分布式能源在数据中心的应用
- 格式:pdf
- 大小:6.19 MB
- 文档页数:25
简介冷热电三联供在数据中心的应用中国移动上海传输动力维护中心沈嘉琪黄赟引言随着电讯业务的发展,数据中心的业务量迅速增加。
为保证数据中心设备正常安全的运行,环境因素是不可或缺的。
对环境影响最直接就是通信行业的供电系统以及制冷系统。
在建立数据中心初期,考虑到通信行业稳定运营带来的业务高可靠性,在其配套动力系统上投入的成本很高。
冷热电三联供系统作为分布式能源的一种衍生形式,成为控制通信行业能源运营成本,同时成为通信行业数据中心供电可靠性和制冷需求的良好方案之一。
1冷热电三联供系统用于数据中心的优势冷热电三联供系统是将制冷、供热(采暖和供热水)、发电三者合而为一的设施。
通过发电机充分燃烧燃料输出电力(例如:天然气),同时采用吸收式制冷机组回收发电机排放蒸汽和余热,成为较为环保地转为电能、热能的一种能源利用方式。
1.1减少通信行业运营成本由于数据中心需要非常高的用电量,为了数据中心稳定安全的运行,运营商需要花费高昂的电力运营成本;而采用了吸收制冷的冷热电三联供系统可以在数据中心现场输出比市电更便宜的电力能源(获取城市天然气或其他清洁能源补贴);另外,发电机的余热可以驱动吸收制冷机组从而替代普通空调系统,通过降低运营成本为运营商创造经济价值。
1.2提升通信系统运行稳定性数据中心要求高质量和高稳定度的不间断电源。
特别是,在数据中心运营高峰时期,发生诸如停电或供电失误,将直接造成巨大的经济损失。
尤其是在各项电源输出特性参数比较上,冷热电三联供系统采用的燃气轮机发电机组相对于通信行业传统的应急备用发电机组(外网市电中断时启用)更加地稳定可靠。
随着冷热电三联供系统稳定性的提高,运营商可以在设计阶段减少通常为优质安全的电源系统设计的电池备份数量,从而减少投资成本。
1.3利于通信设备扩容燃气轮机发电机组现场发电的模式,在扩容和新设施设计方面给数据中心运营商很大便利。
这主要体现在:通过增加新设备升级旧的数据中心,往往外网市电可能在短期内无法满足新增设备大-168-量的供电需求;通过增加一套冷热电三联供系统,不仅以提供持续不间断的电力,而且它对于数据中心的扩容在时间上可能比起通过依托申请现有公用电网设施更快捷一些。
0 引言近年来,随着信息化产业的快速发展,我国的数据中心也迎来了蓬勃的发展。
数据中心对能源有巨大的需求,2017年,全球约有800万个数据中心,消耗了约4162亿千瓦时的电力,相当于全球总用电量的2%,预计到2020年这一比例还将提高至5%。
数据中心需要的能源主要为电和冷,分别为服务器提供电源和冷却。
数据中心用能主要有两个特点:①用能量大。
数据中心是典型的“耗能大户”,单位面积能耗是普通办公楼的几十到上百倍;②用能可靠性要求高,且全年不间断。
数据中心多为金融、互联网等用户,机房集中安置大量的服务器,这使数据中心成为信息资源的汇集中心,但同时也带来了风险的高度集中。
一旦停电导致服务器宕机,将会对造成巨大的损失。
工信部和地方政府对数据中心的能源效率指标PUE提出了越来越严格的要求,工信部联节[2019]24号文件要求:全国范围内新建大型及超大型数据中心PUE不得高于1.4。
而现有国内非寒冷地区大型数据中心PUE多在1.5以上,新建数据中心如何降低PUE已经成为业内当务之急。
文章以某拟建数据中心为例,介绍该数据中心的常规供能方案,并探讨三联供系统在数据中心的配置。
1 冷热电三联供CCHP介绍及优势冷热电三联供(CCHP)是分布式能源的一种重要形式,以天然气作为一次能源,将燃气燃烧得到的高品位能量通过燃气发电机发电,再将燃气发电机产生的低品位热能充分用于供热或者制冷,可以实现能源的梯级利用,总的能源利用效率可达70%~90%。
三联供系统生产的冷量和电量接近,而数据中心需要的冷量和电量也接近(以kW为单位)。
三联供系统为数据中心供能时,可以按照以冷定电的原则,将三联供系统产生的冷量和电量全部供给数据中心,冷量可以完全满足数据中心的需求,不足的少部分电量由市电补充[1]。
由于采用余热制冷,相比传统电制冷冷水机组供冷的方案,省去了冷水机组的电耗,可有效降低数据中心的PUE。
同时三联供系统因设备昂贵,投资较大,需要有较高的年运行小时数才能有良好的经济性,而数据中心全年不间断用能,也使三联供系统的投资收益有了保障。
分布式能源情况了解所谓“分布式能源”是指分布在用户端的能源综合利用系统。
一次能源以气体燃料为主,可再生能源为辅,利用一切可以利用的资源;二次能源以分布在用户端的热电冷(植)联产为主,其他中央能源供应系统为辅,实现以直接满足用户多种需求的能源梯级利用,并通过中央能源供应系统提供支持和补充;在环境保护上,将部分污染分散化、资源化,争取实现适度排放的目标。
分布式能源实现多系统优化,将电力、热力、制冷与蓄能技术结合,实现多系统能源容错,将每一系统的冗余限制在最低状态,利用效率发坏发挥到最大状态,以达到节约资金的目的。
分布式能源技术是未来世界能源技术的重要发展方向,它具有能源利用效率高,环境负面影响小,提高能源供应可靠性和经济效益好的特点。
分布式能源作为先进的能源利用方式,代表了供能发展趋势,具有明显优势。
首先,安全稳定性高。
分布式能源在传统供电、供热、供冷之外,在供能方式上提高双重保障,使运行系统更加安全稳定。
其次,节能能耗优势显着。
分布式能源以“温度对口,梯级利用”为原则,大大提高能源利用效率,把损耗降到最低。
再有,减少碳排放。
分布式能源与传统常规系统相比,CO2减排量达50%,SO2和固体废弃物排放几乎为零,减少NOX排放量达80%。
分布式能源技术的基础科学主要在以下几个方面:①动力与能源转换设备:主要是指一些基于传统技术的完善和新技术的发展;②一次和二次能源相关技术;③智能控制与群控优化技术;④综合系统优化技术;⑤资源深度利用技术。
比如四川达州钢铁集团公司针对公司实际情况,在推行分布式能源技术应用方面,广泛开展能源综合利用,实现循环利用能源,取得了一定成效,既为企业带来了经济效益,也取得了良好的社会效益。
发改委确立首批4个国家分布式能源示范项目发改委2012年8月7日确立首批4个国家天然气分布式能源示范项目,发改委要求业主单位尽快完成项目规划选址、土地预审、环评、节能、用水、电网接入许可等各项工作,要求相关省市抓紧办理项目核准手续,确保2012年内开工建设。
冷热电三联供在数据中心的应用作者:程磊来源:《中国新通信》 2018年第10期【摘要】在数据中心的早期,考虑到电信行业能够稳定运行的高业务可靠性,投资其互补动力总成系统的成本很高。
作为分布式能源的衍生形式,三重供热和供电系统已成为控制通信行业能源运营成本和通信行业数据中心可靠性和散热要求的最佳解决方案之一。
本文介绍了冷热电三联供系统,讨论了数据中心的冷热电三联供系统应用以及数据中心的冷热电三联供系统。
【关键词】冷热电三联供数据中心迄今为止,美国,日本,欧盟等发达地区更广泛地应用了冷热电供应体系。
美国能源部计划在2020 年之前使用50%的新建商用建筑物来综合利用冷,热和电。
同时,中国也加快了对三联供应体系的研究,把天然气开发利用作为改善能源结构,改善环境质量的重要举措。
它还在数据中心应用了一些三重供应系统。
在中国,三联供冷,供热,供电系统具有很大的发展前景。
一、冷热电三联供系统CCHP(Combined Cooling,Heating and Power)是指将天然气作为主燃料驱动的燃气轮机,微型燃烧发动机或内燃机等燃气发电设备的运转所产生的电力需求和系统发电机。
发电后产生的废热通过废热回收设备供给用户进行冷却。
结合冷,热(加热,采暖)和发电,大大提高了整个系统的一次能源效率,实现了能源的级联利用。
它还可以提供并网电力以实现能源互补,并相应提高整个系统的经济效率和效率。
根据供应范围,冷热电三联供系统可分为建筑类型和区域类型。
区域型系统主要用于各种工业,商业或科技园区以及其他由冷热能源供应中心建造的大型区域。
设备一般使用大容量机组,往往需要建立独立的能源供应中心,还要考虑外部网络设备的冷热供应。
基于楼宇的系统专为具有特定功能的建筑物设计,如办公大楼,商业建筑,医院和一些复杂建筑。
通常情况下,只需要小容量的设备,而机房通常安排在建筑物内部,而不考虑外部网络的建设。
二、冷热电源系统数据中心应用数据中心的能效高于典型的商业建筑(每平方米215-1075 瓦),而数据中心需要大量的能源,通信设备所消耗的大部分能源都转化为热能。
数据中心的能源效率提升计划书第1章引言 (4)1.1 背景及现状分析 (4)1.2 能源效率提升的重要性 (4)1.3 研究方法与目标 (4)第2章数据中心能耗现状分析 (4)2.1 数据中心能耗结构 (4)2.2 数据中心能耗特点 (4)2.3 影响能耗的关键因素 (4)第3章数据中心能源效率评估方法 (4)3.1 能源效率指标 (5)3.2 评估工具与模型 (5)3.3 评估结果分析 (5)第4章数据中心基础设施优化 (5)4.1 供配电系统优化 (5)4.2 冷却系统优化 (5)4.3 机房布局优化 (5)第5章 IT设备能源效率提升 (5)5.1 设备选型与采购 (5)5.2 设备运行与维护 (5)5.3 虚拟化与整合 (5)第6章数据中心智能化管理 (5)6.1 监控系统升级 (5)6.2 预测性维护 (5)6.3 自动化控制策略 (5)第7章能源再生与利用 (5)7.1 分布式能源系统 (5)7.2 能源回收技术 (5)7.3 绿色能源应用 (5)第8章数据中心节能技术应用 (5)8.1 高效电源设备 (5)8.2 高效存储设备 (5)8.3 绿色服务器技术 (5)第9章人员培训与管理 (5)9.1 员工节能意识培训 (5)9.2 专业技能培训 (5)9.3 节能管理制度 (5)第10章能源效率提升实施计划 (5)10.1 项目实施步骤 (5)10.2 预期目标与效益 (6)10.3 风险评估与应对措施 (6)第11章案例分析与启示 (6)11.1 国内外数据中心节能案例 (6)11.2 成功经验总结 (6)11.3 启示与借鉴 (6)第12章总结与展望 (6)12.1 研究成果总结 (6)12.2 政策建议与推广 (6)12.3 未来发展趋势与展望 (6)第1章引言 (6)1.1 背景及现状分析 (6)1.2 能源效率提升的重要性 (6)1.3 研究方法与目标 (6)第2章数据中心能耗现状分析 (7)2.1 数据中心能耗结构 (7)2.2 数据中心能耗特点 (7)2.3 影响能耗的关键因素 (7)第3章数据中心能源效率评估方法 (8)3.1 能源效率指标 (8)3.1.1 总能源消耗(Total Energy Consumption, TEC) (8)3.1.2 能效比(Energy Efficiency Ratio, EER) (8)3.1.3 电源使用效率(Power Usage Effectiveness, PUE) (8)3.1.4 能源回用率(Energy Reuse Ratio, ERR) (8)3.2 评估工具与模型 (8)3.2.1 数据中心能源管理系统(Data Center Energy Management System, DCEMS) . 93.2.2 能源效率评估模型 (9)3.3 评估结果分析 (9)第4章数据中心基础设施优化 (9)4.1 供配电系统优化 (9)4.1.1 提高供电可靠性 (9)4.1.2 优化供电结构 (10)4.1.3 提升电能质量 (10)4.2 冷却系统优化 (10)4.2.1 优化冷却设备布局 (10)4.2.2 提高冷却设备效率 (10)4.2.3 实施智能化冷却管理 (10)4.3 机房布局优化 (10)4.3.1 合理规划机柜布局 (10)4.3.2 优化布线系统 (11)4.3.3 保证机房安全 (11)第5章 IT设备能源效率提升 (11)5.1 设备选型与采购 (11)5.2 设备运行与维护 (11)5.3 虚拟化与整合 (11)第6章数据中心智能化管理 (12)6.1 监控系统升级 (12)6.1.1 三维智能监控系统 (12)6.1.2 数据可视化 (12)6.2 预测性维护 (12)6.2.1 大数据分析 (13)6.2.2 人工智能技术 (13)6.3 自动化控制策略 (13)6.3.1 能耗优化 (13)6.3.2 安全性保障 (13)第7章能源再生与利用 (13)7.1 分布式能源系统 (14)7.1.1 分布式能源系统概述 (14)7.1.2 分布式能源系统发展现状与趋势 (14)7.2 能源回收技术 (14)7.2.1 废弃物能源回收 (14)7.2.2 余热余压能源回收 (14)7.3 绿色能源应用 (14)7.3.1 绿色数据中心 (15)7.3.2 沙漠光伏 (15)7.3.3 建筑光伏一体化 (15)7.3.4 清洁取暖 (15)第8章数据中心节能技术应用 (15)8.1 高效电源设备 (15)8.1.1 高效UPS (15)8.1.2 高效变压器 (15)8.2 高效存储设备 (16)8.2.1 SSD存储 (16)8.2.2 节能型硬盘 (16)8.3 绿色服务器技术 (16)8.3.1 虚拟化技术 (16)8.3.2 高效散热技术 (16)第9章人员培训与管理 (17)9.1 员工节能意识培训 (17)9.1.1 培训内容 (17)9.1.2 培训方式 (17)9.2 专业技能培训 (17)9.2.1 培训内容 (17)9.2.2 培训方式 (18)9.3 节能管理制度 (18)9.3.1 制定节能培训计划:根据企业发展战略和节能目标,制定年度节能培训计划,明确培训内容、方式和时间。
PCS电气原理在现代电力系统中,PCS(Power Conversion System,即功率转换系统)扮演着至关重要的角色。
它负责将不同形式的电能进行高效、可靠的转换,以满足多样化的电力需求。
PCS的电气原理涉及多个领域的知识,包括电力电子技术、控制理论、以及电路设计等。
本文将深入探讨PCS的电气原理,并分析其在电力系统中的应用。
一、PCS的基本概念PCS是一种将一种形式的电能转换为另一种形式的电能的系统。
它通常包括整流器、逆变器、直流变换器、以及与之相关的控制电路和保护装置。
这些组件协同工作,确保电能的稳定供应和高效利用。
二、PCS的主要组件及其工作原理1. 整流器:整流器的主要功能是将交流电(AC)转换为直流电(DC)。
它通过二极管或晶闸管等半导体器件实现电流的单向导通,从而输出稳定的直流电压。
在PCS 中,整流器常用于为逆变器提供直流电源,或用于电池充电等场合。
2. 逆变器:逆变器与整流器相反,它将直流电转换为交流电。
逆变器广泛应用于电动机驱动、风力发电、太阳能发电等领域。
通过控制逆变器的开关器件(如IGBT、MOSFET等),可以调节输出交流电的频率、幅值和相位,以满足不同负载的需求。
3. 直流变换器:直流变换器主要用于调节直流电的电压或电流。
它可以通过斩波控制、PWM(脉宽调制)等方式实现直流电压的升降。
在PCS中,直流变换器常用于电池储能系统,以确保电池在充放电过程中的电压稳定。
4. 控制电路:控制电路是PCS的大脑,它负责监测系统的运行状态,并根据预设的控制策略调整整流器、逆变器和直流变换器的工作参数。
控制电路通常包括微处理器、DSP(数字信号处理器)或FPGA(现场可编程门阵列)等高性能计算器件,以实现复杂的控制算法和快速的响应速度。
5. 保护装置:保护装置用于确保PCS在异常情况下的安全运行。
它通常包括过压保护、过流保护、过热保护等功能。
当系统出现故障时,保护装置会迅速切断电源或采取其他措施,以防止设备损坏和事故发生。
分布式能源技术在数据中心的应用摘要:现阶段,随着社会的发展,我国的现代化建设的发展也突飞猛进。
据GE收集的数据,包括IBM的数据,整体上一个云计算基地的运营成本,接近于75%来自于能源方面的消耗。
机房设备发热量大且全年不间断运行,冷负荷全年变化幅度小,波动范围为0.8~1.0。
因此如何降低云计算基地的用能成本,采用清洁能源以减少云计算基地能耗对环境的影响,显得越来越重要。
天然气分布式能源技术是近年来在国内逐步推广的一种先进清洁能源绿色高效利用技术。
该技术是集燃气轮机、内燃机、吸收式冷热水机、能效控制等高新技术和设备为一体的先进环保型能源系统,目前在发达国家得到了广泛应用,近年来得到了我国政府的积极倡导。
关键词:分布式能源技术;数据中心;应用引言为了推进能源技术革命,中国工程院于2015年启动了“我国能源技术革命体系战略研究”重大咨询项目。
本文从核能、风能、太阳能、储能、油气、煤炭、水能、生物质能、智能电网与能源网融合九大能源技术领域开展咨询调查研究,系统分析了各领域的能源技术现状,明确提出了构建以可再生能源为主体,终端能源以电能为主,多能多网融合互补的技术体系,制定了前瞻性技术(2020)、创新性技术(2030)和颠覆性技术(2050)三阶段发展的能源技术路线,最后提出推动能源技术革命的战略建议,为我国研究制订能源相关规划和政策提供了科学支撑。
1能源技术现状分析经过调研分析发现,我国在核能、风能、太阳能、储能、油气资源、煤炭、水能、生物质能、节能、智能电网与能源网的融合等能源领域上的技术水平已大幅提升,部分实现了跨越式发展,部分达到了国际先进水平。
在新一代核电技术、发电装备制造与煤炭高效清洁燃烧、风力发电设备制造、含大规模新能源接入的特大电网调度运行与安全控制等方面实现了自主创新和技术突破,但部分核心技术和装备仍落后于国际先进水平,原创高端技术自我供应能力明显不足,亟需进一步开展研发攻关。
1.1自主三代核电技术进入大规模应用阶段,四代核电技术全面开展研究工作,研究力量比较分散我国核电与国际最高安全标准接轨,并持续改进,机组安全水平和运行业绩良好,安全风险处于受控状态。