初一年级奥数知识点:从算式到方程
- 格式:doc
- 大小:24.00 KB
- 文档页数:2
第三章 一元一次方程 第9讲 从算式到方程知识导航1.方程及方程的解的概念.2.一元一次方程的概念.3.等式的性质.【板块一】一元一次方程的概念方法技巧1.判断一个方程是否为一元一次要抓住四点:①只含有一个未知数;②未知数的次数是1;③方程的等号两边的式子均为整式;④化简后未知数的系数不为0.2.运用一元一次方程的概念可以求字母的值. 题型一 判断一元一次方程【例1】下列方程是一元一次方程的是( )A.x -2=2xB.2x=5x -1 C.249xxD. x +2y =0【练1】下列方程①x =4;②x -y =0;③2(y 2-y )=2y 2+4;④120x中,是一元一次方程的有( ) A. 1个B. 2个C. 3个D. 4个题型二 运用一元一次方程的概念求值 【例2】方程2(4)40a a xx 是关于x 的一元一次方程,求a 的取值.【练2】若2(3)82m m x是关于x 的一元一次方程,则m 的值是( )A. 3B.-3C.±3D.不能确定针对练习11.方程:①0.3x =1;②y =5x -1;③x 2-4x =3;④-x =6;⑤x +2y =0.其中一元一次方程有( )A.4个B.3个C.2个D.1个 2.若(m -2)236m x是关于x 的一元一次方程,则m 等于( )A.1B.2C.1或2D.任何数3.已知方程1(2)1a a x 是关于x 的一元一次方程,则x 的值为 .【板块二】一元一次方程的解方法技巧1.将一元一次方程的解代人原方程中,可以求出字母的值2.根据一元一次方程的解的关系,求字母的值3.根据一元一次方程无解或有无数个解的情况,求字母的值题型一已知一元一次方程的解求字母的值【例3】关于x的一元一次方程(a+1)x+a2-1=0的解为x=0,求a的值.【练3】方程2x+1=3与2x-33a=0的解相同,求a的值.题型二根据方程的解的关系求字母的值【例4】m为何值时,关于x的方程4x-2m=3x-1的解是x=2x-3m的解的2倍.【练4】当m为何值时,关于x的方程5m+2x=12+x的解比关于x的方程x(m+1)=m(1+x)的解大2.题型三根据方程无解或有无数个解求字母的值【例5】关于x的方程2a(x+5)=3x+1无解,求a的值.【练5】若关于x的方程(2m+3)x=n-2有无数个解,求m,n需要满足的条件.题型四 根据方程的整数解求字母的值【例6】方程mx +2x -12=0是关于x 的一元一次方程,若此方程的解为正整数,则满足条件的正整数的个数为( )A.2个B.3个C.4个D.5个【练6】若关于x 的方程ax +5=x +1的解为正整数,则整数a = .针对练习21.下列说法 ①若ab <0,则0a b a b+=;②若23mx y +(m +2)x 2y -1是关于x ,y 的四次三项式,则m =±2;③若23(2)2mm x m --+=是关于x 的一元一次方程,则这个方程的解是x =1;④若关于x 的方程ax +1=x -b 有无穷多个解,则a =1,b =-1.其中正确的有( )A.4个B.3个C.2个D.1个2.下列结论:①若a +b +c =0,且abc ≠0,则方程a +bx +c =0的解是x =1; ②若a (x -1)=b (x -1)有唯一的解,则a ≠b ;③若b =2a ,则关于x 的方程ax +b =0(a ≠0)的解为x =12-;④若a +b +c =1,且a ≠0,则x =1一定是方程ax +b +c =1的解;其中正确个数有( )A.4个B.3个C.2个D.1个3. 关于x 的方程(x -3)m =3-2m 的解是整数,则满足条件的所有的整数m 的值为 .4.关于x 的方程(a -1)x 2+x +a 2-4=0是一元一次方程,求方程的解.5.若关于x 的方程2m mx --m +3=0是一元一次方程,求这个方程的解.6.已知方程21k x -+k =0是关于x 的一元一次方程,求方程的解.7.若关手x 的方程23x -3k =5(x -k )+1的解是绝对值最小的数,求k 的值.【板块三】等式的性质方法技巧1.判断等式是否成立,要注意判断等式两边除以的数或式子是否为0.2.两边平衡的天平表示一个等式. 题型一 判断等式是否成立【例7】下列结论错误的是( )A.若a =b ,则2222a bm m =++ B.若11a bm m =--,则a =b C.若x =3,则x 2=3xD.若ax +2=bx +2,则a =b【练7】已知a =b ,c 是有理数,下列各式中不正确的是( )A .ac 2=bc 2B .c -a =c -bC .a -c =b -cD .a b c c=题型二 用天平表示等式【例8】中央电视台二套“开心辞典”是一档广受大家喜爱的节目,某期节目中有这样一个问题:如图,两个天平都平衡,根据图形可知,3个球体的重量等于 5 个正方体的重量.【练8】如图标有相同字母的物体的质量相同,若A 的质量为20g ,当天平处于平衡状态时,B 的质量为 .针对练习31.下列等式成立的是( )A.(-1)2=2B.-|-2|=2C.-5a +8a =-3aD. -2xy +3yx =xy2.下列判断不正确的是( )A.若a =b ,则-4a =-4bB.若2a =3a ,则a =0C.若a =b ,则ac 2=bc 2D.若ac 2=bc 2,则a =b3.如图所示,天平左边放着3个乒乓球,右边放着5.4g 的砝码和一个乒乓球,天平恰好平衡,如果设一个乒乓球的质量为xg .(1)请你列出一个含有未知数x 的方程; (2)说明所列的方程是哪一类方程? (3)利用等式的性质求出x 的值.【板块四】一元一次方程的综合应用方法技巧1.运用一元一次方程可以解决图表问题中的规律问题.2.运用列一元一次方程的方法可以解决数轴上的动点问题.题型一一元一次方程与图表问题【例9】把正整数1,2,3,4,…,2019排列成如图所示的一个表.用一正方形在表中随意框住4个数,把其中最小的数记为x.(1)另三个数用含x的式子表示出来,从小到大依次是,, ;(2)当被框住的4个数之和等于416时,x的值是多少?(3)被框住的4个数之和能否等于2018?如果能,请求出此时x的值;如果不能,请说明理由.【练9】关于x的一次二项式ax+b的值随x的变化而变化,分析下表中的数据,若ax+b=15,则x=.题型二一元一次方程与动点问题【例10】已知数轴上A,B两个点对应的数分别是a,b,且满足|a+3|+(b-9)2=0.(1)求a,b的值;(2)点M是数轴上A,B之间的一个点,若MA=2MB,求点M所对应的数;(3)点P,点Q为数轴上的两个动点,点P从A点以3个单位长度每秒的速度向右运动,点Q同时从B点以2个单位长度每秒的速度向左运动.设运动时间为t秒,若AP+BQ=2PQ,求时间t的值.【练10】如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,C是AB的中点,且a、b满足|a+3|+(b+3a)2=0(1)求点C表示的数;(2)点P从点A出发以3个单位每秒的速度向右运动,点Q同时从点B出发以2个单位每秒的速度向右运动,若AP-BQ=2PQ,求时间t;针对练习41.用边长为1厘米的小正方形在桌面上摆放如图所示的塔状图,第n 次所摆放图形的周长为68厘米,则n = .第1次 第2次 第3次 第4次2.把正奇数1,3,5,…,2017排成如图所示的7列,规定从上到下依次为第1行、第2行、第3行、…,从左到右依次为第1至7列.(1)①图表中共有 个数,数2017在第 行,第 列; ②图表中第n 行第7列的数可用n 表示为 ;(2)按如图所示的方法用一个“L ”形框框住相邻的三个数,设被框的三个数中,最小的一个数为x ,是否存在这样的x 使得被框的三个数的和等于405?若存在,求出x 的值;若不存在,请说明理由. (3)(直接填空)若在(2)中“L ”形框框住的三个数的和记为“S ”,则S 的最大值与最小值的差等于 .3.如图,数轴上A ,B 两点所对应的数分别是a 和b ,且()2570a b ++-=.(1)则a = ,b = ;AB 两点之间的距离为 ;(2)有一动点P 从点A 出发第一次向左运动1个单位长度;然后在新的位置第二次运动,向右运动2个单位长度;在此位置第三次运动,向左运动3个单位长度,……按照如此规律不断地运动,当运动到2018次时,求点P 所对应的有理数;(3)在(2)的条件下,点P 在某次运动时恰好到达某一个位置,使点P 到点B 的距离是点P 到点A 的距离的3倍,请直接写出此时点P 的位置,并指出是第几次运动.。
初一数学上册从算式到方程预习笔记整理一. 教学内容:从算式到方程1. 方程、方程的解、一元一次方程的定义。
2. 等式的性质。
3. 分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
二. 知识要点:1. 与方程有关的定义(1)含有未知数的等式叫做方程。
(2)使方程中等号左右两边相等的未知数的值叫做方程的解。
(3)只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。
一元一次方程有两个特点:①未知数所在的式子是整式,即分母中不含未知数;②只含有一个未知数,未知数的次数是1。
2. 等式的性质(1)等式的性质1 等式两边加(或减)同一个数(或式子),结果仍相等. 如果a=b,那么a±c=__________。
(2)等式的性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等. 如果a=b,那么=__________;如果a=b(c ≠0),那么=__________。
关于等式的几点说明:①弄清等式与代数式的区别与联系:等式与代数式不同,等式是含“=”的式子,代数式不含有等号,它是用运算符号连接数或表示数的字母而成的式子. 等式可用来表示两个代数式之间有相等关系,但代数式不是等式。
②一个等式中,如果等号对于一个,叫做连等式,如③等式的另外两个性质:等式的左右两边互换,所得结果仍是等式,如a=b,则b=a(这一性质也叫等式的对称性);等式具有传递性,如:若a=b,b=c,则a=c(这一性质也叫等量代换)。
3. 学会列方程列方程的一般步骤:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的等量关系;(2)“设”就是设未知数;(3)“列”就是列方程,这是最关键的一步. 一般先找出能够表达应用题全部含义的一个相等关系,然后列代数式表示相等关系中的各个量,就得到含有未知数的等式,即方程。
列方程需要注意的事项:(1)列方程时,寻找题目中的等量关系是关键,可利用列表、线段图等方法分析已知量与未知量的关系,从而寻找出等量关系式。
七年级上学期数学中,第三章第一节“从算式到方程”主要介绍的是如何将实际问题抽象成数学算式,并进一步转化为方程的过程。
这一部分内容对于建立和理解方程的概念非常重要,是学习代数的基础。
核心内容包括:
1.算式与方程的概念:
●算式:表示数的运算过程,如(3+5)、(2\times4)等。
●方程:含有未知数的等式,目的是找到未知数的值,使等式成立,如
(x+5=10)。
2.方程的构成:
●方程通常包含未知数(如x、y)、常数、运算符(加、减、乘、除)以及等
号“=”。
3.建立方程:
●通过分析实际问题,确定未知数,根据问题中的条件关系,用代数表达式表示
这些关系,从而建立方程。
●例如,如果一个数加上3等于7,可以写成方程\(x+3=7\)。
4.解方程:
●学习基本的解方程方法,如加减法、乘除法,逐步求解未知数。
●对于简单的一元一次方程,目标是通过等式的性质,将未知数单独留在方程的
一边,求出其值。
5.应用题:
●结合生活实际,通过设定未知数,将文字问题转换为方程问题,解决诸如购物
找零、行程问题、工作量分配等问题。
学习重点:
●理解并区分算式与方程的含义。
●掌握将实际问题抽象成方程的能力。
●学会基本的方程解法,特别是解一元一次方程。
通过这部分的学习,学生能够初步掌握利用方程解决实际问题的方法,为后续更复杂的代数学习打下坚实的基础。
七年级数学从算式到方程【本讲主要内容】从算式到方程(什么是方程、什么是一元一次方程、等式的性质)一、理解并掌握一元一次方程的定义;区别列方程与列算式解应用题的优劣;一次方程建模思想。
二、掌握一元一次方程的解的概念;会检验一个数是否是一个方程的解;会用列举法或估算法求一元一次方程的解。
三、掌握等式的两条性质,并会用它解决一些简单的问题。
四、了解方程的概念;巩固等式性质,会用等式性质解一元一次方程。
【知识掌握】【知识点精析】方程的定义及理解:◆方程:含有未知数的等式叫做方程。
如:2x -5=1, x+y=6等。
◆判断一个式子是不是方程,只需看两点:一是等式,二是含有未知数的等式。
二者缺一不可。
例:下列各式不是方程的是( ) A. 3y²+y -4=0 B. x=y+1 C. x²+2xy+y² D.21(x -1)+x=4 分析:含有未知数的等式就是方程 答案:C例:下列方程中一元一次方程的个数是( ) ①x=-1 ②2x -y=1 ③2(x -y)=1 ④x1=-1 A. 1个 B. 2个 C. 3个 D. 4个分析:扣住只含一个未知数,未知数指数是1。
②③中含有两个未知数。
④中x 的指数是1,但它不是整式。
答案:A 说明:不能认为x1+1=0或11 y -2=0是一元一次方程。
方程的解的定义、如何验证方程的解:◆方程的解:使方程左、右两边都相等的未知数的值,叫做方程的解。
例:方程12(x -3)-1=2x+3的解是( ) A. x=3 B. x= 354C. x=-4D. x=4 分析:把A 、B 、C 、D 四个x 的值代入方程中计算,使左右两边相等的x 的值即为方程的值。
答案:D 。
方法技巧:也可以把原方程的解求出来再选项。
◆根据方程的解的定义可知,只要将给出的数分别代入方程的左边和右边,看左、右两边的值是否相等。
如果左边=右边,则这个数就是方程的解,否则,左边≠右边,这个数就不是方程的解。
第九集 从算式到方程【知识储备】1、等式与方程的认识2、等式的性质【本集要点】知识点一:等式与方程的概念1.等式的概念:等式是用等号表示相等关系的式子。
如 :953,,10751213=+=+=+=+x a V x y y x ,都叫等式。
2.方程的概念:含有未知数的等式叫方程。
如845=-x ,其中x 是未知数;又如523=-y x 其中x, y 是未知数。
知识点二:一元一次方程的概念1.一元一次方程的概念:只含有一个未知数,并且未知数的次数是1,这样的方程叫做一元一次方程例如 15)5(21,1212=+=-x x 等都是一元一次方程.其中“元”是指未知数,“一元”是指只含有一个未知数,“一次”是指未知数的次数都是1.2.解方程:就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解3.方程的解:能使方程左右两边相等的未知数的值,叫做方程的解。
4.会根据已知条件列出方程。
5.会检验一个数是不是一个方程的解:将这个数分别代入方程的左边和右边,看是否使左边等于右边。
知识点三:等式的性质1.等式性质1: 等式两边加上(或减去)同一个数(或式子),结果仍相等。
用字母表示为:如果a=b ,那么a ±c=b ±c2.等式性质2: 等式两边乘以同一个数,或除以同一个不为0的数,结果仍相等。
用字母表示为:如果a=b ,那么ac=bc ;如果a=b ,那么cb c a (c ≠0)。
注意:①等式两边除以一个数时,这个数必须不为0;②对等式变形必须同时进行,且是同一个数或式。
【终极目标】1.初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;2.理解一元一次方程.方程的解等概念以及等式的两条性质;3.会用等式的性质解简单的(用等式的一条性质)一元一次方程;4.培养观察.分析.概括及逻辑思维能力以及获取信息,分析问题,处理问题的能力.+ —×3 ÷3【精讲精练】例1.判断下列各式是不是方程,并说明理由:(1) 3+5=4+4 (2) 2a+3b (3) x+2y=5(4) 3+(-2)=8-|7| (5)21x+6=3x-5例2.下列方程中是一元一次方程的是( )A. 0342=+-x xB.743=-y xC.023=+xD.12=x 例3.根据下列条件列出方程(1)某数比它的4倍小8。
从算式到方程知识点总结
一、任务和目标
本单元旨在让学生了解和掌握从算式到方程的过渡,理解方程的概念和意义,掌握一元一次方程的解法,并能应用于实际问题。
二、核心内容
1.算式与方程的区别:算式是利用运算符号连接起来的数学表达式,不含未知数;方程是含有未知数的等式。
2.一元一次方程的概念:只含有一个未知数,并且未知数的最高次数为1的方程为一元一次方程。
3.解一元一次方程的步骤和方法:
(1) 去分母:将方程中的分数系数化为整数系数。
(2) 去括号:将方程中的括号去掉。
(3) 移项:将方程中的未知数项移到等号的另一侧,常数项移到等号的另一侧。
(4) 合并同类项:将方程中的同类项合并。
(5) 化系数为1:将未知数的系数化为1.
重难点精析
1.理解方程的概念:重点理解方程的本质,即“=”两侧的意义是相等的,以及如何用代数语言描述实际问题中的等量关系。
2.解一元一次方程的步骤:难点在于理解每个步骤的目的和原理,尤其是去分母和移项,需要细心操作,注意操作顺序和符号。
3.应用题中的方程求解:难点在于如何找到应用题中的等量关系,并转化为方程形式,然后通过解方程得到答案。
第三章一元一次方程3.1 从算式到方程一、知识考点知识点1【方程】1、方程:含未知数的等式叫做方程.2、列方程:先设未知数,然后根据问题中的等量关系,写出含有未知数的等式--方程。
相关题型:【例题1】、【例题2】知识点2【一元一次方程】1、一元一次方程:只含有一个未知数(元),未知数的次数都是1的整式方程,叫做一元一次方程。
注意:只要分母中含有未知数的方程一定不是整式方程(也就不可能是一元一次方程了)2、一元一次方程的标准形式:ax+b=0(x为未知数,a、b 为常数,且a≠0,即末知数的系数一定不能为0)相关题型:【例题3】知识点3【解方程】1、解方程:求未知数的过程叫做解方程。
2、方程的解:使方程的等号左右两边相等的未知数的值,就是方程的解。
3、利用等式的性质解方程等式的性质1:等式的两边同时加(或减)同一个数(或式子),结果仍相等。
如果a=b,那么a±c=b±c等式的性质2:等式的两边同时乘同一个数,或除以同一个不为0 的数,结果仍相等。
如果a=b,那么ac =bc ;如果a=b(c≠0),那么ac = bc等式的性质(补充):交换等式的两边,结果仍相等。
如果a=b,那么b=a ;若a=b 且b=c,那么a=c。
注意:解以x为未知数的方程,就是利用等式的性质把方程逐步转化为x=a(常数)的形式。
相关题型:【例题4】、【例题5】、【例题6】【例题1】判断下列各式是不是方程,并说明理由:(1) 3+5=4+4 (2) 2a+3b (3) x+2y=5(4) 3+(-2)=8-|7| (5) 12x+6=3x-5【解析】方程的概念有两点①是等式,②含有未知数,二者缺一不可。
【答案】解:(1)不是方程。
因为它是不含未知数的等式;(2)不是方程。
因为它不是等式,它是一个代数式;(3)x+2y=5 是方程,它是含有未知数x,y 的等式。
(4)不是方程。
因为它是不含未知数的等式。
(5)是方程,它是含有未知数x 的等式【例题2】根据下列问题,设未知数并列出方程(1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?(2)一台计算机已使用1700h,预计每月再使用150h,经过多少月这台计算机的使用时间达到规定的检修时间2450h?(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?【解析】设未知数,根据等量关系列方程。
从算式到方程(提高)知识讲解【学习目标】1.正确理解方程的概念,并掌握方程、等式及算式的区别与联系;2. 正确理解一元一次方程的概念,并会判断方程是否是一元一次方程及一个数是否是方程的解;3. 理解并掌握等式的两个基本性质.【要点梳理】【高清课堂:从算式到方程一、方程的有关概念】要点一、方程的有关概念1.定义:含有未知数的等式叫做方程.要点诠释:判断一个式子是不是方程,只需看两点:一.是等式;二.是含有未知数.2.方程的解:使方程左右两边的值相等的未知数的值,叫做方程的解.要点诠释:判断一个数(或一组数)是否是某方程的解,只需看两点:①.它(或它们)是方程中未知数的值;②将它(或它们)分别代入方程的左边和右边,若左边等于右边,则它们是方程的解,否则不是.3.解方程:求方程的解的过程叫做解方程.4.方程的两个特征:(1)方程是等式;(2)方程中必须含有字母(或未知数).【高清课堂:从算式到方程二、一元一次方程的有关概念】要点二、一元一次方程的有关概念定义:只含有一个未知数(元),并且未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:(1)“元”是指未知数,“次”是指未知数的次数,一元一次方程满足条件:①首先是一个方程;②其次是必须只含有一个未知数;③未知数的指数是1;④分母中不含有未知数.(2)一元一次方程的标准形式是:ax+b=0(其中a≠0,a,b是已知数) .(3)一元一次方程的最简形式是:ax=b(其中a≠0,a,b是已知数).【高清课堂:从算式到方程三、解方程的依据——等式的性质】要点三、等式的性质1.等式的概念:用符号“=”来表示相等关系的式子叫做等式.2.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.即:如果,那么(c为一个数或一个式子) .等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.即:如果,那么;如果,那么.要点诠释:(1)根据等式的两条性质,对等式进行变形,等式两边必须同时进行完全相同的变形;(2) 等式性质1中,强调的是整式,如果在等式两边同加的不是整式,那么变形后的等式不一定成立,如x=0中,两边加上得x+,这个等式不成立;(3) 等式的性质2中等式两边都除以同一个数时,这个除数不能为零.【典型例题】类型一、方程的概念1.下列各式,哪些是等式?哪些是方程?①3a+4;②x+2y=8;③5-3=2;④12xx-=;⑤y=10;⑥83x-=;⑦3y2+y=0;⑧2a2-3a2;⑨3a<-2a.【答案与解析】解:等式有:②③④⑤⑥⑦;方程有:②④⑤⑥⑦.【总结升华】方程是含有未知数的等式,方程和等式的关系是从属关系,且具有不可逆性,方程一定是等式,但等式不一定是方程,区别在于是否含有未知数.2.下列各方程后面括号里的数都是方程的解的是().A.2x-1=3 (2,-1)B.5118xx+=-(3,-3)C.(x-1)(x-2)=0 (1,2) D.2(y-2)-1=5 (5,4)【答案】C.【解析】把方程后面括号里的数分别代入方程的左、右两边,使左边=右边的是方程的解,若左边≠右边的,则不是方程的解.【总结升华】检验一个数是否为方程的解,只要把这个值分别代入方程的左边和右边:若代入后使左边和右边的值相等,则这个数是方程的解;若代入后使方程左右两边的值不相等,则这个数不是方程的解.举一反三:【变式】(2011广东湛江)若是关于的方程的解,则的值为__________.【答案】-1.类型二、一元一次方程的相关概念3.已知下列方程:①210x +=;②x =0;③13x x +=;④x+y =0;⑤623xx =-;⑥0.2x =4;⑦2x+1-3=2(x -1).其中一元一次方程的个数是( ).A .2B .3C .4D .5 【答案】B【解析】方程①中未知数x 的最高次数是2,所以不是一元一次方程;方程③中的分母含有未知数x ,所以它也不是;方程④中含有两个未知数,所以也不是一元一次方程;⑦经化简后为-2=-2,故它也不是一元一次方程;方程②⑤⑥满足一元一次方程的条件,所以是一元一次方程.【总结升华】方程中的未知数叫做元,只含有一个未知数称为“一元”,“次”是指含有未知数的项中次数最高项的次数,判断一个方程是不是一元一次方程,看它是否具备三个条件:①只含有一个未知数;②经过整理未知数的最高次数是1;③含未知数的代数式必须是整式(即整式方程). 举一反三:【变式】(1)已知关于x 的一元一次方程32105m x +=,求得m =________. (2)已知方程(m -4)x+2=2009是关于x 的一元一次方程,则m 的取值范围是________. (3)若||1(2)5m m x--=是关于x 的一元一次方程,则m 的值为( )A .±2B .-2C .2D .4【答案】(1)13m =-(2)m ≠4 (3)B 类型三、等式的性质4.用适当的数或整式填空,使所得的结果仍为等式,并说明根据等式的哪条性质,以及怎样变形得到的.(1)若4a=8a-5,则4a+________=8a.(2)若163x-=,则x=________.(3)13132x y y-=-,则112x+=________.(4)ax+by=-c,则ax=-c________.【答案与解析】解:(1) 5 ;根据等式性质1,等式两边同时加上5.(2)118-;根据等式性质2,等式两边同时除以-6.(3) 2 ;根据等式性质l,等式两边都加上(1+3y).(4) –by;根据等式性质l,等式两边都加上-by.【总结升华】先从不需填空的一边入手,比较这一边是怎样变形的,再根据等式的性质,对另一边也进行同样的变形.举一反三:【变式】下面方程变形中,错在哪里:(1)由2+x=-4, 得x=-4+2.(2)由9x=-4, 得94x=-.(3)由5=x-3, 得x=-3-5.(4)由3241155x x-+=-,得3x-2=5-4x+1.(5)方程2x=2y两边都减去x+y,得2x-(x+y)=2y-(x+y), 即x-y=-(x-y). 方程 x-y=-(x-y)两边都除以x-y, 得1=-1.(6)由3721223x xx-+=+,得3(3-7x)=2(2x+1)+2x.【答案】(1)不正确.错在数2从方程的等号左边移到右边时没有变号.(2)不正确,错在被除数与除数颠倒(或分子与分母颠倒了).(3)不正确,错在移项或等号两边的项对调时把符号弄错,正确的变形是:由5=x-3,得5+3=x, 即x=5+3.(4)不正确,没有注意到分数415x中的“分数线”也起着括号的作用,因此当方程两边的各项都乘以5时,+1没有变号.(5)不正确,错在第二步,方程两边都除以x-y,由等式性质2要除以不为零的数.(6)不正确,错在2x没乘以公分母6.类型四、等式或方程的应用5.(2011·河北模拟)观察下面的点阵图形(如图所示)和与之相对应的等式,探究其中的规律:(1)请你在④和⑤后面的横线上分别写出相对应的等式.……(2)通过猜想,写出与第n个图形相对应的等式.【答案与解析】解:通过观察图像可得:图形呈放射状,四条线上每变化一次各增加一个点,第n个图形每条线上应该是n个点;再观察对应的等式:等式的左右两边都是表示对应图形中点的个数,等式的左边是从1个点开始的,第2个图形增加4个点表示为4×1+1,第3个图形又增加4个点,表示为4×2+1,…,第n个图形共增加(n-1)个4个点,表示为4(n-1)+1;等式的右边,把第一个图形看作4点重合为一个点,表示为4×1-3,第2个图形增加4个点,表示为4×2-3,第3个图形又增加4个点,表示为4×3-3,…,第n个图形看作n个4个点少3个点,表示为4n -3,所以有4(n -1)+1=4n -3.(1) ④4×3+1=4×4-3 ⑤4×4+1=4×5-3 (2)4(n -1)+1=4n -3【总结升华】设出未知量并用此未知量表示出题中的数量关系.举一反三:【变式】(2011山东滨州)某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x,则下面所列方程中正确的是( )A.()22891256x -=B.()22561289x -=C.289(1-2x)=256D.256(1-2x)=289 【答案】A。
初一年级奥数知识点:从算式到方程
知识点1 通过实例体会方程是研究数量关系的重要数学模型.
方程的学习是初中数学中极其重要的基础知识,它的应用十分广泛,也是今后学习相关学科,如物理、化学等知识的重要工具,因此,使学生学会利用方程的模型去解决实际问题的方法十分重要.
例1中的两个问题的提出,目的是让学生亲身体验两种解法,算术方法和列方程(代数法)方法解决问题,其思维方向是不同的,感受两种解题中,列方程更便于思考,尤其是问题2体现的更加明显,使学生认识到引进未知数列方程解决实际问题的必要性,这是数学的一个进步.
知识点2 方程的意义.
判断下列各式哪些是等式,哪些是方程,并说出为什么?使学生能正确的认识什么是等式,什么是方程,培养学生的观察能力和言必有据的良好学习习惯.
知识点3 一元一次方程的意义.
借助例2引出一元一次方程的意义,在具体题目中,注意培养学生的说理能力.
例3(补充题)巩固一元一次方程的概念,求某些未知数的值.
分清什么是等式,什么是方程,建立起等式不一定是方程,但方程一定是等式的正确认识.
练习
1.写出一个以x=-1为根的一元一次方程_______.
2.(教材变式题)数0,-1,-2,1,2中是一元一次方程7x-10= +3的解的数是_____.
3.下列方程的解正确的是( )
A.x-3=1的解是x=-2
B. x-2x=6的解是x=-4
C.3x-4= (x-3)的解是x=3
D.- x=2的解是x=-2
4.(探究过程题)先列方程,再估算出方程解.
HB型铅笔每支0.3元,2B型铅笔每支0.5元,用4元钱买了两种铅笔共10支,还多0.2元,问两种铅笔各买了多少支?
5.若方程ax+6=1的解是x=-1,则a=_____.。