高一物理牛顿第二定律4
- 格式:ppt
- 大小:517.00 KB
- 文档页数:16
高一物理什么是牛顿第二定律高一物理:牛顿第二定律在学习物理的过程中,我们经常会听到牛顿三大运动定律的名字。
其中,牛顿第二定律是非常重要的一个定律,它描述了物体受力时的运动状态。
那么,究竟什么是牛顿第二定律呢?本文将向您介绍牛顿第二定律的定义、公式及其应用。
一、牛顿第二定律的定义牛顿第二定律是描述物体受力时的运动状态的定律。
简而言之,它表达了物体受力与加速度之间的关系。
它的数学表达式为:F = ma其中,F代表物体所受的合力,m代表物体的质量,a代表物体的加速度。
这个公式说明了,物体所受的合力与物体的质量成正比,与物体的加速度成正比。
即,合力越大,物体的加速度越大;物体的质量越大,物体的加速度越小。
二、牛顿第二定律的公式及单位在牛顿第二定律的公式中,力的单位是牛顿(N),质量的单位是千克(kg),加速度的单位是米每秒平方(m/s²)。
因此,公式中的单位是符合国际标准的。
我们通常使用这些单位来进行物理计算。
在实际应用中,我们经常遇到各种不同的情况和问题。
下面,我们将结合一些典型的案例来理解和应用牛顿第二定律。
三、牛顿第二定律的应用举例1. 简单案例假设一个质量为2kg的物体受到了一个10N的力,我们可以使用牛顿第二定律来计算物体的加速度。
根据公式 F = ma,将已知数据代入,可以得到:10N = 2kg × a解方程可得,物体的加速度为5m/s²。
这个加速度说明了,这个物体在受到10N的力作用下,将以每秒5米的速度增加。
2. 自由落体牛顿第二定律的应用还可以用来解释自由落体运动。
自由落体是指在重力作用下,物体不受其他力的影响而自由下落的运动。
根据牛顿第二定律,我们可以得出重力与物体质量之间的关系:F = mg其中,m为物体的质量,g为重力加速度,约为9.8m/s²。
由此可见,重力的大小与物体的质量成正比。
质量越大的物体,受到的重力作用越大。
同时,利用牛顿第二定律还可以推导出自由落体运动的速度和位移关系。
最新高中物理牛顿第二定律经典例题(精彩4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、演讲发言、策划方案、合同协议、心得体会、计划规划、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, speeches, planning plans, contract agreements, insights, planning, emergency plans, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!最新高中物理牛顿第二定律经典例题(精彩4篇)练习题从狭义上讲,练习题是以巩固学习效果为目的要求解答的问题;从广义上讲,练习题是指以反复学习、实践,以求熟练为目的的问题,包括生活中遇到的麻烦、难题等。
牛顿第二定律一、牛顿第二定律1. 定律内容:物体的加速度a 跟物体所受的合外力F成正比,跟物体的质量m 成反比,加速度的方向跟合外力的方向相同.2. 公式:F 合=ma3. 关于牛顿第二定律的理解:3.1 因果性:力是物体产生加速度的原因,加速度是力作用在物体上所产生的一种效果;3.2 瞬时性:加速度与合外力在每个瞬时都有大小、方向上的对应关系,这种对应关系表现为:合外力恒定不变时,加速度也保持不变。
合外力变化时加速度也随之变化。
合外力为零时,加速度也为零;3.3 矢量性:牛顿第二定律公式是矢量式。
公式mF a 只表示加速度与合外力的大小关系.矢量式的含义在于加速度的方向与合外力的方向始终一致;3.4 同一性:加速度与合外力及质量的关系,是对同一个物体(或物体系)而言。
即 F与a 均是对同一个研究对象而言;3.5 相对性:牛顿第二定律只适用于惯性参照系(匀速或静止的参考系);3.6 独立性,用牛顿第二定律处理物体在一个平面内运动的问题时,可将物体所受各力正交分解,在正交的方向上分别应用牛顿第二定律的分量形式:F x =ma x ,F y =ma y 列方程;3.7 局限性:牛顿第二定律只适用于低速运动的宏观物体,不适用于高速运动的微观粒子;4. 牛顿第二定律确立了力和运动的关系【例1】下列对牛顿第二定律的表达式F =ma 及其变形公式的理解,正确的是( ).A .由F =ma 可知,物体受到的合外力与物体的质量成正比,与物体的加速度成反比.B .由m =F/a 可知,物体的质量与其受到的合外力成正比,与其运动的加速度成反比.C .由a =F/m 可知,物体的加速度与其受到的合外力成正比,与其质量成反比.D .由m =F/a 可知,物体的质量可以通过测出它的加速度和它所受的合外力而求得.【例2】静止在光滑水平面上的物体,受到一个水平拉力的作用,当力刚开始作用的瞬间,下列说法正确的是 ( )A.物体同时获得速度和加速度B.物体立即获得加速度,但速度仍为零C.物体立即获得速度,但加速度仍为零D.物体的速度和加速度都仍为零【例3】由牛顿第二定律可知,无论多么小的力都可以使物体产生加速度,但用较小的力去推地面上很重的物体时,物体仍静止,这是因为:A 推力小于摩擦力B 物体有加速度,但太小,不易被察觉C 推力小于物体的重力D 物体所受合外力为零【例4】已知甲物体受到2N的力作用时,产生的加速度为4m/s2,乙物体受到3N的力作用时,产生的加速度为6m/s2,则甲、乙物体的质量之比m甲,m乙等于A.1:3 B.2:3 C.1:1 D.3:2二、动力学的两类基本问题1.已知受力情况求运动情况;2.已知运动情况求受力情况3.在这两类问题中,加速度是了解力和运动的桥梁,受力分析是解决问题的关键.【例5】一物体初速度v0=5 m/s,沿着倾角37°的斜面匀加速向下运动,若物体和斜面间的动摩擦因数为0.25,求3 秒末的速度(斜面足够长)( )A.12 m/s B.15 m/s C.17 m/s D.20 m/s【例6】用一水平恒力将质量为250 kg 的木箱由静止开始沿水平地面推行50 m,历时10 s,若物体受到阻力是物重的0.1 倍,则外加的推力多大?(g 取10 m/s2)【例7】水平桌面上质量为1kg的物体受到2N的水平拉力,产生1.5m/s2的加速度。
高一物理必考知识点牛顿第二定律的应用高一物理必考知识点牛顿第二定律的应用牛顿第二定律是经典力学中的一个重要定律,也是高一物理学习的必考知识点之一。
本文将从牛顿第二定律的基本原理出发,介绍一些常见的应用场景及计算方法,并探讨其重要性。
一、牛顿第二定律的基本原理牛顿第二定律的表达式为F=ma,其中F 表示物体所受合力的大小,a 表示物体的加速度,m 表示物体的质量。
这个定律说明了力与物体的质量和加速度之间的关系。
当物体所受合力增大时,其加速度也会增大;当物体的质量增大时,其加速度会减小。
二、常见的牛顿第二定律应用场景及计算方法1. 平面运动中物体的加速度计算在平面运动中,当物体所受合力已知时,可以利用牛顿第二定律计算物体的加速度。
首先确定物体所受的合力,然后根据 F=ma 计算加速度。
2. 弹簧弹性伸缩力的计算弹簧的弹性伸缩力可以利用牛顿第二定律进行计算。
当物体受到垂直于弹簧伸缩方向的外力时,可以根据 F=ma 计算出物体所受的合力。
然后利用胡克定律 F=-kx(其中 k 表示弹簧的弹性系数,x 表示弹簧的伸缩量)计算出弹簧的弹性伸缩力。
3. 坡道上物体的加速度计算当物体置于斜坡上时,可以利用牛顿第二定律计算物体在坡道上的加速度。
首先确定物体所受的合力,然后根据 F=ma 计算加速度。
需要注意的是,斜坡上的合力包括物体自身重力以及由坡度引起的垂直于坡面的力。
4. 电梯内物体的加速度计算电梯内的物体受到的合力包括物体的重力以及电梯提供的力。
通过设置参考系,可以将问题简化为一个自由下落或上升的问题。
根据物体所受的合力确定加速度,然后利用牛顿第二定律计算出加速度的大小。
三、牛顿第二定律的重要性牛顿第二定律在解决物体运动问题中起着重要的作用。
通过运用牛顿第二定律,我们可以准确地计算物体的加速度,并进一步了解物体受力、受力方向以及运动状态的变化。
同时,牛顿第二定律也为其他物理定律的推导提供了基础。
牛顿第二定律应用广泛,不仅在经典力学中有重要地位,还在其他学科中也有广泛应用。