二氧化钛表面改性
- 格式:ppt
- 大小:1.25 MB
- 文档页数:14
TiO2晶面调控改性研究TiO2是一种重要的半导体材料,其具有优良的光催化性能和稳定性,在环境净化、水处理和太阳能电池等领域具有广泛的应用前景。
TiO2晶体的表面性质直接影响其催化性能,通过晶面调控改性来提高TiO2的催化活性具有重要的研究意义。
晶面调控指的是通过改变晶体表面的结构来控制材料的物理和化学性质。
TiO2晶体由Ti和O原子组成,结构中含有多个晶面,如(001)、(110)和(101)等。
不同的晶面具有不同的结构和化学性质,因此对TiO2晶体进行晶面调控可以调整其催化活性。
目前,常用的晶面调控方法主要包括溶液法和气体传输法。
溶液法是通过控制合成条件和添加特定溶剂来调控晶体的生长方向。
添加表面活性剂可以抑制某些晶面的生长,从而增加其他晶面的比例。
气体传输法则是通过控制气氛组成和反应温度来调控晶体的生长方向。
利用气体传输法可以在特定条件下实现晶面选择性生长,从而制备具有特定晶面比例的TiO2晶体。
晶面调控改性TiO2晶体的方法多种多样。
一种常见的方法是通过掺杂来调控晶体的表面性质。
掺杂一些过渡金属离子可以引入额外的能级,增加催化活性。
另一种方法是利用化学处理来改变晶体表面的结构和化学性质。
使用酸性或碱性溶液可以改变晶体表面的酸碱性,进而调控催化活性。
还可以通过修饰晶体表面来改变其电子结构和表面能。
使用有机分子或纳米颗粒修饰晶体表面可以增加活性位点,提高催化活性。
晶面调控改性TiO2晶体的研究已经取得了显著的进展。
研究人员通过改变晶体的生长条件和添加特定溶剂成功调控了晶体的生长方向。
利用气体传输法制备了具有特定晶面比例的TiO2晶体,同时也开发了多种改性方法来提高其催化活性。
这些研究为TiO2晶体的应用提供了有力的支持。
TiO2晶面调控改性的研究具有重要的科学意义和实际应用价值。
通过晶面调控可以调整TiO2晶体的表面性质,从而提高其催化活性。
随着研究的深入,相信晶面调控改性TiO2晶体的应用前景将更加广阔。
二氧化钛光催化原理二氧化钛光催化技术是一种环境友好型的光催化技术,广泛应用于水处理、空气净化、光催化降解有机物等领域。
其原理是利用二氧化钛在光照条件下产生电子-空穴对,从而促进光催化反应的进行。
本文将详细介绍二氧化钛光催化的原理及其应用。
首先,二氧化钛的光催化原理是基于半导体的光生电子-空穴对的产生。
当二氧化钛受到紫外光照射时,其价带内的电子会被激发到导带内,形成电子-空穴对。
这些电子-空穴对具有高度的化学活性,可以参与多种光催化反应,如有机物的降解、水的分解等。
其次,光催化反应的进行需要一定的能量。
在光照条件下,二氧化钛表面的电子-空穴对会与水或有机物发生氧化还原反应,从而实现光催化降解有害物质的目的。
例如,二氧化钛光催化水分解可产生氢气和氧气,而光催化降解有机物则可以将有机废水中的有机物分解为无害的物质。
此外,二氧化钛的光催化效率受到多种因素的影响。
光照强度、波长、温度、二氧化钛表面的形貌和晶体结构等因素都会影响光催化反应的进行。
因此,为了提高二氧化钛的光催化效率,可以通过调控材料结构、表面改性等手段来优化光催化性能。
最后,二氧化钛光催化技术在环境治理领域具有广阔的应用前景。
通过光催化技术处理废水和废气,可以高效降解有机物和有害物质,净化环境,达到环保的目的。
此外,二氧化钛光催化技术还可以应用于光催化电池、光催化氢生产等领域,具有重要的研究和应用价值。
综上所述,二氧化钛光催化原理是基于半导体的光生电子-空穴对产生,利用其高度的化学活性实现光催化反应的进行。
通过调控材料结构和表面改性等手段,可以提高二氧化钛的光催化效率。
二氧化钛光催化技术在环境治理和能源领域具有广泛的应用前景,对于提高环境质量和可持续发展具有重要意义。
浅谈纳米二氧化钛纳米二氧化钛(Ti02)是一种重要的无机功能材料,由于其粒子具有表面效应、量子尺寸效应、小尺寸效应、宏观量子隧道效应等性质;其晶体具有防紫外线、光吸收性好、随角异色效应和光催化等性能;而且它的耐候性、耐用化学腐蚀性和化学稳定性较好,因此纳米二氧化钛被广泛应用于光催化、太阳能电池、有机污染物降解、涂料等领域。
但纳米二氧化钛也有一定的局限性,可在纳米二氧化钛中添加合适的物质(如树脂、聚苯胺、偶联剂、氟碳树脂等),对其进行改性。
1. 纳米TiO2的制备(纳米TiO2溶胶)纳米TiO2的制备方法一般分为气相法和液相法。
由于气相法制备纳米TiO2有诸多缺点如:能耗大、成本高、设备复杂等,且条件苛刻,大大限制了其发展。
液相法主要包括水解法、沉淀法、溶胶-凝胶法、水热法、微乳液法、微波感应等离子体法等制备技术。
而液相法能耗小、设备简单、成本低,是实验室和工业上广泛使用的制备方法。
由于传统的方法不能或难以制备纳米级二氧化钛,而溶胶-凝胶法则可以在低温下制备高纯度、粒径分布均匀、化学活性大的单组分或多组分分子级纳米催化剂,在此仅介绍用溶胶-凝胶法制备纳米TiO2溶胶。
溶胶一凝胶法制备纳米TiO2:是以钛的醇盐Ti(OR)2,(R为-C2H5、-C3H7、-C4H9等烷基)为原料。
其主要步骤为:钛醇盐溶于溶剂中形成均相溶液,以保证钛醇盐的水解反应在分子均匀的水平上进行,由于钛醇盐在水中的溶解度不大,一般选用醇(乙醇、丙醇、丁醇等)作为溶剂;钛醇盐与水发生水解反应,同时失去水和失醇缩聚反应,生成物聚集成1nm左右的粒子并形成溶胶;经陈化、溶胶形成三维网络而成凝胶;干燥凝胶以除去残余水分、有机基团和有机溶剂,得到干凝胶;干凝胶研磨后煅烧,除去化学吸附的羟基和烷基团,以及物理吸附的有机溶剂和水,得到纳米TiO2粉体。
因为钛醇盐的水解活性很高,所以需添加抑制剂来减缓其水解速度,常用的抑制剂有盐酸、醋酸、氨水、硝酸等。
了解钛白粉无机包覆改性方法及工艺无机包覆改性是钛白粉生产过程中非常紧要的后处理工序之一,在钛白粉表面包覆Si、Al、Zr、Ce、Ti及Zn等水合氧化物,使其表面与介质间形成一道屏障,可降低光催化活性,加强钛白粉耐候性、分散性、抗粉化性等应用特性。
1、钛白粉无机包覆改性方法依据包覆气氛差异,钛白粉无机包覆可分为干法和湿法,其中湿法又包括煮沸法、中和法、碳化法。
(1)干法干法包覆是通过气流载带作用,采纳喷雾法使一种金属卤化物吸附于钛白粉颗粒表面,在过热蒸汽等含水条件下水解,或在氧化条件下焙烧氧化。
该工艺流程短,设备成本低,易于连续自动化操作。
但其颗粒生长速度快,过程掌控难,产品稳定性差,限制了其应用。
(2)煮沸法在强加热条件下,包覆剂水解,沉积于钛白粉颗粒表面,形成包覆层。
该工艺过程掌控难,水解不完全,适应性差。
(3)中和法采纳酸碱中和,在二氧化钛颗粒表面持续反应成膜。
包括加碱中和沉淀酸性包覆、加酸中和沉淀碱性包覆、酸性及碱性包覆剂共沉淀。
(4)碳化法将CO2气体通入含有包覆剂的碱性钛白粉悬浮液中,使包覆剂在二氧化钛颗粒表面缓慢沉淀成膜。
该工艺应用于Si—Al复合包覆,成膜更均匀,产品光稳定性强。
2、钛白粉无机包覆改性工艺依据包覆层成分差异,钛白粉无机包覆可分为单元无机包覆和多元无机包覆。
(1)Al2O3包覆将钛白粉制浆分散,以NaAlO2或Al2(SO4)3为包膜剂,Al2O3包覆量为钛白粉质量的1%—5%,采纳并流法,掌控反应pH及温度,包膜时间为1—5h,熟化2h,得到钛白粉包覆产品。
(2)SiO2包覆以Na2SiO3为包覆剂,采纳并流法,维持pH为8—l0,包覆温度为80—100oC,熟化1—3h。
(3)ZrO2包覆以Zr(SO4)2或ZrOCl2为包膜剂,维持pH为9—10,包覆温度为50—70℃,包膜时间为1—5h,熟化1—3h。
(4)SiO2—Al2O3包覆曹洪清等采纳一次共沉淀包覆,以硅酸钠为硅源,以氯化铝及偏铝酸钠为酸、碱性沉淀剂,得到了高分散、高耐候钛白粉产品。
影响溶胶—凝胶法制备TiO2薄膜的因素及改性途径自从1972年Fujishima和Honda发现在光电池中TiO2单晶光分解水后,TiO2的光催化性能成为人们的研究热点,TiO2由于具有强氧化性、耐酸碱性好、化学性质稳定、无毒性等优点成为当前最有应用潜力的一种光催化剂。
但由于粉末型TiO2光催化剂存在分离困难、易团聚和不易回收等缺点,所以常常将TiO2光催化剂制成薄膜。
制备TiO2薄膜的方法主要有:化学气相沉积法、磁控溅射法、溶胶-凝胶法[4、5]和液相沉积法等,其中,以溶胶-凝胶法较常见。
本文对溶胶-凝胶法制备TiO2薄膜的影响因素及改性等方面进行介绍,并对近年来采用溶胶-凝胶法制备TiO2薄膜在光催化领域中的应用等进行综述和展望,期望对TiO2光催化材料的研究与开发起到一定的帮助。
2 溶胶-凝胶法制备TiO2薄膜的工艺及优缺点溶胶-凝胶法一般以钛醇盐及其相应的溶剂为原料,加入少量水及不同的酸和络合剂等,经搅拌和陈化制成稳定的溶胶;然后用浸渍提拉、旋转涂层或喷涂等方法将溶胶施于经过清洁处理的载体表面;最后经干燥煅烧,在载体表面形成一层薄膜。
溶胶-凝胶法制备TiO2薄膜包括以下步骤:(1)金属盐水解;(2)胶溶;(3)陈化;(4)浸涂;(5)干燥;(6)煅烧。
Sol-Gel 法制备负载型TiO2具有以下优点:1)高度均匀性,对多组分其均匀度可达分子或原子级;2)可降低烧结温度;3)化学计量比较准确,易于掺杂改性;4)工艺简单,易推广。
但是溶胶-凝胶法多采用钛的醇盐为原料,成本较高,而且通过钛酸丁酯的水解和缩聚而形成溶胶的过程中涉及大量的水和有机物,所制备的TiO2薄膜在干燥过程中容易引起龟裂,这都需要进一步研究和改进。
3 影响溶胶-凝胶法制备TiO2薄膜的因素溶胶-凝胶法制膜的关键在于溶胶的配制,为了使衬底上的溶胶膜能迅速水解而得到具有一定厚度的透明薄膜,溶胶的配制应使成膜物质、溶剂、有机交联剂和催化剂之间的比例达到最佳,这样才能制备出高质量的薄膜。
矿产综合利用Multipurpose Utilization of Mineral Resources第3期2020年6月·63·二氧化钛光催化材料的掺杂改性刘江涛,勾昱君,钟晓晖,李耀东(华北理工大学冶金与能源学院,河北 唐山 063210)摘要:随着光催化技术不断发展成熟,空气品质和生活用水安全等问题倍受关注,二氧化钛作为新型光催化材料,其原有的性能已不能满足人们的需要,因此需要不断地突破改性。
目前在二氧化钛改性方面以金属掺杂、非金属掺杂、共掺杂等技术为主,通过提高二氧化钛比表面积,抑制电子空穴的复合,促进电子空穴对的分离,达到增强二氧化钛光催化活性的目的。
本文阐述了近年来二氧化钛的掺杂改性技术的发展现状,并对二氧化钛改性技术的发展趋势进行了展望。
关键词:二氧化钛;光催化;掺杂改性;空气污染doi:10.3969/j.issn.1000-6532.2020.03.010中图分类号:TD989 文献标志码:A 文章编号:1000-6532(2020)03-0063-06收稿日期:2019-01-03作者简介:刘江涛(1996-),男,硕士在读,主要研究方向为净化材料改性。
通信作者:勾昱君(1978-),女,博士,副教授,硕士研究生导师。
E-mail :hbtsgyj 2008@ 。
近年来,随着社会经济的不断发展,人民生活水平不断提高,各种污染问题扑面而来,水污染和空气污染尤为严重,已经引起了世界各国的关注。
二氧化钛作为能够同时处理水污染和空气污染的光催化材料,已经成为人们的热点研究对象[1]。
TiO 2是一种无毒无害的n 型半导体材料,并且能够在太阳光照下产生电子-空穴对,并在电场力作用下移动到二氧化钛表面,与空气中的水产生具有强氧化性的羟基自由基·OH 和·O 2-,从而将有机污染物降解为二氧化碳和水[2-3]。
因其禁带宽度为3.2 eV ,可见光几乎不可用,只能通过紫外光照射而激发,高复合率的光生电子空穴对使得TiO 2活性较低,并且二氧化钛的物理完整性和光催化活性随着二氧化钛的老化而逐渐恶化[4]。
二氧化钛的导电性改善及其在光催化中的应用近年来,二氧化钛材料在光催化领域的应用越来越受到重视。
然而,传统的二氧化钛材料在吸光和传导方面存在着一些局限性,这就限制了它在光催化领域的应用效能。
为了克服这些局限性,人们开始研究如何提高二氧化钛的导电性能,并且将其应用到光催化反应中。
本文将介绍二氧化钛的导电性改善及其在光催化中的应用。
1. 二氧化钛的导电性提升目前,人们提高二氧化钛导电性的方法主要有掺杂、变形和处理三种方式。
1.1. 掺杂其中,杂质掺杂法是最常用的二氧化钛导电性改善方法。
通过在二氧化钛晶格中引入一些杂原子,改变晶格结构和形貌,从而提高二氧化钛的导电性。
常用的杂质包括Ni、Cu、Fe、W、Mo等金属元素和N、F等非金属元素。
例如,以氟离子掺杂的二氧化钛纳米颗粒为例。
在热处理时,氟离子能够部分取代氧位,形成O-F键,并且破坏了晶格中的一些平面,从而导致了二氧化钛的能带结构改变。
与传统的纯二氧化钛相比,掺杂后的二氧化钛在吸收光谱和电学响应方面均有所增强,因此它在太阳能电池、光电化学电池和光催化领域具有更好的应用前景。
1.2. 变形通过外加压力或构型变形,人们使二氧化钛纳米颗粒发生畸变,从而改变了其晶格结构和形貌。
这种变形能够改变二氧化钛的导电性能并且增加了其比表面积和光吸收性能,因此这种方法也被广泛用于二氧化钛的导电性提升。
1.3. 处理传统的处理方法包括热处理、辐照处理和化学处理。
这些方法中,热处理和辐照处理能够使二氧化钛发生畸变和缺陷等微观结构改变,从而提高其导电性能。
化学处理则通过改变二氧化钛表面的化学性质和结构,提高其导电性能。
2. 二氧化钛在光催化中的应用二氧化钛在光催化中的应用已经得到广泛的研究,其应用领域主要包括污染物降解、水的分解和,太阳能电池等。
2.1. 污染物降解由于具有高效的光催化性质,二氧化钛在污染物降解方面得到广泛的应用。
与传统的化学方法相比,二氧化钛在污染物降解中具有更好的目标特异性和更高的降解效率。
纳米二氧化钛的性质及应用进展牙膏工业2006年第3期纳米二氧化钛的性质及应用进展李志军王红英(深圳职业技术学院工业中心518055)摘要:纳米二氧化钛微粒具有大的比表面积,其表面原子数,表面能和表面张力随粒径的下降急剧增加,由于其尺寸的细微化,表现出独特的物理和化学特性,导致纳米二氧化钛微粒的热,光,敏感特性和表面稳定性等方面不同于常规粒子,这就使其在环境,信息,材料,能源,医疗与卫生等领域有着广阔的应用前景.综述了纳米二氧化钛的性质,并介绍了近年来纳米二氧化钛的应用研究发展动态.关键词:纳米粉体二氧化钛性质应用纳米微粒是指颗粒尺寸在I—lOOnm的超细微粒.由于纳米微粒具有了量子尺寸效应,小尺寸效应,表面效应和量子隧道效应,因而展现出许多特有的性质,在催化,滤光,光吸收,医药,磁介质及新材料等方面具有广阔的应用前景.纳米二氧化钛因其具有粒径小,比表面积大,磁性强,光催化,吸收性能好,吸收紫外线能力强,表面活性大,热导性好,分散性好,所制悬浮液稳定等优点,因此倍受关注,制备和开发纳米二氧化钛成为国内外科技界研究的热点….本文将介绍纳米二氧化钛的一些基本性质及其主要的应用研究进展.1纳米TiO的基本结构二氧化钛是金属钛的一种氧化物,其分子式是TiO.根据其晶型,可分为板钛矿型,锐钛矿型和金红石型三种.其中锐钛矿型TiO属于四方晶系,其晶格参数仅0=37.85nm,C0=95.14nm.图1为两种晶型单元结构图.锐钛矿型TiO的单元结构中钛原子处于钛氧八面体的中心,其周围的6个氧原子都位于八面体的棱角处,有4个共棱边,也就是说,锐钛矿型的单一晶格有4个TiO分子.锐钛型TiO的八面体呈明显的斜方晶型畸变,Ti—O 键距离均很小且不等长,分别为I.937×10.m和1.964×10.11'1,这种不平衡使TiO分子极性很强, 强极性使TiO表面易吸附水分子,使水分子极化而形成表面羟基.这种表面羟基的特殊结合使其表面改性成为可●TioO金红石型(a)(b)图1TiO2的两种晶型单元结构图[.】能,它可作为广义碱与改性剂结合,从而完成对TiO2的表面改性.2纳米TiO的表面性质2.1表面超亲水性目前的研究认为,在光照条件下,TiO表面的超亲水性起因于其表面结构的变化.在紫外光照射下,TiO价带电子被激发到导带,电子和空穴向TiO表面迁移,在表面生成电子空穴对,电子与Ti反应,空穴则与表面桥氧离子反应,分别形成正三价的钛离子和氧空位.此时,空气中的水解离吸附在氧空位中,成为化学吸附水(表面羟基),化学吸附水可进一步吸附空气中的水分,形成物理吸附层.2.2表面羟基相对于其它颜料的金属氧化物,TiO中Ti—O健的极性较大,表面吸附的水因极化发生解离,容易形成羟基.这种表面羟基可提高TiO作为吸附剂及各种载体的性能,为表面改性提供方便.-2006年第3期牙膏工业49及各种载体的性能,为表面改性提供方便.2.3表面酸碱性二氧化钛(俗称钛白)用于涂料时,其表面酸碱性与涂料介质密切相关.在改性时常加入AJ,Si,zn 等氧化物,Al或Si的氧化物单独存在时无明显的酸碱性,但与TiO:复合,则呈现强酸性,可以制备固体超酸.因此,加入其它金属氧化物改性时,可以形成新的酸碱点.MoO.一TiO:表面有较强的酸性,而ZnO:一TiO:表现出明显的碱性.2.4表面电性钛白在干粉状态通常带有静电荷,钛白颗粒在液态(尤其是极性的)介质中因表面带有电荷就会吸附相反的电荷而形成扩散双电层,使颗粒有效直径增加.当颗粒彼此接近时,因异性电荷而相斥,有利于分散体系的稳定.经A1:0.包膜的钛白表面具有正电荷,而用SiO:处理的钛白带负电荷.经硅铝复合包膜的钛白,当重量比AJ:0./SiO:>1时,带正电荷,当重量比A1:0./SiO:<1时,带负电荷.调整Al:0./SiO:的重量比比例,可改变钛白在不同介质中的分散性.3纳米TiO2的应用纳米二氧化钛是一种重要的无机材料,被广泛应用于涂料,化汝品,抗菌剂,污水处理等方面.下面介绍纳米二氧化钛的几种主要用途.3.1光化学作用当二氧化钛受到彼长小于387.5nm的紫外光的照射时,价带上的电子跃迁到导带,激发电离出电子的同时产生正电性的空穴,形成电子一空穴对,与吸附溶解在其表面的氧气和水反应.分布在表面的空穴将OH一和H:0氧化成HO自由基.HO自由基的氧化能力是在水体中存住的氧化剂中最强的,能氧化大部分的有机污染物和无机污染物,而且对反应物几乎无选择性,在光催化氧化中起着决定性的作用.二氧化钛表面电子具有高的还原性,可以去除水体中的金属离子.生成的原子氧和氢氧自由基使有机物被氧化,分解,最终分解为CO:,H:0和无机物.其反应过程如下(其中,h代表正电性的空穴,e一为光激发电子,?OH是氢氧根自由基,OH一为氢氧根离子,?O是带负电的氧原子自由基, HO:?是反应中间体):TiO2三h++e-(1)h+H20?OH+H(2)h+OH一?OH(3)e-+0:一.o三Ho:.(4)2HO2?H202+02(5)H202+.O?OH+OH一+02(6)Organ(有机物)+?OH+02CO2+H20+其他产物(7)M"(金属离子)+ne一一M.(金属离子)(8)图2是纳米二氧化钛光催化机理示意图.导带Ee『嗡图2纳米二氧化钛光催化机理示意图【3.2污水处理利用纳米TiO:的光催化性质来处理废水和改善环境是一种行之有效的方法.Matthews等人曾对水中34种有机污染物光催化分解进行了系统的研究, 结果表明光催化氧化法可将水中的烃类,卤代物,羧酸,表面活性剂,染料,含氮有机物,有机磷杀虫剂等较快地完全氧化为CO:和H:0等无害物质.光催化降解技术具有常温常压下就可进行,能彻底破坏有机物,没有二次污染且费用不太高等优点.3.3气体净化随着工业的发展和人民生活水平的不断提高,环境污染问题已日趋严重,有害气体净化同样受到人们的重视.近年来逐渐发展起来的纳米TiO:光催化降解技术为这一问题的解决提供了良好的途径.环境有害气体可分为两个方面:室内有害气体和大气污染气体.室内有害气体主要有装饰材料等放出的甲醛及生活环境中产生的甲硫酵气,硫化氢, 氨气等,这些气体在百万分之几时就能使人产生不适感.TiO:通过光催化作用可将吸附于其表面的这些物质分解氧化,从而使空气中这些物质的浓度50牙膏工业2006年第3期降低,减轻或消除环境不适感.大气污染气体主要指由汽车尾气与工业废气等带来的氮氧化物和硫氧化物,利用纳米TiO:的光催化作用可将这些气体氧化,形成蒸气压低的硝酸或硫酸.这些硝酸或硫酸可在降雨过程中除去,从而达到降低大气污染的目的.3.4抗茵除臭抗菌是指TiO:在光照下对环境中微生物的抑制或杀灭作用.在人们的居住环境中存在着各种有害微生物,对人类生活产生不良影响.家居环境中的一些潮湿的场合如厨房,卫生间等,微生物容易繁殖,导致空气菌浓和物品表面菌浓增大,对人的健康产生威胁.利用纳米TiO的光催化性可充分抑制或杀灭环境中的有害微生物,使环境微生物对人的危害降低….空气中的恶臭气体主要有含硫化物(如Hs,sO,硫醇,硫醚等),含氮化合物(如胺类,酰胺等),卤素及衍生物(如cl,卤代烃等).近年来采用二氧化钛光催化剂和其他吸附剂组成的混合物除臭已得到实际应用.气体吸附剂吸附的这些臭气经扩散与二氧化钛接触,二氧化钛将气体氧化分解后既不降低吸附剂的吸附活性,又解决二氧化钛对臭气吸附性较差的缺点,大大提高了臭气的光降解效率. 3.5在涂料行业的应用将纳米TiO与闪光铝粉或云母钦珠光颜料拼配使用制成的涂料具有随角异色效应,作为金属闪光面漆涂装在小汽车上,将产生富丽雅致的效果.这是纳米TiO最重要,最有前途的应用领域之一. 美,日等国的福特,克劳斯勒,丰田,马自达等汽车公司上世纪80年代开始应用于轿车工业,到上世纪90年代,世界上已有l1种含纳米TiO的金属闪光面漆被用于轿车工业,今后还会有更大的发展u引. 经研究发现¨,金红石型纳米二氧化钛用于金属闪光面漆时,既能产生随角异色效应,也能提高漆膜的柔韧性和附着力等力学性能;金红石型纳米二氧化钛用于含环氧基丙烯酸型粉末涂料,具有增强,增韧效果,使漆膜光泽的力学性能提高很多,达到汽车涂料国际要求,获得应用普通钛白所得不到的性能;锐钛型纳米二氧化钛用于丙烯酸型抗菌内墙涂料,具有很强的杀菌效果,而且力学性能优异,具有广阔的发展前景.3.6在化妆品方面的应用纳米TiO:具有很强的散射和吸收紫外线的能力.尤其是对人体有害的中长波紫外线UV A,UVB (320—400nm,290—320nm)的吸收能力很强,效果比有机紫外吸收剂强得多,并且可透过可见光,无毒无味,无刺激性,广泛用于化妆品.纳米TiO紫外屏蔽能力与粒径大小有关,粒径越小,紫外线透过率越小,抗紫外能力越强.对于化妆品的TiO含量而言,粒径越小,可见光透过率越大,可使皮肤白度显得自然.平均粒径为10nm的TiO:分散在水中,几乎是无色透明的.但添加的颗粒粒径不是越小越好,否则汗汁会将毛孔堵死,不利于身体健康.而粒径太大,紫外吸收又会偏离这一波段.因此最好在纳米TiO颗粒表面包覆一层对人体无害的高聚物. 粒子浓度对光散射有较大的影响,伴随粒子浓度增大,粒子的光散射效率下降,适当提高TiO的用量, 可使化妆品的防晒系数增大,最理想的用量为5% 20%.除以上应用之外,纳米二氧化钛还可被应用在光学增益体系中,制成一种具有极高发光纯度等奇特光学现象被称为"激光涂料"的新型发光材料¨;纳米二氧化钛还具有湿敏,气敏功能,如它对一氧化碳,氢气极为敏感,可用于传感器的制造¨.最新的研究表明,用钠离子掺杂的纳米二氧化钛分别对双马来酰亚胺,马来酰亚胺的液相聚合反应具有明显的催化作用,而且反应后剩余在聚合物中的纳米二氧化钛对聚合产物多项力学性能的改善还可起到较为理想的促进作用Ⅲ.参考文献l张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,20012uylShi,ChunzhongLi,AipingChen.et"a1.Morphologicalstrue? tureofnanometerTiO2一Al203compositepowderssynthesizedinhightemperatm-egasmediumsreactor.ChemicalEngineering.1ouna1.2001,(84):405~4113范崇政,肖建平,丁建伟.纳米Tio2的制备与光催化反应研究进展.科学通报,2001,46(4):256~2734黄华林.锑自在钛白生产中应用探讨.无机盐工业,1997,3:31~332006年第3期牙夤=【.业生物基表面活性剂的应用王杰聂荣春徐初阳(安徽理工大学材料系安徽淮南232001)摘要:简要概述生物基表面活性剂烷基糖苷的物理性能和溶解性,表面活性,安全性和生物降解等性能,重点介绍其作为表面活性剂在衣用洗涤剂,餐具洗涤剂,化妆品,食品工业,生物化工和农药增效剂等方面的应用,同时指出烷基糖苷可进一步衍生化,从而拓宽其应用领域.关键词:生物基表面活性剂;烷基糖苷L化剂;聚氨酯烷基糖苷(APG)是近几年迅速发展起来的新一代绿色表面活性剂,兼有普通非离子和阴离子表面活性剂的优点,高表面活性,非常优良的生态学和毒理学性质以及出众的物理化学性质和配伍性能,尤其是它的毒性,与皮肤的相容性及其生物降解性都给许多化学品的配制带来了新概念….因此,特别适用于与人体皮肤接触的洗涤用品和个人护理用品.此外,在食品工业,生物化工和农用化学品等方面可作功能性助剂.1烷基糖苷的特性1.1物理性能和溶解性纯烷基糖苷为白色粉末,实际产品为奶油色或淡黄色.极易吸水,在水中有一定的溶解度,故市场上的商品一般配成50%的水溶液.烷基糖苷也较易溶于常用有机溶剂,在酸碱性溶液中呈现出优良的相容性,稳定性和表面活性,尤其在无机成分较高的活性溶剂中J.烷基糖苷的物理性质与脂肪醇的碳链长度,碳链的正构或异构,糖的种类以及聚合度密切相关,其熔点随产品分子中碳链的增长而升高,甚至有的高烷基糖苷还没融化时就开始分解了,说明烷基糖苷受热易分解和变色.1.2表面活性5蒋子铎,刘安华.高级氧化过程的研究与进展,现代化工,1991,5(5):14—186张淑霞,李建保,张波,TiO2颗粒表面无机包覆的研究进展.化学通报,2001,(2):71-747常红,王京刚,纳米二氧化钛在环保领域中的应用.矿冶,2002,I1(4):73—748Haradakenji,HisanagaTeruaki,eta1.Photoeatalyticactivityof nanometerTiO2thinfilmsprev,~lbythesol—gelmetho1.Wa—terRes. 1990.24(I1):1415—14178Hlt..y~aKenji,HisanagaTeruaki,eta1.Photocatalytlcactivityof nanometerTiO2thinfilmspreparedbythesol—gelmethod.Wa—terRes. 1990.24(I1):1415—14179姚建年,陈萍,藤岛昭.电解沉积成膜法制备氧化钼变色薄膜的研究.感光科学与光化学,1996,(3):224-22510JiaguoYu,XiujianZhao.Effectofsubstratesonthephoto—c.atu—lytlcaclivityofnsIiometerTIO2thinfilmsMaterialsResearchBulletin. 2000,(35):1293—1301IIWenyuYe,TiefengCheng,QingYe,etalh叩aHmand仃ib0l0gi—ealprope—iesoftetrafluo~caeidmodifiedTi02nanopartidesaslubri? canadditives,MaterialsScienceandE一neering.20(B,(359):82—85 12杨宗志,国外超细透明二氧化钛的生产,钒钛,1994(4):45—5213李大成,周大利,等.纳米TiO2的应用.四川有色金属.2002.4:14—1614许秀艳,付国柱,等.纳米TiO2在涂料中的应用.全面腐蚀控制.2002,15(2):815LawandyNM,BalachandranRM,ComesASL,sers*c—tioninstronglyscatteringmedia.Nature.1994(368):43616包定华,顾蒙爽,邝安祥,等.S0l—gel法合成TiO2纳米粉球和薄膜.无机材料,1996,I1(3):45317WangX,ChenD,blaW,eta1.polymerizationofbismaleimide andmaleimidecatalyzedbynanoerystaUinetitania.JApp]PolymSei. 1999.71:665(收稿日期:2oo6年8月8日)。