分布式光纤测温系统
- 格式:pptx
- 大小:4.77 MB
- 文档页数:13
分布式光纤及电缆测温系统目录一、分布式光纤温度监测系统 (1)1、系统概述 (2)2、分布式线型光纤感温火灾报警系统技术指标 (2)3、分布式光纤感温光缆 (3)4、系统技术特点 (4)5、行业应用 (6)二、XSJ-2000型电缆温度在线监测预警系统 (7)1、系统概述 (7)2、系统组成 (7)3、总线系统 (9)4、设计方案 (9)三、XSJ-2000型电缆隧道自动防火门系统 (10)1、概述 (10)2、系统硬件构成 (10)3、系统结构图及设计图 (11)一、分布式光纤温度监测系统1、系统概述分布式线型光纤感温火灾报警系统主要是一种时域分布式光纤监测系统,它的技术基础是光时域反射技术OTDR,是近几年发展起来的一种用于实时测量空间温度场分布的高新技术,它能够连续测量光纤沿线所在处的温度,测量距离在几公里到几十公里范围,空间定位精度达到米的量级,能够进行不间断的自动测量,特别适用于需要大范围多点测量的场合,它具有精度高、数据传输及读取速度快、自适应性能好等优点。
系统具有防燃、防爆、抗腐蚀、抗电磁干扰、在有害环境中使用安全,实现实时快速线性测温并定位, 是光机电、计算机一体化技术的集成。
XSJ-2000基于拉曼散射技术的温度传感系统,其系统结构如图1。
图1拉曼散射温度传感系统结构2、分布式线型光纤感温火灾报警系统技术指标●测温范围:-50~150℃;●额定动作温度:35 ~115℃;●空间分辨率:1m;●定位精度:±1.0m;●采样速率(空间采样间隔):100MHz(1m);●测量时间:10s;●测量元件类型:感温电缆直接接入主机;●温度分辨率:±1.0℃;●温度稳定性:1.0℃;●温度显示:显示连续温度曲线;●测温方式:无盲区连续测试;●系统联网方式:RS485,可以远程数据传输;(同时支持TCP/IP,232接口);●分布式线型光纤感温探测系统主机能够进行手动报警复位和协议报警复位功能;●分布式线型光纤感温探测系统主机能够远程输出报警开关量信号,实现系统报警与控制联动效应;●分布式线型光纤感温探测系统主机有输入(键盘与鼠标)与显示(液晶)功能,可视人机交互界面;●分布式线型光纤感温探测系统主机可配接备用电源;●分布式线型光纤感温探测系统主机可与报警控制器相配接;●使用温度:-25~60℃;●使用湿度:20~90%(无冷凝);●输出信号:开关量输出;3、分布式光纤感温光缆光缆特点:中心松套管光纤,采用不锈钢软管护套,再外包上外径3mm的聚合物材料,光缆外形如图2所示。
基于ROFDR的分布式光纤测温系统模型分析摘要:分析了功率调制型光频域后向拉曼散射理论模型的基本特征,研究了以光频域后向拉曼散射为基础的分布式光纤测温系统中测量距离与分辨率的限制。
对该模型的频域算法加以仿真并给出了仿真结果,对还原空间分布函数的方案有一定的价值。
关键词:拉曼散射光频域反射分布式光纤测温分布式光纤测温系统(DTS)采用的光频域反射技术相对于光时域技术具有噪声低,空间和温度分辨率高,无需高速采样等优点而被作被广大科研工作者所关注[1]。
本文从模型仿真的角度,详细分析了光频域拉曼反射信号的理论表达式[2],采集激光信号,反斯托克斯拉曼散射光两路信号的方案,对该模型进行了推导和仿真,对频域采样函数进行数值模拟,得出了最优的频域参数。
1 基于ROFDR的DTS结构如图1,将激光器中发出的一束频率为f0的激光以频率为fm的正弦信号调制,fm为一组等距离递增的频率。
将调制后的光经过分束一部分耦合进测试光纤,然后对反射回来的反斯托克斯光用雪崩二极管检测, 经过分束的另一部分输入光用光电二极管检测,将两路功率信号送入数据处理系统,可得出沿测试光纤的温度分布情况。
2 ROFDR模型原理分析假设光纤的实际温度为单一温度300K,利用以上算法对实际温度进行数值模拟计算,计算结果跟温度相差大约在1~2K左右。
0到1000m的波动范围也很小。
本次仿真采用的仅仅是单一温度下温度分布,采用空间采样函数分析而设置的调制范围和调制步长,对还原空间分布因子有一定的作用。
3 结论本文对早期较为成熟的ROFDR模型进行了推导[4],采用快速IFFT变换对频域响应函数进行处理,取消对斯托克斯光的采集,简化了ROFDR模型,同时对空间分辨率和最大测试距离因素加以推导,对空间采样函数进行数值模拟,得出了合适的调制频率步长和最大调制频率,并还原了单一温度下的光纤的温度分布,对研究ROFDR技术有一定的参考性。
参考文献[1]耿军平,许家栋,郭陈江,等.全分布式光纤温度传感器研究的进展及趋势[J].传感器技术,2001(2)[2]耿军平,许家栋,李焱,等.基于光频域喇曼散射的全分布式光纤温传感器模型研究[J].光子学报,2002(10)[3]李伟良.光频域喇曼反射光纤温度传感器的频域参量设计[J].光子学报,2008(1)[4] Ahangrani M,Gogolla T.Spontaneous Raman scattering in optical fibers with modulated temperature Raman remote sensing. Journal of Lightwave Technology . 1999,17(8):1379~1391.。
基于分布式光纤测温的电力电缆温度监测系统随着地下电缆在供电系统中应用和逐渐推广,实现地下电缆的安全、稳定和经济运行对确保供电系统的安全性、稳定性、经济性等意义重大。
在电缆输电过程中电缆温度变化对其运行状态影响很大,因此提出了基于分布式光纤测温的电力电缆温度监测系统,本文着重介绍了该系统的工作原理及软硬件组成。
标签:地下电缆;分布式光纤测温系统;拉曼散射;光时域反射0 引言随着我国城市化建设不断发展,城市中电缆逐渐由架空铺设转变为地下铺设,地下电缆规模快速扩展,伴随着地下电缆的安全性以及可靠性等问题日益明显,因此亟待一种有效的电缆安全监测方法。
研究表明,电缆温度与电缆运行状态间存在着密切的关系,当电缆运行负荷变化时,则电缆温度也会随之发生相同趋势的变化[1]。
如果电缆在运行过程中某处温度迅速升高,则说明运行负荷过大或电缆此处存在问题;当电缆长时间处于允许的极限温度时,则会导致电缆老化,发生故障。
反之为了避免电缆温度过高,采取使电缆长时间处于低负荷运行,则使电缆不能被充分利用。
为了保证电缆在运行过程中既可安全运行,又可充分利用,所以需要对电缆进行实时温度监测,便于及时掌握和预测电缆的运行状态[2]。
在实际工程中,电缆线芯温度是很难被直接测量,因此只能通过间接的方法来获取线芯温度,分布式光纤测温系统是将测温光纤与电缆紧密贴合,对电缆进行实时温度监测,通过测温光纤测量电缆表皮温度,进而推算线芯温度。
测温光纤具有能连续获取电缆整条线路上温度信息的优势,同时具有抗电磁干扰性强、维护成本低、对温度变化敏感等优点。
因此近年来分布式光纤测温技术逐渐被应用到地下电缆的温度监测。
1 分布式光纤测温原理分布式光纤测温系统是利用光纤的拉曼散射温度效应来实现电缆温度的测量,温度点定位通过光纤的光时域反射原理来实现。
1.1 拉曼散射温度效应当激光发射器产生的光在光纤中传输时,光脉冲与光纤中的分子相互作用而发生散射,发生的散射光包含多种类型。
光纤分布式测温光纤光栅1.引言1.1 概述光纤分布式测温光纤光栅是一种新型的测温技术,采用光纤传感器和光栅技术相结合,能够在光纤上实现实时、连续和分布式的温度监测。
光纤分布式测温技术在工业生产、能源开发、交通运输等领域具有广泛的应用前景。
光纤分布式测温技术通过在光纤上布置一定的光栅结构,实现对光的频率或相位的测量,从而间接测量出光纤所处位置的温度。
相比传统的点式温度传感器,光纤分布式测温技术具有以下优势:首先,光纤分布式测温技术可以实现对大范围区域的温度监测。
传统的点式温度传感器只能在特定的位置进行测量,而光纤分布式测温技术可以在整个光纤传感区域内进行连续的温度监测,从而实现对整个区域的温度分布进行实时监测。
其次,光纤分布式测温技术具有高精度的优势。
光纤传感器的传感元件通常采用光纤光栅,可以对光的频率或相位进行高精度的测量,从而实现对温度的精准测量。
同时,光纤的传输性能良好,不易受到外界干扰,可以保证测温的准确性和稳定性。
此外,光纤分布式测温技术还具有快速响应和实时监测的特点。
由于光纤传感器的测量原理是基于光的传输特性,具有传输速度快的特点,可以实时监测温度变化,对温度异常进行及时响应。
综上所述,光纤分布式测温光纤光栅是一种具有广泛应用前景的测温技术。
它的分布式测温能力、高精度测量、快速响应和实时监测等优势,使其在工业生产、能源开发、交通运输等领域都有很大的潜力。
本文将详细介绍光纤分布式测温光纤光栅的工作原理、应用领域以及发展趋势,并对其未来的发展进行展望。
1.2 文章结构文章结构部分应该包括整篇文章的组成和章节划分的介绍。
以下是文章结构部分的内容建议:文章结构:本文总共包括引言、正文和结论三个部分。
引言部分主要概述了光纤分布式测温光纤光栅的背景和意义。
正文部分主要介绍了光纤分布式测温技术和光纤光栅的原理、应用等相关内容。
结论部分对全文进行总结,并展望了未来的研究方向。
章节划分:引言部分:首先介绍了光纤分布式测温光纤光栅的背景和意义,引发读者对该领域的兴趣,然后概述了整篇文章的结构和各个章节的内容。
光纤测温系统在电解铝行业的应用摘要:我国内电解铝行业规模在最近十年来取得了飞速发展。
槽型和系列规模不断增大,配套装备制造业也紧随其发展逐步跟进,但发展速度和技术水平仍不能满足现阶段电解铝企业对设备精细化和专业化管理需求。
在电解槽日常管理中,槽壳温度监控是一个重要的环节。
目前,电解槽测温主要靠人工利用红外线测温仪对电解槽壳的某些点进行间断性的测量。
这种测温方法存在诸多不足,如电解槽数量多、测温区域庞大,采用这种方法,电解槽的连续多点测量无法实现,不利于测温数据的保存、分析等。
如果能够对电解槽壳温度进行连续、多点在线监测,自动生成每台电解槽壳多点温度曲线,实现槽壳温度阈值报警功能,将会对电解槽工艺参数分析和安全运行提供有力的数据支持。
广泛应用于电力、化工等行业的分布式光纤测温系统将可能满足这个需求。
关键词:光纤测温;电解槽;在线监测一、分布式光纤测温系统的原理光纤传感器是以光纤通信、光谱分析等技术为基础的新型传感器,具有体积小、灵敏度高、抗干扰能力强等优势。
测温系统本身对温度的变化非常敏感,温度的异常变化可能增大测量误差。
因此,分布式光纤测温系统的主机和控制计算机应安装在环境比较稳定的监控室或中心机房中,其中主机的最佳工作温度为10~35 ℃、湿度≤70%。
如果由于特殊情况不能满足以上环境要求。
光纤温度传感器是应用最广泛的光纤传感器之一,具有耐腐蚀、耐高温、抗干扰、结构紧凑、精度高、适合远距离传输等特点,可以满足温度的实时监测要求。
1、分布式光纤温度传感器。
分布式光纤温度传感器是采用若干光纤温度传感器,根据一定的布点规律进行安装测温,得到特定空间区域内的温度分布情况的一种测温技术。
该项技术的主要原理是光波在光纤介质内传输时可以产生后向散射,而散射能量与介质温度有关,通过检测散射光的特性即可算出环境温度值。
在实际应用中,光源通常采用高能量的激光脉冲,注入光纤后,激光会不断产生后向散射,当温度发生改变时,散射的结果也会有所不同,通过光电探测器接收散射光,并经过波分复用、检测解调等处理,由信号处理单元计算出实际的温度值。
西南大学毕业论文题目:分布式光纤测温系统的设计与实现专业:电子信息工程技术班级:一班学生姓名:杨杰指导教师:谢熹摘要以光纤通信和光纤传感技术为代表的信息技术和传感技术在20世纪后半叶至今的几十年里R新月异,极大地推动了人类社会的进步。
与其他传感器相比,光纤作为一种新型的传感器件有其独特的优势。
它抗电磁,耐高温,对温度、应变等外界变化敏感,而且价格便宜,容易获取,可以形成分布式的线测量甚至是场测量。
因此光纤传感在最近几年的到快速发展.将应用于更广的范围。
分布式光纤测温系统的信号采集、数据处理,以及后台软件的编写占系统成本的绝大部分。
它的检测精度和速度决定了整个系统的测量精度,空问分辨率,采集速度以及最后的请求响应时间。
如何提高系统各个部分的处理速度,协调好数据传输,成为分布式光纤铡温系统的关键。
论文提出了一种基于嵌入式的利用光纤拉曼散射原理的分布式测温解调方案。
由于传感距离长,使得系统可以进行场式的温度测量,可以全面的获得空间式的3维温度模型,满足大型工程传感网络的实时监测。
论文详细介绍了嵌入式光纤传感分布测温系统的光路设计,硬件电路设计和软件设计。
光路设计包括:在嵌入式主机的控制下利用激光源和脉冲调整器形成固定周期的脉冲光,作为光纤传感器的激励信号;使用3dB耦合器对激励光进行分束,传入光纤传感器,散射拉曼光回传经过耦合器进入分光系统,只有固定频率的Stokes光和Anti .Stokes光透过分光系统;两束光分别进入光电探测器( PD) ,完成光电转换过程。
系统中各个模块间的同步由硬件电路控制,主控芯片为TI公司的双核微处理器。
0M AP5912对FPG A模块发出采集控制信号,FPG 巩负责控制与脉冲调制器间的同步,计时,同时触发AD采集。
采集结束,FPG A发出中断,通知采集过程结束。
O M AP5912发出传输数据指令,将外接RAM 中的数据读入DSP进行数据处理。
在DSP中对数据进行小波变换多分辨分析对采样的数字量进行降噪处理,消除传输和测量过程中的各种噪音和随机干扰。
光纤分布式测温原理
光纤分布式测温原理的详细介绍如下:
光纤分布式测温技术是一种基于拉曼散射效应的温度测量方法,主要利用了光纤的能量传递特性。
其原理是通过光纤在测量过程中的散射信号来推断温度的分布。
具体而言,光纤分布式测温系统通过在一段光纤中注入强光激光束,并且检测散射光的拉曼频移信号。
由于温度的变化会影响光纤的折射率,进而改变拉曼频移信号的频率。
因此,通过测量散射光的频谱,可以获得温度变化的信息。
光纤分布式测温系统还会在光纤上分布许多测温点,以实现对整个系统进行高精度测温。
每个测温点的位置可以通过光纤布设的方式来确定,并且可以根据需要进行调整。
在实际应用中,光纤分布式测温系统可以用于各种环境下的温度测量,包括石油、化工、电力等行业。
它具有高灵敏度、高精度、抗干扰能力强等优点,可实现对温度变化的实时监测和精确测量。
总而言之,光纤分布式测温原理是基于光纤的拉曼散射效应,利用纤维中散射光的频率变化来推断温度的分布。
它是一种高精度、高灵敏度的温度测量技术,具有广泛的应用前景。
dts分布式测温原理
DTS(Distributed Temperature Sensing)是一种利用光纤传感
技术进行温度测量的方法,可以实现高精度的分布式温度监测。
DTS的原理是利用光纤的光学特性来实现温度测量。
在DTS
系统中,一根长光纤被分成很多小段,每一小段都能够进行温度测量。
光纤上每隔一定距离就有一个发光器,发光器发出脉冲光信号沿着光纤传输。
当脉冲光信号遇到温度变化时,光的散射现象会引起信号的强度变化。
系统可以通过检测信号的强度变化来获得温度信息。
具体来说,DTS系统通过两种光纤传感方式来测量温度:拉
曼散射和布拉格光栅。
- 拉曼散射测温:当光信号沿着光纤传输时,与光纤中的分子
发生碰撞,部分光子会发生拉曼散射。
拉曼散射的频率与温度有关,可以通过检测散射光的频率来获得温度信息。
- 布拉格光栅测温:在光纤中引入布拉格光栅结构,当光信号
经过光栅时,部分光子会被反射回来。
布拉格光栅的反射波长与温度有关,可以通过测量反射波长的变化来获得温度信息。
DTS系统通过不断发送光信号并检测散射光的强度、频率或
波长变化来实现对光纤不同位置的温度测量。
DTS可以实现
高精度的分布式温度监测,广泛应用于石油、天然气、电力、交通等领域的温度监测和控制。
das光纤测温原理
DAS(分布式光纤测温系统)的原理基于拉曼散射和光时域反射(OTDR)技术。
当激光脉冲在光纤中传播时,会与光纤分子相互作用,发生散射。
其中,拉曼散射是由于光纤分子振动而产生的散射,其散射光的频率比入射光低。
通过检测拉曼散射光的强度和波长,可以推算出光纤沿线的温度信息。
具体来说,DAS系统通过向光纤发送激光脉冲,并检测反向散射光,可以获取光纤沿线的温度信息。
由于光速是恒定的,所以可以通过测量光脉冲在光纤中的传播时间,确定光脉冲在光纤中的位置。
因此,通过测量反向散射光的强度和波长,并确定其位置,就可以得到光纤沿线的温度分布。
DAS系统的优点在于它可以实现大范围、连续的温度监测,并且具有高精度、高分辨率、快速响应等优点。
此外,由于光纤本身具有抗电磁干扰、耐腐蚀、本征安全等特点,DAS系统在石油、化工、电力、交通等众多领域都有着广泛的应用前景。
请注意,DAS光纤测温系统属于精密仪器,对于使用和安装有一定的要求,如果使用不当或安装失误可能导致测量误差或设备损坏。
因此,建议由专业技术人员进行操作和维护。
.钢铁厂分布式光纤测温系统消防项目技术方案北京品傲光电科技有限公司目录1总述 (3)1.1概述 (3)1.2温度监测的意义 (3)1.3电缆火灾特点 (3)1.3.1引起电缆火灾的原因 (3)1.3.2电缆火灾特点 (4)1.3.3测温方式 (4)1.4公司简介 (7)2技术原理 (9)2.1基本原理 (9)2.2技术优势 (9)3设备介绍 (11)3.1测温主机 (11)3.2感温光缆 (12)3.3适用领域 (13)4系统架构 (14)4.1系统模型 (14)4.2系统总体组成 (15)5解决方案 (15)5.1监控范围和系统配置 (15)5.1.1监测范围 (15)5.1.2系统配置: (16)5.1.3解决方案特点 (16)5.2.敷设方案 (17)5.2.1电缆隧道分布式光纤敷设方案 (17)5.2.2电缆桥架分布式光缆敷设方案 (18)5.2.3重要建筑温度监控系统 (18)5.2.4输煤系统温度监控系统 (19)5.3感温光纤敷设方式 (19)5.3.1大于110kV电缆桥架电缆测温光缆敷设类型 (19)5.3.2表贴式(外置式)光缆的敷设固定方式 (20)5.3.3普通动力电缆桥架感温光缆敷设方式一 (21)5.3.4普通动力电缆桥架感温光缆敷设方式二 (22)5.2.5电缆隧道感温光纤的安装 (22)5.4.光缆敷设固定的技术规范 (23)5.5.报警分区 (24)6软件平台 (25)6.1温度监控软件 (25)6.2监测软件系统特点 (26)6.3软件系统功能框图 (26)6.4电缆测温温度报警设置 (28)6.5系统软件可靠性措施 (28)7系统性能指标 (30)8标准与依据 (31)8.1产品相关标准 (31)8.2项目设计依据 (32)9培训与技术服务 (33)9.1技术支持 (33)9.1.1强大的服务队伍和服务体系 (33)9.1.2现场服务 (33)9.1.3软件服务 (33)9.2培训 (33)9.2.1培训内容 (33)9.2.2时间与地点 (33)9.3售后服务 (33)9.3.1售后安装调试 (33)9.3.2电话支持服务 (33)9.3.3现场支持 (34)9.3.4设备维修 (34)9.3.5现场维修 (34)9.4保修期 (34)1总述1.1概述随着我国工业的不断发展,一个突出的问题显现了出来,这就是电缆的平均故障率要明显高于发达国家,对输电电缆的实时监测,已经成为保障电缆正常工作的必要手段之一。
一、分布式光纤温度传感器二、分布式光纤应变传感器Sentinel-DTSS分布式光纤温度和应变测量系统是目前国际上唯一的可以实现温度与应变不交叉测量的系统,已经被成功的应用到与结构、变形相关的应用中。
DTSS分布式光纤温度和应变传感系统同时利用光纤感测信号和传输信号,采用先进的OTDR技术和Brillouin散射光对温度和应变敏感的特性,探测出沿着光纤不同位置的度和应变的变化,实现真正分布式的测量。
系统特点•整条光纤既传输信号又感应被测量•测试距离远:可达24km(可定做30Km)•空间分辨率高:1-5m•温度分辨率为0.5o C,应变分辨率为10με•同时的温度和应变独立测量•压力分辨率为2psi•单端测量•友好的用户界面•嵌入的网络接口和调制解调器应用领域•连续分布式测量•抗电磁干扰,适用于高电磁环境•本征防雷•测量距离远,适于远程监控•灵敏度高,测量精度高•寿命长,成本低,系统简单三、探测光缆Sensornet探测光缆内部采用普通标准的多模光纤,专门用于连接高性能的Sentinel-DTS实现分布式的温度测量,组成线型光纤火灾探测系统。
可以根据用户要求任意选择50/125μm或62.5/125μm的两种光纤。
Sensornet探测光缆本身就是传感器,性能稳定、可靠,不受各种电磁干扰。
通过它可以测得沿光缆所有点的温度分布情况,不会漏掉任何点,大大减小系统的误报和漏报。
Sensornet探测光缆不但具有很好的热传导特性,同时可以在恶劣环境中长期生存和工作。
Sensornet探测光缆主要包括:1. Sentinel-SST2. Sentinel-T3. 高温光缆这是一种可以在石油井下生存的,耐高温耐高压的特殊光缆。
它是一种高强度的并具备热敏反应的光缆。
这种光缆之所以能在高温下生存,是因为它含有4种保护层,而这4种保护层都是抗氢的。
•光纤的几何机构/涂覆层含有独一无二的抗氢特能• 2.0mm直径的不锈钢管能够保护光纤的机械性能•铝包层进一步强化了抗氢能力•第二层不锈钢管――0.25直径提供额外的机械保护这种类型的钢合金可以根据井下条件而变化(比如,有硫化氢H2S的环境下),其厚度也可根据安装类型进行调整(比如,水平井,竖井或深井)这种类型的光纤可以在> 650°C的环境下测试成功,并且可以进行全面的抗氢测试。
分布式光纤测温系统一、兴安矿现状兴安矿井煤系地层厚1120米,有煤层41个,其中可采和局部可采煤层23个,煤层总厚度为75.99米,2006年10月26日黑龙江省煤田地质研究所对兴安矿煤层自然倾向性分类和自然发火期核定说明:11、12、17-1、17-2、18、21、22、27、30号层9个煤层属容易自然发火煤层。
各煤层自然发火期:11 号层自然发火期:4个月;17-1号层、17-2号层自然发火期: 8个月;18号层自然发火期:6个月;21号层自然发火期: 10 个月、12、27、30号煤层自然发火期12个月属自然发火煤层, 23、24、28、33等煤层自然发火期12 个月以上,属不易自然发火煤层。
由于煤层自燃发火期短,在对煤层自然发火潜伏期温度的变化进行观测时发现现有的观测技术落后。
二、强化温度观测技术兴安矿煤层自燃发火的预测预报工作主要以人工观测采空区后部钻孔为主,这种方法在技术上限制了观测的连续性和准确性,为改变现有的观测技术,兴安矿引进了山东微感光电子有限公司研发的分布式光纤测温监测预报系统。
三、分布式光纤测温监测预报系统原理及系统软硬件设备1、原理分布式光纤测温监测预报系统采用分布式光纤测温技术,该技术为拉曼散射和光时域反射技术,可以实现温度和距离的测定。
拉曼散射是依据光在光纤中传播过程中,产生后向拉曼散射光谱的温度效应。
当入射的光量子与光纤物质分子产生碰撞时,产生弹性碰撞和非弹性碰撞。
弹性碰撞时,光量子和物质分子之间没有能量交换,光量子的频率不发生任何改变,表现为瑞利散射光保持与入射光相同的波长;在非弹性碰撞时,发生能量交换,光量子可以释放或吸收声子,表现为产生一个波长较长的斯托克斯光和一个波长较短的反斯托克斯光。
由于反斯托克斯光受温度影响比较敏感,系统采用以斯托克斯光通道作为参考通道,反斯托克斯光通道作为信号通道,有两者的比值可以消除光源信号波动、光纤弯曲等非温度因素,实现对温度信息的采集,光纤测温的原理是依据后向拉曼(Raman )散射效应。