数值分析第四版答案资料讲解
- 格式:doc
- 大小:3.42 MB
- 文档页数:72
第一章1、 在下列各对数中,x 是精确值 a 的近似值。
3.14,7/100)4(143.0,7/1)2(0031.0,1000/)3(1.3,)1(========x a x a x a x a ππ试估计x 的绝对误差和相对误差。
解:(1)0132.00416.01.3≈=≈-=-=a ee x a e r π (2)0011.00143.0143.07/1≈=≈-=-=a ee x a e r (3)0127.000004.00031.01000/≈=≈-=-=aee x a e r π (4)001.00143.03.147/100≈=≈-=-=aee x a e r2. 已知四个数:x 1=26.3,x 2=0.0250, x 3= 134.25,x 4=0.001。
试估计各近似数的有效位数和误差限,并估计运算μ1= x 1 x 2 x 3和μ1= x 3 x 4 /x 1的相对误差限。
解:x 1=26.3 n=3 δx 1=0.05 δr x 1=δx 1/∣x 1∣=0.19011×10-2x 2=0.0250 n=3 δx 2=0.00005 δr x 2=δx 2/∣x 2∣=0.2×10-2x 3= 134.25 n=5 δx 3=0.005 δr x 3=δx 3/∣x 3∣=0.372×10-4x 4=0.001 n=1 δx 4=0.0005 δr x 4=δx 4/∣x 4∣=0.5由公式:e r (μ)= e (μ)/∣μ∣≦1/∣μ∣Σni=1∣∂f/∂x i ∣δx ie r (μ1)≦1/∣μ1∣[x 2 x 3δx 1+ x 1 x 3δx 2 +x 1x 2δx 3] =0.34468/88.269275 =0.0039049e r (μ2)≦1/∣μ2∣[x 3 x 4/ x 21δx 1+ x 4/ x 1δx 3 + x 3/ x 1δx 4] =0.5019373、设精确数a>0,x 是a的近似值,x 的相对误差限是0.2,求㏑x 的相对误差限。
第12章数项级数12.1复习笔记一、级数的收敛性II级数的走义若S=f如存在极限值s r即HmS r = .S r则级数收敛,S为级数的和。
若{S“}发散,则级数发散。
创重要走理(1)级数收敛的柯西准则工叫收敛mN(NWN+ ),当m>N时以及又寸0p(pWN+ ),都有(2 )如果级数Zu n^£v n都收敛r则对任意常数c , d r级数工(cu n + dv n )也收敛r且》(* +叽)=c》冷加工耳(3)改变级数的有限个项不改变级数的敛散性。
(4 )在收敛级数的项中任意加括号r不改变其收敛性与和。
二、正项级数Q正项级数收敛性的一般判别原则(1)正项级数工%收敛O冥部分和数列{S,J有界。
(2)比较原则设工*和工□是两个正项级数r 3N (NGN* ) r使得对%> N都有u n<v n r则①若8n收敛,则工g也收敛。
②若»1…发散,则工口也发散。
(3 )设& =工*和S"=工V"是两个正项级数.如果则①若0 v 1 v +1级数si S"同敛散。
②若1 = 0且级数S"收敛,级数S,也收敛。
③若1 = + 0C且级数S"发散,级数S也发散。
Q比式判别法和根式判别法(1)比式判别法设工*为正项级数,且存在正整数N()及常数q (0<q<l ),则①若对任意n > N o , SPWu n+1/u n<q ,则工%收敛。
②若对任意n > N o ,都有5+ ]/11診1 ,则》i.发散。
(2 )比式判别法的极限形式若Xw为正项级数,且,则①若q V 1 ,则工Un收敛。
②若q > 1或q =+oo,则工片发散。
③若q = 1 ,则无法判断工叫的发散性。
(3)根式判别法设工g为正项级数,且存在正整数N()及正常数1 ,①若对任意n > N(”都有阪5*1 ,则工%收敛。
应⽤数值分析(第四版)课后习题答案第9章第九章习题解答1.已知矩阵=???=4114114114,30103212321A A 试⽤格希哥林圆盘确定A 的特征值的界。
解:,24)2(,33)1(≤-≤-λλ2.设T x x x x ),...,,(321=是矩阵A 属于特征值λ的特征向量,若i x x =∞,试证明特征值的估计式∑≠=≤-n i j j ij ii aa 1λ.解:,x Ax λ=∞∞∞∞≤==x A x x Ax i λλ由 i x x =∞ 得 i n in i ii i x x a x a x a λ=++++ 11j n j i i ij i ii x ax a ∑≠==-1)(λj n j i i ij j n j i i ij i ii x a x ax a ∑∑≠=≠=≤=-11λ∑∑≠=≠=≤≤-nj i i ij i j n j i i ijii a x x a a 11λ3.⽤幂法求矩阵=1634310232A 的强特征值和特征向量,迭代初值取T y )1,1,1()0(=。
解:y=[1,1,1]';z=y;d=0;A=[2,3,2;10,3,4;3,6,1];for k=1:100y=A*z;[c,i]=max(abs(y));if y(i)<0,c=-c;endz=y/cif abs(c-d)<0.0001,break; endd=cend11.0000=c ,0.7500) 1.0000 0.5000(z 10.9999 =c ,0.7500) 1.0000 0.5000(z 11.0003 =c ,0.7500) 1.0000 0.5000(z 10.9989=c ,0.7500) 1.0000 0.5000(z 11.0040 =c ,0.7498) 1.0000 0.5000(z 10.9859=c ,0.7506) 1.0000 0.5001(z 11.04981 =c ,0.7478) 1.0000 0.4995(z 10.8316 =c ,0.7574) 1.0000 0.5020(z 11.5839 =c ,) 0.7260 1.0000 0.4928 (z 9.4706 =c ,0.8261) 1.0000 0.5280(z 17 = c ,0.5882) 1.0000 0.4118(z 11T (11)10T (10)9T (9)8T (8)7T (7)6T (6)5T (5)4T (4)3T (3)2T (2)1T (1)===========强特征值为11,特征向量为T 0.7500)1.0000 0.5000(。
p2.例1 设x ,y 为实数,x y <.证明:存在有理数r 满足 x r y <<.证 由于x y <,故存在非负整数n ,使得n n x y <.令 ()12n n r x y =+ , 则r 为有理数,且有n n x x r y y ≤<<≤ ,即得x r y <<. p3.1.实数具有阿基米德性,即对任何,a b R ∈, 若0b a >>,则存在正整数n ,使得na b >. 证明:+,a b R ∀∈,n N +∃∈, 使得nb a >, 设012.n a a a a a = ,0a k N =∈ ,则1+110k a k +≤<,设012n b b b b b =,p b 为第一个不为0的正整数,令+110p k n +=,则+110k nb a >>,即nb a >.2.实数集R 具有稠密性,即任何两个不相等的实数之间必有另一个实数,且既有有理数,也有无理数。
证 若a b <,则存在n N +∈,使)(112b a n <- ,)(2b a n<- , 设k 是满足k a n ≤ 的最大正整数,即+1k a n >,0ka n -≤ , 于是122k k k k ab a b n n n n n ++<<=+<+-≤ ,则1k n + ,2k n+ 是a 与b 之间的有理数,14k n nπ++ 是a 与b 之间的无理数。
.4P1.设a 为有理数,x 为无理数,证明:(1)a x +是无理数;(2)当a 0≠时,ax 是无理数.分析:根据有理数集对加、减、乘、除(除数不为0)四则运算的封闭性,用反证法证. 证明:(1)假设a x +是有理数,则()a x a x +-=是有理数,这与题设x 是无理数相矛盾,故a x +是无理数.(2)假设ax 是有理数,则当0a ≠时,axx a=是有理数,这与题设x 为无理数相矛盾,故ax 是无理数.8.设p 为正整数.证明:若p .分析:本题采用反证法,联想到互质、最大公约数以及辗转相除法的有关知识点,可得结论.证明:用反证法.为有理数,则存在正整数m 、n mn=,且m 与n 互质.于是2m 22,(),pn m n pn ==⋅可见n 能整除2m ,由于m 与n 互质,从而它们的最大公约数为1,由辗转相除法知:存在整数u 、v 使1mu mv +=,则2m u mnv m +=.因n 既能整除2m u 又能整除mnv ,故能整除其和,于是n 能整除m ,这样1n =,所以2p m =.这与p 不是完全平方数相矛盾.小结:本题证明过程比较独特,先假设有理数为互质的两个数的商,利用这两个数与p 之间的关系,运用辗转相除法得出结论,注意知识点之间的内在联系.P7定理1.1(确界原理) 设s 为非空数集.若s 有上界,则s 必有上确界;若s 有下界,则s 必有下确界.证 我们只证明关于上确界的结论,后一结论可类似地证明.为叙述的方便起见,不妨设s 含有非负数.由于s 有上界,故可找到非负整数n ,使得 1) 对于任何x S ∈有1x n <+; 2) 存在0a S ∈,使0a n ≥.再对半开区间[),1n n +作10等分,分点为.1,.2,.9n n n ,则存在0,1,2,…,9中的一个数1n ,使得1) 对于任何x S ∈有1110.n x n <+; 2) 存在1a S ∈,使11.a n n ≥. 再对半开区间111.10,.n n n n ⎡⎫⎪⎢⎣⎭+作10 等分,则存在0,1,2,…,9中的一个数2n ,使得 1) 对于任何x S ∈有1221.10n n n x +<; 2) 存在2a S ∈,使212.a n n n ≥.继续不断地10等分在前一步骤所得到的半开区间,可知对任何1,2,k =,存在0,1,2,…,9中的一个数k n ,使得1) 对于任何x S ∈有121.10k kx n n n n <+; (1) 2) 存在k a S ∈,使12.k k a n n n n ≥.将上述步骤无限地进行下去,得到实数12.kn n n n η=.以下证明sup S η=.为此只需证明:(i )对一切x S ∈有x η≤;(ii )对任何αη<,存在a S '∈使a α<'.倘若结论(i )不成立,即存在x S ∈使x η>,则可找到x 的k 位不足近似k x ,使121.10k k k kx n n n n η>=+,从而得121.10k kx n n n n >+, 但这与不等式(1)相矛盾.于是(i )得证.现设αη<,则存在k 使η的k 位不足近似k k ηα>,即12.k k n n n n α>.根据数η的构造,存在a S '∈使k a η'≥,从而有k k >a ηαα≥≥'即得到<a α'. 这说明(ii )成立 P.130例3 用数列的柯西收敛准则证明确界原理.证 设S 为非空有上界数集,由实数的阿基米德性,对任何正数α,存在整数k α,使得k ααλα=为S 的上界,而(1)k ααλαα-=-不是S 的上界,即存在'αS ∈,使得'(1).k ααα>-分别取1,1,2,,n nα==则对每一个正整数n ,存在相应的,n λ使得n λ为S 的上界,而1n nλ-不是S 的上界,故存在',S α∈使得 1'n nαλ>- (6)又对正整数,m m λ是S 的上界,故有'm λα≥.结合(6)式得1n m nλλ-<;同理有1m n mλλ-<.从而得 11||max{,}.m n m nλλ-<于是,对任给的0,ε>存在0N >,使得当,m n N >时有||m n λλε-<由柯西收敛准则,数列{}n λ收敛.记lim n n λλ→∞=. (7)现在证明λ就是S 的上确界,首先,对任何S α∈和正整数n 有n αλ≤,由(7)式得,αλ≤即λ是S 的一个上界.其次,对任何0,δ>由1n→∞()n →∞及(7)式,对充分大的n 的同时有 1,.22n n δδλλ<>- 又因1n n λ-不是S 的上界。
第四版数值分析习题第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====⨯4. 利用公式(3.3)求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式1n n Y Y -= ( n=1,2,…)计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差?7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字≈27.982).8. 当N 充分大时,怎样求211Ndx x +∞+⎰?9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2?10. 设212S gt =假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小.11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?12. 计算61)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好?3--13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式ln(ln(x x =-计算,求对数时误差有多大?14. 试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠?15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足.s a b c s a b c ∆∆∆∆≤++第二章 插值法1. 根据(2.2)定义的范德蒙行列式,令2000011211121()(,,,,)11n n n n nn n n n x x x V x V x x x x x x x xx x ----==证明()n V x 是n 次多项式,它的根是01,,n x x -,且 101101()(,,,)()()n n n n V x V x x x x x x x ---=--.2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.3.4. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设jx 为互异节点(j =0,1,…,n ),求证:i) 0()(0,1,,);nk kj jj x l x x k n =≡=∑ii) 0()()1,2,,).nk jj j xx l x k n =-≡0(=∑7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8max max a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()xf x e =的等距节点函数表,若用二次插值求xe 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少? 9. 若2nn y =,求4n y ∆及4n y δ. 10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)k f x k m ∆≤≤是m k -次多项式,并且()0(m l f x l +∆=为正整数).11. 证明1()k k k k k k f g f g g f +∆=∆+∆.12. 证明110010.n n kkn n k k k k f gf g f g g f --+==∆=--∆∑∑13. 证明1200.n j n j y y y -=∆=∆-∆∑14. 若1011()n n n n f x a a x a x a x --=++++有n 个不同实根12,,,n x x x ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i)若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x =;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+.16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦及0182,2,,2f ⎡⎤⎣⎦.17. 证明两点三次埃尔米特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔米特插值的误差限.18. 求一个次数不高于4次的多项式()P x ,使它满足(0)(1)P P k =-+并由此求出分段三次埃尔米特插值的误差限. 19. 试求出一个最高次数不高于4次的函数多项式()P x ,以便使它能够满足以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造一个台阶形的零次分段插值函数()n x ϕ并证明当n →∞时,()n x ϕ在[],a b 上一致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差.23. 求4()f x x =在[],a b 上的分段埃尔米特插值,并估计误差.试求三次样条插值并满足条件i) (0.25) 1.0000,(0.53)0.6868;S S '='= ii)(0.25)(0.53)0.S S "="=25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明 i)[][][][]222()()()()2()()()bbbbaaaaf x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-"⎰⎰⎰⎰;ii) 若()()(0,1,,)i i f x S x i n ==,式中i x 为插值节点,且01n a x x x b =<<<=,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可用(8.7)式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =. 3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳一致逼近多项式. 4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳一致逼近多项式. 5. 选取常数a ,使301max x x ax≤≤-达到极小,又问这个解是否唯一?6. 求()sin f x x =在[]0,/2π上的最佳一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳一次逼近多项式.8. 如何选取r ,使2()p x x r =+在[]1,1-上与零偏差最小?r 是否唯一? 9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式.10. 令[]()(21),0,1n n T x T x x =-∈,求***123(),(),(),()T x T x T x T x .11. 试证{}*()nTx 是在[]0,1上带权ρ=的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最佳逼近多项式. 13. 设()xf x e =在[]1,1-上的插值极小化近似最佳逼近多项式为()n L x ,若n f L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ϕ=-----,试将()x ϕ降低到3次多项式并估计误差.15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过0.005.16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n n F x H ∈也是奇(偶)函数.17. 求a 、b 使[]220sin ax b x dx π+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较.18. ()f x 、[]1(),g x C a b ∈,定义()(,)()();()(,)()()()();b baaa f g f x g x dxb f g f x g x dx f a g a =''=''+⎰⎰问它们是否构成内积?19. 用许瓦兹不等式(4.5)估计6101x dx x +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使下列积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最佳平方逼近,并比较其结果.22. ()f x x =在[]1,1-上,求在{}2411,,span x x ϕ=上的最佳平方逼近.23.sin (1)arccos ()n n x u x +=是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin2f x x=在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差.25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数.26.2y a bx =+.27.用最小二乘拟合求.29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:(1)101()()(0)()hh f x dx A f h A f A f h --≈-++⎰; (2)21012()()(0)()hh f x dx A f h A f A f h --≈-++⎰;(3)[]1121()(1)2()3()/3f x dx f f x f x -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算下列积分:(1)120,84xdx n x =+⎰; (2)1210(1),10x e dx n x --=⎰;(3)1,4n =⎰;(4),6n =.3. 直接验证柯特斯公式(2.4)具有5次代数精度.4. 用辛普森公式求积分10x e dx-⎰并计算误差. 5. 推导下列三种矩形求积公式:(1)2()()()()()2ba f f x dxb a f a b a 'η=-+-⎰; (2)2()()()()()2ba f f x dxb a f b b a 'η=---⎰; (3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰. 6. 证明梯形公式(2.9)和辛普森公式(2.11)当n →∞时收敛到积分()baf x dx⎰.7. 用复化梯形公式求积分()baf x dx⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)?8.1x e dx-,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是S a =θ,这里a 是椭圆的半长轴,c 是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长. 10. 证明等式3524sin3!5!n nn n ππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用下列方法计算积分31dyy ⎰并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =1.0,1.1和1.2处的导数值,并估计误()f x第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。
数值分析第四版答案第一章绪论1.设x 0,x的相对误差为,求In x的误差。
解:近似值x*的相对误差为* e* x* x =ex* x*而In x 的误差为el nx* Inx* In x e* x*进而有(In x*)2.设x的相对误差为2%,求 E x n的相对误差。
解:设f(x) x n,则函数的条件数为C p丨空^丨f(x)H n 1又 f '(x) nx n 1, C p | x nx | n1n—11又「((x*) n) C p r(x*)且e (x*)为2r((x*)n) 0.02 n3•下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:x;1.1021,x2 0.031 , x3 385.6,沧56.430 ,x57 1.0.解:x1 1.1021是五位有效数字;x2 0.031是二位有效数字;x;385.6是四位有效数字;x4 56.430是五位有效数字;X;7 1.0.是二位有效数字。
4•利用公式(2.3)求下列各近似值的误差限:(1) x;x;x;,(2) x;x;x;,(3) x;/x;. 其中X1,X2,X3,x4均为第3题所给的数。
解:*1 (X 1)2 10(1) (X 1X 2 X 4)(X ;)(x 2) (x 4)11021.05 10(2) (x ;x ;x ;)(3) (X 2/X 4) * I **X 2I(X 4) X 4* 2 X40.031 1 3 13-10 56.430 — 102 2 10 5 56.430 56.4305计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 4 °解:球体体积为V - R 33*1(X 2) 2 10 * 1 (X 3) 2 10 * 1 (X 4) 2 10 * 1 (X 5— 123 131101103X 1X 2 (X 3) 1.1021 0.031 0.215X 2X 31 2101X 1X 3 (X 2)10.031 385.6 - 101.1021 385.6 1 103*(X 2)则何种函数的条件数为C R(4 R2 4 R3 3r(V*) Cp|「(R*)3 r (R*)又;r (V*)11故度量半径R 时允许的相对误差限为r (R*) - 1 0.33 36 •设 Y o 28,按递推公式 Y, Y n-1,783 (n=1,2,…) 100计算到丫100。