变化率与导数(教学设计)

  • 格式:doc
  • 大小:638.50 KB
  • 文档页数:4

下载文档原格式

  / 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1变化率与导数(教学设计)(3)

3.1.3导数的几何意义

教学目标:

知识与技能目标:

通过实验探究,理解导数的几何意义,体会导数在刻画函数性质中的作用。

过程与方法目标:

培养学生分析、抽象、概括等思维能力;通过“以直代曲”思想的具体运用,使学生达到思维方式的迁移,培养学生科学的思维习惯。

情感、态度与价值观目标:

渗透逼近和“以直代曲”思想,能激发学生的学习兴趣,培养学生不断发展、探索知识的精神,引导学生从有限中认识无限,体会量变和质变的辩证关系,感受数学思想方法的魅力。

教学重点:曲线的切线的概念、切线的斜率、导数的几何意义;

教学难点:导数的几何意义.

教学过程:

一、复习回顾:

导数的概念:

从函数y =f (x )在x =x 0处的瞬时变化率是: 0000

(

)()lim

lim x x f x x f x f x x

∆→∆→+∆-∆=∆∆ 我们称它为函数()y f x =在0x x =出的导数,记作'0()f x 或0'|x x y =,即 0000()()()lim x f x x f x f x x

∆→+∆-'=∆ 说明:(1)导数即为函数y =f (x )在x =x 0处的瞬时变化率 (2)0x x x ∆=-,当0x ∆→时,0x x →,所以000

0()()()lim x f x f x f x x x ∆→-'=- 二.创设情景,新课引入:

(一)平均变化率、割线的斜率

(二)瞬时速度、导数

我们知道,导数表示函数y =f (x )在x =x 0处的瞬时变化率,反映了函数y =f (x )在x =x 0附近的变化情况,导数0()f x '的几何意义是什么呢?

三.师生互动,新课讲解:

(一)曲线的切线及切线的斜率:

如图 3.1-2,当(,())(1,2,3,4)n n n P x f x n =沿着曲线()f x 趋近于点00(,())P x f x 时,割线n PP 的变化趋势是什么?

图3.1-2

我们发现,当点n P 沿着曲线无限接近点P 即Δx →0时,割线n PP 趋近于确定的位置,这个确定位置的直线PT 称为曲线在点P 处的切线.

问题:⑴割线n PP 的斜率n k 与切线PT 的斜率k 有什么关系?

⑵切线PT 的斜率k 为多少?

容易知道,割线n PP 的斜率是00

()()n n n f x f x k x x -=

-,当点n P 沿着曲线无限接近点P 时,n k 无限趋近于切线PT 的斜率k ,即0000()()lim ()x f x x f x k f x x ∆→+∆-'==∆ 说明:

(1)设切线的倾斜角为α,那么当Δx →0时,割线PQ 的斜率,称为曲线在点P 处的切线的斜率.

这个概念: ①提供了求曲线上某点切线的斜率的一种方法;

②切线斜率的本质—函数在0x x =处的导数.

(2)曲线在某点处的切线:

1)与该点的位置有关;

2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的;如不存在,则在此点处无切线;

3)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多个.

(二)导数的几何意义:

函数y =f (x )在x =x 0处的导数等于在该点00(,())x f x 处的切线的斜率,

即 0000()()()lim x f x x f x f x k x

∆→+∆-'==∆ 说明:求曲线在某点处的切线方程的基本步骤: ①求出P 点的坐标; ②求出函数在点0x 处的变化率0000

()()()lim x f x x f x f x k x ∆→+∆-'==∆ ,得到曲线在点00(,())x f x 的切线的斜率;

③利用点斜式求切线方程.

(二)导函数:

由函数f (x )在x =x 0处求导数的过程可以看到,当时,0()f x ' 是一个确定的数,那么,当x 变化时,便是x 的一个函数,我们叫它为f (x )的导函数.记作:()f x '或y ',

即: 0()()()lim x f x x f x f x y x

∆→+∆-''==∆ 注:在不致发生混淆时,导函数也简称导数.

(三)函数()f x 在点0x 处的导数0()f x '、导函数()f x '、导数 之间的区别与联系。

1)函数在一点处的导数0()f x ',就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数。

2)函数的导数,是指某一区间内任意点x 而言的, 就是函数f(x)的导函数

3)函数()f x 在点0x 处的导数'0()f x 就是导函数()f x '在0x x =处的函数值,这也是 求函数在点0x 处的

导数的方法之一。

例1:(1)求曲线y =f (x )=x 2+1在点P (1,2)处的切线方程.

(2)求函数y =3x 2在点(1,3)处的导数.

解:(1)222

100[(1)1](11)2|lim lim 2x x x x x x y x x

=∆→∆→+∆+-+∆+∆'===∆∆, 所以,所求切线的斜率为2,因此,所求的切线方程为22(1)y x -=-即20x y -=

(2)因为222211113313(1)|lim lim lim3(1)611

x x x x x x y x x x =→→→-⋅-'===+=--

所以,所求切线的斜率为6,因此,所求的切线方程为36(1)y x -=-即630x y --=

例2:求函数f (x )=x x +-2

在1x =-附近的平均变化率,并求出在该点处的导数. 解:x x x x x y ∆-=∆-∆+-+∆+--=∆∆32)1()1(2 200(1)(1)2(1)lim lim (3)3x x y x x f x x x

→→∆--+∆+-+∆-'-===-∆=∆∆V V 例3(课本P77例2)如图3.1-3,它表示跳水运动中高度随时间变化的函数

2() 4.9 6.510h t t t =-++,根据图像,请描述、比较曲线()h t 在0t 、1t 、2t 附近的变化情况. 解:我们用曲线()h t 在0t 、1t 、2t 处的切线,刻画曲线()h t 在上

述三个时刻附近的变化情况.

(1) 当0t t =时,曲线()h t 在0t 处的切线0l 平行于x 轴,所以,

在0t t =附近曲线比较平坦,几乎没有升降.

(2) 当1t t =时,曲线()h t 在1t 处的切线1l 的斜率1()0h t '<,

所以,在1t t =附近曲线下降,即函数

2() 4.9 6.510h x x x =-++在1t t =附近单调递减.

(3) 当2t t =时,曲线()h t 在2t 处的切线2l 的斜率2()0h t '<,

所以,在2t t =附近曲线下降,即函数

2() 4.9 6.510h x x x =-++在2t t =附近单调递减.

从图3.1-3可以看出,直线1l 的倾斜程度小于直线2l 的倾斜程度,这说明曲线在1t 附近比在2t 附近下降的缓慢.

例4(课本P78例3)如图3.1-4,它表示人体血管中药物浓度()c f t =(单位:/mg mL )随时间t (单位:

min )

变化的图象.根据图像,估计0.2,0.4,0.6,0.8t =时,血管中药物浓度的瞬时变化率(精确到0.1).

解:血管中某一时刻药物浓度的瞬时变化率,就是药物浓度()f t 在此时刻的导数,从图像上看,它表示曲线()f t 在此点处的切线的斜率.

如图3.1-4,画出曲线上某点处的切线,利用网格估计这条切线的斜率,可以得到此时刻药物浓度瞬时变化率的近似值.

作0.8t =处的切线,并在切线上去两点,如(0.7,0.91),(1.0,0.48),则它的斜率为:

0.480.91 1.41.00.7

k -=

≈-- 所以 (0.8) 1.4f '≈- 下表给出了药物浓度瞬时变化率的估计值:

t 0.2

0.4 0.6 0.8 药物浓度瞬时变化率'()f t

0.4

0 -0.7 -1.4

课堂练习