(特殊)平行四边形综合题
- 格式:doc
- 大小:207.00 KB
- 文档页数:4
特殊的平行四边形练习题(50题)菱形、矩形、正方形一、单选题(共18题;共36分)1.下列条件中,能判定一个四边形为矩形的条件是( )A. 对角线互相平分的四边形B. 对角线相等且平分的四边形C. 对角线相等的四边形D. 对角线相等且互相垂直的四边形【答案】B【解析】【解答】解:A、对角线互相平分的四边形是平行四边形,故A不符合题意;B、对角线相等且平分的四边形是矩形,故B符合题意;C、对角线相等的四边形不是矩形,故C不符合题意;D、对角线相等且互相垂直的四边形不是矩形,故D不符合题意.故答案为:B.【分析】根据矩形的判定方法,逐项进行判断,即可求解2.如图,点A、D、G、M在半圆上,四边形ABOC、DEOF、HNMO均为矩形,设BC=a ,EF=b ,NH= c ,则下列各式中正确的是()A. a > b > cB. a =b =cC. c > a > bD. b > c > a【答案】B【解析】【解答】解:连接OA、OD、OM,如图所示:则OA=OD=OM,∵四边形ABOC、DEOF、HNMO均为矩形,∴OA=BC=a,OD=EF=b,OM=NH=c,∴a=b=c;故答案为:B.【分析】连接OA、OD、OM,则OA=OD=OM,由矩形的对角线相等得出OA=BC=a,OD=EF=b,OM=NH=c,再由同圆的半径相等即可得出a=b=c.3.如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是( )A. 1B. 2C.D.【答案】 D【解析】【解答】解:连接DE交AC于P,连接BD,BP,由菱形的对角线互相垂直平分,可得B、D关于AC对称,则PD=PB,∴PE+PB=PE+PD=DE,即DE就是PE+PB的最小值,∵∠BAD=60°,AD=AB,∴△ABD是等边三角形,∴AD=BD,∵AE=BE=AB=1,∴DE⊥AB,在Rt△ADE中,DE=,∴ PE+PB的最小值是.故答案为:D.【分析】连接DE交AC于P,连接BD,BP,根据菱形的性质得出B、D关于AC对称,得出DE就是PE+PB 的最小值,根据等边三角形的判定与性质得出DE⊥AB,再根据勾股定理求出DE的长,即可求解.4.若正方形的对角线长为2 cm,则这个正方形的面积为()A. 4B. 2C.D.【答案】B【解析】【解答】解:设正方形的边长为xcm,根据题意得:x2+x2=22,∴x2=2,∴正方形的面积=x2=2(cm2).故答案为:B.【分析】设正方形的边长为xcm,利用勾股定理列出方程,求出x2=2,即可求出正方形的面积为2.5.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,OH=4,则菱形ABCD的面积为()A. 72B. 24C. 48D. 96【答案】C【解析】【解答】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,∵DH⊥AB,∴∠BHD=90°,∴BD=2OH,∵OH=4,∴BD=8,∵OA=6,∴AC=12,∴菱形ABCD的面积= AC•BD=×12×8=48.故答案为:C.【分析】根据菱形的性质得O为BD的中点,再由直角三角形斜边上的中线等于斜边的一半,得BD的长度,最后由菱形的面积公式求得面积.6.将一张长方形纸片折叠成如图所示的形状,则∠ABC等于( )A. 73°B. 56°C. 68°D. 146°【答案】A【解析】【解答】如图,∵∠CBD=34°,∴∠CBE=180°﹣∠CBD=146°,由折叠的性质可得∠ABC=∠ABE= ∠CBE=73°.故答案为:A【分析】根据补角的知识可求出∠CBE,从而根据折叠的性质∠ABC=∠ABE= ∠CBE,可得出∠ABC的度数.7.如图,已知矩形AOBC的顶点O(0,0),A(0,3),B(4,0),按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OC,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠BOC内交于点F;③作射线OF,交边BC于点G,则点G的坐标为()A. (4,1)B. (4,)C. (4,)D. (4,)【答案】B【解析】【解答】解:∵四边形AOBC是矩形,A(0,3),B(4,0),∴OB=4,OA=BC=3,∠OBC=90°,∴OC==5,作GH⊥OC于H,如图,由题意可知:OG平分∠BOC,∵GB⊥OB,GH⊥OC,∴GB=GH,设GB=GH=x,由S△OBC=×3×4=×5×x+ ×4×x,解得:x=,∴G(4,).故答案为:B.【分析】根据勾股定理可得OC的长,作GH⊥OC于H,根据角平分线的性质可得GB=GH,然后利用面积法求出GB即可.8.如图1,在矩形ABCD中,点E在CD上,∠AEB=90°,点P从点A出发,沿A→E→B的路径匀速运动到点B停止,作PQ⊥CD于点Q,设点P运动的路程为x,PQ长为y,若y与x之间的函数关系图象如图2所示,当x=6时,PQ的值是( )A. 2B.C.D. 1【答案】B【解析】【解答】解:由图象可知:AE=3,BE=4,在Rt ABE中,∠AEB=90°AB= =5当x=6时,点P在BE上,如图,此时PE=4-(7-x)=x-3=6-3=3∵∠AEB=90°, PQ⊥CD∴∠AEB=∠PQE=90°,在矩形ABCD中,AB//CD∴∠QEP=∠ABE∴PQE BAE, ∴=∴=∴PQ=故答案为:B.【分析】由图象可知:AE=3,BE=4,根据勾股定理可得AB=5,当x=6时,点P在BE上,先求出PE的长,再根据△ PQE ∽△ BAE,求出PQ的长.9.如图,在平面直角坐标系中,已知点,.若平移点到点,使以点,,,为顶点的四边形是菱形,则正确的平移方法是()A. 向左平移1个单位,再向下平移1个单位B. 向左平移个单位,再向上平移1个单位C. 向右平移个单位,再向上平移1个单位D. 向右平移1个单位,再向上平移1个单位【答案】 D【解析】【解答】解:因为B(1,1)由勾股定理可得OB=,所以OA=OB,而AB<OA.故以AB为对角线,OB//AC,由O(0,0)移到点B(1,1)需要向右平移1个单位,再向上平移1个单位,由平移的性质可得由A(,0)移到点C需要向右平移1个单位,再向上平移1个单位,故选D.【分析】根据平移的性质可得OB//AC,平移A到C,有两种平移的方法可使O,A,B,C四点构成的四边形是平行四边形;而OA=OB>AB,故当OA,OB为边时O,A,B,C四点构成的四边形是菱形,故点A平移到C的运动与点O平移到B的相同.10.如图,把长方形ABCD沿EF对折,若∠1=500,则∠AEF的度数等于()A. 25ºB. 50ºC. 100ºD. 115º【答案】 D【解析】解析:∵把矩形ABCD沿EF对折,∴AD∥BC,∠BFE=∠2,∵∠1=50°,∠1+∠2+∠BFE=180°,∴∠BFE==65°,∵∠AEF+∠BFE=180°,∴∠AEF=115°.故选D11.在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CE⊥BD于E,延长AF.EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.正确的是()A. ②③B. ③④C. ①②④D. ②③④【答案】 D【解析】【解答】∵AB=1,AD=,∴BD=AC=2,OB=OA=OD=OC=1.∴△OAB,△OCD为正三角形.AF平分∠DAB,∴∠FAB=45°,即△ABF是一个等腰直角三角形.∴BF=AB=1,BF=BO=1.∵AF平分∠DAB,∴∠FAB=45°,∴∠CAH=45°﹣30°=15°.∵∠ACE=30°(正三角形上的高的性质)∴∠AHC=15°,∴CA=CH由正三角形上的高的性质可知:DE=OD÷2,OD=OB,∴BE=3ED.所以正确的是②③④.故选D.【分析】这是一个特殊的矩形:对角线相交成60°的角.利用等边三角形的性质结合图中的特殊角度解答.本题主要考查了矩形的性质及正三角形的性质.12.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB 上,当△CDE的周长最小时,点E的坐标为()A. (3,1)B. (3,)C. (3,)D. (3,2)【答案】B【解析】【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y= ,∴点E坐标(3,)故选:B.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.本题考查矩形的性质、坐标与图形的性质、轴对称﹣最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.13.如图,正方形ABCD的边长为4,M在DC上,且DM=1,N是AC上一动点,则DN+MN的最小值为().A. 3B. 4C. 5D.【答案】C【解析】【分析】由正方形的对称性可知点B与D关于直线AC对称,连接BM交AC于N′点,N′即为所求在Rt△BCM中利用勾股定理即可求出BM的长即可.【解答】∵四边形ABCD是正方形,∴点B与D关于直线AC对称,连接BD,BM交AC于N′,连接DN′,N′即为所求的点,则BM的长即为DN+MN的最小值,∴AC是线段BD的垂直平分线,又CM=CD-DM=4-1=3,在Rt△BCM中,BM==5,故DN+MN的最小值是5.故选C.【点评】本题考查的是轴对称-最短路线问题及正方形的性质,先作出M关于直线AC的对称点M′,由轴对称及正方形的性质判断出点M′在BC上是解答此题的关键.14.将矩形OABC如图放置,O为原点.若点A(﹣1,2),点B的纵坐标是,则点C的坐标是()A. (4,2)B. (2,4)C. (,3)D. (3,)【答案】 D【解析】【解答】解:过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,过点A作AN⊥BF于点N,过点C作CM⊥x轴于点M,∵∠EAO+∠AOE=90°,∠AOE+∠MOC=90°,∴∠EAO=∠COM,又∵∠AEO=∠CMO,∴∠AEO∽△COM,∴=,∵∠BAN+∠OAN=90°,∠EAO+∠OAN=90°,∴∠BAN=∠EAO=∠COM,在△ABN和△OCM中∴△ABN≌△OCM(AAS),∴BN=CM,∵点A(−1,2),点B的纵坐标是,∴BN= ,∴CM= ,∴MO==2CM=3,∴点C的坐标是:(3, ).故选:D.【分析】次题主要考查了矩形的性质以及相似三角形的判定与性质以及结合全等三角形的判定与性质等知识.构造直角三角形,正确得出CM的长是解题的关键.15.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是()A. 1B. 2C. 3D. 4【答案】 D【解析】【解答】解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠C=90°=∠ACB,∴∠CAD=∠AFG,在△FGA和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形,∴∠CBF=90°,S△FAB= FB•FG= S四边形CBFG,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,④正确;故选:D.【分析】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出S△FAB= FB•FG= S四边形CEFG,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出△ACD∽△FEQ,得出对应边成比例,得出D•FE=AD2=FQ•AC,④正确.16.如图,在矩形ABCD中,AB=4,AD=6,点F是AB的中点,E为BC边上一点,且EF⊥ED,连结DF,M 为DF的中点,连结MA,ME.若AM⊥ME,则AE的长为()A. 5B.C.D.【答案】B【解析】【解答】设BE=x,则CE=6-x,∵四边形ABCD矩形,AB=4,∴AB=CD=4,∠C=∠B=90°,∴∠DEC+∠CDE=90°,又∵F是AB的中点,∴BF=2,又∵EF⊥ED,∴∠FED=90°,∴∠FEB+∠DEC=90°,∴∠FEB=∠CDE,∴△BFE∽△CED,∴=,∴=,∴(x-2)(x-4)=0,∴x=2,或x=4,①当x=2时,∴EF=2,DE=4,DF=2,∴AM=ME=,∴AE===2,②当x=4时,∴EF=2,DE=2,DF=2,∴AM=ME=,∴AE==2,AE==4,∴x=4不合题意,舍去故答案为:B.【分析】设BE=x,则CE=6-x,由矩形性质得出AB=CD=4,∠C=∠B=90°,又由EF⊥ED,根据同角的余角相等可得出∠FEB=∠CDE;由相似三角形的判定得出△BFE∽△CED,再根据相似三角形的性质得出=,由此列出方程从而求出x=2或x=4,分情况讨论:①当x=2时,由勾股定理算出AE===2,②当x=4时,由勾股定理算出AE==2,AE==4,故x=4不合题意,舍去.17.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH,其中,正确的结论有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【解答】∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选B.【分析】根据正方形的性质得出∠B=∠DCB=90°,AB=BC,求出BG=BE,根据勾股定理得出BE=GE,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.18.如图,P是正方形ABCD内一点,∠APB=135,BP=1,AP=,求PC的值()A. B. 3 C. D. 2【答案】B【解析】【分析】解答此题的关键是利用旋转构建直角三角形,由勾股定理求解.如图,把△PBC绕点B逆时针旋转90°得到△ABP′,点C的对应点C′与点A重合.根据旋转的性质可得AP′=PC,BP′=BP,△PBP′是等腰直角三角形,利用勾股定理求出,然后由∠APB=135,可得出∠APP′=90°,再利用勾股定理列式计算求出.故选B.二、填空题(共15题;共16分)19.如图所示,△ABC为边长为4的等边三角形,AD为BC边上的高,以AD为边的正方形ADEF的面积为________。
特殊的平行四边形综合练习题1.如图,以正方形ABCD的顶点A为坐标原点,直线AB为x轴建立平面直角坐标系,对角线AC与BD相交于点E,P为BC上一点,点P坐标为(a,b),则点P绕点E顺时针旋转90°得到的对应点P′的坐标是(D)A.(a-b,a) B.(b,a) C.(a-b,0) D.(b,0)2.如图,菱形ABCD边长为6,∠BAD=120°,点E,F分别在AB,AD上且BE=AF,则EF的最小值为(A).A.B.C.D3.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C4.如图,在边长为1的菱形ABCD 中,∠ABC =60°,将△ABD 沿射线BD 的方向平移得到△A ′B ′D ′,分别连接A ′C ,A ′D ,B ′C ,则A ′C+B ′C5.菱形OBCD 在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB =60°,点P 是对角线OC 上一个动点,E(0,-1),当EP +BP 最短时,点P6.如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,并且OA =5,OC =3.若把矩形OABC 绕着点O 逆时针旋转,使点A 恰好落在BC 边上的A 1处,则点C 的对应点C 1的坐标为(-95,125).7.如图,∠MON =90°,矩形ABCD 的顶点A ,B 分别在边OM ,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD 的形状保持不变,其中AB=4,BC=1,在运动过程中,点D到点O8.如图,在矩形纸片ABCD中,AB=8,BC=6,点E是AD的中点,点F是AB上一动点.将△AEF沿直线EF折叠,点A落在点A′处.在EF上任取一点G,连接GC,GA′,CA′,则△CGA′周长的最小值为79.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE ⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG,DF.(1)求证:四边形BDFG为菱形;(2)若AG=13,CF=6,则四边形BDFG的周长为20.证明:∵∠ABC=90°,BD为AC的中线,∴BD=12 AC.∵AG ∥BD ,BD =FG ,∴四边形BDFG 是平行四边形.∵CF ⊥BD ,∴CF ⊥AG.又∵点D 是AC 中点,∴DF =12AC.∴BD =DF. ∴四边形BDFG 是菱形.10.如图,E ,F 分别是矩形ABCD 的边AD ,AB 上的点,EF =EC ,且EF ⊥EC.(1)求证:AE =DC ;(2)若DC =2,则BE =2.证明:在矩形ABCD 中,∠A =∠D =90°,∴∠EFA +∠AEF =90°.∵EF ⊥EC ,∴∠FEC =90°.∴∠AEF +∠CED =90°.∴∠EFA =∠CED.在△AEF 和△DCE 中,⎩⎪⎨⎪⎧∠A =∠D ,∠EFA =∠CED ,EF =CE ,∴△AEF ≌△DCE(AAS).∴AE =DC.11.已知:在矩形ABCD 中,BD 是对角线,AE ⊥BD 于点E ,CF ⊥BD 于点F.(1)如图1,求证:AE =CF ;(2)如图2,当∠ADB =30°时,连接AF ,CE ,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形ABCD 面积的18.解:(1)证明:∵四边形ABCD 是矩形,∴AB =CD ,AB ∥CD ,AD ∥BC.∴∠ABE =∠CDF.∵AE ⊥BD ,CF ⊥BD ,∴∠AEB =∠CFD =90°.在△ABE 和△CDF 中,⎩⎪⎨⎪⎧∠ABE =∠CDF ,∠AEB =∠CFD ,AB =CD ,∴△ABE ≌△CDF(AAS).∴AE =CF.(2)S △ABE =S △CDF =S △BCE =S △ADF =18S 矩形ABCD . 12.如图,在四边形ABCD 中,BC ∥AD ,BC =12AD ,点E 为AD 的中点,点F 为AE 的中点,AC ⊥CD ,连接BE ,CE ,CF.(1)判断四边形ABCE 的形状,并说明理由;(2)如果AB =4,∠D =30°,点P 为BE 上的动点,求△PAF 周长的最小值.解:(1)四边形ABCE 是菱形,理由如下:∵点E 是AD 的中点,∴AE =12AD. ∵BC =12AD ,∴AE =BC. ∵BC ∥AD ,∴四边形ABCE 是平行四边形.∵AC ⊥CD ,点E 是AD 的中点,∴CE =AE =DE.∴四边形ABCE 是菱形.(2)∵四边形ABCE 是菱形.∴AE =EC =AB =4,点A ,C 关于BE 对称.∵点F 是AE 的中点,∴AF =12AE =2. ∴当PA +PF 最小时,△PAF 的周长最小,即点P 为CF 与BE 的交点时,△PAF 的周长最小.此时△PAF 的周长为PA +PF +AF =CF +AF.∵CE =DE ,∴∠ECD =∠D =30°,∠ACE =90°-30°=60°.∴△ACE 是等边三角形.∴AC =AE =CE =4.∵AF =EF ,∴CF ⊥AE.∴CF =AC 2-AF 2=2 3.△PAF 周长的最小值为CF +AF =23+2. 13.如图,在Rt △ABC 中,∠ACB =90°,过点C 的直线MN ∥AB ,D 为AB 边上一点,过点D 作DE ⊥BC ,垂足为F ,交直线MN 于点E ,连接CD ,BE.(1)求证:CE =AD ;(2)当D为AB的中点时,四边形CDBE是什么特殊四边形?说明你的理由;(3)若D为AB的中点,则当∠A的大小满足什么条件时,四边形CDBE是正方形?请说明你的理由.解:(1)证明:∵DE⊥BC,∴∠DFB=90°.∵∠ACB=90°,∴∠ACB=∠DFB.∴AC∥DE.∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形.∴CE=AD.(2)四边形CDBE是菱形.理由:∵D为AB的中点,∴AD=BD.∵CE=AD,∴BD=CE.∵BD∥CE,∴四边形CDBE是平行四边形.∵∠ACB=90°,D为AB的中点,∴CD=BD.∴四边形CDBE是菱形.(3)当∠A=45°时,四边形CDBE是正方形.理由:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°.∴AC=BC.∵D为AB的中点,∴CD⊥AB.∴∠CDB=90°.又∵四边形CDBE是菱形,∴四边形CDBE是正方形.14.如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连接EC,连接AP并延长交CD于点F,连接BP,交CE于点H.(1)若∠PBA∶∠PBC=1∶2,判断△PBC的形状,并说明理由;(2)求证:四边形AECF为平行四边形.解:(1)△PBC是等边三角形,理由如下:在矩形ABCD中,∠ABC=90°,∵∠PBA∶∠PBC=1∶2,∴∠PBC=60°.由折叠的性质,得PC=BC.∴△PBC是等边三角形.(2)证明:由折叠的性质,得△EBC ≌△EPC.∴BE =PE.∴∠EBP =∠EPB.∵E 为AB 的中点,∴BE =AE.∴AE =PE.∴∠EPA =∠EAP .∵∠EBP +∠EPB +∠EPA +∠EAP =180°,∴∠EPB +∠EPA =90°.∴∠BPA =90°,即BP ⊥AF.由折叠的性质,得BP ⊥CE ,∴AF ∥CE.∵四边形ABCD 是矩形,∴AE ∥CF.∴四边形AECF 为平行四边形.15.如图,将一张矩形纸片ABCD 沿直线MN 折叠,使点C 落在点A 处,点D 落在点E 处,直线MN 交BC 于点M ,交AD 于点N.(1)求证:CM =CN ;(2)若△CMN 的面积与△CDN 的面积比为3∶1,求MN DN的值.解:(1)证明:由折叠的性质,得∠ENM =∠DNM ,又∵∠ANE =∠CND ,∴∠ANM =∠CNM.∵四边形ABCD 是矩形,∴AD ∥BC.∴∠ANM =∠CMN.∴∠CMN =∠CNM.∴CM =CN.(2)过点N 作NH ⊥BC 于点H ,则四边形NHCD 是矩形, ∴HC =DN ,NH =DC.∵S △CMN S △CDN =12MC ·NH 12ND ·NH =MC ND =3, ∴MC =3ND =3HC.∴MH =2HC.设DN =x ,则HC =x ,MH =2x.∴CM =CN =3x.在Rt △CDN 中,DC =CN 2-DN 2=22x. 在Rt △MNH 中,MN =MH 2+HN 2=23x.∴MN DN =23x x =2 3.16.在正方形ABCD 中,点E ,F 分别在边BC ,AD 上,DE =EF ,过点D 作DG ⊥EF 于点H ,交AB 边于点G.(1)如图1,求证:DE =DG ;(2)如图2,将EF 绕点E 逆时针旋转90°得到EK ,点F 对应点K ,连接KG ,EG.若H 为DG 的中点,在不添加任何辅助线及字母的情况下,请直接写出图中所有与EG 长度相等的线段(不包括EG).解:(1)证明:∵四边形ABCD 是正方形,∴AD =DC ,AD ∥BC ,∠DAG =∠DCE =90°.∴∠DEC =∠EDF.∵DE =EF ,∴∠EFD =∠EDF.∴∠EFD =∠DEC.∵DG ⊥EF ,∴∠GHF =90°.∴∠DGA +∠AFH =180°.∵∠AFH +∠EFD =180°, ∴∠DGA =∠EFD =∠DEC.在△DAG 和△DCE 中,⎩⎪⎨⎪⎧∠DGA =∠DEC ,∠DAG =∠DCE ,DA =DC ,∴△DAG ≌△DCE(AAS).∴DG =DE.(2)与线段EG 相等的线段有:DE ,DG ,GK ,KE ,EF.17.如图,BD 是正方形ABCD 的对角线,线段BC 在其所在的直线上平移,将平移得到的线段记为PQ ,连接PA ,过点Q 作QO ⊥BD ,垂足为O ,连接OA ,OP .(1)如图1所示,求证:AP =2OA ;(2)如图2所示,PQ 在BC 的延长线上,如图3所示,PQ 在BC 的反向延长线上,猜想线段AP ,OA 之间有怎样的数量关系?请直接写出你的猜想,不需证明.解:(1)证明:∵四边形ABCD 是正方形,∴AB =BC ,∠ABD =∠CBD =45°.∵QO ⊥BD ,∴∠BOQ =90°.∴∠BQO =∠CBD =45°.∴OB =OQ.∵PQ =BC ,∴AB =PQ.在△ABO 和△PQO 中,⎩⎪⎨⎪⎧OB =OQ ,∠ABO =∠PQO ,AB =PQ ,∴△ABO ≌△PQO(SAS).∴OA =OP ,∠AOB =∠POQ.∵∠BOP +∠POQ =90°,∴∠BOP +∠AOB =90,即∠AOP =90°.∴△AOP 是等腰直角三角形.∴AP =2OA.(2)当PQ 在BC 的延长线上时,线段AP ,OA 之间的数量关系为AP =2OA ;当PQ 在BC 的反向延长线上时,线段AP ,OA 之间的数量关系为AP =2OA.。
⼋年级数学特殊平⾏四边形综合练习题⼴东省韶关四中⼋年级数学下册《特殊平⾏四边形》综合练习题考点综述:特殊平⾏四边形即矩形、菱形、正⽅形,它们是四边形的必考内容之⼀,主要出现的题型多样,注重考查学⽣的基础证明和计算能⼒,以及灵活运⽤数学思想⽅法解决问题的能⼒。
内容主要包括:矩形、菱形、正⽅形的性质与判定,以及相关计算,了解平⾏四边形与矩形、菱形、正⽅形之间的联系,掌握平⾏四边形是矩形、菱形、正⽅形的条件。
典型例题:例1:(2018义乌)在下列命题中,正确的是()A.⼀组对边平⾏的四边形是平⾏四边形 B.有⼀个⾓是直⾓的四边形是矩形C.有⼀组邻边相等的平⾏四边形是菱形 D.对⾓线互相垂直平分的四边形是正⽅形例2:(2018⼤连)如图,在矩形ABCD中,对⾓线AC、BD相交于点O,若OA=2,则BD的长为()。
A.4 B.3 C.2 D.1B E例3:(2018台州)如图,在菱形ABCD中,对⾓线AC BD,,相交于点O E 为AB的中点,且OE a=,则菱形ABCD的周长为()A.16a B.12a C.8a D.4a例4:(2018青岛)已知:如图,在正⽅形ABCD中,G是CD上⼀点,延长BC到E,使CE CG=,连接BG并延长交DE于F.(1)求证:BCG DCE△≌△;(2)将D C E'是△,判断四边形E BGD △绕点D顺时针旋转90得到DAE'什么特殊四边形?并说明理由.实战演练:1.对⾓线互相垂直平分的四边形是()A.平⾏四边形、菱形B.矩形、菱形C.矩形、正⽅形D.菱形、正⽅形2.顺次连接菱形各边中点所得的四边形⼀定是()A.等腰梯形B.正⽅形C.平⾏四边形D.矩形3.如图,已知四边形ABCD 是平⾏四边形,下列结论中不正确的是()A .当AB=BC 时,它是菱形B .当AC ⊥BD 时,它是菱形 C .当∠ABC=900时,它是矩形 D .当AC=BD 时,它是正⽅形4.如图,在ABC △中,点E D F ,,分别在边AB ,BC ,CA 上,且DE CA ∥,DF BA ∥.下列四个判断中,不正确...的是() A .四边形AEDF 是平⾏四边形 B .如果90BAC ∠=,那么四边形AEDF 是矩形C .如果AD 平分BAC ∠,那么四边形AEDF 是菱形 D .如果AD BC ⊥且AB AC =,那么四边形AEDF 是菱形5.如图,四边形ABCD 为矩形纸⽚.把纸⽚ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF .若6CD =,则AF 等于() A . B . C . D .8D C B AAFCDBED6.如图,矩形ABCD 的周长为20cm ,两条对⾓线相交于O 点,过点O 作AC 的垂线EF ,分别交AD BC ,于E F ,点,连结CE ,则CDE △的周长为()A .5cmB .8cmC .9cmD .10cm7.在右图的⽅格纸中有⼀个菱形ABCD (A 、B 、C 、D 四点均为格点),若⽅格纸中每个最⼩正⽅形的边长为1,则该菱形的⾯积为8.如图,在矩形ABCD 中,对⾓线A C B D,交于点O ,已知1202.5A O D A B ∠==,,则AC 的长为.9.边长为5cm 的菱形,⼀条对⾓线长是6cm ,则另⼀条对⾓线的长是 .10.如图所⽰,菱形ABCD 中,对⾓线AC BD ,相交于点O ,若再补充⼀个条件能使菱形ABCD 成为正⽅形,则这个条件是(只填⼀个条件即可).ABCDABCD A DCB OBC D AP11.如图,已知P 是正⽅形ABCD 对⾓线BD 上⼀点,且BP = BC ,则∠ACP 度数是.12.如图,矩形ABCD 中,O 是AC 与BD 的交点,过O 点的直线EF 与AB CD ,的延长线分别交于E F ,.(1)求证:BOE DOF △≌△;(2)当EF 与AC 满⾜什么关系时,以A E C F ,,,为顶点的四边形是菱形?证明你的结论.13.将两块全等的含30°⾓的三⾓尺如图1摆放在⼀起,设较短直⾓边为1.F DOC B EA第12(1)四边形ABCD 是平⾏四边形吗?说出你的结论和理由:________________________.(2)如图2,将Rt △BCD 沿射线BD ⽅向平移到Rt △B 1C 1D 1的位置,四边形ABC 1D 1是平⾏四边形吗?说出你的结论和理由:_________________________________________.(3)在Rt △BCD 沿射线BD ⽅向平移的过程中,当点B 的移动距离为______时,四边形ABC 1D 1为矩形,其理由是_____________________________________;当点B 的移动距离为______时,四边形ABC 1D 1为菱形,其理由是_______________________________.(图3、图4⽤于探究) 应⽤探究:1.如图,将矩形ABCD 纸⽚沿对⾓线BD 折叠,使点C 落在C '处,BC '交AD 于E ,若22.5D B C ∠=°,则在不添加任何辅助线的情况下,图中45°的⾓(虚线也视为⾓的边)有()A .6个B .5个C .4个D .3个图4CADB 图3 CAD B 图2 D 1C 1B 1CADB 图130?30?B DACB C '22.5C2.如图,正⽅形ABCD的⾯积为1,M是AB的中点,则图中阴影部分的⾯积是()A.310B.13C.25D.493.(2018连云港)已知AC为矩形ABCD的对⾓线,则图中1∠与2∠⼀定不相等的是()A. B. C. D.4.红丝带是关注艾滋病防治问题的国际性标志.将宽为1cm的红丝带交叉成60°⾓重叠在⼀起(如图),则⾯积为_______2.cm BC12BAD CBAC12D12BAD CB F CDE G5.如图,将矩形纸ABCD 的四个⾓向内折起,恰好拼成⼀个⽆缝隙⽆重叠的四边形EFGH ,若EH =3厘⽶,EF =4厘⽶,则边AD 的长是___________厘⽶.6.(2018江西)如图,已知AOB OA OB ∠=,,点E 在OB 边上,四边形AEBF 是矩形.请你只⽤⽆刻度的直尺在图中画出AOB ∠的平分线(请保留画图痕迹).7.如图:矩形纸⽚ABCD ,AB =2,点E 在BC 上,且AE=EC .若将纸⽚沿AE 折叠,点B 恰好落在AC 上,则AC 的长是.8.如图,菱形、矩形与正⽅形的形状有差异,我们将菱形、矩形与正⽅形的接近程度称为“接近度”.在研究“接近度”时,应保证相似图形的“接近度”相等.(1)设菱形相邻两个内⾓的度数分别为m 和n ,将菱形的“接近度”定义为m n -,于是,m n -越⼩,菱形越接近于正⽅形.①若菱形的⼀个内⾓为70,则该菱形的“接近度”等于;②当菱形的“接近度”等于时,菱形是正⽅形.BE OA BCDE(2)设矩形相邻两条边长分别是a 和b (a b ≤),将矩形的“接近度”定义为a b -,于是a b -越⼩,矩形越接近于正⽅形.你认为这种说法是否合理?若不合理,给出矩形的“接近度”⼀个合理定义.9.现将四个全等的直⾓梯形透明纸⽚,分别放在⽅格纸中,⽅格纸的每个⼩正⽅形的边长均为1,并且直⾓梯形的每个顶点与⼩正⽅形的顶点重合.请你仿照例①,按如下要求拼图.要求:①⽤四个全等的直⾓梯形,按实际⼤⼩拼成符合要求的⼏何图形;②拼成的⼏何图形互不重叠,且不留空隙;③拼成的⼏何图形的各顶点必须与⼩正⽅形的顶点重合.anm。
特殊平行四边形综合练习题一、选择题1:在下列命题中,正确的是(A .一组对边平行的四边形是平行四边形B .有一个角是直角的四边形是矩形C .有一组邻边相等的平行四边形是菱形D .对角线互相垂直平分的四边形是正方形2:如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,若OA =2,则BD 的长为( 。
A .4 B .3 C .2 D .13:如图,在菱形ABCD 中,对角线AC BD ,相交于点O E ,为AB 的中点,且OE a =,则菱形ABCD 的周长为( A .16a B .12aC .8aD .4a4.对角线互相垂直平分的四边形是(A .平行四边形、菱形B .矩形、菱形C .矩形、正方形D .菱形、正方形5.顺次连接菱形各边中点所得的四边形一定是(A .等腰梯形B .正方形C .平行四边形D .矩形6.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( A .当AB=BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形 C .当∠ABC=900时,它是矩形 D .当AC=BD 时,它是正方形7.如图,四边形ABCD 为矩形纸片.把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF .若6CD =,则AF 等于(A .B . C.D .88.如图,将矩形ABCD 纸片沿对角线BD 折叠,使点C 落在C '处,BC '交AD 于E ,若22.5DBC ∠=°,则在不添加任何辅助线的情况下,图中45°的角(虚线也视为角的边有(A .6个B .5个C .4个D .3个DCBA A FCDEBCE D A B 22.59. 如图,EF 过矩形的对角线交点O ,且分别交AB 、CD 于E 、F ,如果阴影部分的面积为12,那么矩形的面积为(A .60B .48C .40D .3610. 如图所示:将一张矩形纸片ABCD 的角C 沿着GF 折叠(F 在BC 边上,不与B 、C 重合使得C 点落在矩形ABCD 内部的E 处,FH 平分∠BFE ,则∠GFH 的度数α满足(A .90°<α<180°B .α=90°C .0°<α<90°D .α随着折痕位置的变化而变化ABCD EHGF二、填空题1.在右图的方格纸中有一个菱形ABCD (A 、B 、C 、D 四点均为格点,若方格纸中每个最小正方形的边长为1,则该菱形的面积为2.如图,在矩形ABCD 中,对角线AC BD ,交于点O ,已知120 2.5AOD AB ∠==,,则AC的长为 .3.边长为5cm 的菱形,一条对角线长是6cm ,则另一条对角线的长是 .4.如图所示,菱形ABCD 中,对角线AC BD ,相交于点O ,若再补充一个条件能使菱形ABCD 成为正方形,则这个条件是 (只填一个条件即可.5.如图,已知P 是正方形ABCD 对角线BD 上一点,且BP = BC ,则∠ACP 度数是 .6. 如果四边形ABCD 满足____________________条件,那么这个四边形的对角线AC 和BD 互相垂直(只需填写一组你认为适当的条件.7. 已知,如图所示,△ABC 三边的中点分别为D 、E 、F ,如果AB =6cm ,AC=8cm ,BC =10cm ,那么△DEF 的周长是__________cm .A A DBOB CD A PB FCDE G B C D A B CDABCD EF8.如图,把两个大小完全相同的矩形拼成“L ”型图案,则FAC ∠= ,FCA ∠= .9.红丝带是关注艾滋病防治问题的国际性标志.将宽为1cm 的红丝带交叉成60°角重叠在一起(如图,则重叠四边形的面积为_______2.cm10.如图,将矩形纸ABCD 的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH ,若EH =3厘米,EF =4厘米,则边AD 的长是___________厘米. (三解答题1. 已知:如图Rt △ABC 中,∠ACB =90°,CD 为∠ACB 的平分线,DE ⊥BC 于点E ,DF ⊥AC 于点F.求证:四边形CEDF 是正方形.2. 已知,AD 是△ABC 的角平分线,DE ∥AC 交AB 于点E ,DF ∥AB 交AC 于点F. 求证:四边形AEDF 是菱形.3.如图,矩形ABCD 中,O 是AC 与BD 的交点,过O 点的直线EF 与AB CD ,的延长线分别交于E F ,.(1求证:BOE DOF △≌△; (2当EF 与AC 满足什么关系时,以A E C F ,,,为顶点的四边形是菱形?证明你的结论.4:已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE CG =,连接BG 并延长交DE 于F .(1求证:BCG DCE △≌△;F DOCB EA第12题图BC(2将DCE △绕点D 顺时针旋转90得到DAE '△,判断四边形E BGD '是什么特殊四边形?并说明理由. 5、如图,P 是边长为1的正方形ABCD 对角线AC 上一动点(P 与A 、C 不重合,点E 在射线BC 上,且PE=PB .(1求证:① PE=PD ; ② PE ⊥PD ;6、如图,菱形ABCD 的边长为2,BD=2,E 、F 分别是边AD ,CD 上的两个动点,且满足AE+CF=2.(1求证:△BDE ≌△BCF ; (2判断△BEF 的形状,并说明理由; (3设△BEF 的面积为S ,求S 的取值范围.7.将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1.(1四边形ABCD 是平行四边形吗?说出你的结论和理由:________________________.(2如图2,将Rt △BCD 沿射线BD 方向平移到Rt △B 1C 1D 1的位置,四边形ABC 1D 1是平行四边形吗?说图4CADB 图3 CADB 图2 D 1C 1B 1 CADB 图1 30︒30︒B DACABCD EF E 'G ABCPDE出你的结论和理由:_________________________________________.(3在Rt△BCD沿射线BD方向平移的过程中,当点B的移动距离为______时,四边形ABC1D1为矩形,其理由是_____________________________________;当点B 的移动距离为______时,四边形ABC1D1为菱形,其理由是_______________________________.(图3、图4用于探究。
初三数学特殊平行四边形试题1.顺次连接矩形四边中点所构成的四边形是;【答案】菱形【解析】根据中点四边形的性质及三角形的中位数定理即可得到结果.顺次连接矩形四边中点所构成的四边形是菱形.【考点】中点四边形,三角形的中位数定理点评:三角形的中位数定理的应用贯穿于整个初中学习,是平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.2.已知AD是△ABC的角平分线,E、F分别是边AB、AC的中点,连接DE、DF,在不再连接其他线段的前提下,要使四边形AEDF成为菱形,还需添加一个条件,这个条件可以是;【答案】答案不唯一,如AB=AC【解析】菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等的四边形是菱形;③对角线互相垂直平分的四边形是菱形.由题意知,可添加:AB=AC.则三角形是等腰三角形,由等腰三角形的性质知,顶角的平分线与底边上的中线重合,即点D是BC的中点,∴DE,EF是三角形的中位线,∴DE∥AB,DF∥AC,∴四边形ADEF是平行四边形,∵AB=AC,点E,F分别是AB,AC的中点,∴AE=AF,∴平行四边形ADEF为菱形.【考点】三角形的中位数定理,等腰三角形的性质,菱形的判定点评:此类问题综合性强,注意考查学生对基本图形的性质的熟练应用程度,在中考中比较常见,在各种题型中均有出现,需多加关注.3.菱形两邻角的度数之比为1︰2,较长对角线为20cm,则两对角线的交点到一边的距离为 cm.【答案】5【解析】先根据菱形的性质求得邻角的度数,再根据菱形的对角线平分对角结合对角线互相平分即可求得结果.∵菱形两邻角的度数之比为1︰2,∴邻角的度数分别为60°、120°∴较长对角线分60°所成的两个小角均为30°∵较长对角线为20cm∴对角线的一半为10cm∴两对角线的交点到一边的距离为5cm.【考点】菱形的性质,含30°角的直角三角形的性质点评:此类问题综合性强,注意考查学生对基本图形的性质的熟练应用程度,在中考中比较常见,在各种题型中均有出现,需多加关注.4.在菱形ABCD中,E、F分别是BC、CD上的点,若△AEF是等边三角形,且EF =" AB," 则∠BAD的度数是();A. 100°B. 105°C. 110°D. 120°【答案】A【解析】根据菱形的性质推出∠B=∠D,AD∥BC,根据平行线的性质得出∠DAB+∠B=180°,根据等边三角形的性质得出∠AEF=∠AFE=60°,AF=AD,根据等边对等角得出∠B=∠AEB,∠D=∠AFD,设∠BAE=∠FAD=x,根据三角形的内角和定理得出方程x+2(180°-60°-2x)=180°,求出方程的解即可求出答案.∵四边形ABCD是菱形,∴∠B=∠D,AD∥BC,∴∠DAB+∠B=180°,∵△AEF是等边三角形,AE=AB,∴∠AEF=∠AFE=60°,AF=AD,∴∠B=∠AEB,∠D=∠AFD,由三角形的内角和定理得:∠BAE=∠FAD,设∠BAE=∠FAD=x,则∠D=∠AFD=180°-∠EAF-(∠BAE+∠FAD)=180°-60°-2x,∵∠FAD+∠D+∠AFD=180°,∴x+2(180°-60°-2x)=180°,解得x=20°,∴∠BAD=2×20°+60°=100°,故选A.【考点】菱形的性质,等边三角形的性质,三角形的内角和定理点评:方程思想是初中数学学习中非常重要的思想方法,与各个知识点的结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.5.下列判断中,正确的是( ).A.一组邻边相等的四边形是菱形B.对角线相等的平行四边形是菱形C.对角线互相垂直的四边形是菱形D.对角线交点到各边距离相等的四边形是菱形【答案】D【解析】根据菱形的判定定理依次分析各项即可判断.A、一组邻边相等的平行四边形是菱形,B、C、对角线互相垂直的平行四边形是菱形,错误;D、对角线交点到各边距离相等的四边形是菱形,本选项正确.【考点】菱形的判定点评:特殊四边形的判定和性质的应用是初中数学平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.6.如图,将矩形ABCD折叠,使顶点B与D重合,折痕为EF,连接BE、DF.(1)四边形BEDF是什么四边形?为什么?(2)若AB=6cm,BC=8cm,求折痕EF的长.【答案】(1)菱形;(2)cm.【解析】(1)根据折叠的性质可得BE=DE,BF=DF,∠BEF=∠DEF,再结合矩形的性质可得∠BEF=∠BFE,从而可以证得结论;(2)先根据勾股定理求得BE、BO的长,再根据勾股定理求得EO的长,即可求得结果.(1)∵将矩形ABCD折叠,使顶点B与D重合,折痕为EF∴BE=DE,BF=DF,∠BEF=∠DEF,AD∥BC∴∠DEF=∠BFE∴∠BEF=∠BFE∴BE=BF∴BE=DE=BF=DF∴四边形BEDF是菱形;(2)设BE=DE=x,则AE=8-x则解得则∵∴∴∴【考点】折叠的性质,矩形的性质,菱形的判定,勾股定理点评:此类题目综合性强,知识点多,在中考中比较常见,在各种题型中均有出现,需多加关注.7.已知:平行四边形ABCD中,对角线AC、BD相交于O. ①若OA=OB,且OA⊥OB,则四边形ABCD是,②若AB=BC,且AC=BD,则四边形ABCD是;【答案】正方形,正方形【解析】根据正方形的判定定理依次分析即可求得结果.①若OA=OB,且OA⊥OB,则四边形ABCD是正方形;②若AB=BC,且AC=BD,则四边形ABCD是正方形.【考点】正方形的判定点评:特殊四边形的判定和性质的应用是初中数学平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.8.正方形边长为a,若以此正方形的对角线为一边作正方形,则所作正方形的对角线长为 .【答案】2a【解析】根据正方形的性质、勾股定理结合正方形的面积公式即可求得结果.由题意得此正方形的对角线长则所作正方形的对角线长【考点】正方形的性质,勾股定理点评:勾股定理的应用是初中数学平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.9.四边形ABCD的对角线AC=BD,且AC⊥BD,分别过A、B、C、D作对角线的平行线,则所构成的四边形是().A. 平行四边形B. 矩形C. 菱形D. 正方形【答案】D【解析】根据过A、B、C、D作对角线的平行线可得所构成的四边形是平行四边形,再结合AC=BD,且AC⊥BD,即可得到结果.∵过A、B、C、D作对角线的平行线∴所构成的四边形是平行四边形∵AC=BD,且AC⊥BD∴所构成的四边形是正方形故选D.【考点】正方形的判定点评:特殊四边形的判定和性质的应用是初中数学平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.10.如图,要把边长为1的正方形ABCD的四个角(阴影部分)剪掉,得一四边形A1B1C1D1,试问怎样剪,才能使剩下的图形仍为正方形,且剩下图形的面积为原正方形面积的,请说明理由.【答案】AA1=BB1=CC1=DD1=【解析】根据正方形的性质,勾股定理,正方形的面积公式即可得到结果.取AA1=BB1=CC1=DD1=,则A1B=B1C=C1D=D1A=∴四边形A1B1C1D1的面积【考点】正方形的性质,勾股定理,正方形的面积公式点评:特殊四边形的判定和性质的应用是初中数学平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.。
2022-2023学年北师大版九年级数学上册《第1章特殊的平行四边形》单元综合达标测试题(附答案)一.选择题(共9小题,满分36分)1.下列说法中,不正确的是()A.两组对边分别平行的四边形是平行四边形B.一组对边平行另外一组对边相等的四边形是平行四边形C.对角线互相平分且垂直的四边形是菱形D.有一组邻边相等的矩形是正方形2.已知四边形ABCD中,AC⊥BD,再补充一个条件使得四边形ABCD为菱形,这个条件可以是()A.AC=BD B.AB=BCC.AC与BD互相平分D.∠ABC=90°3.如图,平面直角坐标系中,菱形ABCD的顶点A(3,0),B(﹣2,0),顶点D在y轴正半轴上,则点C的坐标为()A.(﹣3,4)B.(﹣4,5)C.(﹣5,5)D.(﹣5,4)4.如图,在四边形ABCD中,AD=BC,点E、F、G、H分别是AB、BD、CD、AC的中点,则四边形EFGH是()A.矩形B.菱形C.正方形D.平行四边形5.如图,在△ABC中,∠C=90°,AC=8,BC=6,点P为斜边AB上一动点,过点P作PE⊥AC于E,PF⊥BC于点F,连接EF,则线段EF的最小值为()A.24B.3.6C.4.8D.56.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点C作CE⊥BD,垂足为E.已知∠BCE=4∠DCE,则∠COE的度数为()A.36°B.45°C.60°D.67.5°7.在正方形ABCD的外侧,作等边三角形ADE,则∠CBE的度数为()A.80°B.75°C.70°D.65°8.如图,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是()A.30B.34C.36D.409.如图,矩形ABCD和矩形BDEF,点A在EF边上,设矩形ABCD和矩形BDEF的面积分别为S1、S2,则S1与S2的大小关系为()A.S1=S2B.S1>S2 C.S1<S2D.3S1=2S2二.填空题(共8小题,满分32分)10.如图,菱形ABCD中,若BD=24,AC=10,则AB的长等于.菱形ABCD的面积等于.11.如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=30°,则∠E=度.12.如图,P是矩形ABCD的边AD上一个动点,矩形的两条边AB、BC的长分别为6和8,那么点P到矩形的两条对角线AC和BD的距离之和是.13.如图所示,在矩形ABCD中,DE平分∠ADC,且∠EDO等于15°,∠DOE=°.14.菱形OBCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.15.将n个边长都为1cm的正方形按如图所示的方法摆放,点A1、A2…A n分别是各正方形的中心,则n个这样的正方形重叠部分(阴影部分)的面积的和为cm2.16.如图是阳光广告公司为某种商品设计的商标图案,图中阴影部分为红色.若每个小长方形的面积都是1,则红色的面积是.17.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是.三.解答题(共7小题,满分52分)18.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:BD=DF;(2)求证:四边形BDFG为菱形;(3)若AG=13,CF=6,求四边形BDFG的周长.19.如图,点P是菱形ABCD中对角线AC上的一点,且PE=PB.(1)求证:PE=PD;(2)求证:∠PDC=∠PEB;(3)若∠BAD=80°,连接DE,试求∠PDE的度数,并说明理由.20.如图,过△ABC的顶点A分别作∠ACB及其外角的平分线的垂线,垂直分布为E、F,连接EF交AB于点M,交AC于点N,求证:(1)四边形AECF是矩形;(2)MN=BC.21.某校数学兴趣小组开展了一次课外活动,过程如下:如图①,正方形ABCD中,AB=4,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合.三角板的一边交AB 于点P,另一边交BC的延长线于点Q.(1)求证:AP=CQ;(2)如图②,小明在图1的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明;(3)在(2)的条件下,若AP=1,求PE的长.22.如图,平行四边形ABCD中,AD=9cm,CD=3cm,∠B=45°,点M、N分别以A、C为起点,1cm/秒的速度沿AD、CB边运动,设点M、N运动的时间为t秒(0≤t≤6)(1)求BC边上高AE的长度;(2)连接AN、CM,当t为何值时,四边形AMCN为菱形;(3)作MP⊥BC于P,NQ⊥AD于Q,当t为何值时,四边形MPNQ为正方形.23.如图①,在正方形ABCD中,E为CD上一动点,连接AE交对角线BD于点F,过点F 作FG⊥AE交BC于点G.(1)求证:AF=FG;(2)如图②,连接EG,当BG=3,DE=2时,求EG的长.24.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且P A =PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.参考答案一.选择题(共9小题,满分36分)1.解:A、正确.两组对边分别平行的四边形是平行四边形;B、错误.比如等腰梯形,满足条件,不是平行四边形;C、正确.对角线互相平分且垂直的四边形是菱形;D、正确.有一组邻边相等的矩形是正方形;故选:B.2.解:∵在四边形ABCD中,对角线AC,BD互相平分,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形.故选:C.3.解:∵菱形ABCD的顶点A(3,0),B(﹣2,0),∴CD=AD=AB=5,OA=3,∴OD===4∵AB∥CD,∴点C的坐标为(﹣5,4)故选:D.4.解:∵在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,∴EF∥AD,HG∥AD,∴EF∥HG,同理:HE∥GF,∴四边形EFGH是平行四边形,∵E、F、G、H分别是AB、BD、CD、AC的中点,∴GH=AD,GF=BC,∵AD=BC,∴GH=GF,∴平行四边形EFGH是菱形;故选:B.5.解:连接PC,∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=8,BC=6,∴AB=10,∴PC的最小值为:=4.8.∴线段EF长的最小值为4.8.故选:C.6.解:∵四边形ABCD为矩形,∴∠BCD=90°,OC=OB,∵∠BCE=4∠DCE,∴5∠DCE=90°,∴∠DCE=18°,∴∠BCE=72°,∵CE⊥BD,∴∠EBC=90°﹣∠BCE=18°,∵OB=OC,∴∠OCB=18°,∴∠COE=36°,故选:A.7.解:∵四边形ABCD是正方形,∴∠BAD=∠ABC=90°,AB=AD,∵△ADE是等边三角形,∴∠EAD=60°,AE=AD,∴∠BAE=150°,AB=AE,∴∠ABE=∠AEB=15°,∴∠CBE=90°﹣15°=75°,故选:B.8.解:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,∵AE=BF=CG=DH,∴AH=BE=CF=DG.在△AEH、△BFE、△CGF和△DHG中,,∴△AEH≌△BFE≌△CGF≌△DHG(SAS),∴EH=FE=GF=GH,∠AEH=∠BFE,∴四边形EFGH是菱形,∵∠BEF+∠BFE=90°,∴∠BEF+∠AEH=90°,∴∠HEF=90°,∴四边形EFGH是正方形,∵AB=BC=CD=DA=8,AE=BF=CG=DH=5,∴EH=FE=GF=GH==,∴四边形EFGH的面积是:×=34,故选:B.9.解:∵矩形ABCD的面积S1=2S△ABD,S△ABD=S矩形BDEF,∴S1=S2.故选:A.二.填空题(共8小题,满分32分)10.解:∵菱形ABCD中,BD=24,AC=10,∴BO=12,AO=5,AC⊥BD,∴AB==13,∴菱形ABCD的面积==120故答案为:13,12011.解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=30°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=30°,即∠E=15°,故答案为:15.12.解:连接OP,∵矩形的两条边AB、BC的长分别为6和8,∴S矩形ABCD=AB•BC=48,OA=OC,OB=OD,AC=BD==10,∴OA=OD=5,∴S△ACD=S矩形ABCD=24,∴S△AOD=S△ACD=12,∵S△AOD=S△AOP+S△DOP=OA•PE+OD•PF=×5×PE+×5×PF=(PE+PF)=12,解得:PE+PF=4.8.故答案为:4.8.13.解:∵四边形ABCD是矩形,∴∠ADC=∠BAD=90°,AO=CO,BO=DO,AC=BD,∴OA=OD,∵DE平分∠ADC∴∠CDE=∠ADE=45°,∴△ADE是等腰直角三角形,∴AD=AE,又∵∠EDO=15°,∴∠ADO=60°;∴△OAD是等边三角形,∴∠AOD=∠OAD=60°,∴AD=AO=DO,∴AO=AE,∴∠AOE=∠AEO,∵∠OAE=90°﹣∠OAD=30°,∴∠AOE=∠AEO=(180°﹣30°)=75°,∴∠DOE=60°+75°=135°,故答案为:135.14.解:连接ED,如图,∵点B关于OC的对称点是点D,∴DP=BP,∴ED即为EP+BP最短,∵四边形OBCD是菱形,顶点B(2,0),∠DOB=60°,∴点D的坐标为(1,),∴点C的坐标为(3,),∴可得直线OC的解析式为:y=x,∵点E的坐标为(0,﹣1),∴可得直线ED的解析式为:y=(1+)x﹣1,∵点P是直线OC和直线ED的交点,∴点P的坐标为方程组的解,解方程组得:,所以点P的坐标为(),故答案为:().15.解:由题意可得阴影部分面积等于正方形面积的,即是,5个这样的正方形重叠部分(阴影部分)的面积和为×4,n个这样的正方形重叠部分(阴影部分)的面积和为×(n﹣1)=cm2.故答案为:.16.解:设每个小长方形长为a,宽为b,则ab=1.用大长方形的面积减去三个空白部分的三角形面积,就等于阴影部分的面积.4a×4b﹣a×4b﹣3a×3b﹣×3a×3b=5ab=5.故填5.17.解:∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,∴AB=BC=1,CE=EF=3,∠E=90°,延长AD交EF于M,连接AC、CF,则AM=BC+CE=1+3=4,FM=EF﹣AB=3﹣1=2,∠AMF=90°,∵四边形ABCD和四边形GCEF是正方形,∴∠ACD=∠GCF=45°,∴∠ACF=90°,∵H为AF的中点,∴CH=AF,在Rt△AMF中,由勾股定理得:AF===2,∴CH=,故答案为:.三.解答题(共7小题,满分52分)18.(1)证明:∵∠ABC=90°,BD为AC的中线,∴BD=AC,∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵点D是AC中点,∴DF=AC,∴BD=DF;(2)证明:∵BD=DF,∴四边形BGFD是菱形,(3)解:设GF=x,则AF=13﹣x,AC=2x,∵在Rt△ACF中,∠CF A=90°,∴AF2+CF2=AC2,即(13﹣x)2+62=(2x)2,解得:x=5,∴四边形BDFG的周长=4GF=20.19.(1)解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,AB∥CD,∠DCP=∠BCP,在△DCP和△BCP中,,∴△CDP≌△CBP(SAS),∴PB=PD,∵PE=PB,∴PE=PD;(2)证明:∵PE=PB,∴∠PBC=∠PEB,∵△CDP≌△CBP,∴∠PDC=∠PBC,∴∠PDC=∠PEB;(3)解:如图所示:∠PDE=40°;理由如下:在四边形DPEC中,∵∠DPE=360°﹣(∠PDC+∠PEC+∠DCB)=360°﹣(∠PEB+∠PEC+∠DCB)=360°﹣(180°+80°)=100°,∴∠PDE=∠PED=40°.20.证明:(1)∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠BCE=∠ACB,∠ACF=∠ACD,∵∠ACB+∠ACD=180°,∴∠ACE+∠ACF=90°,即∠ECF=90°,又∵AE⊥CE,AF⊥CF,∴∠AEC=∠AFC=90°,∴四边形AECF是矩形;(2)∵四边形AECF是矩形,∴EN=FN,AN=CN=AC,∴CN=EF=EN,∴∠NEC=∠ACE=∠BCE,∴EN∥BC,∴==,∴MN=BC.21.(1)证明:∵四边形ABCD是正方形,∴∠ADC=∠A=∠B=∠BCD=∠DCQ=90°,AD=BC=CD=AB=4,∵∠PDQ=90°,∴∠ADP=∠CDQ,在△APD和△CQD中,,∴△APD≌△CQD(ASA),(2)解;PE=QE,理由如下:由(1)得:△APD≌△CQD,∴PD=QD,∵DE平分∠PDQ,∴∠PDE=∠QDE,在△PDE和△QDE中,,∴△PDE≌△QDE(SAS),∴PE=QE;(3)解:由(2)得:PE=QE,由(1)得:CQ=AP=1,∴BQ=BC+CQ=5,BP=AB﹣AP=3,设PE=QE=x,则BE=5﹣x,在Rt△BPE中,由勾股定理得:32+(5﹣x)2=x2,解得:x=3.4,即PE的长为3.4.22.解:(1)∵四边形ABCD是平行四边形,∴AB=CD=3cm.在直角△ABE中,∵∠AEB=90°,∠B=45°,∴AE=AB•sin∠B=3×=3(cm);(2)∵点M、N分别以A、C为起点,1cm/秒的速度沿AD、CB边运动,设点M、N运动的时间为t秒(0≤t≤6),∴AM=CN=t,∵AM∥CN,∴四边形AMCN为平行四边形,∴当AN=AM时,四边形AMCN为菱形.∵BE=AE=3,EN=6﹣t,∴AN2=32+(6﹣t)2,∴32+(6﹣t)2=t2,解得t=.故当t为时,四边形AMCN为菱形;(3)∵MP⊥BC于P,NQ⊥AD于Q,QM∥NP,∴四边形MPNQ为矩形,∴当QM=QN时,四边形MPNQ为正方形.∵AM=CN=t,BE=3,∴AQ=EN=BC﹣BE﹣CN=9﹣3﹣t=6﹣t,∴QM=AM﹣AQ=|t﹣(6﹣t)|=|2t﹣6|(注:分点Q在点M的左右两种情况),∵QN=AE=3,∴|2t﹣6|=3,解得t=4.5或t=1.5.故当t为4.5或1.5秒时,四边形MPNQ为正方形.23.(1)证明:如图①,连接CF,在正方形ABCD中,AB=BC,∠ABF=∠CBF=45°,在△ABF和△CBF中,,∴△ABF≌△CBF(SAS),∴AF=CF,∠BAF=∠BCF,∵FG⊥AE,∴在四边形ABGF中,∠BAF+∠BGF=360°﹣90°﹣90°=180°,又∵∠BGF+∠CGF=180°,∴∠BAF=∠CGF,∴∠CGF=∠BCF,∴AF=FG;(2)如图②,把△ADE顺时针旋转90°得到△ABH,则AH=AE,BH=DE,∠BAH=∠DAE,∵AF=FG,FG⊥AE,∴△AFG是等腰直角三角形,∴∠EAG=45°,∴∠HAG=∠BAG+∠DAE=90°﹣45°=45°,∴∠EAG=∠HAG,在△AHG和△AEG中,,∴△AHG≌△AEG(SAS),∴HG=EG,∵HG=BH+BG=DE+BG=2+3=5,∴EG=5.24.(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴P A=PC,∴PC=PE;(2)由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵P A=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴P A=PC,∠BAP=∠BCP,∵P A=PE,∴PC=PE,∴∠DAP=∠DCP,∵P A=PC,∴∠DAP=∠AEP,∴∠DCP=∠AEP∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,。
北师大版2020九年级数学上册第一章特殊的平行四边形单元综合优生测试题B (附答案详解)1.如图,在矩形ABCD 中,对角线AC 、BD 交于点O ,若∠AOB=60°,AB=3,则对角线BD 的长是( )A .6B .3C .5D .42.如图,E 、F 分别是矩形ABCD 边AB 、CD 上的点,将矩形ABCD 沿EF 折叠,使A 、D 分别落在A '和D '处,若150∠=︒,则2∠的度数是( )A .65︒B .60︒C .50︒D .40︒3.正方形A 1B 1C 1A 2,A 2B 2C 2A 3,A 3B 3C 3A 4,…,按如图所示的方式放置,点A 1A 2A 3,…和点B 1B 2B 3,…分别在直线y=x +1和x 轴上.则点C 2020的纵坐标是( )A .22020B .22019C .220201-D .220191-4.在Rt △ABC 中, D 为斜边AB 的中点,且3BC =,AB=5,则线段CD 的长是( )A .2 B .1.5 C .52D .4 5.如图,在矩形ABCD 中,AF⊥BD 于E,AF 交BC 于点F,连接DF,则图中面积相等但不全等的三角形共有( )6.下列命题中,正确的的是()A.矩形的对角线互相垂直B.菱形的对角线相等C.矩形的四个角不定相等D.正方形的对角线互相垂直且相等7.如图所示,直线l是四边形ABCD的对称轴,若AB=CD,有下面4个结论:①AB∥CD;②AC⊥BD;③AO=CO;④AB⊥BC.其中正确的结论有几个()A.4个B.3个C.2个D.1个∠的角平分线交AD于F点,若8.如图,矩形ABCD中,E是BC中点,作AECAD=,则FD的长度为()3AB=,8A.2B.3C.4D.59.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,下列条件中,不能判断这个平行四边形是菱形的是()A.AB=AD B.∠BAC=∠DAC C.∠BAC=∠ABD D.AC⊥BD 10.如图所示,在矩形纸片ABCD中,点M为AD边的中点,将纸片沿BM,CM折叠,使点A落在A1处,点D落在D1处.若∠1=30°,则∠BMC的度数为____.11.如图,在矩形ABCD 中,AD =4,E ,F 分别为边AB ,CD 上一动点,AE =CF ,分别以DE ,BF 为对称轴翻折△ADE ,△BCF ,点A ,C 的对称点分别为P ,Q .若点P ,Q ,E ,F 恰好在同一直线上,且PQ =1,则EF 的长为_____.12.如图,在矩形ABCD 中,点P 在对角线AC 上,过点P 作//EF BC ,分别交AB ,CD 于点E ,F ,连结PB , PD .若25PB =,6PD =,图中阴影部分的面积为9,则矩形ABCD 的周长为_______.13.如图,在正方形ABCD 中,画一个最大的正六边形EFGHIJ ,则BGF ∠的度数是________ .14.如图,正方形ABCD 的边长为a ,点E 在边AB 上运动(不与点A ,B 重合),∠DAM=45°,点F 在射线AM 上,且2AF BE =,CF 与AD 相交于点G ,连接EC ,EF ,EG ,则下列结论:①∠ECF=45°;②AEG ∆的周长为212a ⎛⎫+ ⎪ ⎪⎝⎭;③222BE DG EG += ;④EAF ∆的面积的最大值218a .其中正确的结论是____.(填写所有正确结论的序号)15.在平行四边形ABCD 中,AB =5,AC =6,当BD =____时,四边形ABCD 是菱形.16.如图,边长分别为4和8的两个正方形ABCD 和CEFG 并排放在一起,连结BD 并延长交EG 于点T ,交FG 于点P ,则GT 的长为_____.17.如图,菱形ABCD 的对角线相交于点O ,AC =6 cm ,BD =8 cm ,则高AE 为_______cm .18.菱形ABCD 的周长为20,面积为24,则较长的对角线的长度为___________。
2020-2021年度鲁教版八年级数学下册《第6章特殊的平行四边形》综合培优训练(附答案)1.如图,在长方形ABCD中,AE平分∠BAD交BC于点E,连接ED,若ED=5,EC=3,则长方形的周长为()A.20B.22C.24D.262.如图,矩形ABCD的对角线AC,BD相交于点O,且∠AOD=120°.过点A作AE⊥BD 于点E,则BE:ED等于()A.1:3B.1:4C.2:3D.2:53.如图,四边形ABCD是平行四边形,下列说法能判定四边形ABCD是菱形的是()A.AC⊥BD B.BA⊥BD C.AB=CD D.AD=BC4.如图,正方形ABCO和正方形DEFO的顶点A,E,O在同一直线l上,且EF=,AB =3,给出下列结论:①∠COD=45°,②AE=5,③CF=BD=,④△COF的面积S△COF=3,其中正确的个数为()A.1个B.2个C.3个D.4个5.如图,菱形ABCD的边AB的垂直平分线交AB于点E,交AC于点F,连接DF.当∠BAD=100°时,则∠CDF=()A.15°B.30°C.40°D.50°6.如图,菱形ABCD中,∠D=135°,BE⊥CD于E,交AC于F,FG⊥BC于G.若△BFG的周长为4,则菱形ABCD的面积为()A.4B.8C.16D.167.如图,正方形ABCD中,点E是对角线AC上的一点,且AE=AB,连接BE,DE,则∠CDE的度数为()A.20°B.22.5°C.25°D.30°8.如图,矩形ABCD中,AD=5,AB=7,正方形MBND′的顶点M,N分别在矩形的边AB,BC上,点E为DC上一个动点,当点D与点D′关于AE对称时,DE的长为.9.把长方形ABCD沿着直线EF对折,折痕为EF,对折后的图形EB′GF的边FG恰好经过点C,若∠AFE=55°,则∠CEB'=.10.如图,在正方形ABCD中,E是对角线AC上的动点,以DE为边作正方形DEFG,H 是CD的中点.连接GH,若GH的最小值是1,则正方形ABCD的边长为.11.如图,正方形ABCD的边长为2,M是BC的中点,N是AM上的动点,过点N作EF ⊥AM分别交AB,CD于点E,F.(1)AM的长为;(2)EM+AF的最小值为.12.如图,以Rt△ABC的斜边AB为一边,在AB的右侧作正方形ABED,正方形对角线交于点O,连接CO,如果AC=4,CO=,那么BC=.13.如图,已知正方形ABCD的边长为2,对角线AC、BD相交于点O,AE平分∠BAC交BD于点E,则BE的长为.14.如图,已知正方形ABCD,E是AD上一点,过BE上一点O作BE的垂线,交AB于点G,交CD于点H.BE=6,则GH=.15.如图,菱形ABCD中,AC,BD相交于O,DE⊥BC于E,连接OE,∠BAD=40°,则∠OED的度数为.16.如图,正方形ABCD边长为2,F为BC上一动点,作DE⊥AF于E,连接CE.当△CDE是以CD为腰的等腰三角形时,DE的长为.17.如图正方形ABCD边长为2,E为CD边中点,P为射线BE上一点(P不与B重合),若△PDC为直角三角形,则BP=.18.如图,正方形ABCD的边长为6,E是边AB边一点,G是AD延长线上一点,BE=DG,连接EG,CF⊥EG交EG于点H,交AD于点F,连接CE,BH,若BH=4,则EG 的长等于.19.如图,在菱形ABCD中,E为对角线BD上一点,且AE=DE,连接CE.(1)求证:CE=DE.(2)当BE=2,CE=1时,求菱形的边长.20.菱形ABCD的边长为6,∠D=60°,点E在边AD上运动.(1)如图1,当点E为AD的中点时,求AO:CO的值;(2)如图2,F是AB上的动点,且满足BF+DE=6,求证:△CEF是等边三角形.21.如图,过△ABC边AC的中点O,作OE⊥AC,交AB于点E,过点A作AD∥BC,与BO的延长线交于点D,连接CD,CE,若CE平分∠ACB,CE⊥BO于点F.(1)求证:①OC=BC;②四边形ABCD是矩形;(2)若BC=3,求DE的长.22.如图,正方形ABCD中,点P是对角线AC上一点,连接PB,边作PE⊥PB交AD边于于点E,且点E不与点A,D重合,作PM⊥AD,PN⊥AB,垂足分别为点M和N.(1)求证:PM=PN;(2)求证:EM=BN.23.如图,在正方形ABCD中,E,F分别是AD,CD的中点,连接BE,AF交于点M,分别延长AF,BC交于点N.(1)求∠BMN的度数;(2)求证:CM=AD.24.如图,矩形ABCD的对角线相交于O,点E是CF的中点,DF∥AC交CE延长线于点F,连接AF.(1)求证:四边形AODF是菱形;(2)若∠AOB=60°,∠AFC=90°,AB=1,求CF的长.25.在正方形ABCD中,点E为CD中点,连接AE并延长交BC延长线于点G,点F在BC上,∠F AE=∠DAE,连接FE并延长交AD延长线于H,连接HG.(1)求证:四边形AFGH为菱形:(2)若DH=1.求四边形AFGH的面积.26.如图,在矩形ABCD中,AB=3cm,BC=6cm.点P从点D出发向点A运动,运动到点A即停止;同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.参考答案1.解:∵四边形ABCD是长方形,∴∠B=∠C=90°,AB=DC,∵ED=5,EC=3,∴DC===4,则AB=4,∵AE平分∠BAD交BC于点E,∴∠BAE=∠DAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠BEA,∴AB=BE=4,∴长方形的周长为:2×(4+4+3)=22.故选:B.2.解:∵四边形ABCD是矩形,∴OA=OB=OD,∵∠AOD=120°,∴∠AOB=180°﹣120°=60°,∴△AOB为等边三角形,∵AE⊥BD,∴BE=OE=OB,∴ED=3BE,∴=,故选:A.3.解:能判定四边形ABCD是菱形的是AC⊥BD,理由如下:∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形,故选:A.4.解:①∵∠AOC=90°,∠DOE=45°,∴∠COD=180°﹣∠AOC﹣∠DOE=45°,故正确;②∵EF=,∴OE=2,∵AO=AB=3,∴AE=AO+OE=2+3=5,故正确;③作DH⊥AB于H,作FG⊥CO交CO的延长线于G,则FG=1,CF=,BH=3﹣1=2,DH=3+1=4,BD=,故错误;④△COF的面积S△COF=×3×1=,故错误;故选:B.5.解:如图,连接BF,∵四边形ABCD是菱形,∴CD=BC,∠DCF=∠BCF,在△BCF和△DCF中,∵,∴△BCF≌△DCF(SAS)∴∠CBF=∠CDF∵FE垂直平分AB,∠BAF=×100°=50°∴∠ABF=∠BAF=50°∵∠ABC=180°﹣100°=80°,∠CBF=80°﹣50°=30°∴∠CDF=30°.故选:B.6.解:∵菱形ABCD中,∠D=135°,∴∠BCD=45°,∵BE⊥CD于E,FG⊥BC于G,∴△BFG与△BEC是等腰直角三角形,∵∠GCF=∠ECF,∠CGF=∠CEF=90°,CF=CF,∴△CGF≌△CEF(AAS),∴FG=FE,CG=CE,设BG=FG=EF=x,∴BF=x,∵△BFG的周长为4,∴x+x+x=4,∴x=4﹣2,∴BE=2,∴BC=BE=4,∴菱形ABCD的面积=4×2=8,故选:B.7.解:∵四边形ABCD是正方形,∴AB=AD,∠ADC=90°,∠DAC=45°,∵AE=AB,∴AD=AE,∴∠ADE=∠AED=67.5°,∴∠CDE=90°﹣67.5°=22.5°,故选:B.8.解:如图,连接ED′,AD′,延长MD′交DC于点P,∵正方形MBND′的顶点M,N分别在矩形的边AB,BC上,点E为DC上一个动点,点D与点D′关于AE对称,∴设MD′=ND′=BM=x,∴AM=AB﹣BM=7﹣x,又折叠图形可得AD=AD′=5,∴x2+(7﹣x)2=25,解得x=3或4,即MD′=3或4.在Rt△EPD′中,设ED′=a,①当MD′=3时,AM=7﹣3=4,D′P=5﹣3=2,EP=4﹣a,∴a2=22+(4﹣a)2,解得a=,即DE=,②当MD′=4时,AM=7﹣4=3,D′P=5﹣4=1,EP=3﹣a,∴a2=12+(3﹣a)2,解得a=,即DE=.综上所述:DE的长为:或.故答案为:或.9.解:如图,在长方形ABCD中,AD∥BC,则∠FEC=∠AFE=55°.∴∠BEF=180°﹣55°=125°.根据折叠的性质知:∠B′EF=∠BEF=125°.∴∠CEB'=∠B′EF﹣∠FEC=125°﹣55°=70°.故答案是:70°.10.解:连接CG.∵四边形ABCD是正方形,四边形DECG是正方形,∴DA=DC,DE=DG,∠ADC=∠EDG=90°,∠DAC=45°,∴∠ADE=∠CDG,∴△ADE≌△CDG(SAS),∴∠DCG=∠DAE=45°,∴点G的运动轨迹是射线CG,根据垂线段最短可知,当GH⊥CG时,GH的值最小为1,∴CH=.∴CD=2CH=2,故答案为:2.11.解:(1)∵正方形ABCD的边长为2,∴AB=BC=2,∠ABC=90°,∵M是BC的中点,∴BM=,∴,故答案为:;(2)过F作FG⊥AB于G,则FG=BC=AB,∠ABM=∠FGE=90°,∵EF⊥AM,∴∠BAM+∠AEN=∠AEN+∠GFE=90°,∴∠BAM=∠GFE,∴△ABM≌△FGE(SAS),∴AM=EF,将EF沿EM方向平移至MH,连接FH,则EF=MH,∠AMH=90°,EM=FH,当A、F、H三点共线时,EM+AF=FH+AF=AH的值最小,此时EM+AF=AH=,∴EM+AF的最小值为,故答案为:.12.解:如图,延长CB到点G,使BG=AC=4,∵根据题意,四边形ABED为正方形,∴∠4=∠5=45°,∠EBA=90°,∴∠1+∠2=90°,又∵△ABC是直角三角形,AB为斜边,∴∠2+∠3=90°,∴∠1=∠3,∵∠1+∠5=∠3+∠4,∴∠CAO=∠GBO,在△CAO和△GBO中,,∴△CAO≌△GBO(SAS),∴CO=GO=,∠6=∠8,∵∠7+∠8=90°,∴∠6+∠7=90°,∴∠COG=90°,∴=,∴BC=CG﹣BG=12﹣4=8.故答案为:8.13.解:如图,过点E作EH⊥AB于H.∵四边形ABCD是正方形,∴AB=BC=CD=AD=2,BD=AC=2,OD=OB=,∵EA平分∠BAO,EH⊥AB,EO⊥AC,∴EH=EO,设EH=EO=a,则BE=a,∴a+a=,解得a=2﹣,∴BE=a=2﹣2.故答案为:2﹣2.14.解:过点A作GH的平行线,交DC于点H′,交BE于点O',如图所示:∵ABCD是正方形,∴AG∥H′H,BA=AD,∠BAE=∠D=90°,∴∠H′AD+∠AH′D=90°,∵GH⊥BE,AH′∥GH,∴AH′⊥BE,∴∠H′AD+∠BEA=90°,∴∠BEA=∠AH′D,在△BAE和△ADH′中,,∴△BAE≌△ADH′(AAS),∴BE=AH′,∵AG∥H′H,AH′∥GH,∴四边形AH′HG是平行四边形,∴GH=AH′,∴GH=BE=6,故答案为:6.15.解:∵四边形ABCD是菱形,∠BAD=40°,∴∠DAO=BAD=20°,AC⊥BD,DO=BO,AD∥BC,∴∠DOA=90°,∴∠ADO=90°﹣∠DAO=70°,∵AD∥BC,DE⊥BC,∴DE⊥AD,∴∠ADE=90°,∴∠ODE=∠AD∠E﹣∠ADO=20°,∵DE⊥BC,∴∠DEB=90°,∵DO=BO,∴OE=BD=OD,∴∠OED=∠ODE=20°,故答案为:20°.16.解:过C作CG⊥DE于G,∵四边形ABCD是正方形,∴AD=CD,∠ADC=90°,∵DE⊥AF,∴∠AED=90°,∴AD>DE,∴CD>DE,当△CDE是以CD为腰的等腰三角形时,此时只能CD=CE,∵CG⊥DE,∴EG=DG=DE,∵∠ADE+∠CDG=∠ADE+∠DAE=90°,∴∠CDG=∠DAE,∵∠AED=∠CGD=90°,∴△AED≌△DGC(AAS),∴AE=DG=DE,设AE=x,则DE=2x,在Rt△AED中,由勾股定理得:AE2+DE2=AD2,∵AD=2,∴x2+(2x)2=22,解得:x=,∵x>0,∴x=,∴DE=2x=,当F与B重合,则E与A重合,△CDE是以CD为腰的等腰三角形,此时DE=AD=2,故答案为:或2.17.解:分三种情况:①如图1,当∠DPC=90°时,∵E是CD的中点,且CD=2,∴PE=CD=1,∵四边形ABCD是正方形,∴BC=2,∠BCD=90°,∴BE==,∴BP=﹣1;②如图2,当∠DPC=90°时,同理可得BP=+1;③如图3,当∠CDP=90°时,∵∠BCE=∠EDP=90°,DE=CE,∠BEC=∠DEP,∴△BCE≌△PDE(ASA),∴PE=BE=,∴BP=2,综上,BP的长是﹣1或+1或2;故答案为:﹣1或+1或2.18.解:连接CG,∵四边形ABCD是正方形,∴CB=CD,∠CBE=∠ADC=90°,在△CGD与△CEB中,,∴△CGD≌△CEB(SAS),∴CG=CE,∠GCD=∠ECB,∴∠GCE=90°,即△GCE是等腰直角三角形.又∵CH⊥GE,∴CH=EH=GH.过点H作AB、BC的垂线,垂足分别为点M、N,则∠MHN=90°,又∵∠EHC=90°,∴∠1=∠2,在△HEM与△HCN中,,∴△HEM≌△HCN(AAS).∴HM=HN,∵∠HMB=∠ABC=∠BNH=90°,∴四边形MBNH为正方形,∵BH=4,∴BN=HN=4,∵HM∥AG,EH=GH,∴AG=2HM=2HN=8,∴DG=BE=AG﹣AD=8﹣6=2,∴AE=6﹣2=4,在Rt△AEG中,EG===4.故答案为:4.19.(1)证明:∵四边形ABCD是菱形,∴∠ABE=∠CBE,AB=CB,在△ABE和△CBE中,,∴△ABE≌△CBE(SAS),∴AE=CE,∵AE=DE,∴CE=DE;(2)解:如图,连接AC交BD于H,∵四边形ABCD是菱形,∴AH⊥BD,BH=DH,AH=CH,∵CE=DE=AE=1,∴BD=BE+DE=2+1=3,∴BH=BD=,EH=BE﹣BH=2﹣=,在Rt△AHE中,由勾股定理得:AH===,在Rt△AHB中,由勾股定理得:AB===,∴菱形的边长为.20.(1)解:∵四边形ABCD是菱形,∴BC=AD=6,AD∥BC,∵点E为AD的中点,∴AE=AD=3,∵AD∥BC,∴△AOE∽△COB,∴===;(2)证明:∵四边形ABCD是菱形,∴AB=BC,AD∥BC,∠B=∠D=60°,∴∠CAE=∠ACB,△ABC是等边三角形,∴AC=BC,∠ACB=60°,∴∠EAC=60°=∠B,∵AE+DE=AD=6,BF+DE=6,∴AE=BF,在△ACE和△BCF中,,∴△ACE≌△BCF(SAS),∴CE=CF,∠ACE=∠BCF,∴∠ACE+∠ACF=∠BCF+∠ACF=∠ACB=60°,即∠ECF=60°,∴△CEF是等边三角形.21.(1)证明:①∵CE平分∠ACB,∴∠OCE=∠BCE,∵BO⊥CE,∴∠CFO=∠CFB=90°,在△OCF与△BCF中,,∴△OCF≌△BCF(ASA),∴OC=BC;②∵点O是AC的中点,∴OA=OC,∵AD∥BC,∴∠DAO=∠BCO,∠ADO=∠CBO,在△OAD与△OCB中,,∴△OAD≌△OCB(ASA),∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵OE⊥AC,∴∠EOC=90°,在△OCE与△BCE中,,∴△OCE≌△BCE(SAS),∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,∴AD=BC=3,∠DAB=90°,AC=BD,∴OB=OC,∵OC=BC,∴OC=OB=BC,∴△OBC是等边三角形,∴∠OCB=60°,∴∠ECB=OCB=30°,∵∠EBC=90°,∴EB=EC,∵BE2+BC2=EC2,BC=3,∴EB=,EC=2,∵OE⊥AC,OA=OC,∴EC=EA=2,在Rt△ADE中,∠DAB=90°,∴DE===.22.证明:(1)∵四边形ABCD为正方形,∴AC平分∠BAD,又∵PM⊥AD,PN⊥AB,∴PM=PN.(2)∵PM⊥AD,PN⊥AB,∠MAN=90°,PM=PN,∴四边形PMAN为正方形,∴∠MPN=90°,即∠MPE+∠EPN=90°.∵PE⊥PB,∴∠EPN+∠NPB=90°,∴∠MPE=∠NPB.∵PM⊥AD,PN⊥AB,在△PME和△PNB中,,∴△PME≌△PNB(ASA),∴EM=BN.23.解:(1)∵四边形ABCD是正方形,∴AD=CD=AB,∠BAD=∠D=90°,∵E、F分别是AD、CD的中点,∴AE=AD,DF=CD,∴AE=DF,在△ABE和△DAF中,,∴△ABE≌△DAF(SAS),∴AF=BE,∠AEB=∠AFD,在直角△ADF中,∠DAF+∠AFD=90°,∴∠DAF+∠AEB=90°,∴∠AME=90°,∴AF⊥BE,∴∠BMN=90°;(2)证明:∵DF=CF,∠D=∠FCN=90°,∠AFD=∠NFC,在△ADF和△NCF中,,∴△ADF≌△NCF(ASA),∴AD=CN=CD=BC,在直角△BMN中,BC=CN,∴CM=BN=BC=AD.24.(1)证明:∵DF∥AC,∴∠DFC=∠OCF,∠EDF=∠EOC,∵点E是CF的中点,FE=CE,∴△DEF≌△OEC(AAS),∴DF=OC,∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∴OA=OD,∴DF=OA,且DF∥AO,∴四边形AODF是平行四边形,又∵OA=OD,∴平行四边形AODF是菱形;(2)解:由(1)得:OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=1,∵四边形AODF是菱形,∴AF=OA=1,AF∥BD,∴∠F AC=∠AOB=60°,∵∠AFC=90°,∴∠ACF=30°,∴CF=AF=.25.(1)证明:∵四边形ABCD是正方形,∴AD∥BC,∴∠DAE=∠FGA,∵∠F AE=∠DAE,∴∠FGA=∠F AE,∴F A=FG,∵点E为CD中点,∴DE=CE,∵∠ADE=∠GCE=90°,在△ADE和△GCE中,,∴△ADE≌△GCE(AAS),∴AD=CG,同理:△DEH△CEF(AAS),∴DH=CF,∵AH=AD+DH,GF=CG+CF,∴AH∥FG,∵AH∥FG,∴四边形AFGH为平行四边形,∵F A=FG,∴四边形AFGH为菱形;(2)解:FC=DH=1,设AB=AD=x,由(1)知FC=DH=1,∴AF=AH=AD+DH=x+1,BF=BC﹣FC=x﹣1,在Rt△ABF中,根据勾股定理,得AF2=AB2+BF2,∴(x+1)2=x2+(x﹣1)2,解得x=4,x=0(舍去),∴AF=FG=x+1=5,∴菱形AFGH的面积为:FG•DC=5×4=20.26.解:(1)由已知可得,BQ=DP=t,AP=CQ=6﹣t 在矩形ABCD中,∠B=90°,AD∥BC,当BQ=AP时,四边形ABQP为矩形,∴t=6﹣t,得t=3故当t=3s时,四边形ABQP为矩形.(2)由(1)可知,四边形AQCP为平行四边形∴当AQ=CQ时,四边形AQCP为菱形即时,四边形AQCP为菱形,解得t=,故当t=s时,四边形AQCP为菱形.(3)当t=时,AQ=,CQ=,则周长为:4AQ=4×=15cm面积为:。
第一章:特殊的平行四边形单元测试卷(典型题汇总)一、选择题(本大题共6小题,共24分)1.下列关于▱ABCD的叙述中,正确的是( )A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形2.如图1,在△ABC中,D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF ∥AB,分别交AB,AC于E,F两点,下列说法正确的是( )A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形123.如图2,在菱形ABCD中,对角线AC,BD相交于点O,作OE⊥AB,垂足为E,若∠ADC =130°,则∠AOE的度数为( )A.75° B.65° C.55° D.50°4.如图3,P是矩形ABCD的边AD上的一个动点,矩形的两条边AB,BC的长分别为3和4,那么点P到矩形的两条对角线AC和BD的距离之和是( )A.125B.65C.245 D.不确定345.如图4,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是( )A.2.5 B.5 C.322 D.26.如图5,在平面直角坐标系中,四边形OABC是正方形,点A的坐标是(4,0),P为边AB上一点,∠CPB=60°,沿CP折叠正方形OABC,折叠后,点B落在平面内的点B′处,则点B′的坐标为( )图5A.(2,2 3) B.(32,2-3)C.(2,4-2 3) D.(32,4-2 3)二、填空题(本大题共6小题,共30分)7.已知菱形的边长为6,一个内角为60°,则菱形的较短对角线的长是________.8.如图6所示,在矩形纸片ABCD中,AB=2 cm,点E在BC上,且AE=EC.若将纸片沿AE折叠,点B恰好与AC上的点B′重合,则AC=________ cm.679.如图7所示,若菱形ABCD的边长为2,∠ABC=45°,则点D的坐标为________.10.如图8,在正方形ABCD的外侧作等边三角形ADE,则∠BED的度数是________.8911.如图9所示,在四边形ABCD中,对角线AC⊥BD,垂足为O,E,F,G,H分别为AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为________.图1012.如图10,在矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则△BOF的面积为________.三、解答题(共46分)13.(10分)如图11,E,F是正方形ABCD的对角线AC上的两点,且AE=CF.(1)求证:四边形BEDF是菱形;(2)若正方形ABCD的边长为4,AE=2,求菱形BEDF的面积.图1114.(10分)如图12,已知平行四边形ABCD的对角线AC,BD相交于点O,AC=20 cm,BD=12 cm,两动点E,F同时以2 cm/s的速度分别从点A,C出发在线段AC上相对运动,点E到点C,点F到点A时停止运动.(1)求证:当点E,F在运动过程中不与点O重合时,以点B,E,D,F为顶点的四边形为平行四边形;(2)当点E,F的运动时间t为何值时,四边形BEDF为矩形?图1215.(12分)如图13,△ABC是以BC为底的等腰三角形,AD是边BC上的高,E,F分别是AB,AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.图1316.(14分)如图14,四边形ABCD是正方形,E是直线CD上的点,将△ADE沿AE对折得到△AFE,直线EF交边BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)当DE是线段CD的一半时,请你在备用图中利用尺规作图画出符合题意的图形(保留作图痕迹,不写作法);(3)在(2)的条件下,求∠EAG的度数.图141.C 2.D 3.B 4.A5.B .6.C7.6 .8.49.(2+2,2)10.45°.11.12 12.75813.解:(1)证明:连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC.∵AE=CF,∴OA-AE=OC-CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形.(2)∵正方形ABCD的边长为4,∴BD=AC=4 2.∵AE=CF=2,∴EF=AC-2 2=2 2,∴S菱形BEDF=12BD·EF=12×4 2×2 2=8.14.解:(1)证明:连接DE,EB,BF,FD.∵两动点E,F同时以2 cm/s的速度分别从点A,C出发在线段AC上相对运动,∴AE=CF.∵平行四边形ABCD的对角线AC,BD相交于点O,∴OD=OB,OA=OC(平行四边形的对角线互相平分),∴OA-AE=OC-CF或AE-OA=CF-OC,即OE=OF,∴四边形BEDF为平行四边形(对角线互相平分的四边形是平行四边形),即以点B,E,D,F为顶点的四边形是平行四边形.(2)当点E在OA上,点F在OC上,EF=BD=12 cm时,四边形BEDF为矩形.∵运动时间为t,∴AE=CF=2t,∴EF=20-4t=12,∴t=2;当点E在OC上,点F在OA上时,EF=BD=12 cm,EF=4t-20=12,∴t=8.因此,当点E,F的运动时间t为2 s或8 s时,四边形BEDF为矩形.15.解:(1)证明:∵AD⊥BC,E,F分别是AB,AC的中点,∴在Rt△ABD中,DE=12AB=AE,在Rt△ACD中,DF=12AC=AF.又∵AB=AC,∴AE=AF=DE=DF,∴四边形AEDF是菱形.(2)如图,∵菱形AEDF的周长为12,∴AE=3.设EF=x,AD=y,则x+y=7,∴x2+2xy+y2=49.①由四边形AEDF是菱形得AD⊥EF,∴在Rt△AOE中,AO2+EO2=AE2,∴(12y)2+(12x)2=32,即x2+y2=36.②把②代入①,可得2xy=13,∴xy=132,∴菱形AEDF的面积S=12xy=134.16.解:(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠B=∠D=90°.∵将△ADE沿AE对折得到△AFE,∴AF=AD=AB,∠AFE=∠D=90°.在Rt△ABG和Rt△AFG中,AB=AF,AG=AG,)∴Rt△ABG≌Rt△AFG(HL).(2)如图所示:(3)∵△AFE≌△ADE,△ABG≌△AFG,∴∠EAF=∠EAD,∠GAF=∠GAB.∵在正方形ABCD中,∠BAD=90°,∴∠EAG=∠EAF+∠GAF=12×90°=45°.第一章:特殊的平行四边形单元测试卷(典型题汇总)(100分钟,120分)一、选择题1.下列给出的条件中,不能判断四边形ABCD是平行四边形的是()A.AB∥CD,AD=BC B.∠A=∠C,∠B=∠D C.AB∥CD,AD∥BC D.AB=CD,AD=BC 2.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,若BD、AC的和为18cm,CD:DA=2:3,△AOB的周长为13cm,那么BC的长是()A.6cm B.9cm C.3cm D.12cm3.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A.50° B.55° C.60° D.65°4.给出以下三个命题:①对角线相等的四边形是矩形;②对角线互相垂直的四边形是菱形;③对角线互相垂直的矩形是正方形;④菱形对角线的平方和等于边长平方的4倍.其中真命题的是()A.③B.①② C.②③D.③④5.如图,矩形ABCD中,E在AD上,且EF⊥EC,EF=EC,DE=2,矩形的周长为16,则AE的长是()A.3B.4 C.5 D.76.已知一矩形的两边长分别为10cm和15cm,其中一个内角的平分线分长边为两部分,这两部分的长为()A.6 cm和9 cm B.5 cm和10 cm C.4 cm和11 cm D.7 cm和8 cm7.如图,四边形ABCD的对角线互相平分,要使它成为矩形,那么需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD8.如图为菱形ABCD与△ABE的重叠情形,其中D在BE上.若AB=17,BD=16,AE=25,则DE的长度为何?()A.8 B.9 C.11 D.129.如图,边长为1的正方形ABCD绕点A逆时针旋转45度后得到正方形AB′C′D′,边B′C′与DC交于点O,则四边形AB′OD的周长是()A.2B.3 C.D.1+10.如图,正方形ABCD的面积为4,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.2B.3 C.D.二、填空题11.等边三角形、平行四边形、矩形、正方形四个图形中,既是轴对称图形又是中心对称图形的是矩形、正方形.12.已知菱形的两条对角线长分别为2cm,3cm,则它的面积是3cm2.【解答】解:∵菱形的两条对角线长分别为2cm,3cm,∴它的面积是:×2×3=3(cm2).13.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是45°.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.∵等边三角形ADE,∴AD=AE,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AE,∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°,∠BED=∠DAE﹣∠AEB=60°﹣15°=45°,故答案为:45°.14.如图,在菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于 3.5 .【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴∠AOD=90°,∵AB+BC+CD+DA=28,∴AD=7,∵H为AD边中点,∴OH=AD=3.5;15.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为5.【解答】解:过E作EM⊥AB于M,∵四边形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面积为8,∴×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE===5,三、解答题(15题12分,16题12分,17题16分)16.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,求△AEF的周长。
2021年度鲁教版八年级数学下册《第6章特殊的平行四边形》章末综合提升训练(附答案)1.在四边形ABCD中,对角线AC和BD交于点O,下列条件能判定这个四边形是菱形的是.(填序号)①.AD∥BC,∠A=∠C②.AC=BD,AB∥CD,AB=CD③.AB∥CD,AC=BD,AC⊥BD④.AO=CO,BO=DO,AB=BC2.正方形的边长与它的对角线的长度的比值为.3.如图,已知在矩形ABCD中,点E在边BC的延长线上,且CE=BD,联结AE交BD于点F,如果∠E=15°,那么∠AFB的度数为.4.如图,菱形ABCD的对角线AC与BD相交于点O.已知AB=10cm,AC=12cm.那么这个菱形的面积为cm2.5.我们把两条对角线所成两个角的大小之比是1:2的矩形叫做“和谐矩形”,如果一个“和谐矩形”的对角线长为10cm,则矩形的面积为cm2.6.如图,四边形ABCD为菱形,四边形AOBE为矩形,O,C,D三点的坐标为(0,0),(2,0),(0,1),则点E的坐标为.7.已知正方形ABCD的边长等于4cm,那么边AB的中点E到对角线BD的距离等于cm.8.如图,等边三角形AEF的顶点E,F分别落在矩形ABCD的两邻边BC、CD上,若BE =1,CE=2,则△AEF边长为.9.如图,矩形ABCD的两条对角线相交于点O,∠COB=2∠AOB,AB=8,则BC的长是.10.在矩形ABCD中,∠BAD的角平分线交于BC点E,且将BC分成1:3的两部分,若AB=2,那么BC=11.已知菱形一组对角的和为240°,较短的一条对角线的长度为4厘米,那么这个菱形的面积为平方厘米.12.已知矩形的两条对角线的夹角为60°,如果一条对角线长为6,那么矩形的面积为.13.已知正方形ABCD的边长为6,点E是边BC的中点.联接AC、DE相交于点F,M、N分别是AC、DE的中点,则MN的长是.14.已知四边形ABCD中,AD∥BC,AC=BD,如果添加一个条件,即可判定该四边形是矩形,那么所添加的这个条件可以是.15.如图,在菱形ABCD中,对角线AC、BD相交于点O,DE⊥AB,垂足为E,如果AC =8,BD=6,那么DE的长为.16.如图,在直角坐标平面内,矩形ABCD的对角线AC、BD交于原点O,且点A、C都在x轴上,点D的坐标为(4,3),那么点C的坐标为.17.如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在边BC和CD上,则∠AEB=度.18.如图,点P在边长为1的正方形ABCD边AD上,连接PB.过点B作一条射线与边DC的延长线交于点Q,使得∠QBE=∠PBC,其中E是边AB延长线上的点,连接PQ.若PQ2=PB2+PD2+1,则△P AB的面积为.19.如图,矩形ABCD中,点E在BC边上,点F在CD边上,AE平分∠BAF,且EF⊥AF 于点F.若AB=5,AD=4,则EF=.20.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=4,H是AF的中点,那么CH的长是.21.已知平行四边形ABCD,对角线AC、BD相交于点O,且CA=CB,延长BC至点E,使CE=BC,连接DE.(1)当AC⊥BD时,求证:BE=2CD;(2)当∠ACB=90°时,求证:四边形ACED是正方形.22.如图,△ABC中,AB=AC,AD平分∠BAC交BC于点D,AE平分∠BAC的外角,且∠AEB=90°.求证:四边形ADBE是矩形.23.如图,已知△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,联结EC.(1)求证:四边形ADCE是平行四边形;(2)当∠BAC=90°时,求证:四边形ADCE是菱形.24.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)求证:BD=CD;(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.25.如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC上的点,且四边形PEFD为矩形.(I)若△PCD是等腰三角形时,求AP的长;(Ⅱ)判断CF与AC有怎样的位置关系并说明理由.26.已知:如图,在△ABC中,AB=BC,∠ABC=90°,点D、E分别是边AB、BC的中点,点F、G是边AC的三等分点,DF、EG的延长线相交于点H,连接HA、HC.求证:(1)四边形FBGH是菱形;(2)四边形ABCH是正方形.27.如图,在△ABC中,∠C=90°,D为边BC上一点,E为边AB的中点,过点A作AF ∥BC,交DE的延长线于点F,连接BF.(1)求证:四边形ADBF是平行四边形;(2)当D为边BC的中点,且BC=2AC时,求证:四边形ACDF为正方形.28.已知:如图,在正方形ABCD中,点E在边BC上,点F在边CD的延长线上,且BE =DF.(1)求∠AEF的度数;(2)如果∠AEB=75°,AB=2,求△FEC的面积.29.如图,四边形ABCD中,BD垂直平分AC,垂足为点F,E为四边形ABCD外一点,且∠ADE=∠BAD,AE⊥AC(1)求证:四边形ABDE是平行四边形;(2)如果DA平分∠BDE,AB=5,AD=6,求AC的长.30.如图,已知正方形ABCD的对角线AC、BD交于点O,CE⊥AC与AD边的延长线交于点E.(1)求证:四边形BCED是平行四边形;(2)延长DB至点F,联结CF,若CF=BD,求∠BCF的大小.31.如图,点E是矩形ABCD的边AD的中点,点P是边BC上的动点,PM⊥BE,PN⊥CE,垂足分别是M、N.求:当AB和AD应满足怎样的数量关系时,四边形PMEN是矩形?请说明理由.32.如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且AE=CF.(1)求证:DE=BF;(2)若DF=BF,求证:四边形DEBF为菱形.33.如图,正方形ABCD中,点E、F分别在边BC、CD上,AE=AF,AC和EF交于点O,延长AC至点G,使得AO=OG,连接EG、FG.(1)求证:BE=DF;(2)求证:四边形AEGF是菱形.34.如图所示,在正方形ABCD中,M是CD的中点,E是CD上一点,且∠BAE=2∠DAM.求证:AE=BC+CE.35.已知:如图,在正方形ABCD中,点E为边AB的中点,联结DE,点F在DE上CF =CD,过点F作FG⊥FC交AD于点G.(1)求证:GF=GD;(2)联结AF,求证:AF⊥DE.36.已知:如图,在等边三角形ABC中,过边AB上一点D作DE⊥BC,垂足为点E,过边AC上一点G作GF⊥BC,垂足为点F,BE=CF,联结DG.(1)求证:四边形DEFG是平行四边形;(2)连接AF,当∠BAF=3∠F AC时,求证:四边形DEFG是正方形.37.已知:正方形ABCD的边长为厘米,对角线AC上的两个动点E,F.点E从点A,点F从点C同时出发,沿对角线以1厘米/秒的相同速度运动,过E作EH⊥AC交Rt△ACD的直角边于H,过F作FG⊥AC交Rt△ACD的直角边于G,连接HG,EB.设HE、EF、FG、GH围成的图形面积为S1,AE,EB,BA围成的图形面积为S2(这里规定:线段的面积为0)E到达C,F到达A停止.若E的运动时间为x秒,解答下列问题:(1)如图,判断四边形EFGH是什么四边形,并证明;(2)当0<x<8时,求x为何值时,S1=S2;(3)若y是S1与S2的和,试用x的代数式表示y.(如图为备用图)38.我们知道正方形是四条边相等,四个内角都等于90°的四边形.如图1,已知正方形ABCD,点E是边CD上一点,延长CB到点F,使得BF=DE,作∠EAF的平分线交边BC于点G.求证:BG+DE=EG.参考答案1.解:①A、∵AD∥BC,∴∠BAD+∠ABC=180°,∵∠BAD=∠BCD,∴∠BCD+∠ABC=180°,∴AB∥CD,∴四边形ABCD是平行四边形;选项①不符合题意;②、∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,又∵AC=BD,∴四边形ABCD是矩形;选项②不符合题意;③、∵AB∥CD,AC=BD,AC⊥BD,∴四边形ABCD不一定是平行四边形,∴四边形ABCD不一定是菱形;选项③不符合题意;④、∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,又∵AB=BC,∴四边形ABCD是菱形;选项④符合题意;故选:④.2.解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,AC=BD,∠ABC=90°,∴AC===AB,∴=;故答案为:.3.解:连接AC交BD于点O,如图所示:∵四边形ABCD是矩形,∴OA=OC=AC,OB=OD=BD,AC=BD,∴OB=OC,∴∠OBC=∠OCB,∵CE=BD,∴AC=CE,∴∠CAE=∠E=15°,∴∠OBC=∠OCB=∠CAE+∠E=30°,∴∠AFB=∠OBC+∠E=30°+15°=45°;故答案为:45°.4.解:∵四边形ABCD为菱形,∴AC⊥BD,OA=OC=AC=6cm,OB=OD,∴OB===8(cm),∴BD=2OB=16cm,S菱形ABCD=AC•BD=×12×16=96(cm2).故答案为:96.5.解:∵四边形ABCD是“和谐矩形”,∴OA=OC,OB=OD,AC=BD=10,∠BAD=90°,∠CAD:∠BAC=1:2,∴OA=OD,∠CAD=30°,∠BAC=60°,∴∠ADB=∠CAD=30°,∴AB=BD=5,AD=AB=5,∴矩形ABCD的面积=AB×AD=5×5=25(cm2);故答案为:25.6.解:∵O,C,D三点的坐标为(0,0),(2,0),(0,1),∴OC=2,OD=1,∵四边形ABCD是菱形,∴OA=OC=2,OB=OD=1,∵四边形AOBE为矩形,∴∠EAO=∠EBO=90°,EB=OA=2,EA=OB=1,∵E在第二象限,∴E点的坐标是(﹣2,﹣1),故答案为:(﹣2,﹣1).7.解:∵四边形ABCD是正方形,∴AB=BC=4cm,∠EBF=45°,∵EF⊥BD,∴△EBF是等腰直角三角形,∵E是AB的中点,∴EB=2cm,∴EF=cm,故答案为:.8.解:设DF=x,CF=y,∵四边形ABCD是矩形,∴∠D=∠C=∠B=90°,DC=AB=x+y,AD=BC=BE+CE=1+2=3,∵△AEF是等边三角形,∴AE=EF=AF,∴12+(x+y)2=22+y2=x2+32,由12+(x+y)2=22+y2得:y=,代入22+y2=x2+32,整理得:3x4+26x2﹣9=0,解得:x2=,∴AF2=x2+32=,∴AF=;故答案为:.9.解:∵四边形ABCD是矩形,∴AO=OC,BO=OD,AC=BD,∴OA=OB,∵∠BOC=2∠AOB,∠BOC+∠AOB=180°∴∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=AB=8,∴AC=BD=2AO=16,则BC==8.故答案是:8.10.解:①如图1中,∵四边形ABCD是矩形,AE平分∠BAD,∴∠BAE=∠AEB=45°,∴AB=BE=2,当EC=3BE时,EC=6,∴BC=8.②如图2中,当BE=3EC时,EC=,∴BC=BE+EC=.故答案为8或11.解:如图,∵四边形ABCD是菱形,∠BAD+∠BCD=240°,∴∠BAD=∠BCD=120°,∠ABC=∠ADC=60°∵AB=BC=AD=DC,∴△ABC,△ADC是等边三角形,∴AB=BC=AC=4,∴S菱形ABCD=2•S△ABC=2××42=8,故答案为8.12.解:矩形的两条对角线的夹角为:∠1=60°,∵矩形对角线相等且互相平分,∴△AOB为等边三角形,∴AB=AO=AC=3,在直角△ABC中,AC=6,AB=3,∴BC=,故矩形的面积为:3×3=9.故答案为:9.13.解:连接BD,∵E是边BC的中点,∴BE=BC=3,∵四边形ABCD是正方形,∴M是BD的中点,又N是DE的中点,∴MN=BE=1.5,故答案为:1.5.14.解:当AD=BC或AB∥CD时,四边形ABCD是矩形.理由:∵AD∥BC,∴当AD=BC或AB∥CD时,四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形.15.解:∵四边形ABCD是菱形,AC=8,BD=6,∴AC⊥OD,AO=AC=4,BO=BD=3,∴由勾股定理得到:AB==5.又∵AC•BD=AB•DE.∴DE=4.8.故答案为:4.8.16.解:过点D,作DE⊥OC于点E,∵点D的坐标为(4,3),∴OE=4,DE=3,∴OD==5,∵四边形ABCD是矩形,∴OD=OC=AC=BD,∴点C的坐标为(5,0),故答案为:(5,0).17.解:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=∠BAD=90°,在Rt△ABE和Rt△ADF中,,∴△ABE≌△ADF,∴∠BAE=∠DAF=(90°﹣60°)÷2=15°,∴∠AEB=75°,故答案为75.18.解:∵∠QBE=∠PBC,∠QBE+∠QBC=90°,∴∠PBQ=∠PBC+∠QBC=90°,∵∠PBC+∠PBA=90°,∴∠PBA=∠QBC,在Rt△P AB和Rt△QCB中,,∴△P AB≌△QCB(ASA),∴QC=P A,设正方形的边长AB=a,P A=x,则QC=x,∴DQ=DC+QC=a+x,PD=AD﹣P A=a﹣x,在Rt△P AB中,PB2=P A2+AB2=x2+a2,∵PQ2=PB2+PD2+1,∴(a﹣x)2+(a+x)2=x2+a2+(a﹣x)2+1,解得:2ax=1,∴ax=,∵△P AB的面积S=P A•PB=ax=×=.故答案为:.19.解:∵AE平分∠BAF,且EF⊥AF,∠B=90°∴EF=EB在Rt△ABE和Rt△AFE中∴Rt△ABE≌Rt△AFE(HL)∴AF=AB=5又∵AD=4,∠D=90°∴Rt△ADE中,DF==3∴CF=5﹣3=2设EF=EB=x,则CE=4﹣x在Rt△CEF中,22+(4﹣x)2=x2解得x=即EF=故答案为:20.解:过H作HM⊥BE于M,则∠HMC=90°,∵正方形ABCD和正方形CEFG,∴AB=BC=1,EF=CE=4,∠B=∠E=90°,∴HM∥AB∥FE,∵H为AF大的中点,∴M为BE的中点,∴HM=(AB+EF)=(1+4)=,∵BC=1,CE=2,∴BM=2.5,∴CM=1.5,在Rt△HMC中,由勾股定理得:CH==,故答案为:.21.(1)证明:∵四边形ABCD是平行四边形,又∵AC⊥BD,∴四边形ABCD是菱形.∴BC=CD.又∵CE=BC,∴BE=2BC,∴BE=2CD;(2)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BE,又∵CE=BC,∴AD=CE,AD∥CE,∴四边形ACED是平行四边形.∵∠ACB=90°,∴平行四边形ACED是矩形,又∵CA=CB,∴CA=CE,∴矩形ACED是正方形.22.证明:∵AD是∠BAC的平分线,∵AE是∠BAF的平分线,∴∠3=∠4,∵∠1+∠2+∠3+4=180°,∴∠2+∠3=90°,即∠DAE=90°,∵AB=AC,∠1=∠2,∴AD⊥BC,即∠ADB=90°,∵∠AEB=90°,∴四边形ADBE是矩形.23.(1)证明:∵AE∥BC,DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD,∵AD是边BC上的中线,∴BD=DC,∴AE=DC,又∵AE∥BC,∴四边形ADCE是平行四边形,(2)∵∠BAC=90°,AD是边BC上的中线.∴AD=CD,∵四边形ADCE是平行四边形,∴四边形ADCE是菱形,24.证明:(1)∵AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,,∴△AEF≌△DEC(AAS),∵AF=BD,∴BD=CD;(2)四边形AFBD是矩形.理由:∵AB=AC,D是BC的中点,∴AD⊥BC,∴∠ADB=90°∵AF=BD,∵过A点作BC的平行线交CE的延长线于点F,即AF∥BC,∴四边形AFBD是平行四边形,又∵∠ADB=90°,∴四边形AFBD是矩形.25.解:(I)在矩形ABCD中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,∴AC==10,要使△PCD是等腰三角形,①当CP=CD时,AP=AC﹣CP=10﹣6=4,②当PD=PC时,∠PDC=∠PCD,∵∠PCD+∠P AD=∠PDC+∠PDA=90°,∴∠P AD=∠PDA,∴PD=P A,∴P A=PC,∴AP=AC=5,③当DP=DC时,如图1,过点D作DQ⊥AC于Q,则PQ=CQ,∵S△ADC=AD•DC=AC•DQ,∴DQ==,∴CQ==,∴PC=2CQ=,∴AP=AC﹣PC=10﹣=;所以,若△PCD是等腰三角形时,AP的长为4或5或;(Ⅱ)CF⊥AC,理由如下:如图2,连接PF,DE,记PF与DE的交点为O,连接OC,∵四边形ABCD和PEFD是矩形,∴∠ADC=∠PDF=90°,∴∠ADP+∠PDC=∠PDC+∠CDF,∴∠ADP=∠CDF,∵∠BCD=90°,OE=OD,∴OC=ED,在矩形PEFD中,PF=DE,∴OC=PF,∵OP=OF=PF,∴OC=OP=OF,∴∠OCF=∠OFC,∠OCP=∠OPC,∵∠OPC+∠OFC+∠PCF=180°,∴2∠OCP+2∠OCF=180°,∴∠PCF=90°,∴CF⊥AC.26.证明:(1)∵点F、G是边AC的三等分点,∴AF=FG=GC.又∵点D是边AB的中点,∴DH∥BG.同理:EH∥BF.∴四边形FBGH是平行四边形,连接BH,交AC于点O,∴OF=OG,∴AO=CO,∵AB=BC,∠ABC=90°,∴四边形FBGH是菱形;(2)∵四边形FBGH是平行四边形,∴BO=HO,FO=GO.又∵AF=FG=GC,∴AF+FO=GC+GO,即:AO=CO.∴四边形ABCH是平行四边形.∵AC⊥BH,AB=BC,∴四边形ABCH是正方形.27.(1)证明:∵AF∥BC,∴∠AFE=∠BDE,在△AEF与△BED中,,∴△AEF≌△BED,∴AF=BD,∵AF∥BD,∴四边形ADBF是平行四边形;(2)解:∵CD=DB,AE=BE,∴DE∥AC,∴∠FDB=∠C=90°,∵AF∥BC,∴∠AFD=∠FDB=90°,∴∠C=∠CDF=∠AFD=90°,∴四边形ACDF是矩形,∵BC=2AC,CD=BD,∴CA=CD,∴四边形ACDF是正方形.28.解:(1)由正方形ABCD,得AB=AD,∠B=∠ADF=∠BAD=90°,在△ABE和△ADF中,,∴△ABE≌△ADF,∴∠BAE=∠F AD,AE=AF.∴∠BAD=∠BAE+∠EAD=∠F AD+∠EAD=90°.即得∠EAF=90°,又∵AE=AF,∴∠AEF=∠AFE=45°.(2)∵∠AEB=75°,∠AEF=45°,∴∠BEF=120°.即得∠FEC=60°,由正方形ABCD,得∠C=90°.∴∠EFC=30°.∴EF=2EC,设EC=x.则EF=2x,BE=DF=2﹣x,CF=4﹣x.在Rt△CEF中,由勾股定理,得CE2+CF2=EF2.即得x2+(4﹣x)2=4x2.解得x1=2﹣2,x2=﹣2﹣2(不合题意,舍去).∴EC=2﹣2,CF=6﹣2.∴S△CEF==,∴△FEC的面积为.29.(1)证明:∵∠ADE=∠BAD,∴AB∥DE,∵AE⊥AC,BD⊥AC,AE∥BD,∴四边形ABDE是平行四边形;(2)解:∵DA平分∠BDE,∴∠AED=∠BDA,∴∠BAD=∠BDA,∴BD=AB=5,设BF=x,则DF=5﹣x,∴AD2﹣DF2=AB2﹣BF2,∴62﹣(5﹣x)2=52﹣x2,∴x=,∴AF==,∴AC=2AF=.30.(1)证明:∵四边形ABCD是正方形,∴AC⊥DB,BC∥AD,∵CE⊥AC,∴∠AOD=∠ACE=90°,∴BD∥CE,∴四边形BCED是平行四边形;(2)解:连接AF,∵四边形ABCD是正方形,∴BD⊥AC,BD=AC=2OB=2OC,即OB=OC,∴∠OCB=45°,∵Rt△OCF中,CF=BD=2OC,∴∠OFC=30°,∴∠BCF=60°﹣45°=15°.31.解:当AD=2AB时.四边形PMEN为矩形;理由如下:∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=DC,又∵点E是矩形ABCD的边AD的中点.∴AE=DE,在△ABE和△CDE中,,∴△ABE≌△DCE(SAS),∴∠AEB=∠DEC,∵四边形PMEN为矩形,∴∠BEC=90°,∴∠AEB=∠DEC=45°∴AE=DE=DC,即AD=2AB.∴当AD=2AB时;四边形PMEN为矩形.32.证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,又∵AE=CF,∴△ADE≌△CBF,∴DE=BF;(2)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∵AE=CF,∴BE=DF,BE∥DF,∴四边形DEBF是平行四边形.∵DF=BF,∴平行四边形DEBF是菱形.33.证明:(1)∵四边形ABCD是正方形,∴∠B=∠D=90°,AD=AB,在Rt△ABE和Rt△ADF中,∴Rt△ABE≌Rt△ADF(HL),∴EB=DF;(2)∵四边形ABCD是正方形,∴BC=DC,∵EB=DF,∴EC=FC,∴AC垂直平分EF,∵AO=GO,∴四边形AEGF是菱形.34.证明:取BC的中点F,连接AF,过点F作FH⊥AE于H,连接EF.∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=∠C=90°,∵M是CD的中点,∴BF=DM,在△ABF和△ADM中,,∴△ABF≌△ADM(SAS),∴∠BAF=∠DAM,∵∠BAE=2∠DAM,∴∠BAF=∠HAF,∵∠AHF=∠B=90°,∴∠AFB=∠AFH,BF=FH,∴AB=AH,∴FH=FC,∵∠FHE=∠C=90°,在Rt△CFE和Rt△HFE中,,∴Rt△CFE≌Rt△HFE(HL),∴EH=CE,∴AE=AH+HE=AB+CE=BC+CE.35.证明:(1)∵四边形ABCD是正方形,∴∠ADC=90°,∵FG⊥FC,∴∠GFC=90°,∵CF=CD,∴∠CDF=∠CFD,∴∠GFC﹣∠CFD=∠ADC﹣∠CDE,即∠GFD=∠GDF,∴GF=GD.(2)联结CG.∵CF=CD,GF=GD,∴点G、C在线段FD的中垂线上,∴GC⊥DE,∴∠CDF+∠DCG=90°,∵∠CDF+∠ADE=90°,∴∠DCG=∠ADE.∵四边形ABCD是正方形,∴AD=DC,∠DAE=∠CDG=90°,∴△DAE≌△CDG,∴AE=DG,∵点E是边AB的中点,∴点G是边AD的中点,∴AG=GD=GF,∴∠DAF=∠AFG,∠GDF=∠GFD,∵∠DAF+∠AFG+∠GFD+∠GDF=180°,∴2∠AFG+2∠GFD=180°,∴∠AFD=90°,即AF⊥DE.法2:(1)联结CG交ED于点H.∵四边形ABCD是正方形,∴∠ADC=90°,∵FG⊥FC,∴∠GFC=90°,在Rt△CFG与Rt△CDG中,,∴Rt△CFG≌Rt△CDG,∴GF=GD.(2)∵CF=CD,GF=GD,∴点G、C在线段FD的中垂线上,∴FH=HD,GC⊥DE,∴∠EDC+∠DCH=90°,∵∠ADE+∠EDC=90°,∴∠ADE=∠DCH,∵四边形ABCD是正方形,∴AD=DC=AB,∠DAE=∠CDG=90°,∵∠ADE=∠DCH,AD=DC,∠EAD=∠GDC.∴△ADE≌△DCG,∴AE=DG,∵点E是边AB的中点,∴点G是边AD的中点,∵点H是边FD的中点,∴GH是△AFD的中位线,∴GH∥AF,∴∠AFD=∠GHD,∵GH⊥FD,∴∠GHD=90°,∴∠AFD=90°,即AF⊥DE.36.证明:(1)在等边三角形ABC中,∵DE⊥BC,GF⊥BC,∴∠DEF=∠GFC=90°,∴DE∥GF,∵∠B=∠C=60°,BE=CF,∠DEB=∠GFC=90°,∴△BDE≌△CGF,∴DE=GF,∴四边形DEFG是平行四边形;(2)在平行四边形DEFG中,∵∠DEF=90°,∴平行四边形DEFG是矩形,∵∠BAC=60°,∠BAF=3∠F AC,∴∠GAF=15°,在△CGF中,∵∠C=60°,∠GFC=90°,∴∠CGF=30°,∴∠GF A=15°,∴∠GAF=∠GF A,∴GA=GF,∵DG∥BC,∴∠ADG=∠B=60°,∴△DAG是等边三角形,∴GA=GD,∴GD=GF,∴矩形DEFG是正方形.37.解:(1)四边形EFGH是矩形.理由如下:∵点E从点A,点F从点C同时出发,沿对角线以1厘米/秒的相同速度运动,∴AE=CF.∵EH⊥AC,FG⊥AC,∴EH∥FG.∵ABCD为正方形,∴AD=DC,∠D=90°,∠GCF=∠HAE=45°,又∵EH⊥AC,FG⊥AC,∴∠CGF=∠AHE=45°,∴∠GCF=∠CGF,∠HAE=∠AHE,∴AE=EH,CF=FG,∴EH=FG,∴四边形EFGH是平行四边形,又∵EH⊥AC∴平行四边形EFGH是矩形;(2)∵正方形边长为,∴AC=16.∵AE=x,连接BD交AC于O,则BO⊥AC且BO=8,∴S2=•AE•BO=4x.∵CF=GF=AE=x,∴EF=16﹣2x,∴S1=EF•GF=x(16﹣2x).当S1=S2时,x(16﹣2x)=4x,解得x1=0(舍去),x2=6.∴当x=6时,S1=S2;(3)①当0≤x<8时,y=x(16﹣2x)+4x=﹣2x2+20x.②当8≤x≤16时,AE=x,CE=HE=16﹣x,EF=16﹣2(16﹣x)=2x﹣16.∴S1=(16﹣x)(2x﹣16).∴y=(16﹣x)(2x﹣16)+4x=﹣2x2+52x﹣256.综上,可知y=.38.证明:∵四边形ABCD是正方形,∴AD=AB,∠D=∠ABC=90°,∴∠ABF=∠D=90°,在△ABF与△ADE中,,∴△ABF≌△ADE,∴AE=AF,∵AG平分∠EAF,∴∠F AG=∠EAG,∵AG=AG,∴△EAG≌△F AG,∴EG=FG=BF+BG=DE+BG;。
1
第10题图
(特殊)平行四边形综合题
一、选择题。
1.下列说法不正确...的是( )
A.一组邻边相等的矩形是正方形 B.对角线相等的菱形是正方形
C.对角线互相垂直的矩形是正方形 D.有一个角是直角的平行四边形是正方形
2.下列说法中,你认为正确的是( )
A.四边形具有稳定性 B.等边三角形是中心对称图形
C.任意多边形的外角和是360o D.矩形的对角线一定互相垂直
3.下列命题中正确的是( )
A.对角线相等的四边形是菱形 B.对角线互相垂直的四边形是菱形
C.对角线相等的平行四边形是菱形 D.对角线互相垂直的平行四边形是菱形
4.菱形的周长为8cm,高为1cm,则菱形两邻角度数比为( )
A.3:1 B.4:1 C.5:1 D.6:1
5.点A、B、C是平面内不在同一条直线上的三点,点D是平面内任意一点,若A、B、C、D四点恰能构成一个平行
四边形,则在平面内符合这样条件的点D有 ( )
A.1个 B.2个 C.3个 D.4个
6.四边形ABCD的对角线互相平分,要使它成为矩形,那么需要添加的条件是( )
A.ABCD B.ADBC C.ABBC D.ACBD
7. 已知四边形ABCD,有以下四个条件:①//ABCD;②ABCD;③//BCAD;④BCAD.从这四
个条件中任选两个,能使四边形ABCD成为平行四边形的选法种数共有( )
A.6种 B.5种 C.4种 D.3种
8.如图6,在□ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延
长线于点F,BG⊥AE,垂足为G,BG=24,则ΔCEF的周长为( )
A.8 B.9 C.10 D.11
9.若菱形两条对角线的长分别为6和8,则这个菱形的周长为( )
A.20 B.16 C.12 D. 10
10. 如图,菱形ABCD中,∠B=60°,AB=2㎝,E、F分别是BC、CD的中点,连结
AE、EF、AF,则△AEF
的周长为( )
A.32㎝ B.33㎝ C.34㎝ D.3㎝
11.矩形ABCD中,E、F、M为AB、BC、CD边上的点,且AB=6,BC=7,AE=3,DM=2,
EF⊥FM,则EM的长为( )
A.5 B.25 C.6 D.26
12.如图,点P是矩形ABCD的边AD的一个动点,矩形的两条边AB、BC的长分别为
3和4,那么点P到矩形的两条对角线AC和BD的距离之和是( )
A.125 B.65 C.245 D.不确定
13题图
A
P
E
D
C
B
第20题
A
BD
C
O
E
C
D
E
F
B
A
第21题
13.已知:如图,在正方形ABCD外取一点E,连接AE,BE,DE.过点A作AE的垂线交ED于点P.
若1AEAP, 5PB.下列结论:
① △APD≌△AEB;②点B到直线AE的距离为2;
② ③EBED;④16APDAPBSS;⑤46ABCDS正方形.
其中正确结论的序号是( )
A.①③④ B.①②⑤ C.③④⑤ D.①③⑤
14.如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,
将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;再将其中的
一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;...,根据以上操作,
若要得到2011个小正方形,则需要操作的次数是( )
A.669 B.670 C.671 D. 672
15.正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段
DK
上,正方形BEFG的边长为4,则DEK的面积为( )
A.10 B.12 C.14 D.16
16.如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三
角形.则展开后三角形的周长是( ).
A.2+10 B.2+210 C.12 D.18
二、填空题。
18.如图,在□ABCD中,AE=EB,AF=2,则FC等于_____.
19.(2010青海西宁)如图,在□ABCD中,对角线AC、BD相交于点O,如果AC=14,BD=8,AB=x ,那么x的
取值范围是 .
20.(2010浙江嘉兴)如图,已知菱形ABCD的一个内角80BAD,对角线AC、BD相交于点O,点E在AB上,
且BOBE,则EOA= 度.
21.如图,矩形ABCD中,AB=8cm,BC=4cm,E是DC的中点,
BF=41BC,则四边形DBFE
的面积为 2cm.
第18题图
F
A E B
C D
①
②
3
4
10
第14题
第19题
O
F
E
D
C
B
A
E
D
C
B
A
三、解答题。
22.已知矩形ABCD中,对角线AC、BD相交于点O,E、F是对角线BD上的两点,且DEBF.
(1)按边分类,AOB是 三角形;
(2)猜想线段AE、CF的大小关系,并证明你的猜想.
23.如图,已知平行四边形ABCD,DE是ADC的角平分线,交BC于点E.
(1)求证:CDCE;
(2)若BECE,80B,求DAE的度数.
24.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.
(1) 求∠ABD 的度数;
(2)求线段BE的长.
25.已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.
(1)求证:BE = DF;
(2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?
并证明你的结论.
D
A
B
C
O
E
60