当前位置:文档之家› 灰铁和球铁的浇冒口系统

灰铁和球铁的浇冒口系统

灰铁和球铁的浇冒口系统
灰铁和球铁的浇冒口系统

灰铁和球铁的浇冒口系统

1 浇注系统的一般叙述

1.1 液态金属在砂型中的流动特性

铁水的浇注温度比结晶凝固温度高出200℃以上,铁水在1310℃-1340℃时,运动粘度γ铁水=0.003㎝2/s,水在20℃时,γ水=0.010㎝2/s在正常浇注温度

下,铁水的运动粘度,比室温下水的运动粘度还要低,有理由认为,能应用流体力学的原理来研究铁水的充型过程。但与水、油等液体在玻璃、塑料、金属管道里流动,不尽相同,铁水在砂型中流体运动的特点:

1.型砂有透气性,铁水在多孔的型腔内运动,气体的压力可以迫使铁水流股与型壁脱离接触。在玻璃、塑料、金属管道中液体呈充满状态,而铁水在砂型中流动时,边界条件为铁水任何截面的压力(P),必须大于或等于型壁的气体压

力(Pa)即P≥P a 当 P>Pa铁水呈充满状态流动。P≤Pa时,铁水呈非充满

状态流动。这时气体会卷入型腔,发生氧化反应铁水吸气,这是不希望看见的。

2. 铁水在浇注系统流动过程中,造型材料受热产生水气、二恶英、3-4苯并芘等有机挥发物,型腔产生的大量气体形成背压,阻碍铁水充型,造成侵入性气孔。铁水冲刷型壁、砂芯,冲刷过程产生化学反应,形成夹杂物等铸件缺陷。

2.冲型过程是不稳定过程,铁水充型及型腔气体背压,随铁水不断注入发

生变化。计算浇注系统时,把变量视为为恒量,简化计算工作量。

1.2 灰铁、蠕铁、球铁停止流动的机理

灰铁、蠕铁、球铁,都是铁碳合金,流动性与合金化学成分关系密切。从铁碳平衡图可以看出,共晶成分铁水流动性最好。在相同温度下,铁水的流动性,球铁>蠕铁>灰铁,因为CE值是球铁>蠕铁>灰铁。铁水停止流动的机理是温度降低以后铁水产生结晶凝固。除共晶点外,铁水的凝固都在一个较宽的温度区间内。

另外,残余镁量过高铁水氧化膜增多,降低流动性。少量稀土能降低铁水表面氧化膜结膜温度,使流动性提高。Mg、RE是强烈的脱氧、脱硫、去气的元素,净化铁水减少外来结晶核心,提高铁水的过冷度。因此相同温度下,球铁的流动性优于灰铁。

1.3铁水流动状态的估计

层流和紊流是粘性液体二种不同的流动状态。液体流动状态取决于雷诺数。

νd 4νd

圆形管道:Re= ————非圆形管道:Re= ————

γγ

Re>2320是紊流;Re<2320是层流。13800>Re>2320是混合状态,多数为紊流。铁水在浇注系统中基本上呈紊流状态。

1.4 浇注系统的功能

一.美国魁北克钛铁公司著名专家卡塞教授提出:浇注系统三大功能

1.将铁水引入型腔;

2.挡渣撇渣;

3.排出型腔内气体。

美国宾夕法尼亚大学格林塞尔维亚教授提出,

①铁水在浇注系统中紊流程度最低;以避免铁水氧化、卷入气体和熔渣、

冲蚀铸型和砂芯。②在金属内部建立向冒口方向顺序凝固的温度梯度;

②浇注系统足够大,满足平稳快速充型需求,同时考虑工艺出品率。

二.华中科技大学李魁盛教授综合国内外研究者的观点,提出

1.内浇口的位置、个数应符合铸件凝固顺序。

选择同时凝固,应保证铸件各部温度均匀。以使内应力最小;

选择顺序凝固,应保证铸件向冒口逐渐凝固,避免缩孔、缩松。

2.建立必要的压力头,平稳快速充型,避免冷隔、浇不足;

3.浇注系统中紊流程度最低,避免卷入气体、熔渣、铁水吸气、氧化。

4.应使铁水平缓进入型腔,防止铁水飞溅和冲蚀型壁、砂芯。

5.具有良好的挡渣能力,防止铸件产生渣孔;

6.型内金属液面有足够的上升速度,以免产生夹砂、皱皮、冷隔等缺陷。

7.不应破坏冷铁、芯撑的作用。

8.减少浇注系统金属消耗,减少砂型体积,减少造型工作量;

9.尽可能减少清理工作量,考虑模板制作方便。

2.铁水充填浇注系统

2.1 外浇口、直浇口、直浇口与横浇口的连接

1.普通的漏斗形浇口杯,只能起到承接浇包铁水和便于浇注的作用。它的弊病是出现水平旋涡。铁水不可能100%对准直浇口中心,某一流股偏离中心距离为r,旋转切线流速为V,按动量矩守衡原理,V·r = 常数,据分析r越小,质点离心加速度(ω2·r=V2/r)越大,使得ω2r与重力加速度g的合成加速度J 的方向接近水平,铁水等压面由水平过渡为垂直,在直浇口中心形成中空漏斗形液面。这样,熔渣和空气被卷入浇注系统内。针对本公司情况,解决办法①铁水包浇注口距离浇口杯越近,产生水平旋涡的危害越小。②浇口杯底部放置过滤网,

2.直浇口铁水流动时,如何防止吸入气体。在这方面学问很大,争论也很大。这里主要牵涉到流体力学方程与型砂通道的条件是否吻合的问题。

3.直浇口与横浇口的连接,直浇口下部的凹窝尺寸与作用,综合卡塞和铸造手册的观点如下:①凹窝比平面有减缓铁水冲击的作用;②减少紊流程度和吸气倾向。凹窝尺寸:直径=1.5倍直浇口,直浇口和横浇口的连接处,避免尖角。

2.2 横浇口与内浇口的挡渣作用原理

1. 对横浇口有三大要求:①承接和分送铁水;②挡渣和撇渣;③降低紊流程度,防止二次氧化。

A 能起挡渣作用

B 不能起挡渣作用

上图为横浇口挡渣示意图,A图熔渣一面上浮,一面做水平运动。渣团到达内浇口附近,处于内浇口吸动区之外,渣团将到达横浇口顶部,或进入横浇口末端延长段顶部。不会从内浇口进入型腔。横浇口担当起挡渣作用。B图由于内浇口吸动区扩展到横浇口顶部,渣团从内浇口吸动区进入型腔,不能起挡渣作用。

由于铁水在横浇口里的流动,基本处于紊流,所以渣团的悬浮运动十分复杂,但可以得出以下结论:①渣团直径越小,上浮速度越慢;②只有大于临界直径的渣团才有可能上浮。③渣团比重越轻,越有利于熔渣上浮;④横浇口中铁水实际流动速度低,横浇口才可能挡住更小直径的熔渣。⑤横浇口不可能百分之百的阻挡所有铁水中的熔渣。

根据理论分析,横浇口发挥良好挡渣作用的充要条件:为:

1.横浇口、内浇口应呈充满状态(内浇口横截面积如果大于横浇口截面积,就不存在充满状态)。横浇口呈充满状态是挡渣的必要条件之一。

2.横浇口里的铁水流速必须尽可能的低。计算表明直径1mm的渣团上浮速度为0.37米/ 秒,只有直径较大的渣团才有可能浮起并被捕获。

要求横浇口断面积很大,将消耗更多的金属,经济上不可行。

3.内浇口、横浇口、直浇口应有正确的关系:

①第一个内浇口与直浇口应有足够的距离,以便渣团在横浇口内移动一定

距离让渣团浮起,越过内浇口吸动区。

②横浇口应有足够长的末端延长段,原因是铁水流到末端时速度减慢产生

背压,会将渣团向最末内浇口方向推挤,通过吸动区进入型腔。

③横浇口与内浇口的位置十分重要,对于封闭式浇注系统,内浇口放置在

④封闭式浇注系统横浇口应高而窄,一般使其高度为宽度的二倍.内浇口应

宽而扁,宽度是高度的4倍。

⑤避免使用弯曲横浇口,如果一定要用,则尽量加大曲率半径。

2. 内浇口设置要点

①对于同时凝固,内浇口开设在薄壁处,数量相对多,减小各部温度差。

对于顺序凝固,内浇口作为冒口通道,铸件向着冒口方向顺序凝固。

②内浇口应尽量薄,减少初期铁水带进熔渣,容易清理打磨。避免内浇口正对砂芯和型壁。

③当把浇注系统作为冒口使用时,应先计算冒口颈尺寸,以此作为内浇口尺寸,按比例得出横浇口截面积。

3. 封闭式浇注系统和开放式浇注系统

3.1 概念和定义

封闭式浇注系统:在正常浇注过程中(特意慢浇除外),所有断面都能为铁水

充满的浇注系统。

开放式浇注系统:在正常浇注过程中,铁水不能充满某个单元或所有单元的浇注系统。

3.2 封闭式浇注系统必须满足:F直>F横>F内

美国卡塞教授推荐:F直:F横:F内=4:8:3

华中科技大学李魁盛教授推荐:F直>F横>F内=2.5:2.5:!

由于光阳高压造型机和149造型机的直浇口尺寸基本固定,选择余地很小,所以本公司的铸件与传统做法不一样,必须由直浇口推定横浇口和内浇口。而传统做法是先计算阻流内浇口的截面积,根据比例计算出横浇口截面积和直浇口的截面积,外加尺寸圆整化。

3.3 灰口铁、球墨铸铁的浇注系统G

灰口铸铁的内浇口阻流截面计算公式:A内=—————

0.31μt√H P

G——流经内浇口A内铁水重量(kg);

μ——浇注系统的流量损耗因素;

t ——充填型腔的时间(s);

H P——平均静压力头高度(cm);

式中:

t =S√G L

t ——浇注时间(S);

G L——浇注重量(kg),计算时按工艺出品率估算。

S ——系数,决定于铸件厚度,可按下表查得。

球墨铸铁浇注系统的特点:1.能大量的输送铁水;2.比灰铁有更好的挡渣能力。通常仍按灰铸铁计算阻流内浇口的公式。

时间t的计算,按灰铁计算t的公式求得t,然后将所得值减少1/3~1/2作为球墨铸铁的浇注时间,纳入求内浇口的最小截面积的公式,得到球墨铸铁内浇口的最小截面积值。分母减少1/3~1/2,内浇口最小截面积增大1.5~2倍。

针对本公司铸件特点,铸件一般都有较多内浇口,为了向废品要效益防止进浆,浇注系统必须按截面积比例,进行分配设置。

附录:1

精密铸造铸件工艺与浇冒口系统设计

第六章铸件工艺设计 第一节概述 为了生产优质而价廉的包模铸件,做好工艺设计是十分重要的。在做工艺设计之前,首先要考虑选用包模铸造工艺生产时,在质量、工艺和经济方面的几个问题。 1.铸件质量的可靠性 对于铸件质量上的要求,一般是包括两个方面,一是保证技术要求的尺寸精度、几何精度和表面光洁度,二是保证机械性能和其它工作性能等内在质量方面的要求。 包模铸造具有少切削、无切削的突出优点。近年来,由于冶金技术、制模、制壳材料和工艺以及检测技术等方面的发展,包模铸件的外部和内在质量不断提高,所以它的应用范围愈来愈广。不少锻件、焊接件、冲压件和切削加工件,都可以用熔模铸造方法生产。 这对于节约机械加工工时和费用,节约金属材料,提高劳动生产率和降低成本都具有很大意义。 但是,熔模铸造生产的铸件,由于冶金质量、热型浇注引起的晶粒粗大、表面脱碳以及内部缩松等方面的原因,铸件的机械性能(尤其是塑性),还存在一些缺陷。对于某些受力大和气密性要求高的铸件,采用包模铸造时,应充分考虑零件在产品上的作用和性能要求,以确保其使用可靠。有些结构件改用包模铸造生产时,必须考虑原用合金的铸造性能是否能满足零件的质量要求,否则就需要更改材质。 2.生产工艺上的可能性和简易性 熔模铸造虽然可以铸造形状十分复杂的、加工量甚少甚至不加工的零件,但零件的材质、结构形状、尺寸大小和重量等,必须符合熔模铸造本身的工艺要求。如铸件最小壁厚、最大重量、最大平面面积、最小孔槽以及精度和光洁度要求等,都要考虑到工艺上的可能性和简易性。 3.经济上的合理性 采用包模铸造在经济上是否合理,要从多方面考虑。按每公斤的价格来说,包模铸件与同类型锻件相近甚至还高些,但是由于大幅度减少了加工量,因而零件最终成本还是低的。 但也有些零件,可以利用机械化程度较高的方法生产,例如用自动机床高速加工、精密锻造、冷挤压、压力铸造等等,这时,用包模铸造法生产在经济上的优越性就不一定显著,甚至成本还可能高一些,所以在这种情况下,就不一定选用这种方法了。 总之,选择包模铸造法生产时,耍从其工艺特点出发,以零件质量为中心,并兼顾生产技术和经济上的要求。 在确定用包模铸造方法生产之后,工艺设计的任务就是要确定合理的工艺方案,采取必要的工艺措施以满足零件质量的要求。 工艺设计是理论和实践相结合的产物,是技术理论和生产经验的总结性技术资料。还要力求使设计符合实践性、科学性。 做好工艺设计要搞好两个方面的调查研究。首先必须对生产任务、产品零件图、材质和技术要求等方面进行深入分析:其次,要对生产条件如原材料、设备、工艺装备加工和制造能力、工人的操作技术水平等方面进行深入的了解。只有做好这两个方面的调查研究,才能使设计符合生产实际情况。

球墨铸铁浇冒口系统设计的关键 (一)

球磨铸铁浇冒口设计的关键 第一部分 浇流道系统设计 1.0浇流道系统设计 1.1要求 快速浇铸:使充型过程中温度损失最小 使冶金学性能衰减最小 使氧化物最少 清洁浇铸:避免浇铸过程中产生炉渣(浮渣) 设计的经济性:使铸件产量最大化 1.2关键组成: 所示的所有组成部分要求炉渣缺陷最小化 1.3规划 考虑设计基本设计:优化对铸件的空间利用;冒口设计方法的选择;设置分型面以最小化对模芯的需求;铸件设置在上模中;平稳填充;简单对称的设计系统;同一铸件使用相同的浇冒口;可能的话,在多个铸件上使用一个冒口;在分型面上给浇冒口系统留下足够的空间; 具体设计如下: 1.4阻流阀的作用 定义:阻流阀是浇道系统中一块横截面积,它决定充型时间 有两个正确的位置设置阻流阀,因此有两个基本的浇道系统: 在简单的浇注系统中,1)阻流阀位于流道和浇口的连接处。 2)阻流阀位于直浇道与横浇道的连接处。 1.5 选择浇流系统类型 在浇口-横浇道系统中,铸件分别被一个或多个阻流阀或浇口阻挡。在直浇道-横浇道系统中,很可能几个铸件共用一个阻流阀。

使用直浇道-横浇道系统在一个模具里生产大量小型件,这是不切实际的对每个铸件分别设置阻流阀(阻流阀尺寸非常小),极大的依赖于模具技术及浇注温度 大部分情况下是使用浇口-横浇道系统 浇口-横浇道系统与直浇道-横浇道系统特点的结合形成混合系统。这通常用在要求运输铁水到复杂的铸件型腔的流道系统中。 1.6摩擦 并非直浇道顶部所有铁水的潜能都可以转换为铸造型腔中的机械能 随着铁水与型腔内壁的撞击和铁水之间的撞击,一些潜能损失在摩擦上 由于摩擦造成的损失,延长了模型填充时间,必须考虑何时计算阻流阀截面积和浇铸时间。选择fr,摩擦损失因子,作为能量损失的估计值 对于薄壁平板:fr—0.2 对于厚重立方体:fr---0.8 1.7浇铸时间 尽可能快的符合人们的能力及生产例程 推荐的浇注时间: 非常近似的指导,铸件质量+冒口质量

铸铁件冒口设计手册

铸铁件冒口设计手册 诸葛胜 福士科铸造材料(中国)有限公司

铸铁冒口设计手册 一、概述 冒口是一个个储存金属液的空腔。其主要作用是在铸件成形过程中提供由于体积变化所需要补偿的金属液,以防止在铸件中出现的收缩类型缺陷(如图1和图2所示),而这些需要补偿的体积变化可能有: 图1 各种缩孔图2 缩孔生产图a)和冒口的补缩图b) 1—一次缩孔 2—二次缩孔 3—缩松 1—缩孔 2—型腔胀大 3—铸件(虚线以内) 4—显微缩松 5—缩陷(缩凹,外缩孔) (1)铸型的胀大 (2)金属的液态收缩 (3)金属的凝固收缩 补偿这些体积变化所需要的金属液量随着铸型和金属种类的不同而异。此外,冒口还有排气及浮渣和非金属夹杂物的作用。铸件制成后,冒口部分(残留在铸件上的凸块)将从铸件上除去。由此,在保证铸件质量要求的前提下,冒口应尽可能的小些,以节省金属液,提高铸件成品率。 由此冒口的补缩效率越高,冒口将越小,铸件成品率越高、越经济。FOSECO公司的发热保温冒口具有高达35%的补缩效率;因而,具有极高的成品率和极其优越的经济性。在金属炉料价格飞涨的情况下,其优越性显得尤其突出。另外,高品质发热保温冒口,及其稳定可靠的产品质量是获得高品质铸件的重要手段和可靠的质量保证。

二、铸铁的特点 铸钢和铸铁都是铁碳合金,它们在凝固收缩过程中有共同之处)如凝固前期均析出初生奥氏体树枝晶,都存在着液态、凝固态和固态下的收缩),但也有不同的特点。其根本不同之处是铸铁在凝固后期有“奥氏体+石墨”的共晶转变,析出石墨而发生体积膨胀,从而可部分地或全部抵消凝固前期所发生的体积收缩,即,具备有“自补缩的能力”。因此在铸型刚性足够大时,铸铁件可以不设冒口或采用较小的冒口进行补缩。 灰铸铁在共晶转变过程中析出石墨,并在与枝晶间的液体直接接触的尖端优先长大,其石墨长大时所产生的体积膨胀直接作用在晶间液体上,进行“自补缩”。对于一般低牌号的灰铁铸件,因碳硅含量高,石墨化比较完全,其体积膨胀量足以补偿凝固时的体收缩,故不需要设置冒口,只放排气口。但对高牌号的灰铸铁件,因碳、硅含量较低,石墨化不完全,其产生的体积膨胀量不足以补偿铸件的液态和凝固体收缩,此时必须要设置冒口。 球墨铸铁在共晶转变时石墨的析出同样会产生体积膨胀,但是它产生缩松的倾向性却比灰铸铁大得多。因为球墨铸铁共晶团的石墨核心是在奥氏体包围下长大的,石墨球长大时所产生的体积膨胀要通过奥氏体的膨胀来发生作用,这个膨胀只有一小部分被传递到枝晶间的液体上,而大部分却是作用在相邻的共晶团或初生奥氏体骨架上,正因为如此,导致了球墨铸铁产生缩前膨胀的倾向比灰铸铁大得多。另外,球墨铸铁呈“糊状凝固”,在整个凝固期间它的外壳的坚实程度远远比不上灰铸铁,如果铸型刚性不够,会使石墨化产生的体积膨胀的大部了分消耗于外壳膨胀,结果枝晶间或共晶团之间的内部液体的液态收缩和凝固收缩得不到补偿;同时由于球墨铸铁凝固时析出的石墨共晶团细而多,即使使用冒田进行补缩,当冒口效率不高,保持液态时间不够长或压力不够大时,效果常不理想。因此设计球墨铸铁件冒口比灰铸铁件更具有重要的意义。 三、模数计算: (一)模数的概念 在铸件材质、铸型性质和浇注条件确定之后,铸件的凝固时间主要决定于铸件的结构形状和尺寸。而千差万别的铸件形体,对凝固时间的影响主要表现在铸件的体积和表面积的关系上。铸件体积愈大,则金属液愈多,它所包含的热量也愈多,凝固时

有色合金浇冒口系统的基本原则

有色合金浇冒口设计基本原则 Jeff Meredith 浇冒口系统的基本作用是将干净的、无渣滓的金属液平稳地引入铸型并且在的凝固过程中始终保持对铸件的补缩。在有色合金铸造中,气孔、夹渣、缩松等铸造缺陷常常是由于不合理的浇冒口系统所引起的。一但出现这些问题,铸造工作者就应该认真分析浇冒口系统结构的合理性并找出产生缺陷的原因。这里要讨论的中心问题就是浇冒口系统设计的基本原则。 本文论述了浇冒口系统设计的一些基本原则,尽管对于不同的合金以及形状、尺寸、复杂程度不同的铸件没有一种绝对通用的规则,但是这些基本原则能够为生产优质铸件的浇冒口系统设计提供一个理论基础。 浇注系统设计 对于有色合金浇注系统而言,首要问题是使金属液以尽可能低的速度无紊流地进入型腔并维持一个最佳的充型速度,这种最佳的速度对于同一种合金不是一个固定值,因为它受铸件重量、壁厚、形状等因素的影响,当然也随合金种类的不同而变化,可以从铝铜合金的75mm/sec到铝合金的500mm/sec;过大的液流速度可能增加紊流、夹渣及粘砂的趋向,使铸件的机械性能下降,甚至出现废品。 作为一种解决方法,常常设计超过推荐值的较大的浇注系统来解决高的充型速度与低的液流速度之间的矛盾(特别是对于窄结晶温度范围的合金和易产生杂质的合金)。有色合金应该采用无压式浇注系统,内浇道开设在铸型的上箱,以保证横浇道在浇注过程中一直处于充满状态。此外,直浇道和内浇道之间应保持一定的距离以使杂质能上浮到横浇道顶端而被捕集(图1),另外,还应尽可能使金属液从铸件底部或接近底部的位置引入,以保证在型腔内产生最小的紊流。

浇口杯 除对特别小的铸件外,我们推荐在各种有色合金铸件中使用浇口杯,合理的浇口杯可以使浇注工能够快速地注满直浇道并且在整个浇注过程中保持一个相对稳定的压头。浇口杯常常设计成与直浇道相对偏移的、有一个底坎的结构(图2)。浇口杯应为长方形,这样在浇注过程中可以产生向上的环流有助于杂质的清除,浇口杯出口应高于直浇道入口。一种手工操作的浇口塞有时会在浇注中采用(对于窄结晶温度范围的合金如铝铜合金),它使浇注工能够完全地注满浇口杯,进而更快地充满浇注系统和铸型,并且在塞子拨出之前使熔渣有足够的时间浮上表面。

冒口系统智能化设计》软件的开发与应用_图文(精)

《铸件浇冒口系统智能化设计》软件的开发与应用 邵建东 (无锡环宇精密铸造有限公司 在熔模精密铸件的过程中,浇冒口系统设计得科学合理是确保铸件质量的一项核心技术。浇冒口系统尺寸设计合理与否,将直接影响铸件内在质量的优劣。尺寸偏小,影响顺序凝固及钢液补给能力,铸件会产生缩孔和疏松,特别是承压零件会产生泄露而报废;尺寸过大,会使企业导致铸造成本增加,能源大量浪费,使企业经济效益下降而失去竞争力。因此科学合理的设计浇冒口系统,优化铸件内浇口及冒口尺寸,是制约我们每个铸造企业发展的一个重要因素,这个因素也客观反映了一个企业乃至一个国家对铸造工艺技术水平的高低。特别是在当今铸造材料价格大幅度上涨的情况下,这个问题将尤为重要。 那么如何来提高浇冒口的设计水平,确保企业在激烈竞争的市场经济中占领先地位,使企业立于不败之地呢?针对这个问题,本公司科技人员潜心研究,反复探讨,实践、论证,向传统的铸造浇冒口设计方法挑战,攻克了一个又一个的技术难关,使铸造理论知识与多年来的实践经验,科学地、有机地结合在一起,直至2004年3月份成功开发了《铸件浇冒口系统智能化设计》软件,经过近几年来的应用实践,取得了十分显著的效果,越来越感觉到科学技术的能量和威力。该软件的特点和作用如下: 一.特点: 1.改变传统方法,创新铸件浇冒口设计: 在铸件浇冒口系统设计过程中,最常用的方法是热节圆比例法,这种方法也是最传统最简单的方法(俗称经验估计法。这种方法的出发点是以铸件上热节圆截面或直径作为确定内浇口截面尺寸大小的主要依据,如:设计铸件热节圆直径为D节,内浇口直径为d 则:

d=K×D节(式中K为比例系数,取值为0.4—0.9. 这种方法对于<1kg以下的小铸件以及铸件几何形状相对比较简单的零件相对成功率较高,但对单件十几公斤,几十公斤或是上百公斤的大铸件,以及形状复杂有交叉壁厚的铸件而言,用这种传统的方法设计浇冒口,则成功率很低。另外,这种热节圆比例法只能用于铸件内浇口尺寸的确定,对冒口的截面尺寸只能用经验估计方法来完成,然而经验丰富的科技人员成功率相对高一些,反之则低一些。因此这种方法设计铸件浇冒口系统有较大的局限性和不可靠性,只能通过反复改进来摸索,最后趋于合理,满足铸件质量 要求,这样导致新品开发成本高、周期长、竞争力弱。而《铸件浇冒口系统智能化设计》将根本上改变了这种传统内浇口确定的方法,比较科学、正确、系统地将铸件内浇口尺寸及冒口尺寸完整地显示出来,从而大大提高了铸件浇冒口系统的设计精度,其正确率一般铸件可达100%,大大缩短铸件开发周期,提高企业市场竞争力和客户对企业的信任度。 2. 使用方便,可操作性强: 本《铸件浇冒口系统智能化设计》软件,只需在软件对话格中输入5个数据,它就会弹出内浇口截面尺寸和冒口截面尺寸,能自动控制调节铸件、内浇口、冒口的顺序凝固件。 铸件内浇口、冒口智能化设计 注:表中a 为铸件法兰热节处的厚度(输入数据 ;b 为铸件法兰热节处的宽度(输入数据;c 为铸件法兰交叉壁厚(输入数据;内浇口长(输入数据; 内浇口宽(自动弹出; 冒口长(输入数据; 冒口宽(自动弹出。 铸件 (cm 内浇口截面 尺寸(cm 冒口截面尺寸(cm 序号零件名称

球铁冒口根部缩孔分析

球铁冒口根部缩孔分析 球墨铸铁大多数是共晶或过共晶成分,在凝固过程中受石墨膨胀及过冷的影响促使收缩值增大所以在凝固过程中就形成了缩孔缩松缺陷的产生,在球铁件铸造中除了利用石墨化膨胀进行自补缩之外必须进行外部补缩,无冒口铸造实际上是利用浇注系统进行补缩。由于浇注系统的补缩能力往往不如冒口,因而无冒口铸造对铸型条件以及其他工艺条件的要求远远高于采用冒口补缩。由于这个缘故,冒口补缩工艺仍然是目前球铁件的主要生产工艺。然而,冒口补缩工艺在实际应用中遭遇失败的实例也甚多,致使不少铸造人员往往轻易认为某些球铁件不能采用冒口补缩工艺,只能采用无冒口工艺,实际上冒口补缩失败的原因往往是由于所采用的工艺不恰当所致。因此,对引起冒口补缩失败的原因进行分析,将有助于认识球铁的工艺特性和正确掌握球铁件的铸造工艺。根据笔者的实践,除铸型刚度、化学成分、原材料和铁水熔炼处理方面的因素之外,造成球铁件冒口补缩失败的铸型工艺因素 (1)采用明冒口,导致石墨化膨胀压力松驰,使膨胀不能用于补缩。(2)铁水先进入铸件型腔,加热型腔、温度降低后,再由铸件型腔进入冒口,因而后者温度始终低于铸件,故称为“冷冒口”;这种冒口由于其铁水先加热型腔,使型腔过热,冒口本身早于铸件凝固,不但不能起补缩作用,反而从铸件抽吸铁水,使铸件产生缩松、缩孔。不少人企图通过加大冷冒口的尺寸希望能使其冷速减慢,起到补缩作用,结果是:冷冒口越大,铸件排放的冷铁水越多,型腔铁水流过量越大,过热也就越严重,“上冷下热”温差越大,缩孔、缩松越严重。即使浇注后往冷冒口冲注热铁水,由于冲入铁水量有限,并不能扭转情况。 铁水经由冒口进入铸件,冒口温度高于铸件,故称为“热冒口”,冒口迟于铸件凝固,使轮毂部位直接得到补缩,而从轮毂流出的铁水在向周围的轮辐扩散、流入轮缘过程中,由于轮辐散热面积大,铁水温度迅速降低,

熔模铸造浇注系统计算

熔模铸造浇注系统计算 1 熔模铸造浇注系统计算 浇注系统是熔模铸造工艺设计的重要部分。国熔模碳钢铸件居多,其浇注系统除应具有引入金属液等作用外,还要能为铸件提供必要的补缩金属液和补缩通道。目前,很多工厂熔模铸件浇注系统大小是设计人员凭经验定的,直接影响了铸件的成品率和工艺出品率。因此,有必要开展熔模铸造浇注系统计算方法的探讨。 从结构上看,熔模铸造浇注系统有直浇道-浇道、横浇道-浇道和组合式三大类。其中直浇道-浇道式又分:单一直浇道、直浇道-补缩环、多道直浇道和特种形状直浇道等形式。但在实际生产中应用最广泛的是单一直浇道浇注系统,如图1所示。 图1 单一直浇道 Fig.1 Single sprue 目前用于单一直浇道浇注系统的计算方法有: 亨金法、比例系数法、浇口杯补缩容量法、当量热节 法、浇注系统确定参考图法等。其中亨金法较全面地 考虑了影响补缩的因素;并可计算出直浇道、浇口尺 寸,以及一个浇注系统铸件组最多允许的铸件数量。

据介绍亨金法更适用于该类浇注系统。 本文就单一直浇道浇注系统计算开展研究。利用计算机对第一拖拉机股份(简称拖拉机厂)、东风汽车公司精密铸造厂(简称第二汽车制造厂)大量工艺已成熟零件的浇注系统与亨金法计算结果相比较,并对亨金法进行修正。该修正公式可供各工厂技术人员在设计浇注系统时参考。 2 亨金法简介 为使铸件获得补缩,浇口应设在铸件厚处(热节处),以保证在金属液凝固时,浇口比铸件厚处晚凝固,而直浇道又比浇口晚冷,从而利用直浇道中金属液补缩铸件。因此,浇口截面的热模数Mg(mm)是铸件热节处的热模数Mc(mm)、直浇道截面的热模数Ms(mm)、单个铸件质量Q(g)和浇口长度Lg(mm)的函数,即Mg=f(Mc,Q,Lg,Ms) (1) 前联学者亨金用不同铸件做试验,把公式(1)中各参数关系绘成曲线后发现,它们之间的关系为各种不同方次的抛物线关系,最后归纳得到下列公式: (2) 式中Kh——比例系数,中碳钢Kh≈2。 一般工厂直浇道尺寸已标准化。利用式(2)可

几种类型的冒口设计

几种类型的冒口设计 1.1.冒口类型的选择 1.2.普通冒口设计方法 以下摘自《西班牙汽车铸铁件浇冒口系统的设计及其特点》 1.2.1.缩管法

1.2.2.缩管法冒口设计程序 1.2.2.1.考虑铸件材质和重量 1.2.2.2.找出关键几何热节,按下表计算热节处模数W(有文献标为“Ms”,称为有效模数,不散热面不能计入。)Mr = km x Ms Ms 是铸件的关键模数, Mr 是补缩冒口的模数,km 是常数,灰铸铁与球铁不一样。? 亚共晶灰铸铁为0.6-1.0;? 球墨铸铁为0.8-1.1;? 可锻铸铁为1.2-1.4;? 钢为1.2-1.4;? 铜合金为1.2-1.4;? 铝合金为0.8-1.1。 1.2.2.3.通过W值计算出冒口补缩距离Ld=0.32W2(mm),又有补缩距离最大为10Mn(冒口颈模数) 1.2.2.4.冒口的计算 z Dp的计算和Hp的预定,Dp=85(Cw/Hp)1/2(mm)。一般Hp/ Dp=2~2.5 Cw—需冒口补缩的铸件重量之和(Kg),假想缩管重量Q=0.04 Cw(Kg)。 z冒口顶端直径1.1Dp≥直浇道下端直径 z冒口颈高宽比 0.75W:1.25W=1:1.67 z冒口颈长度 18mm,并愈短愈好。 以下摘自《DUCTILE IRON-The essentials of gating-中文版》,适用于球铁。 1.3.控制压力冒口 当铸型强度不够且铸件的模数远大于0.16 英寸(4mm)时,运用控制压力冒口。 大部分的湿型砂和覆膜砂选用该种方法。 1.3.1.控制压力冒口设计步骤: 1.3.1.1.标准冒口形状见下图67 1.3.1. 2.确定铸件特征(关键)模数Ms(上文为“W”)

球铁冒口根部缩孔分析修订稿

球铁冒口根部缩孔分析 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

球铁冒口根部缩孔分析 球墨铸铁大多数是共晶或过共晶成分,在凝固过程中受石墨膨胀及过冷的影响促使收缩值增大所以在凝固过程中就形成了缩孔缩松缺陷的产生,在球铁件铸造中除了利用石墨化膨胀进行自补缩之外必须进行外部补缩,无冒口铸造实际上是利用浇注系统进行补缩。由于浇注系统的补缩能力往往不如冒口,因而无冒口铸造对铸型条件以及其他工艺条件的要求远远高于采用冒口补缩。由于这个缘故,冒口补缩工艺仍然是目前球铁件的主要生产工艺。然而,冒口补缩工艺在实际应用中遭遇失败的实例也甚多,致使不少铸造人员往往轻易认为某些球铁件不能采用冒口补缩工艺,只能采用无冒口工艺,实际上冒口补缩失败的原因往往是由于所采用的工艺不恰当所致。因此,对引起冒口补缩失败的原因进行分析,将有助于认识球铁的工艺特性和正确掌握球铁件的铸造工艺。根据笔者的实践,除铸型刚度、化学成分、原材料和铁水熔炼处理方面的因素之外,造成球铁件冒口补缩失败的铸型工艺因素 (1)采用明冒口,导致石墨化膨胀压力松驰,使膨胀不能用于补缩。 (2)铁水先进入铸件型腔,加热型腔、温度降低后,再由铸件型腔进入冒口,因而后者温度始终低于铸件,故称为“冷冒口”;这种冒口由于其铁水先加热型腔,使型腔过热,冒口本身早于铸件凝固,不但不能起补缩作用,反而从铸件抽吸铁水,使铸件产生缩松、缩孔。不少人企图通过加大冷冒口的尺寸希望能使其冷速减慢,起到补缩作用,结果是:冷冒口越大,铸件排放的冷铁水越多,型腔铁水流过量越大,过热也就越严重,“上冷下热”温差越大,缩孔、缩松越严重。即使浇注后往冷冒口冲注热铁水,由于冲入铁水量有限,并不能扭转情况。 铁水经由冒口进入铸件,冒口温度高于铸件,故称为“热冒口”,冒口迟于铸件凝固,使轮毂部位直接得到补缩,而从轮毂流出的铁水在向周围

浇注系统的计算

浇注系统的计算 浇注速度随压头的增长而变化。例如:内浇口的面积为100m㎡,压头为100mm,浇注时速度为1Kg/Sec,而当压头为400mm时,内浇口的面积仍为100m㎡,浇注速度就为2Kg/Sec.这种较高的浇注速度是造成铸造缺陷特别是垂直型腔的下半部的重要原因。 ㈠ V= 2gh V:铁水的流速 g:加速度 H:预定压头 这公式是在理想状态下的结果,没有考虑到在流动过程中由于摩擦造成的能量损失和黏度的变化。 损失因素: 当考虑在浇注系统中的能量损失时,一个影响因素应当介绍一下。损失系数m,用来描述在浇注系统中速度或流速的减少,影响因素主要有两个方面,①在浇注系统和铸型中能量的损失,有时由于气压(在型腔中的)或铁水引入型腔的方式的错误;②铁水的黏度的变化(这种变化主要由于铁水的成分、浇注温度和金属的种类) 浇注系统的形状,主要是内浇口的形状对损失系数的影响见图1,同样的面积内浇口厚度不同流动中的损失也不同,内浇口越厚,损失越小。

损失系数m是一个典型的经验数据,可以预定一用于浇注系统的计算,预 定的m在以后的流动实验中将被修正。 当考虑到m时公式㈠将被修正为:V=m 2gH ㈡ 流速 W 的概念是指在一段时间内经过浇道的铁水的公斤重量。 ω= G/T ㈢ ω也可以表达为 W= ρ * F * V V 流过浇道的速度 F 浇道的截面积 G/T= ρ * F* V F=------------------------ 对于铁水:ρ=6.89*10 Kg/mm g =9810 mm/Sec F= 1036*G/T*m* H ㈣ 只有对于理想运动状态才没有损失,在任何真实运动中都存在损失系数是 0---1之间的分数,损失系数越大损失越小。在水力系统中,如浇注系统中存在 损失,由损失系数来表示,表 1 给出了不同损失系数的流动损失(在浇注 系统中): m 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 % 11 25 43 67 100 150 233 400 占无摩擦流动的百分比 1/9 2/8 3/7 4/6 5/5 6/4 7/3 8/2 2.金属液在浇注系统中的流动: 静态的流层、平稳的流动只能在以下条件下实现。 ⅰ、系统被液态所填满,没有气体的充填。静压头高度是固定的(铁水高

铸钢件冒口地设计的要求规范

铸钢件冒口的设计规范 钢水从液态冷却到常温的过程中,体积发生收缩。在液态和凝固状态下,钢水的体积收缩可导致铸件产生缩孔、缩松。冒口的作用就是补缩铸件,消除缩孔、缩松缺陷。另外,冒口还具有出气和集渣的作用。 1、冒口设计的原则和位置 1.1冒口设计的原则 1.1.1、冒口的凝固时间要大于或等于铸件(或铸件被补缩部分)的凝固时间。 1.1.2、冒口所提供的补缩液量应大于铸件(或铸件被补缩部分)的液态收缩、凝固收缩和型腔扩大量之和。 1.1.3、冒口和铸件需要补缩部分在整个补缩的过程中应存在通道。 1.1.4、冒口体内要有足够的补缩压力,使补缩金属液能够定向流动到补缩对象区域,以克服流动阻力,保证铸件在凝固的过程中一直处于正压状态,既补缩过程终止时,冒口中还有一定的残余金属液高度。 1.1.5、在放置冒口时,尽量不要增大铸件的接触热节。 1.2、冒口位置的设置 1.2.1、冒口一般应设置在铸件的最厚、最高部位。 1.2.2、冒口不可设置在阻碍收缩以及铸造应力集中的地方。 1.2.3、要尽量把冒口设置在铸件的加工面或容易清除的部位。 1.2.4、对于厚大件一般采用大冒口集中补缩,对于薄壁件一般采用小冒口分散补缩。 1.2.5、应根据铸件的技术要求、结构和使用情况,合理的设置冒口。

1.2.6、对于清理冒口困难的钢种,如高锰钢、耐热钢铸件的冒口,要少放或不放,非放不可的,也尽量采用易割冒口或缩脖型冒口。 2、设置冒口的步骤与方法 冒口的大小、位置及数量对于铸钢件的质量至关重要。对于大型铸钢件来说,必须把握技术标准及使用情况,充分了解设计意图,分清主次部位,集中解决关键部位的补缩。以模数法为例,冒口设计的步骤如下:2.1、对于大、中型铸钢件,分型面确定之后,首先要根据铸件的结构划分补缩范围,并计算铸件的模数(或铸件被补缩部分的模数)M铸。 2.2、根据铸件(或铸件被补缩部分)的模数M铸,确定冒口模数M冒。 2.3、计算铸件的体收缩ε。 2.4、确定冒口的具体形状和尺寸。 2.5、根据冒口的补缩距离,校核冒口的数量。 2.6、根据铸件结构,为了提高补缩距离,减少冒口的数量,或者使冒口的补缩通道畅通,综合设置内外冷铁及冒口增肉。 2.7、校核冒口的补缩能力,要求ε(V冒+V件)≤V冒η。 3、设计冒口尺寸的方法 3.1、模数法 在铸件的材料、铸型的性质和浇注条件确定之后,铸件的凝固时间决定于铸件的模数。 模数M=V/A(厘米),V—体积(厘米3);A—散热面积(厘米2)。 随着办公条件的改善,计算机的普及,模数可以用计算机进行计算。方法是:用SolidWorks软件画出铸件(或铸件被补缩部分)的立体图,计

球墨铸铁的工艺设计

球墨铸铁的工艺设计 第一节工艺特点 一、球墨铸铁的流动性与浇注工艺 球化处理过程中球化剂的加入,一方面使铁液的温度降低,另一方面镁、稀土等元素在浇包及浇注系统中形成夹渣。因此,经过球化处理后铁液的流动性下降。同时,如果这些夹渣进入型腔,将会造成夹杂、针孔、铸件表面粗糙等铸造缺陷。 为解决上述问题,球墨铸铁在铸造工艺上须注意以下问题: (1)一定要将浇包中铁液表面的浮渣扒干净,?最好使用茶壶嘴浇包。 (2)严格控制镁的残留量,最好在 0.06%以下。 (3)浇注系统要有足够的尺寸,以保证铁液能做尽快充满型腔,并尽可能不出现紊流。 (4)采用半封闭式浇注系统,根据美国铸造学会推荐的数据,直浇道、横浇道与内浇道的比例为4:8:3。 (5)内浇口尽可能开在铸型的底部。 (6)在浇注系统中安放过滤网会有助于排除夹渣。 (7)适当提高浇注温度以提高铁液的充型能力并避免出现碳化物。对于用稀土处理的铁液,其浇注温度可参阅我国有关手册。对于用镁处理的铁液,根据美国铸造学会推荐的数据,当铸件壁厚为25mm时,浇注温度不低于1315℃;当铸件壁厚为6mm时,浇注温度不低于1425℃。 二、球墨铸铁的凝固特性与补缩工艺特点 球墨铸铁与灰铸铁相比在凝固特性上有很大的不同,主要表现在以下方面:

(1)球墨铸铁的共晶凝固范围较宽。灰铸铁共晶凝固时,片状石墨的端部始终与铁液接触,因而共晶凝固过程进行较快。球墨铸铁由于石墨球在长大后期被奥氏体壳包围,其长大需要通过碳原子的扩散进行,因而凝固过程进行较慢,以至于要求在更大的过冷度下通过在新的石墨异质核心上形成新的石墨晶核来维持共晶凝固的进行。因此,球墨铸铁在凝固过程中在断面上存在较宽的液固共存区域,其凝固方式具有粥状凝固的特性。这使球墨铸铁凝固过程中的补缩变得困难。 (2)球墨铸铁的石墨核心多。经过球化和孕育处理,球墨铸铁的石墨核心较之灰铸铁多很多,因而其共晶团尺寸也比灰铸铁细得多。 (3)球墨铸铁具有较大的共晶膨胀力。由于在球墨铸铁共晶凝固过程中石墨很快被奥氏体壳包围,石墨长大过程中因体积增大所引起的膨胀不能传递到铁液中,从而产生较大的共晶膨胀力。当铸型刚度不高时,由此产生的共晶膨胀将引起缩松缺陷。 (4)在凝固过程中球墨铸铁的体积变化可以分为三个阶段: 铁液浇入铸型后至冷却到共晶温度过程中的液态收缩,共晶凝固过程中由于石墨球的析出引起的体积膨胀,铁液凝固后冷却过程中的体收缩。 由于上述凝固特性,从补缩的角度考虑,球墨铸铁在铸造工艺上有以下特点: (1)铸型要有高的紧实度,以使铸型有足够的刚度以抵抗球墨铸铁共晶凝固时的共晶膨胀力。需要指出的是,此时要特别注意采取适当的措施提高铸型的透气性,同时要尽可能地降低型砂中的水份,以防止出现“呛火”。 (2)合理设置浇冒口。球墨铸铁的冒口与普通钢及白口铁不同,球墨铸铁冒口设置的合理性在于它能够充分补充铁液的液态收缩,而当铁液进入共晶膨胀阶段时,浇注系统和冒口颈及时冷冻,使铸件利用石墨析出的膨胀进行自补缩。 (3)砂箱应有足够的刚度,上箱和下箱之间应有牢固的紧固装置。 第二节冒口设计

冒口系统设计

冒口系统设计 一﹑冒口设计 1. 冒口设计的基本原则 1)冒口的凝固时间应大于或等于铸件(被补缩部分)的凝固时间。 2)冒口应有足够大的体积,以保证有足够的金属液补充铸件的液态收缩和凝固收缩,补缩浇注后型腔扩大的体积。 3)在铸件整个凝固的过程中,冒口与被补缩部位之间的补缩通道应该畅通,即使扩张角始终向着冒口。对于结晶温度间隔较宽、易于产生分散性缩松的合金铸件,还需要注意将冒口与浇注系统、冷铁、工艺补贴等配合使用,使铸件在较大的温度梯度下,自远离冒口的末端区逐渐向着冒口方向实现明显的顺序凝固 2. 冒口设计的基本内容 1)冒口的种类和形状 (1)冒口的种类 ?????????????????????????????????????????????????????????????????????????顶冒口依位置分侧冒口贴边冒口普通冒口明冒口依顶部覆盖分暗冒口大气压力冒口依加压方式分压缩空气冒口通用冒口(传统)发气压力冒口保温冒口发热冒口特种冒口依加热方式分加氧冒口电弧加热冒口,煤气加热冒口易割冒口直接实用冒口(浇注系统当铸铁件的实用冒口(均衡凝固) ???????????????????????????????????? 冒口)控制压力冒口冒口无补缩 图1 冒口分类 (2)冒口的形状 常用的冒口有球形、圆柱形、长方体形、腰圆柱形等。对于具体铸件,冒口形状的选择主要应考虑以下几方面:

a)球形 b)球顶圆柱形 c)圆柱形 d)腰圆柱形(明) e)腰圆柱形(暗) 图2 常用的冒口形状 ①冒口的补缩效果: 冒口的形状不同,补缩效果也不同,常用冒口模数(M)的大小来评定冒口的补缩效果(M=冒口体积/冒口散热面积),在冒口体积相同的情况下,球形冒口的散热面积最小,模数最大,凝固时间最长,补缩效果最好,其它形状冒口的补缩效果,依次为圆柱形,长方体形等。 ②铸件被补缩部位的结构情祝: 冒口形状的选泽还要考虑铸件被补缩部位的结构形状和造型工艺是否方便。球形冒口的补缩效果虽好,但是造型起模困难,在铝、镁合金铸造生产中较少采用,而应用最广泛的是圆柱形明冒口,这种冒口的补缩效果较好,造型起模方便。有时由于铸件结构形状的需要,亦采用长方柱体和扇形冒口,只是将其四棱的尖角改为较大的圆角,以防止边角效应影响补缩效果。经改进后的这些冒口就称为椭圆柱体冒口和腰形,冒口。在铸钢件生产中则经常使用球顶圆柱形暗冒口。 2.冒口的补缩原理 1)冒口与铸件间的补缩通道 在铸件凝固过程中,要使冒口中的金属液能够不断地补偿铸件的体收缩,冒口与铸件被补缩部位之间应始终保持着畅通的补缩通道。否则,冒口再大也起不到补缩作用。 2)冒口的有效补缩距离 冒口作用区长度和末端区长度之和称为冒口有效补缩距离。正确确定冒口的有效补缩距离是很重要的工艺间题。 冒口的有效补缩距离与合金种类、铸件结构、几何形状以及铸件凝固方向上的温度梯度有关,也和凝固时析出气体的反压力及冒口的补缩压力有关。详见《铸造工艺学》p255~257 3)工艺补贴的应用 在实际生产中往往有些铸件需补缩的高度超过冒口的有效补缩距离。由于铸件结构或铸造工艺上不便,难以在中部设置暗冒口,此时单靠增加冒口直径和高度,补缩效果很不明显,况且增大冒口会使大量液流经过内浇道,使铸件在内浇道附近和冒口根部因过热而产生疏松。在这种情况下,一般采用在铸件壁板的一侧增加工艺补贻的方法,来增加冒口的有效补缩距离,提高冒口的补缩效率(如下图)

球铁齿轮的均衡凝固工艺设计

有的方向上,单元的相邻边之比不能超过4∶1。 ②在弯曲裂纹前缘上,单元的大小取决于局部曲率的数值。例如,沿圆环状弯曲裂纹前缘,在15°~30°的角度内至少有一个单元。 ③所有单元的边(包括在裂纹前缘上的)都应该是直线。 参考文献 [1]薛河,刘金依,徐尚龙,等.ANSYS中断裂参量的计算及分析[J].重 型机械,2002(2):47-49. [2]龚曙光.ANSYS在应力分析设计中的应用[J].化工装备技术 2002,23(1):29-33. [3]东方人华,祝磊,马赢.ANSYS7.0入门与提高[M].北京:清华大学 出版社,2004. 1概述 对于球铁齿轮这样的铸件,结构严重不均匀,存在轮缘与轮幅交接部位,该部位是较厚大热节,利用传统的过热冒口工艺,往往在该部位产生缩孔缩松,而且缩孔缩松部位较深,往往在齿的根部,导致铸件报废,废品率较高,况且该工艺使用较大的过热冒口,工艺出品率较低,因此,非常有必要对其进行工艺改进。图1所示的齿轮,直径为1500mm,重量约3500kg,是压缩机用飞轮,有灰铁和球铁两种材质,对于灰铁件,由于呈逐层凝固方式,收缩倾向较小,采用传统的过热冒口工艺一般不会产生缩孔缩松;但对于球铁件而言,由于呈糊状凝固,收缩倾向大,很容易在冒口颈处和几何热节部位产生缩孔缩松,因此,着重研究球铁件。 2传统的过热冒口工艺及存在的问题 图2所示的传统的过热冒口工艺,出现缩孔缩松部位是铸件本身的几何热节和冒口径部位,由于铸件本身的几何热节在同样凝固条件下,将晚于其他部位凝固,且该部位散热条件较差,在凝固过程中发生的液态收缩和凝固收缩因没有铁液充分补缩而产生了缩孔。尽管冒口颈的引入不在热节部位,但过热冒口颈的引入使得本来不是热节的部位形成了新的接触热节。由于是过热冒口,必须让冒口对铸件进行充分补缩,冒口要晚于铸件凝固,冒口颈不能过早封闭,况且铁液在充满整个型腔过程中过热时间长,该部位散热条件差,凝固时间增加,收缩时间也增加,均衡点后移,不利于胀缩的早期叠加,使得现行的冒口不能进行有效的补缩,这样在冒口颈所形成的接触热节处留下了缩孔。这种过热冒口往往体积过大,浇注时必须对其进行补浇冒口,否则,还极易产生冒口颈本身缩孔缺陷.故而铁液利用率较低,工艺 图2传统的过热冒口工艺 图1灰铁和球铁齿轮 基准轴1 基准轴1 球铁齿轮的均衡凝固工艺设计 Technology Design for Equilibrium Solidification of Ductile Iron Gear 曹思盛(山东潍坊生建集团铸造厂,山东省潍坊市261011) 摘要:利用均衡凝固理论,将球铁齿轮铸件传统的过热冒口改为顶注雨淋式浇注系统,辅以冷铁激冷、提高铸型刚性等措施,解决了缩孔缩松缺陷,实现了小冒口铸造,提高了工艺出品率,取得了良好的效果。 关键词:球墨铸铁,齿轮,均衡凝固,浇注系统 中图分类号:TG244;文献标识码:A;文章编号:1006-9658(2009)01-1 收稿日期:2008-08-28 文章编号:2008-115 作者简介:曹思盛(1969-),男,高级工程师,主要从事铸造工艺设计 及质量管理工作 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!计算机应用COMPUTER APPLICATION 43 中国铸造装备与技术1/2009 CFMT

铸钢件冒口设计

§4 铸钢件冒口设计 设计步骤: 1)确定冒口的安放位置 2)初步确定冒口数量 3)划分每个冒口的补缩区域,选择冒口类型 4)计算冒口的具体尺寸 冒口计算方法:模数法+比例法+补缩液量法(参考资料) 一模数法 1 计算原理 要保证冒口晚于铸件凝固,需冒口的模数大于铸件被补缩部位的模数。

总结:M 冒=1.2M 件 P127式4-5,左边为总收缩量,右边为由冒口补充量。 2 计算步骤 1)计算铸件模数 根据铸件需补缩部位,划分补缩区,分别计算铸件的模数。 计算方法:公式计算+图表计算-表4-5(p128-130)。 计算M件用L形体计算公式,为什么不用法兰体公式去套呢?(法兰体 高度b无法确定) 图4-33B-B剖面图中200应改为220,因计算M B时用的数值是220;另外,冒口直径为φ220,其冒口颈宽也应为220。(A-A剖面图中200改否.) 采用右边的A-A剖面冒口颈满足了要求,A-A剖面冒口颈尺寸怎么得来的呢?不要瞎懵,可列式M颈=3.74=20X/[2(20+X)],求出X=12. 生产中可根据M冒数值查出标准侧冒口,得冒口尺寸(直径、高等),冒口颈尺寸,冒口体积、重量,能补缩的铸件体积及重量(M冒结合εV查)。 3)确定铸钢件体收缩率 由表4-3求出。 例如,已知ZG270-500的平均W C=0.35%,若浇注温度为1560°C,可从表4-3查出εV=4.7%(碳钢εV=εC)。 如何查出的呢?浇注温度为1560°C;W C=0.40%,εV=5%;W C=0.20%, εV=3.8%;据此列式(5-3.8)/(0.4-0.2)=(5-X)/(0.4-0.35),解出 X=4.7(插入法,比例法) 4)确定冒口形状和尺寸查相关表格。

内控系统设计

周记七内部控制系统设计原理 主要内容 第一节内部控制概论 第二节内部控制系统设计的意义和原则 第三节内部控制系统设计的内容 参考资料 1.《基础会计》第七章立信会计出版社 2010年9月第一版主编隋英杰 2.《现代企业会计制度设计》第五章人民大学出版社第二版主编伍中信 3.《会计制度设计》第五章科学出版社 2009年8月第一版主编宋艳敏、刘晓东 思考与练习 一、复习思考题 1. 什么是内部控制制度设计?它包括哪些主要内容? 答:(1) 内控控制制度设计是为了保证企业各项业务活动的有效进行,确保资产的安全完整,防止欺诈和舞弊行为,实现经营管理目标而制定和实施的一系列具有控制职能的方法、措施和程序。 (2) 内部核算单位、会计机构、会计人员管理,会计科目,凭证,工作流程,对内、对外会计报表等 2. 内部控制制度设计应遵循哪些原则? 答:(1) 适合控制环境的原则; (2) 按控制目标设计内部控制实施的原则; (3) 有效控制风险的原则; (4) 不相容职务分离控制的原则; (5) 业务授权处理的控制原则; (6) 财产及文件记录的安全控制原则。

答:明确控制目标:设计控制流程:鉴别控制环节:设置控制措施 5. 内部控制系统的总体设计思路如何? 答:(1) 组织规划:需要考虑企业的控制目标、控制环境和控制程序;确定企业的管理跨度与管理层级,并建立经济责任制度和岗位职责制度。 (2) 目标确定:主要考虑企业远景、战略和经营目标的要求;管理的“粗细”;涵盖会计控制、管理控制、业务控制盒法规执行控制等。 (3) 流程设计:遵循相对的“流程—作业—任务”三个因素之间的依次关系进行。 二、实务练习 资料:某企业领料部门领料时采用一次性“领料单”领料,假如你是该企业的会计工作人员,接到有关领导的指示为企业领料业务设计流程。 要求: 1.采用文字说明法和流程图法相结合的方式设计该企业领料业务流程。 2.并就所设计的领料流程具体说明哪些都是内部控制的内容?

材料成型浇注系统

浇注系统是为填充型腔和冒口而开设于铸型中的一系列通道。常用的浇注系统大多由浇口杯、直浇道、横浇道、内浇道等部分组成。除导入液态合金这一基本作用外,浇注系统还能实现其它的一些作用,其作用如下: (1)使液态合金平稳充满砂型,不冲击型壁和砂芯,不产生激溅和涡流,不卷入气体,并顺利地让型腔内的空气和其它气体排出型外,以防止金属过渡氧化及生产砂眼、铁豆、气孔等缺陷。 (2)阻挡夹杂物进入型腔,以免在铸件上形成渣孔。 (3)调节砂型及铸件上各部分温差,控制铸件的凝固顺序,不阻碍铸件的收缩,减少铸件变形和开裂等缺陷。 (4)起一定的补缩作用,一般是在内浇道凝固前补给部分液态收缩。 (5)让液态合金以最短的距离,最合宜的时间充满型腔,并有合适的型内液面上升速度,得到轮廓完整清晰的铸件。 (6)充型流股不要对正冷铁和芯撑,防止降低外冷铁的激冷效果及表面熔化,不使芯撑过早软化和熔化,而造成铸件壁厚变化。 (7)在保证铸件质量的前提下,浇注系统要有利于减小冒口体积,结构要简单,在砂型中占据的面积和体积要小,以方便工人操作、清除和浇注系统模样的制造,节约金属液和型砂的消耗量,提高砂型有效面积的利用。 一、浇注系统各组成部分与作用: (1)浇口杯:浇口杯又称外浇口,其作用是承接来自浇包的金属液,减轻金属液对铸型的冲击,阻止熔渣、杂物、气泡等进入直浇道,增加金属液的充型压力等。

常用浇口杯有呈漏斗形和池形(浇口盆),漏斗形浇口杯可单独制造或直接在铸型内形成,成为直浇道顶部的扩大部分;它结构简单,体积小,可节约金属,但阻渣能力较差,它常用于中、小型铸件,在机器造型中广泛采用。对大、中型铸件,特别是铸铁件,常采用浇口盆,它具有较好的阻渣效果,浇口盆是与直浇道顶端连接,用以承接导入熔融金属的容器。在浇口盆出口处常放置有浇口塞,当浇口盆充满金属后,塞子升起即开始浇注。 (2)直浇道:浇注系统中的垂直通道,它通常带有一定的锥度。对黑色金属,直浇道应做成上大下小的锥体,锥度一般为1:20,其底部常比横浇道的底部稍低并呈 (它可储存最初进入的金属液,球形。直浇道底部的凹坑和扩大部分亦称为直浇道窝。 对后面的金属液起缓冲作用,并适当引导液流向上,有助于杂质和气泡上浮至横浇道顶部,增强横浇道的撇渣功能。) (3)横浇道:是连接直浇道和内浇道的中间组元。横浇道的作用是分配金属液和挡渣。常开在上型的分型面以上,截面多呈上小下大的梯形。对形状简单的小铸件可以省略横浇道。 (4)内浇道:浇注系统中,引导液态金属直接进入型腔的部分。内浇道的作用是控制金属液流入型腔的速度和方向,调节铸件各部分的温度分布和控制铸件的凝固顺序。在某种情况下,也有一定的补缩作用。内浇道应与横浇道相接而低于横浇道(即内浇道常开在下型的分型面以下),其截面多呈上大下小的扁梯形。内浇道不要开在横浇道的尾端,应与之有15-40mm的距离。内浇道的长度对小件可选20-30mm,截面大时可选长些。 二、浇注系统的类型、特点及应用 (1)浇注系统按各组成元截面积比分类: a、封闭式浇注系统 控流截面在内浇道;浇注开始后,金属液容易充满浇注系统,呈有压流动状态;挡渣能力较强,但充型速度较快,冲刷力大,易产生喷溅,金属液易氧化;适用于湿型铸铁小件及其干型中、大件;树脂砂型大、中、小件均可采用。 b、开放式浇注系统

相关主题
文本预览
相关文档 最新文档