CAD=3 5∴设CD=3x,AC=5x,则AD=4x,∴DE=94x,∴AE=AD-DE=74x∵AB为直径∴∠AEB=∠ADC=900,∴BE∥CD,∴AFAC=AEAD=74x:4x∴AFAC=716【点睛】考核知识点:相似三角形判定和性质,切线判定,三角函数.运用相似三角形性质得出等式,借助三角函数关系设好未知数是关键.23.李老师让同学们以“旋转”为主题展开探究.【问题情境】如图1,在矩形ABCD中,AB=4,AD=6.将边AB绕点A逆时针旋转(0°<θ<180°)得到线段AE,过点E作EF⊥AE交直线BC于点F.【猜想证明】(1)当θ=90°时,四边形ABFE的形状为;(直接写出答案)(2)如图2,当θ=45°时,连接DE,求此时△ADE的面积;【能力提升】(3)在【问题情境】的条件下,是否存在θ,使点F,E,D三点共线.若存在,请求出此时BF的长度;若不存在,请说明理由.【分析】(1)根据矩形的性质和旋转的性质可得∠B=∠EAB=∠AEF=90°,AE=AB,即可;(2)作EG⊥AD于G,可得∠AEG=∠EAG,从而得到AG=EG,再根据勾股定理可得EG=2,即可;(3)分两种情况讨论:当点E在DF上时;当点E在DF的延长线上时,根据三角形全等可得BF=EF,然后根据勾股定理列出方程即可求解.【解答】解:(1)如图1,∵四边形ABCD是矩形,∴∠A=∠B=90°,∵将边AB绕点A逆时针旋转(0°<θ<180°)得到线段AE,∴AE=AB,∠EAB=90°,∠AEF=90°,∴∠B=∠EAB=∠AEF=90°,∴四边形ABFE是矩形,∵AE=AB,∴四边形ABFE是正方形;故答案为:正方形;(2)如图2,作EG⊥AD于G,∵∠BAD=90°,∠BAE=45°,∴∠EAG=45°,∴∠AEG=90°﹣∠EAG=45°,∴∠AEG=∠EAG,∴AG=EG,∵EG2+AG2=AE2,∴2EG2=42,∴EG=2,∴S△ADE AD•EG6×26;(3)如图3,当点E在DF上时,连接AF,∵∠AEF=∠B=90°,AE=AB,AF=AF,∴Rt△ABF≌Rt△AEF(HL),∴BF=EF,设BF=EF=x,则CF=6﹣x,根据旋转的性质得:AE=AB=4,∵EF⊥AE,∴∠AED=∠AEF=90°,∵AD=6,∴DE 2,在Rt △DCF 中,由勾股定理得:CF 2+CD 2=DF 2,(6﹣x )2+42=(x +2)2,解得:x =6﹣2; 如图4,当点E 在DF 的延长线上时,同理EF =BF ,DE =2,设EF =BF =a ,则DF =a ﹣2,CF =a ﹣6, ∴(a ﹣6)2+42=(a ﹣2)2, 解得:a =6+2,综上所述,BF =6﹣2或6+2.【点评】本题考查了矩形、正方形的判定,全等三角形的判定和性质,旋转的性质,勾股定理等知识,解决问题的关键是分类讨论.24. 如图,在平面直角坐标系中,抛物线24y ax bx ++交y 轴于点A ,交x 轴于点()6,0B −和点()2,0C ,连接AB 、AQ 、BQ ,BQ 与y 轴交于点N .(1)求抛物线表达式;(2)点713Q ,,点M 在x 轴上,点E 在平面内,若BME AOM ≌,且四边形ANEM 是平行四边形.①求点E 的坐标;②设射线AM 与BN 相交于点P ,交BE 于点H ,将BPH 绕点B 旋转一周,旋转后的三角形记为11BPH △,求11BP +的最小值. 【答案】(1)214433y x x =−−+ (2)①()2,2−−;②【解析】【分析】(1)将点B 、C 的坐标代入抛物线,利用待定系数法求得解析式;(2)①由Q 坐标求出BQ 解析式,然后根据四边形ANEM 是平行四边形和BME AOM ≌得出4BM OA ==,再分类讨论求得M 和E 的坐标;②求出AM 解析式,交点为P ,再求出H 坐标,然后由两点间距离公式求出BP 和BH 长度,因为旋转不改变长度,所以1BP 长度不变,当H 旋转到x 轴上时,此时1OH 最短,所以此时1OH 等于BO BH −,然后代入计算即可.【小问1详解】解:抛物线24y ax bx ++交y 轴于点A ,交x 轴于点()6,0B −和点()2,0C ,∴366404240a b a b −+= ++=, 解得:1343a b =− =−∴214433y x x =−−+; 【小问2详解】①如图214433y x x =−−+ 4∴=OA ,设直线BQ 的解析式为1y kx b =+, ()6,0B − ,713Q, ∴117360k b k b += −+=, 解得1132k b = = , ∴直线BQ 的解析式为123=+y x , N 为BQ 与y 轴交点,()0,2N ∴,2AN ∴=,四边形ANEM 是平行四边形,∴AN EM ∥且2EM AN ==,且点E 在点M 下方,点M 在x 轴上,点E 在平面内,BME AOM ≌,4,2BM OA ME OM ∴====,()6,0B − ,()2,0M ∴−或()10,0−,若M 为()2,0−,90BME AOM ∠=∠=° ,故()2,2E −−,若M 为()10,0−,2OM ME == ,此时10OM =,(矛盾,舍去),综上,点E 的坐标为()2,2−−;②如图,设AM 的解析式为,y kx b =+抛物线24y ax bx ++交y 轴于点A ,∴点A 的坐标为(0,4),将点()0,4A 、()2,0M −的坐标代入y kx b =+得: 420b k b = −+=, 解得24k b = = , AM ∴的解析式为24y x =+, AM 与BQ 相交于点P , ∴24123y x y x =+ =+, 解得6585x y =− = ,所以点P 的坐标为68,55 −, 设直线BE 的解析式为y mx n =+, 将点B 、E 的坐标代入直线BE 的解析式得:2260m n m n −+=− −+=, 解得123m n =− =− ,所以直线BE 的解析式为132y x =−−, BE 与AM 相交于点H , ∴24132y x y x =+ =−−, 解得14585x y =− =−, ∴点H 的坐标为148,55 −−,BP ∴==BH =1BP ∴当H 旋转到x 轴上时,此时1OH 最短,如图∴16OH BO BH =−=116BP ∴+=−=∴11BP +的最小值为 【点睛】此题重点考查二次函数的图象与性质、全等三角形的判定与性质、用待定系数法求函数表达式、二次根式的化简、用解方程组的方法求函数图象的交点坐标等知识和方法,计算较为烦琐,难度较大,属于考试压轴题.。
湖北省黄冈市2016年中考数学模拟试卷(A)(解析版)一、选择题(共6小题,每小题3分,共18分)1.﹣7的倒数是()A.﹣ B.7 C.D.﹣72.如图所示的几何体的俯视图是()A.B.C.D.3.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间平均距离,即1.4960亿千米,用科学记数法表示1个天文单位应是()A.1.4960×107千米B.14.960×107千米C.1.4960×108千米D.0.14960×109千米4.下列运算正确的是()A.π﹣3.14=0 B. += C.aa=2a D.a3÷a=a25.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2的度数为()A.53°B.55°C.57°D.60°6.在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A. B.C.D.二、填空题(共8小题,每小题3分,共24分)7.|﹣+2|=.8.分解因式:1﹣x2+4xy﹣4y2=.9.使函数y=+有意义的自变量x的取值范围是.10.如图,AB和⊙O切于点B,AB=5,OB=3,则tanA=.11.若关于x的函数y=kx2+2x﹣1与x轴仅有一个公共点,则实数k的值为.12.已知直角三角形ABC的一条直角边AB=12cm,另一条直角边BC=5cm,则以AB为轴旋转一周,所得到的圆锥的表面积是.13.若关于x的方程=+1无解,则a的值是.14.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为.三、解答题(共10道题,共78分)15.解不等式组,在数轴上表示解集,并判断x=是否为该不等式组的解.16.今年“五一”小长假期间,某市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求该市今年外来和外出旅游的人数.17.如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.18.如图,反比例函数y=(k≠0,x>0)的图象与直线y=3x相交于点C,过直线上点A (1,3)作AB⊥x轴于点B,交反比例函数图象于点D,且AB=3BD.(1)求k的值;(2)求点C的坐标;(3)在y轴上确定一点M,使点M到C、D两点距离之和d=MC+MD最小,求点M的坐标.19.“中国梦”关乎每个人的幸福生活,为进一步感知我们身边的幸福,展现黄冈人追梦的风采,我市小河中学开展了以“梦想中国,逐梦黄冈”为主题的演讲大赛.为确定演讲顺序,在一个不透明的盒子中放有三张卡片,每张卡片上写有一个实数,分别为3,, +6.从盒子中随机抽取一张卡片,请直接写出卡片上的实数是3的概率;(2)先从盒子中随机抽取一张卡片,将卡片上的实数作为被减数;卡片不放回,再随机抽取一张卡片,将卡片上的实数作为减数,请你用列表法或树状图(树形图)法,求出两次抽取的卡片上的实数之差为有理数的概率.20.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CECA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,过点A作AF⊥CD交CD的延长线于点F,若PB=OB,CD=,求DF的长.21.青少年“心理健康”问题越来越引起社会的关注,某中学为了了解学校600名学生的心理健康状况,举行了一次“心理健康”知识测试,并随即抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本,绘制了下面未完成的频率分布表和频率分布直方图.请回答下列问题:分组频数频率50.5~60.5 4 0.0860.5~70.5 14 0.2870.5~80.5 1680.5~90.590.5~100.5 10 0.20合计 1.00(1)填写频率分布表中的空格,并补全频率分布直方图;(2)若成绩在70分以上(不含70分)为心理健康状况良好,同时,若心理健康状况良好的人数占总人数的70%以上,就表示该校学生的心理健康状况正常,否则就需要加强心里辅导.请根据上述数据分析该校学生是否需要加强心里辅导,并说明理由.22.如图所示,小河中学九年级数学活动小组选定测量学校前面小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°.若斜坡FA的坡比i=1:,求大树的高度.(结果保留整数,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,≈1.73)23.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1千米,出租车离甲地的距离为y2千米,两车行驶的时间为x小时,y1、y2关于x的函数图象如图所示:(1)根据图象,直接写出y1、y2关于x的函数图象关系式;(2)若两车之间的距离为S千米,请写出S关于x的函数关系式;(3)甲、乙两地间有A、B两个加油站,相距200千米,若客车进入A加油站时,出租车恰好进入B加油站,求A加油站离甲地的距离.24.如图,抛物线y=x2﹣x+3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.2016年湖北省黄冈市中考数学模拟试卷(A)参考答案与试题解析一、选择题(共6小题,每小题3分,共18分)1.﹣7的倒数是()A.﹣ B.7 C.D.﹣7【考点】倒数.【分析】根据倒数的定义解答.【解答】解:设﹣7的倒数是x,则﹣7x=1,解得x=﹣.故选A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.如图所示的几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看左边一个正方形,右边一个正方形,故选:B.【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图,注意所有看到的线的都用实线表示.3.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间平均距离,即1.4960亿千米,用科学记数法表示1个天文单位应是()A.1.4960×107千米B.14.960×107千米C.1.4960×108千米D.0.14960×109千米【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1.4960亿千米用科学记数法表示为:1.4960×108千米.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列运算正确的是()A.π﹣3.14=0 B. += C.aa=2a D.a3÷a=a2【考点】同底数幂的除法;实数的运算;同底数幂的乘法.【分析】根据是数的运算,可判断A,根据二次根式的加减,可判断B,根据同底数幂的乘法,可判断C,根据同底数幂的除法,可判断D.【解答】解;A、π≠3.14,故A错误;B、被开方数不能相加,故B错误;C、底数不变指数相加,故C错误;D、底数不变指数相减,故D正确;故选:D.【点评】本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减.5.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2的度数为()A.53°B.55°C.57°D.60°【考点】平行线的性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.【解答】解:由三角形的外角性质,∠3=30°+∠1=30°+27°=57°,∵矩形的对边平行,∴∠2=∠3=57°.故选:C.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.6.在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A. B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.【解答】解:A、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx 来说,对称轴x=﹣<0,应在y轴的左侧,故不合题意,图形错误.B、对于直线y=bx+a来说,由图象可以判断,a<0,b<0;而对于抛物线y=ax2+bx来说,图象应开口向下,故不合题意,图形错误.C、对于直线y=bx+a来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,对称轴x=﹣位于y轴的右侧,故符合题意,D、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,a<0,故不合题意,图形错误.故选:C.【点评】此主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.二、填空题(共8小题,每小题3分,共24分)7.|﹣+2|=2﹣.【考点】实数的性质.【分析】根据去绝对值的方法可以解答本题.【解答】解:|﹣+2|=2﹣,故答案为:2﹣.【点评】本题考查实数的性质,解题的关键是明确去绝对值的方法.8.分解因式:1﹣x2+4xy﹣4y2=(1+x﹣2y)(1﹣x+2y).【考点】因式分解-分组分解法.【分析】首先将后三项分组,利用完全平方公式分解因式,进而利用平方差公式分解即可.【解答】解:1﹣x2+4xy﹣4y2=1﹣(x2﹣4xy+4y2)=1﹣(x﹣2y)2=(1+x﹣2y)(1﹣x+2y).故答案为:(1+x﹣2y)(1﹣x+2y).【点评】此题主要考查了分组分解法分解因式,正确分组再结合公式分解因式是解题关键.9.使函数y=+有意义的自变量x的取值范围是x≥﹣2且x≠1.【考点】二次根式有意义的条件;函数自变量的取值范围.【分析】根据二次根式有意义的条件和分式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,x+2≥0,x﹣1≠0,解得x≥﹣2且x≠1,故答案为:≥﹣2且x≠1.【点评】本题考查的是二次根式有意义的条件和分式有意义的条件,掌握二次根式中的被开方数必须是非负数、分式分母不为0是解题的关键.10.如图,AB和⊙O切于点B,AB=5,OB=3,则tanA=.【考点】切线的性质.【分析】由于直线AB与⊙O相切于点B,则∠OBA=90°,AB=5,OB=3,根据三角函数定义即可求出tanA.【解答】解:∵直线AB与⊙O相切于点B,则∠OBA=90°.∵AB=5,OB=3,∴tanA==.故答案为:.【点评】本题主要考查了利用切线的性质和锐角三角函数的概念解直角三角形的问题.11.若关于x的函数y=kx2+2x﹣1与x轴仅有一个公共点,则实数k的值为0或﹣1.【考点】抛物线与x轴的交点.【分析】令y=0,则关于x的方程kx2+2x﹣1=0只有一个根,所以k=0或根的判别式△=0,借助于方程可以求得实数k的值.【解答】解:令y=0,则kx2+2x﹣1=0.∵关于x的函数y=kx2+2x﹣1与x轴仅有一个公共点,∴关于x的方程kx2+2x﹣1=0只有一个根.①当k=0时,2x﹣1=0,即x=,∴原方程只有一个根,∴k=0符合题意;②当k≠0时,△=4+4k=0,解得,k=﹣1.综上所述,k=0或﹣1.故答案为:0或﹣1.【点评】本题考查了抛物线与x轴的交点.解题时,需要对函数y=kx2+2x﹣1进行分类讨论:一次函数和二次函数时,满足条件的k的值.12.已知直角三角形ABC的一条直角边AB=12cm,另一条直角边BC=5cm,则以AB为轴旋转一周,所得到的圆锥的表面积是90πcm2.【考点】圆锥的计算;点、线、面、体.【分析】根据圆锥的表面积=侧面积+底面积计算.【解答】解:圆锥的表面积=×10π×13+π×52=90πcm2.故答案为:90πcm2.【点评】本题考查了圆锥的表面面积的计算.首先确定圆锥的底面半径、母线长是解决本题的关键.13.若关于x的方程=+1无解,则a的值是2或1.【考点】分式方程的解.【分析】把方程去分母得到一个整式方程,把方程的增根x=2代入即可求得a的值.【解答】解:x﹣2=0,解得:x=2.方程去分母,得:ax=4+x﹣2,即(a﹣1)x=2当a﹣1≠0时,把x=2代入方程得:2a=4+2﹣2,解得:a=2.当a﹣1=0,即a=1时,原方程无解.故答案是:2或1.【点评】首先根据题意写出a的新方程,然后解出a的值.14.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4.【考点】翻折变换(折叠问题).【分析】根据翻折的性质,可得B′E的长,根据勾股定理,可得CE的长,根据等腰三角形的判定,可得答案.【解答】解:(i)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).(iii)当CB′=CD时,∵EB=EB′,CB=CB′,∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,由折叠可知点F与点C重合,不符合题意,舍去.综上所述,DB′的长为16或4.故答案为:16或4.【点评】本题考查了翻折变换,利用了翻折的性质,勾股定理,等腰三角形的判定.三、解答题(共10道题,共78分)15.解不等式组,在数轴上表示解集,并判断x=是否为该不等式组的解.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大确定不等式组的解集,将两个不等式解集表示在数轴上,由<即可判断.【解答】解:解不等式组,由①得,x>﹣3,由②得,x≥,故此不等式组的解集为:x≥,将不等式解集表示在数轴上如图:∵<,∴x=不是该不等式组的解.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则得到不等式组解集是解答此题的关键.16.今年“五一”小长假期间,某市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求该市今年外来和外出旅游的人数.【考点】二元一次方程组的应用.【分析】设该市去年外来人数为x万人,外出旅游的人数为y万人,根据总人数为226万人,去年同期外来旅游比外出旅游的人数多20万人,列方程组求解.【解答】解:设该市去年外来人数为x万人,外出旅游的人数为y万人,由题意得,,解得:,则今年外来人数为:100×(1+30%)=130(万人),今年外出旅游人数为:80×(1+20%)=96(万人).答:该市今年外来人数为130万人,外出旅游的人数为96万人.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.17.如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.【考点】全等三角形的判定与性质.【分析】(1)由AD与BC平行,利用两直线平行内错角相等,得到一对角相等,再由一对对顶角相等及E为AB中点得到一对边相等,利用AAS即可得出△ADE≌△BFE;(2)∠GDF=∠ADE,以及(1)得出的∠ADE=∠BFE,等量代换得到∠GDF=∠BFE,利用等角对等边得到GF=GD,即三角形GDF为等腰三角形,再由(1)得到DE=FE,即GE 为底边上的中线,利用三线合一即可得到GE与DF垂直.【解答】(1)证明:∵AD∥BC,∴∠ADE=∠BFE,∵E为AB的中点,∴AE=BE,在△ADE和△BFE中,,∴△ADE≌△BFE(AAS);(2)解:EG与DF的位置关系是EG垂直平分DF,理由为:连接EG,∵∠GDF=∠ADE,∠ADE=∠BFE,∴∠GDF=∠BFE,由(1)△ADE≌△BFE得:DE=FE,即GE为DF上的中线,∴GE垂直平分DF.【点评】此题考查了全等三角形的判定与性质,平行线的性质,以及等腰三角形的判定与性质,熟练掌握判定与性质是解本题的关键.18.如图,反比例函数y=(k≠0,x>0)的图象与直线y=3x相交于点C,过直线上点A (1,3)作AB⊥x轴于点B,交反比例函数图象于点D,且AB=3BD.(1)求k的值;(2)求点C的坐标;(3)在y轴上确定一点M,使点M到C、D两点距离之和d=MC+MD最小,求点M的坐标.【考点】反比例函数与一次函数的交点问题;轴对称-最短路线问题.【分析】(1)根据A坐标,以及AB=3BD求出D坐标,代入反比例解析式求出k的值;(2)直线y=3x与反比例解析式联立方程组即可求出点C坐标;(3)作C关于y轴的对称点C′,连接C′D交y轴于M,则d=MC+MD最小,得到C′(﹣,),求得直线C′D的解析式为y=﹣x+1+,直线与y轴的交点即为所求.【解答】解:(1)∵A(1,3),∴AB=3,OB=1,∵AB=3BD,∴BD=1,∴D(1,1)将D坐标代入反比例解析式得:k=1;(2)由(1)知,k=1,∴反比例函数的解析式为;y=,解:,解得:或,∵x>0,∴C(,);(3)如图,作C关于y轴的对称点C′,连接C′D交y轴于M,则d=MC+MD最小,∴C′(﹣,),设直线C′D的解析式为:y=kx+b,∴,∴,∴y=(3﹣2)x+2﹣2,当x=0时,y=2﹣2,∴M(0,2﹣2).【点评】此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形性质,待定系数法确定函数解析式,以及直线与反比例的交点求法,熟练掌握待定系数法是解本题的关键.19.“中国梦”关乎每个人的幸福生活,为进一步感知我们身边的幸福,展现黄冈人追梦的风采,我市小河中学开展了以“梦想中国,逐梦黄冈”为主题的演讲大赛.为确定演讲顺序,在一个不透明的盒子中放有三张卡片,每张卡片上写有一个实数,分别为3,, +6.从盒子中随机抽取一张卡片,请直接写出卡片上的实数是3的概率;(2)先从盒子中随机抽取一张卡片,将卡片上的实数作为被减数;卡片不放回,再随机抽取一张卡片,将卡片上的实数作为减数,请你用列表法或树状图(树形图)法,求出两次抽取的卡片上的实数之差为有理数的概率.【考点】列表法与树状图法.【分析】(1)直接根据概率公式求解;(2)画树状图展示所有6种等可能的结果,再找出两次抽取的卡片上的实数之差为有理数的结果数,然后根据概率公式求解.【解答】解:(1)从盒子中随机抽取一张卡片,请直接写出卡片上的实数是3的概率=;(2)画树状图为:共有6种等可能的结果,其中两次抽取的卡片上的实数之差为有理数的2种情况,∴P(两次好抽取的卡片上的实数之差为有理数)=.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.20.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CECA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,过点A作AF⊥CD交CD的延长线于点F,若PB=OB,CD=,求DF的长.【考点】相似三角形的判定与性质;勾股定理;圆周角定理.【分析】(1)求出△CDE∽△CAD,∠CDB=∠DAC得出结论.(2)连接OC,先证AD∥OC,由平行线分线段成比例性质定理求得PC=,再由割线定理PCPD=PBPA求得半径为4,根据勾股定理求得AC=,再证明△AFD∽△ACB,得,则可设FD=x,AF=,在Rt△AFP中,利用勾股定理列出关于x的方程,求解得DF.【解答】(1)证明:∵DC2=CECA,∴=,△CDE∽△CAD,∴∠CDB=∠DAC,∵四边形ABCD内接于⊙O,∴BC=CD;(2)解:方法一:如图,连接OC,∵BC=CD,∴∠DAC=∠CAB,又∵AO=CO,∴∠CAB=∠ACO,∴∠DAC=∠ACO,∴AD∥OC,∴=,∵PB=OB,CD=,∴=∴PC=4又∵PCPD=PBPA∴4(4+2)=OB3OB∴OB=4,即AB=2OB=8,PA=3OB=12,在Rt△ACB中,AC===2,∵AB是直径,∴∠ADB=∠ACB=90°∴∠FDA+∠BDC=90°∠CBA+∠CAB=90°∵∠BDC=∠CAB,∴∠FDA=∠CBA,又∵∠AFD=∠ACB=90°,∴△AFD∽△ACB∴在Rt△AFP中,设FD=x,则AF=,∴在Rt△APF中有,,求得DF=.方法二;连接OC,过点O作OG垂直于CD,易证△PCO∽△PDA,可得=,△PGO∽△PFA,可得=,可得,=,由方法一中PC=4代入,即可得出DF=.【点评】本题主要考查相似三角形的判定及性质,勾股定理及圆周角的有关知识的综合运用能力,关键是找准对应的角和边求解.21.青少年“心理健康”问题越来越引起社会的关注,某中学为了了解学校600名学生的心理健康状况,举行了一次“心理健康”知识测试,并随即抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本,绘制了下面未完成的频率分布表和频率分布直方图.请回答下列问题:分组频数频率50.5~60.5 4 0.0860.5~70.5 14 0.2870.5~80.5 16 0.3280.5~90.5 60.1290.5~100.5 10 0.20合计50 1.00(1)填写频率分布表中的空格,并补全频率分布直方图;(2)若成绩在70分以上(不含70分)为心理健康状况良好,同时,若心理健康状况良好的人数占总人数的70%以上,就表示该校学生的心理健康状况正常,否则就需要加强心里辅导.请根据上述数据分析该校学生是否需要加强心里辅导,并说明理由.【考点】频数(率)分布直方图;频数(率)分布表.【分析】(1)由50.5~60.5的频数除以对应的频率求出样本的总人数,进而求出70.5~80.5的频率,90.5~100.5的频数,以及80.5~90.5的频率与频数,补全表格即可;(2)该校学生需要加强心理辅导,理由为:求出70分以上的人数,求出占总人数的百分比,与70%比较大小即可.【解答】解:(1)根据题意得:样本的容量为4÷0.08=50(人),则70.5~80.5的频率为=0.32,80.5~90.5的频率为1﹣(0.08+0.28+0.32+0.20)=0.12,频数为50×0.12=6;分组频数频率50.5~60.5 4 0.0860.5~70.5 14 0.2870.5~80.5 16 0.3280.5~90.5 6 0.1290.5~100.5 10 0.20合计50 1.00(2)该校学生需要加强心理辅导,理由为:根据题意得:70分以上的人数为16+6+10=32(人),∵心理健康状况良好的人数占总人数的百分比为×100%=64%<70%,∴该校学生需要加强心理辅导.【点评】此题考查了频数(率)分布直方图,弄清题意是解本题的关键.22.如图所示,小河中学九年级数学活动小组选定测量学校前面小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°.若斜坡FA的坡比i=1:,求大树的高度.(结果保留整数,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,≈1.73)【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【分析】首先过点D作DM⊥BC于点M,DN⊥AC于点N,由FA的坡比i=1:,DA=6,可求得AN与DN的长,然后设大树的高度为x,又由在斜坡上A处测得大树顶端B的仰角是48°,可得AC=,又由在△ADM中,=,可得x﹣3=(3+),继而求得答案.【解答】解:过点D作DM⊥BC于点M,DN⊥AC于点N,则四边形DMCN是矩形,∵DA=6,斜坡FA的坡比i=1:,∴DN=AD=3,AN=ADcos30°=6×=3,设大树的高度为x,∵在斜坡上A处测得大树顶端B的仰角是48°,∴tan48°=≈1.11,∴AC=,∴DM=CN=AN+AC=3+,∵在△ADM中,=,∴x﹣3=(3+),解得:x≈13.答:树高BC约13米.【点评】本题考查了仰角、坡角的定义,解直角三角形的应用,能借助仰角构造直角三角形,并结合图形利用三角函数解直角三角形是解题的关键.23.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1千米,出租车离甲地的距离为y2千米,两车行驶的时间为x小时,y1、y2关于x的函数图象如图所示:(1)根据图象,直接写出y1、y2关于x的函数图象关系式;(2)若两车之间的距离为S千米,请写出S关于x的函数关系式;(3)甲、乙两地间有A、B两个加油站,相距200千米,若客车进入A加油站时,出租车恰好进入B加油站,求A加油站离甲地的距离.【考点】一次函数的应用.【分析】(1)直接运用待定系数法就可以求出y1、y2关于x的函数图关系式;(2)分别根据当0≤x<时,当≤x<6时,当6≤x≤10时,求出即可;(3)分A加油站在甲地与B加油站之间,B加油站在甲地与A加油站之间两种情况列出方程求解即可.【解答】解:(1)设y1=k1x,由图可知,函数图象经过点(10,600),∴10k1=600,解得:k1=60,∴y1=60x(0≤x≤10),设y2=k2x+b,由图可知,函数图象经过点(0,600),(6,0),则,解得:∴y2=﹣100x+600(0≤x≤6);(2)由题意,得60x=﹣100x+600x=,当0≤x<时,S=y2﹣y1=﹣160x+600;当≤x<6时,S=y1﹣y2=160x﹣600;当6≤x≤10时,S=60x;即S=;(3)由题意,得①当A加油站在甲地与B加油站之间时,(﹣100x+600)﹣60x=200,解得x=,此时,A加油站距离甲地:60×=150km,②当B加油站在甲地与A加油站之间时,60x﹣(﹣100x+600)=200,解得x=5,此时,A加油站距离甲地:60×5=300km,综上所述,A加油站到甲地距离为150km或300km.【点评】本题考查了分段函数,函数自变量的取值范围,用待定系数法求一次函数、正比例函数的解析式等知识点的运用,综合运用性质进行计算是解此题的关键,通过做此题培养了学生的分析问题和解决问题的能力,注意:分段求函数关系式,题目较好,但是有一定的难度.24.如图,抛物线y=x2﹣x+3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.【考点】二次函数综合题.【分析】(1)通过解方程x2﹣x+3=0可得到A点和B点坐标;(2)AC与直线x=﹣1交于点E,如图1,先利用待定系数法求出直线AC的解析式为y=x+3,则可确定E(﹣1,),利用三角形面积公式得到BD∥AC,再求出直线BD的解析式,则可确定D点坐标;然后利用点平移的坐标规律,把点D向上平移9个单位得到D′,则点D′到直线AC的距离等于点D到直线AC的距离,此时点D′满足条件,接着写出D′的坐标即可;(3)易得以点A和以B点为直角顶点的△ABM一定有2个,则以M为直角顶点的△ABC 只能有1个,利用圆周角定理得到点M在以AB为直径的圆上,于是可判断当直线l与以AB为直径的圆相切于M点时,在直线l上只有一个点M满足∠AMB=90°,如图2,抛物线的对称轴交AB于G点,连结GM,作MH⊥x轴于H,接着求出M点的坐标后利用待定系数法求出直线l的解析式,然后作点M关于x轴的对称点M′,如图2,利用同样方法可求出直线EM′的解析式即可.【解答】解:(1)∵当y=0时,x2﹣x+3=0,解得x1=﹣4,x2=2,∴A(﹣4,0),B(2,0);(2)抛物线的对称轴是直线x=﹣1,C点坐标为(0,3),AC与直线x=﹣1交于点E,如图1,设直线AC的解析式为y=kx+b,。