2019届全国新高三摸底联考数学(文)试题
- 格式:doc
- 大小:11.97 MB
- 文档页数:10
2019届高三数学(文)二模试卷有解析数学试题(文)第I卷(选择题,共60分)一、选择题:本大题共12小题.每小题5分。
满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合M= { } ,N= {-2,-1,0,1,2},则等于A. {1}B. {-2,-1}C. {1,2}D. {0,1,2}2.设是虚数单位,则复数的模是A.10B.C.D.3. 己知是等差数列{ }的前n项和,,则A.20B.28C.36D.44.函数,若实数满足,则A.2B.4C. 6D.85. 如图,正三棱柱ABC—A1B1C1的侧棱长为a,底面边长为b,一只蚂蚁从点A出发沿每个侧面爬到A1,路线为A-M-N-A1,则蚂蚁爬行的最短路程是A. B.C. D.6. 函数的图象的大致形状是7.“勾股圆方图”是我国古代数学家赵爽设计的一幅用来证明勾股定理的图案,如图所示在“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个大正方形。
若直角三角形中较小的锐角满足,则从图中随机取一点,则此点落在阴影部分的概率是A. B.C. D.8.为了计算,设计如图所示的程序框图,则在空白框中应填入A.B.C.D.9.若函数在R上的最大值是3,则实数A.-6B. -5C.-3D. -210. 直线是抛物线在点(-2,2)处的切线,点P是圆上的动点,则点P 到直线的距离的最小值等于A.0B.C. D.11.如图是某个几何体的三视图,根据图中数据(单位:cm) 求得该几何体的表面积是A. B.C. D.12.将函数的图象向左平移个单位后得到函数的图象,且函数满足,则下列命题中正确的是A.函数图象的两条相邻对称轴之间距离为B.函数图象关于点( )对称C.函数图象关于直线对称D.函数在区间内为单调递减函数二、填空题:本大题共4小题,每小题5分,满分20分。
13.向量与向量(-1,2)的夹角余弦值是.14. 若双曲线的一条渐近线方程是,则此双曲线的离心率为.15.设实数满足不等式,则函数的最大值为.16.在△ABC中,AB= 1,BC = ,C4 = 3, 0为△ABC的外心,若,其中,则点P的轨迹所对应图形的面积是.三、解答题:本大题满分60分。
2019届全国新高三原创试卷文科数学本试题卷共8页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、考试范围:高考范围。
2、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
3、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
6、考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合M ={}4x x ≤,N ={}2log x y x =,则M N ⋂=( ) A .[)4,+∞ B .(],4-∞ C .()0,4 D .(]0,42. “1a =”是“关于x 的方程230x x a -+=有实数根”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3. z 为复数z 的共轭复数,i 为虚数单位,且1i z i ⋅=-,则复数z 的虚部为( ) A .i - B .-1 C .i D .14. 下列说法中正确的是A. 先把高三年级的2000名学生编号:1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为m ,然后抽取编号为 150,100,50+++m m m 的学生,这样的抽样方法是分层抽样法B. 线性回归直线a x b yˆˆˆ+=不一定过样本中心点),(y x C. 若两个随机变量的线性相关性越强,则相关系数r 的值越接近于1 D.若一组数据1、a 、3的平均数是2,则该组数据的方差是325. 已知命题p :),0(0+∞∈∃x ,使得00169x x -=,命题q : +∈∀N x ,0)1(2>-x 都有,则下列命题为真命题的是( )A.q p ∧B.q p ∨⌝)( C.()q p ⌝⌝∧)( D.())(q p ⌝⌝∨6. 若3cos()45πα-=,则s 2in α=( )A .725B .37 C.35- D .357. 执行如图所示的程序框图后,输出的值为4,则p 的取值范围是( ) A .3748p <≤ B .516p > C .75816p ≤< D .75816p <≤8. 设0.60.3a =,0.60.5b =,3log 4c ππ=,则( )A .b a c >>B .a b c >>C .c b a >>D .c b a >>9. 某几何体的三视图如图所示,其中俯视图中六边形ABCDEF 是边长为1的正六边形,点G为AF 的中点,则该几何体的外接球的表面积是( )A.316π B. 318π C. 48164π10. 设向量(,1)a x =,(1,3)b =-,且a b ⊥,则向量3a b -与b 的夹角为( ) A .6π B .3π C .23π D .6π5 11. 已知F 1、F2是双曲线E :﹣=1(a >0,b >0)的左、右焦点,点M 在E 的渐近线上,且MF 1与x 轴垂直,sin ∠MF 2F 1=,则E 的离心率为() A.B.C .D .212. 已知函数()3,02sin cos ,0x x x f x x x x ⎧+>=⎨≤⎩ ,则下列结论正确的是 ( )A .()f x 是奇函数B .()f x 是增函数C .()f x 是周期函数D .()f x 的值域为[1,)-+∞ 二、填空题:本题共4小题,每小题5分,共20分。
2019届全国新高三原创试卷文科数学(二)本试题卷共4页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝你考试顺利★注意事项:1、考试范围:高考考查范围。
2、答题前,先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的一律无效。
4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非主观题答题区域的一律无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的一律无效。
6、本科目考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合1=1A x x ⎧⎫<⎨⎬⎩⎭,{}2=4B x y x =,则A B =( ) A .(),1-∞ B .()1,+∞ C .()0,1 D .()0,+∞【答案】B2.若复数z 满足()2i 17i z +=+,则z =( )A B .C D .2【答案】A3.阅读程序框图,该算法的功能是输出( )A .数列{}21n-的第4项B .数列{}21n-的第5项C .数列{}21n-的前4项的和D .数列{}21n-的前5项的和【答案】B4.在ABC △中,AD AB ⊥,33CD DB ==,1AD =,则=AC AD ⋅( ) A .1 B .2C .3D .4【答案】D5.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自黑色部分的概率为( )A .932B .516C .38D .716【答案】C6.已知n S 是等差数列{}n a 的前n 项和,则“n n S na <对2n ≥恒成立”是“数列{}n a 为递增数列”的( ) A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必条件【答案】A7.将标号为1,2,…,20的20张卡片放入下列表格中,一个格放入一张卡片,选出每列标号最小的卡片,将这些卡片中标号最大的数设为a ;选出每行标号最大的卡片,将这些卡片中标号最小的数设为b .甲同学认为a 有可能比b 大,乙同学认为a 和b 有可能相等,那么甲乙两位同学的说法中( ) A .甲对乙不对 B .乙对甲不对C .甲乙都对D .甲乙都不对【答案】B8.某几何体的三视图如图所示,记A 为此几何体所有棱的长度构成的集合,则( )A .3A ∈B .5A ∈C .AD .A【答案】D 9.已知函数()1cos f x x x=+,下列说法中正确的个数为( ) ①()f x 在0,2π⎛⎫⎪⎝⎭上是减函数; ②()f x 在()0,π上的最小值是2π; ③()f x 在()0,π2上有两个零点. A .0个 B .1个C .2个D .3个【答案】C10.已知A ,B ,C ,D 4AC BD ==,AD BC ==AB CD =,则三棱锥D ABC -的体积是( )A .B .C .D 【答案】C11.已知函数()2ln x f x a x x a =+-,()01a a >且≠,对任意的1x ,[]20,1x ∈,不等式()()122f x f x a -≤-恒成立,则a 的取值范围为( )A .)2e ,⎡+∞⎣B .[)e,+∞C .[]2,eD .2e,e ⎡⎤⎣⎦【答案】A12.已知S 为双曲线()222210,0x y a b a b -=>>上的任意一点,过S 分别引其渐近线的平行线,分别交x 轴于点M ,N ,交y 轴于点P ,Q ,若()118OP OQ OM ON ⎛⎫+⋅+≥ ⎪ ⎪⎝⎭恒成立,则双曲线离心率e 的取值范围为( ) A.(B.)+∞C.(D.)+∞【答案】B第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.已知实数x ,y 满足:1310x yx y +≥⎧⎪≤⎨⎪-≥⎩,则3x y +的最大值为_______.【答案】1314.设函数()22,1lg ,1x x x f x x x ⎧+-≤=⎨->⎩,则()()4f f -=_______.【答案】1-15.抛物线28y x =的焦点为F ,弦AB 过F ,原点为O ,抛物线准线与x 轴交于点C ,2π3OFA ∠=,则tan ACB ∠=_______.【答案】16.设有四个数的数列1a ,2a ,3a ,4a ,前三个数构成一个等比数列,其和为k ,后三个数构成一个等差数列,其和为15,且公差非零.对于任意固定的实数k ,若满足条件的数列个数大于1,则k 的取值范围为_______.【答案】()()15,55,1515,4⎛⎫+∞⎪⎝⎭三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)在ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,且()cos 2cos C b A =.(1)求角A 的大小;(2)若2a =,求ABC △面积的最大值.【答案】(1)6A π=;(2)2【解析】(1cos 2sin cos cos A C B A C A =,()2sin cos A C B A +=2sin cos B B A =,又B 为三角形内角,所以sin 0B ≠,于是cos 2A =, 又A 为三角形内角,所以6A π=.(2)由余弦定理:2222cos a b c bc A =+-得:224222b c bcbc =+-≥,所以(42bc ≤,所以1sin 22S bc A == 18.(12分)在2018年3月郑州第二次模拟考试中,某校共有100名文科学生参加考试,其中语文考试成绩低于130的占95%人,数学成绩的频率分布直方图如图:(1)如果成绩不低于130的为特别优秀,这100名学生中本次考试语文、数学成绩特别优秀的大约各多少人?(2)如果语文和数学两科都特别优秀的共有3人.①从(1)中的这些同学中随机抽取2人,求这两人两科成绩都优秀的概率.②根据以上数据,完成22⨯列联表,并分析是否有99%的把握认为语文特别优秀的同学,数学也特别优秀.【答案】(1)5人,4人;①15,②是.【解析】(1)我校共有100名文科学生参加考试,其中语文考试成绩低于130的有95%人,语文成绩特别优秀的概率为1=10.95=0.05P -,语文特别优秀的同学有1000.05=5⨯人,数学成绩特别优秀的概率为2=0.00220=0.04P ⨯,数学特别优秀的同学有1000.04=4⨯人. ①语文数学两科都特别优秀的有3人,单科特别优秀的有3人,记两科都特别优秀的3人分别为1A ,2A ,3A ,单科特别优秀的3人分别为1B ,2B ,3B ,从中随机抽取2人,共有:()12A A ,,()13,A A ,()23,A A ,()12,B B ,()13,B B ,()23,B B ,()11,A B ,()12,A B ,()13,A B ,()21,A B ,()22,A B ,()23,A B ,()31,A B ,()32,A B ,()33,A B 共15种,其中这两人成绩都特别优秀的有()12,A A ,()13,A A ,()23,A A 这3种,则这两人两科成绩都特别优秀的概率为:31=155P =. ②,()2210039412245042.982 6.63549659557k ⨯⨯-⨯∴==≈>⨯⨯⨯,∴有99%的把握认为语文特别优秀的同学,数学也特别优秀.19.(12分)如图,四棱锥E ABCD -中,AD BC ∥,112AD AB AE BC ====且BC ⊥底面ABE ,M 为棱CE 的中点. (1)求证:直线DM ⊥平面CBE ;(2)当四面体D ABE -的体积最大时,求四棱锥E ABCD -的体积.【答案】(1)见解析;(2)12. 【解析】(1)因为AE AB =,设N 为EB 的中点,所以AN EB ⊥, 又BC ⊥平面AEB ,AN ⊂平面AEB ,所以BC AN ⊥,又BC BE B =,所以AN ⊥平面BCE ,又DM AN ∥,所以DM ⊥平面BCE . (2)AE CD ⊥,设=EAB θ∠,=1AD AB AE ==,则四面体D ABE -的体积111sin sin 326V AE AB AD θθ=⨯⨯⋅⋅⋅=, 当90θ=︒,即AE AB ⊥时体积最大,又BC ⊥平面AEB ,AE ⊂平面AEB ,所以AE BC ⊥,因为BC AB B =,所以AE ⊥平面ABC ,()1111211322E ABCD V -=⨯⨯+⨯⨯=.20.(12分)已知动点(),M x y =(1)求动点M 的轨迹E 的方程;(2)设A ,B 是轨迹E 上的两个动点,线段AB 的中点N 在直线1:2l x =-上,线段AB 的中垂线与E 交于P ,Q 两点,是否存在点N ,使以PQ 为直径的圆经过点()1,0,若存在,求出N 点坐标,若不存在,请说明理由.【答案】(1)2212x y +=;(2)1,2N ⎛- ⎝⎭. 【解析】(1)2212x y +=. (2)当直线AB 垂直于x 轴时,直线AB 方程为12x =-,此时()P,)Q,221F P F Q ⋅=-,不合题意;当直线AB 不垂直于x 轴时,设存在点()1,02N m m ⎛⎫-≠ ⎪⎝⎭,直线AB 的斜率为k , ()11,A x y ,()22,B x y ,由221122221212x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩得:()()1212121220y y x x y y x x ⎛⎫-+++⋅= ⎪-⎝⎭,则140mk -+=, 故14k m=,此时,直线PQ 斜率为14k m =-, PQ 的直线方程为142y m m x ⎛⎫-=-+ ⎪⎝⎭,即4y mx m =--,联立22412y mx mx y =--⎧⎪⎨+=⎪⎩消去y ,整理得:()222232116220m x m x m +++-=, 所以212216321m x x m +=-+,212222321m x x m -⋅=+,由题意220F P F Q ⋅=,于是()()()()()22121212121211144F P F Q x x y y x x x x mx m mx m ⋅=--+=⋅-+++++()()()2221212116411m x x m x x m =+⋅+-+++()()()()()()22222222211622411619110321321321m m m m m mm m m +----=+++==+++,m ∴=,因为N 在椭圆内,278m ∴<,m ∴=符合条件,综上所述,存在两点N 符合条件,坐标为1,2N ⎛-⎝⎭. 21.(12分)已知函数()ln f x ax x x =-在2e x -=处取得极值. (1)求实数a 的值;(2)设()()()21ln F x x x x f x a =+-++,若()F x 存在两个相异零点1x ,2x ,求证:122x x +>.【答案】(1)1a =-;(2)见解析.【解析】(1)因为()ln f x ax x x =-,所以()ln 1f x a x '=--,因为函数()f x 在2e x -=处取得极大值,所以()2e0f -'=,即()22e ln e 10f a --'=--=, 所以1a =-,此时()ln 2f x x '=--,经检验,()f x 在()20,e -上单调递增,在()2e ,-+∞单调递减,所以()f x 在2e x -=处取得极大值,符合题意,所以1a =-.(2)由(1)知:函数()()()21ln F x x x x f x a =+-++,函数()F x 图像与x 轴交于两个不同的点()1,0C x ,()2,0D x ,()12x x <, 为函数()2ln 1F x x x x =---的零点,令()()()212112121x x x x F x x x x x-+--'=--==, ()F x ∴在()0,1单调递减,在()1,+∞单调递增且()110F =-<,1x ∴,()21,x ∈+∞,欲证:122x x +>,即证:212x x >-,即证()()212F x F x >-,即证()()112F x F x >-, 构造函数()()()()()20,1x F x F x x ϕ=--∈,()()()22102x x x x ϕ--'=<-,()()10x ϕϕ∴>=,得证.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)选修4-4:坐标系与参数方程在平面直角坐标系xoy 中,直线l 的参数方程为cos 1sin x t y t αα=⎧⎨=+⎩(t 为参数,0α≤<π).以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,已知曲线C 的极坐标方程为:2cos 4sin ρθθ=.(1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)设直线l 与曲线C 交于不同的两点A ,B ,若8AB =,求a 的值. 【答案】(1)sin cos cos 0x y ααα⋅-⋅+=,24x y =;(2)4απ=或34π. 【解析】(1)直线l 普通方程为sin cos cos 0x y ααα⋅-⋅+=,曲线C 的极坐标方程为2cos 4sin ρθθ=,cos x ρθ=,sin y ρθ=,则22cos 4sin ρθρθ=,24x y ∴=即为曲线C 的普通方程.(2)将cos 1sin x t y t αα=⎧⎨=+⎩(t 为参数,0απ≤<)代入曲线2:4C x y =,22cos 4sin 40t t αα∴⋅-⋅-=,1224sin cos t t αα∴+=,1224cos t t α-⋅=,128AB t t =-===, cos 2α∴=±,4απ∴=或34π.23.(10分)选修4-5:不等式选讲已知0a >,0b >,函数()2f x x a x b =++-的最小值为1. (1)证明:22a b +=;(2)若2a b tab +≥恒成立,求实数t 的最大值. 【答案】(1)见解析;(2)92. 【解析】(1)证明:2b a -<,()3,,23,2x a b x a b f x x a b a x b x a b x ⎧⎪--+<-⎪⎪∴=-++-≤≤⎨⎪⎪+->⎪⎩,显然()f x 在,2b ⎛⎫-∞- ⎪⎝⎭- 11 - 上单调递减,在,2b ⎛⎫+∞ ⎪⎝⎭上单调递增,所以()f x 的最小值为122b b f a ⎛⎫=+= ⎪⎝⎭,即22a b +=.(2)因为2a b tab +≥恒成立,所以2a b t ab+≥恒成立, ()212112122925+222a b a b a b ab b a b a b a +⎛⎫⎛⎫≥+=++=+≥ ⎪ ⎪⎝⎭⎝⎭, 当且仅当23a b ==时,2a b ab +取得最小值92, 所以92t ≤,即实数t 的最大值为92.。
2019届全国新高三原创试卷文科数学本试题卷共4页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝你考试顺利★注意事项:1、考试范围:高考考查范围。
2、答题前,先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的一律无效。
4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非主观题答题区域的一律无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的一律无效。
6、本科目考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{}0,1,2,3,4A =---,{}210B x x =<,则A B =I ( ) A .{}4 B .{}1,2,3--C .{}0,1,2,3--D .{}3,2,1,0,1,2,3---2. 已知复数()z a i a R =+∈,若4z z +=,则复数z 的共轭复数z = A .2i + B .2i - C .2i -+ D .2i --3. 设等差数列{}n a 的前n 项和为n S ,若81126a a =+,则9S =( ) A .27 B .36 C.45 D .544. 已知命题p :“a b >”是“22ab>”的充要条件;q :x R ∃∈,ln x e x <,则A .¬p ∨q 为真命题B .p ∧¬q 为假命题C .p ∧q 为真命题D .p ∨q 为真命题5. 若命题:0,,sin 2p x x x p π⎛⎫∀∈<⌝ ⎪⎝⎭,则为 A .0,,sin 2x x x π⎛⎫∀∈≥ ⎪⎝⎭B .0,,sin 2x x x π⎛⎫∀∉≥ ⎪⎝⎭C .0000,,sin 2x x x π⎛⎫∃∈≥ ⎪⎝⎭D .0000,,sin 2x x x π⎛⎫∃∈≤ ⎪⎝⎭6. 将函数cos 2y x =的图象向左平移2π个单位,得到函数()y f x =的图象,则下列说法正确的是( )A .()y f x =是奇函数B .()y f x =的周期为2πC .()y f x =的图象关于直线2x π=对称 D .()y f x =的图象关于点(,0)2π-的对称7. 执行如图的程序框图,则输出的S 值为A.1B.23 C.12-D.0 8. 函数2()(3)ln f x x x =-⋅的大致图象为( )A B C D9.多面体MN ABCD-的底面ABCD为矩形,其正(主)视图和侧(左)视图如图,其中正(主)视图为等腰梯形,侧(左)视图为等腰三角形,则AM的长为()A.3B.5C.6D.2210.已知向量()()2,1,1,1m n=-=u r r.若()()2m n am n-⊥+u r r u r r,则实数a=()A.57- B.57C.12- D.1211.已知P为抛物线y2=4x上一个动点,Q为圆x2+(y﹣4)2=1上一个动点,那么点P到点Q 的距离与点P到抛物线的准线距离之和的最小值是()A. B. C.D.12.已知()f x是定义在R上的偶函数,且x R∈时,均有()()32f x f x+=-,()28f x≤≤,则满足条件的()f x可以是()A.()263cos5xf xπ=+ B.()53cos5xf xπ=+C.()2,8,Rx Qf xx C Q∈⎧=⎨∈⎩D.()2,08,0xf xx≤⎧=⎨>⎩二、填空题:本题共4小题,每小题5分,共20分。
绝密 ★ 启用前2019届全国新高三原创试卷文 科 数 学(八)本试题卷共4页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝你考试顺利★注意事项:1、考试范围:高考考查范围。
2、答题前,先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的一律无效。
4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非主观题答题区域的一律无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的一律无效。
6、本科目考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数34i 2i 5a z -=+-的实部与虚部之和为1,则实数a 的值为( ) A .2 B .1C .4D .3【答案】A【解析】由题意可得,()()()2i 234i34i 34i 2i 5555a a a a z +++---=+=+=-,因为实部与虚部之和为1,2341255a a a +-∴+=⇒=,实数a 的值为2,故选A . 2.下列说法错误的是( )A .“若2x ≠,则2560x x -+≠”的逆否命题是“若2560x x -+=,则2x =”B .“3x >”是“2560x x -+>”的充分不必要条件C .“x ∀∈R ,2560x x -+≠”的否定是“0x ∃∈R ,200560x x -+=” D .命题:“在锐角ABC △中,sin cos A B <”为真命题 【答案】D【解析】依题意,根据逆否命题的定义可知选项A 正确;由2560x x -+>得3x >或2x <,∴“3x >”是“2560x x -+>”的充分不必要条件,故B 正确;因为全称命题的否定是特称命题,所以C 正确;锐角ABC △中,ππ022π2A B A B +>⇒>>->, sin sin cos π2A B B ⎛⎫∴>-= ⎪⎝⎭,∴D 错误,故选D .3.“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何?”其意思是:有一个正方形的池塘,池塘的边长为一丈,有一颗芦苇生长在池塘的正中央.露出水面一尺,若把它引向岸边,正好与岸边齐(如图所示),问水有多深,芦苇有多长?其中一丈为十尺.若从该芦苇上随机取一点,则该点取自水上的概率为( )A .1213B .113C .314D .213【答案】B【解析】设水深为x 尺,根据勾股定理可得()22215x x +=+,解得12x =,可得水深12尺,芦苇长13尺,根据几何概型概率公式可得,从该芦苇上随机取一点,该点取自水上的概率为113P =,故选B . 4.如图,网格纸上的小正方形边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( )A .83B .43C .163D .8【答案】A【解析】三视图还原为三棱锥A BCD -,如图所示,由三视图可知:4BC =,2AO CO BO DO ====,AB AC BD CD AD =====平面ABC ⊥平面B C D ,AO ⊥平面B C D ,则三棱锥A BCD -的体积为118422323A BCD V -=⨯⨯⨯⨯=,故选A .5.已知双曲线的两个焦点为()1F 、)2F ,M 是此双曲线上的一点,且满足120MF MF =⋅,122MF MF ⋅=,则该双曲线的焦点到它的一条渐近线的距离为( )A .3B .13C .12D .1【答案】D 【解析】120MF MF ⋅=,12MF MF ∴⊥,221240MF MF ∴+=,()212MF MF ∴-2211222402236MF MF MF MF =-⋅+=-⨯=,12263MF MF a a ∴-==⇒=,又c =22222119x b c a y ⇒=-=⇒-=,其渐近线方程为13y x =±,∴焦点到它的一条渐近线的距离为1d ==,故选D .6.已知函数()1sin 2222f x x x =+,把函数()f x 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所得到的曲线向左平移π6各单位长度,得到函数()g x 的图象,则函数()g x 的对称中心是( ) A .2π,0π6k ⎛⎫+⎪⎝⎭,k ∈Z B .2π,0π2k ⎛⎫+⎪⎝⎭,k ∈Z C .π,0π2k ⎛⎫+⎪⎝⎭,k ∈Z D .π,0π4k ⎛⎫+⎪⎝⎭,k ∈Z 【答案】C【解析】()1sin 222f x x x =+,()sin π23f x x ⎛⎫∴=+ ⎪⎝⎭,sin 23πy x ⎛⎫∴=+ ⎪⎝⎭图象的横坐标伸长到原来的2倍,可得πsin 3y x ⎛⎫=+⎪⎝⎭的图象,πsin 3y x ⎛⎫=+ ⎪⎝⎭的图象向左平移π6各单位长度,可得sin cos 2πy x x ⎛⎫=+= ⎪⎝⎭的图象,()cos g x x ∴=,函数()g x 的对称中心为π,0π2k ⎛⎫+⎪⎝⎭,k ∈Z ,故选C . 7.秦九韶算法是南宋时期数学家秦九韶提出的一种多项式简化算法,即使在现代,它依然是利用计算机解决多项式问题的最优算法,如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输人n ,x 的值分別为4,5,则输出ν的值为( )A .211B .100C .1048D .1055【答案】D【解析】执行程序框图,输入4n =,5x =,则1v =,3i =,0i ≥,进入循环, 得1538v =⨯+=,312i =-=;0i ≥,故进入循环,得85242v =⨯+=,211i =-=; 0i ≥,故进入循环,得4251211v =⨯+=,110i =-=;0i ≥,故进入循环,得211501055v =⨯+=,011i =-=-,此时,不满足0i ≥,故结束循环,输出1055v =,故选D .8.在ABC △中,120A ∠=︒,3AB AC -⋅=,点G 是ABC △的重心,则AG 的最小值是( )A .23B C .3D .53【答案】B【解析】设BC 的中点为D ,因为点G 是ABC △的重心, 所以()()22113323AG AD AB AC AB AC ==⨯+=+, 再令AB c =,AC b =,则cos12036AB AC bc bc ⋅=⋅︒=-⇒=,()()()22222111226269993AG AB AB AC AC c b bc ∴=+⋅+=+-≥-=, 63AG ∴≥,当且仅当6b c ==时取等号,故选B . 9.已知函数()()2,,,df x a b c d ax bx c=∈++R 的图象如图所示,则下列说法与图象符合的是( )A .0,a >,0b >,0c <,0d >B .0a <,0b >,0c <,0d >C .0a <,0b >,0c >,0d >D .0a >,0b <,0c >,0d >【答案】B【解析】由图象可知,1x ≠且5x ≠,20ax bx c ++≠,可知20ax bx c ++=的两根为1,5,由韦达定理得126bx x a+=-=,125c x x a ⋅==,a ∴,b 异号,a ,c 同号,又()00df c=<,c ∴,d 异号,只有选项B 符合题意,故选B .10.在ABC △中,已知2224a b c S +-=(S 为ABC △的面积),若c =则2a b -的取值范围是( ) A.( B .()1,0-C.(-D.(【答案】C 【解析】222222144sin 2sin 2a b c S a b c ab C ab C +-=⇒+-=⨯=222sin 2a b c C ab +-⇒=,cos si πn 4C C C ∴=⇒=,2sin sin sin a b cA B C====,2sin a A ∴=,2sin bB =,又23π2sin 2sin 2sin2sin 4a b A B A B A A ⎛⎫-===- ⎪⎝⎭sin cos π4A A A ⎛⎫=-=- ⎪⎝⎭,π3π04442ππA A <<⇒-<-<,π14A ⎛⎫∴-<-< ⎪⎝⎭1a ∴-<<故选C .11.当n 为正整数时,定义函数()N n 表示n 的最大奇因数.如()33N =,()105N =,,()()()()()1232n S n N N N N =++++,则()5S =( )A .342B .345C .341D .346【答案】A 【解析】()()2N n N n =,()2121N n n -=-,而()()()()()123...2nS n N N N N =++++,()()()()()()()()135...2124...2n nS n N N N N N N N ⎡⎤∴=++++-++++⎣⎦, ()()()()()1135...21123...2n n S n N N N N -⎡⎤∴=++++-+++++⎣⎦,()()()()()11212121422n nn S n S n n S n S n -+-∴=⨯+-≥⇒--=,又()()()112112S N N =+=+=,()()()()()()()()()234515443...2144445S S S S S S S S S ⎡⎤⎡⎤⎡⎤∴-=-+-++-=+++⇒⎣⎦⎣⎦⎣⎦23424444=++++342=,故选A .12a =() A .2- B .12-C .1-D .12-或1- 【答案】A有唯一零点,设2x t -=, ()()22t tg t -+=,∴()g t 为偶函数,又()y g t =与2y a =有唯一的交点,∴此交点的横坐标为0,22a a ∴-=,解得2a =-或1a =(舍去),故选A .第Ⅱ卷卷包括必考题和选考题两部分。
绝密 ★ 启用前2019届全国新高三原创试卷文科数学(九)本试题卷共4页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝你考试顺利★注意事项:1、考试范围:高考考查范围。
2、答题前,先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的一律无效。
4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非主观题答题区域的一律无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的一律无效。
6、本科目考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}A x y ==,{}B x x a =≥,若A B A =,则实数a 的取值范围是( ) A .(],3-∞-B .(),3-∞-C .(],0-∞D .[)3,+∞2.已知1i +是关于x 的方程220ax bx ++=(a ,b ∈R )的一个根,则a b +=( ) A .1-B .1C .3-D .33.已知焦点在x轴上的双曲线的焦距为焦点到渐近线的距离为则双曲线的方程为()A.2212xy-=B.2212yx-=C.2212xy-=D.2212yx-=4.函数sin21cosxyx=+的部分图象大致为()A.B.C.D.5.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.33cm B.35cm C.34cm D.36cm6.按照程序框图(如图所示)执行,第3个输出的数是()开始输出A结束是否1A =1S =5?S ≤2A A =+1S S =+A .6B .5C .4D .37.两个单位向量a ,b 的夹角为120︒,则2+=a b () A .2B .3C D 8.已知函数()sin cos f x a x b x =+(x ∈R ),若0x x =是函数()f x 的一条对称轴,且0tan 2x =,则()a b ,所在的直线为( ) A .20x y -=B .20x y +=C .20x y -=D .20x y +=9.我国古代数学名著《九章算术》中,有已知长方形面积求一边的算法,其方法的前两步为:第一步:构造数列1,12,13,14, (1). ①第二步:将数列①的各项乘以n ,得数列(记为)1a ,2a ,3a ,…,n a . 则12231n n a a a a a a -+++等于( )A .()1n n -B .()21n -C .2nD .()1n n +10.已知台风中心位于城市A 东偏北α(α为锐角)度的150公里处,以v 公里/小时沿正西方向快速移动,25.小时后到达距城市A 西偏北β(β为锐角)度的200公里处,若3cos cos 4αβ=,则v =( ) A .60B .80C .100D .12511.已知双曲线()222210,0x y a b a b-=>>与抛物线()220y px p =>有相同的焦点F ,且双曲线的一条渐近线与抛物线的准线交于点()3M t -,,2MF =,则双曲线的离心率为( ) A.2BCD12.已知函数()f x 是定义在R 上的奇函数,其导函数为()f x ',若对任意的正实数x ,都有()()20xf x f x '+>恒成立,且1f =,则使22x f x <()成立的实数x 的集合为( )A.(()2-∞+∞,,B.(C .(-∞D .)+∞第Ⅱ卷卷包括必考题和选考题两部分。
绝密 ★ 启用前2019届全国新高三原创试卷文 科 数 学(二)本试题卷共8页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、考试范围:高考范围。
2、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
3、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
6、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列复数中虚部最大的是( ) A .92i + B .34i -C .()23i +D .()i 45i +【答案】C【解析】对于A ,虚部是2;对于B ,虚部是4-;对于C ,()23i 96i 186i +=+-=+,虚部是6;对于D ,()i 45i 54i +=-+,虚部是4.∴虚部最大的是C ,故选C . 2.已知集合{}|4 3 A x x =-<-≤,()(){}250 B x x x =-+<,则A B =( )A .()5,4-B .()3,2-C .()2,4D .[)3,2-【答案】D【解析】{}{}|43|34A x x x x =-<-≤=-≤<,()(){}()|2505,2B x x x =-+<=-,所以[)3,2AB =-,选D .3.若角α的终边经过点(-,则an 3πt α⎛⎫+= ⎪⎝⎭( ) A. B.CD【答案】B【解析】由题意可得:tan α==-, 则:tan tan3tan 31t πππan tan 3ααα+⎛⎫+=== ⎪⎝⎭-.本题选择B 选项. 4.若双曲线221y x m-=的一个焦点为()3,0-,则m =()A .B .8C .9D .【答案】B【解析】因为双曲线221y x m-=的一个焦点为()3,0-,所以()21398m m +=-=⇒=,故选B .5.在ABC △中,sinB A =,BC =,且π4C =,则AB =( )A B .5C .D .【答案】A【解析】由正弦定理知b =,又a =知,6b =,所以由余弦定理知:2222cos264πc a b ab =+-=,所以c =,故选A . 6.甲、乙两个几何体的三视图如图所示(单位相同),记甲、乙两个几何体的体积分别为1V ,2V ,则( )A .122V V >B .122V V =C .12163V V -=D .12173V V -=【答案】D【解析】由甲的三视图可知,该几何体为一个正方体中间挖掉一个长方体,正方体的棱长为8,长方体的长为4,宽为4,高为6,则该几何体的体积为318446416V =-⨯⨯=;由乙的三视图可知,该几何体为一个底面为正方形,边长为9,高为9的四棱锥,则该几何体的体积为219992433V =⨯⨯⨯=,∴12416243173V V -=-=,故选D .7.如图,正方形BCDE 和ABFG 的边长分别为2a ,a ,连接CE 和CG ,在两个正方形区域内任取一点,则该点位于阴影部分的概率是( )A .35B .38C .310D .320【答案】C 【解析】设CG BF H =,由BCH FGH △∽△,得122HF a BH a ==,即13FH a =, 则25ABFG BCDE S S a +=正方形正方形,22211832332CFH GFH S S S a a a ⎛⎫=+=+= ⎪⎝⎭△△阴影,由几何概型的概率公式,得22332510aP a ==.故选C .8.我国古代数学名著《九章算术》里有一道关于玉石的问题:“今有玉方一寸,重七两;石方一寸,重六两.今有石方三寸,中有玉,并重十一斤(176两).问玉、石重各几何?”如图所示的程序框图反映了对此题的一个求解算法,运行该程序框图,则输出的x ,y 分别为( )A .90,86B .94,82C .98,78D .102,74【答案】C【解析】执行程序框图,86x =,90y =,27s ≠;90x =,86y =,27s ≠;94x =,82y =,27s ≠;98x =,78y =,27s =,结束循环,输出的x ,y 分别为98,78,故选C .9.已知0a >,设x ,y 满足约束条件010 3x y a x y x -+≥+-≥≤⎧⎪⎨⎪⎩,且2z x y =-的最小值为4-,则a =( )A .1B .2C .3D .4【答案】C【解析】作出可行域,如图ABC △内部,并作直线:20l x y -=,当直线l 向上平移时,z 减少,可见,当lz ,3a =, 故选C .10.已知三棱柱111ABC A B C -,平面β截此三棱柱,分别与AC ,BC ,11B C ,11A C 交于点E ,F ,G ,H ,且直线1CC ∥平面β.有下列三个命题:①四边形EFGH 是平行四边形;②平面β∥平面11ABB A ;③若三棱柱111ABC A B C -是直棱柱,则平面β⊥平面111A B C .其中正确的命题为( ) A .①② B .①③ C .①②③ D .②③【答案】B【解析】在三棱柱111ABC A B C -中,平面β截此三棱柱分别与AC ,BC ,11B C ,11A C 交于点E ,F ,G ,H ,且直线1CC ∥平面β,则1CC EH FG ∥∥,且1CC EH FG ==,所以四边形EFGH 是平行四边形,故①正确;∵EF 与AB 不一定平行,∴平面β与平面11ABB A 平行或相交,故②错误; 若三棱柱111ABC A B C -是直棱柱,则1CC ⊥平面111A B C . ∴EH ⊥平面111A B C ,又∵EH ⊂平面β, ∴平面β⊥平面111A B C ,故③正确.故选B .11.已知函数())ln f x x =-,设()3log 0.2a f =,()023b f -=.,()113c f =-.,则( ) A .a b c >> B .b a c >> C .c b a >> D .c a b >>【答案】D【解析】∵())ln f x x =-,∴())()lnf x x f x ==-,∴()()f x f x =-,∴函数()f x 是偶函数,∴当0x >时,易得())lnf x x =为增函数,∴()()33log 0.2log 5a f f ==,()()111133c f f =-=..,∵31log 52<<,02031-<<.,1133>.,∴()()()110233log 53f f f ->>.., ∴c a b >>,故选D .12.已知椭圆()2222:10x y C a b a b+=>>的右焦点F 关于直线34120x y +-=的对称点为P ,点O为C 的对称中心,直线PO 的斜率为7279,且C 的长轴不小于4,则C 的离心率( ) A .存在最大值,且最大值为14 B .存在最大值,且最大值为12C .存在最小值,且最小值为14D .存在最小值,且最小值为12【答案】B【解析】设(),P x y ,(),0F c ,则13341222y x c x c y ⎧=-+⋅+⋅=⎪⎪⎨⎪⎪⎩,解得()77225424625c x c y +=-=⎧⎪⎪⎨⎪⎪⎩,则72179y c x =⇒=,24a ≥,2a ∴≥,10,2c e a ⎛⎤=∈ ⎥⎝⎦,即C 的离心率存在最大值, 且最大值为12,选B . 第Ⅱ卷卷包括必考题和选考题两部分。
绝密 ★ 启用前2019届全国新高三原创试卷文科数学(一)本试题卷共4页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝你考试顺利★注意事项:1、考试范围:高考范围。
2、答题前,先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的一律无效。
4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非主观题答题区域的一律无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的一律无效。
6、本科目考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合(){},2M x y x y =+=,(){},2N x y x y =-=,则集合M N =( )A .{}0,2B .()2,0C .(){}0,2D .(){}2,02 )A .B .C .12D 3.为考察A ,B 两种药物预防某疾病的效果,进行动物实验,分别得到如下等高条形图,根据图中信息,在下列各项中,说法最佳的一项是( ) A .药物B 的预防效果优于药物A 的预防效果 B .药物A 的预防效果优于药物B 的预防效果 C .药物A 、B 对该疾病均有显著的预防效果 D .药物A 、B 对该疾病均没有预防效果药物A 实验结果患病未患病服用药没服用药0.10.20.30.40.50.60.70.80.91药物B 实验结果患病未患病服用药没服用药0.10.20.30.40.50.60.70.80.914)A .4-B .C .13-D .135.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已知某“堑堵”的三视图如图所示,俯视图中间的实线平分矩形的面积,则该“堑堵”的侧面积为( )A .2B.4+C.4+D.4+6.设变量,y 满足约束条件220220 2x y x y y +--+⎧⎪⎨⎪⎩≥≤≤,则目标函数z x y =+的最大值为( )A .7B .6C .5D .47.已知()201720162018201721f x x x x =++++,下列程序框图设计的是求()0f x 的值,在“ ”中应填的执行语句是( )开始i =1,n =2018结束i ≤2017?是否输入x 0S =2018输出SS =Sx 0S =S+ni =i +1A .2018n i =-B .2017n i =-C .2018n i =+D .2017n i =+8.若函数()24x f x a =--存在两个零点,且一个为正数,另一个为负数,则的取值范围为( ) A .()0,4B .()0,+∞C .()3,4D .()3,+∞9.阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数(0k >且1k ≠)的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点A ,B 间的距离为2,动点P 与A ,B,当P ,A ,B 不共线时,PAB △面积的最大值是( ) A .BC D 10.已知双曲线E :22221x y a b-=(0,0)a b >>的右顶点为A ,右焦点为F ,B 为双曲线在第二象限上的一点,B 关于坐标原点O 的对称点为C ,直线CA 与直线BF 的交点M 恰好为线段BF 的中点,则双曲线的离心率为( )A .12B .15C .2D .311.设锐角ABC △的三个内角A ,B ,C 的对边分别为,,,且1c =,2A C =,则ABC △周长的取值范围为( ) A.(0,2B.(0,3+C.(2++ D.(2++12()2f x mx =+有一个零点,则实数m 的取值范围是( ) A ]{64-+B ]{0,64-+C ]{}632-D ]{0,63-第Ⅱ卷本卷包括必考题和选考题两部分。
- 1 - 绝密 ★ 启用前 2019届全国新高三原创试卷 文 科 数 学(九) 本试题卷共8页,23题(含选考题)。全卷满分150分。考试用时120分钟。 ★祝考试顺利★ 注意事项: 1、考试范围:高考范围。 2、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。用2B铅笔将答题卡上试卷类型A后的方框涂黑。 3、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。写在试题卷、草稿纸和答题卡上的非答题区域均无效。 4、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。 5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。 6、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.集合|2Mxx,210xNx,则MCNR( )
A.0xx B.|2xx C.|20xx D.|20xx 【答案】D 【解析】求解指数不等式可得:0Nxx,则:|0CNxxR, |20MCNxx
R,本题选择D选项.
2.若复数i1iaz(i为虚数单位,aR)是纯虚数,则实数a的值是( ) A.1 B.1 C.12 D.12 【答案】B - 2 -
【解析】令ii1iazbbR,则:ii1iiabbb, 据此可得:1abb,1ab,本题选择B选项. 3.等差数列na前n项和为nS,若4a,10a是方程2810xx的两根,则13S( ) A.58 B.54 C.56 D.52 【答案】D 【解析】由韦达定理可得:4108aa,4101aa, 结合等差数列的性质可得:1134108aaaa,
绝密 ★ 启用前2019届全国新高三原创试卷文科数学(八)本试题卷共4页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝你考试顺利★注意事项:1、考试范围:高考考查范围。
2、答题前,先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的一律无效。
4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非主观题答题区域的一律无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的一律无效。
6、本科目考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设i 为虚数单位,则下列命题成立的是( ) A .a ∀∈R ,复数3i a --是纯虚数B .在复平面内()i 2i -对应的点位于第三象限C .若复数12i z =--,则存在复数1z ,使得1z z ⋅∈RD .x ∈R ,方程2i 0x x +=无解2.在下列函数中,最小值为2的是( )A .1y x x=+BC .2y =D .122x x y =+3.从某校高三年级随机抽取一个班,对该班50名学生的高校招生体检表中视力情况进行统计,其结果的频率分布直方图如图所示:若某高校A 专业对视力的要求在0.9以上,则该班学生中能报A 专业的人数为( )A .30B .25C .22D .204.若存在非零的实数a ,使得()()f x f a x =-对定义域上任意的x 恒成立,则函数()f x 可能是( ) A .()221f x x x =-+ B .()21f x x =- C .()2x f x =D .()21f x x =+5.已知1=a ,=b ()⊥-a a b ,则向量a 在b 方向上的投影为( )A .1BC .12D 6.某几何体由上、下两部分组成,其三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则该几何体上部分与下部分的体积之比为( )A .13B .12C .23D .567.函数()()2sin 3f x x ϕ=+y 轴对称,则ϕ的最小值为( )A B C D 8.《九章算术》中的“两鼠穿墙”问题为“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢?”,可用如图所示的程序框图解决此类问题.现执行该程序框图,输入的d 的值为33,则输出的i 的值为( )A .4B .5C .6D .79.在ABC △中,角A 、B 、C 所对的边分别是a ,b ,c ,且a ,b ,c 成等差数列,则角B 的取值范围是( )A B C D 10.一个三棱锥A BCD -内接于球O ,且3AD BC ==,4AC BD ==,O 到平面ABC 的距离是( )A B C D 11.设等差数列{}n a 满足:71335a a =,()22222244747456cos cos sin sin cos sin cos a a a a a a a a -+-=-+,公差()2,0d ∈-,则数列{}n a 的前n 项和n S 的最大值为( ) A .100πB .54πC .77πD .300π12.已知()f x 为定义在R 上的函数,其图象关于y 轴对称,当0x ≥时,有()()1f x f x +=-,且当[)0,1x ∈时,()()2log 1f x x =+,若方程()0f x kx -=(0k >)恰有5个不同的实数解,则k 的取值范围是( )ABCD第Ⅱ卷卷包括必考题和选考题两部分。