【精品文章】【碳材料】碳纳米管表面功能化修饰及改性
- 格式:pdf
- 大小:198.91 KB
- 文档页数:4
材料表面功能化处理及其应用材料表面功能化处理是指通过一定的化学、物理或生物学手段,在材料表面引入新的功能基团或改变其表面性质,使其具有特定的物理、化学或生物学性能。
该技术已经被广泛应用于材料学、化学、生物学、医学、环境保护等领域,并在电子技术、能源、催化剂、传感器等领域得到了广泛的应用。
本文将对材料表面功能化处理的方法和应用进行简要介绍。
一、材料表面功能化处理的方法材料表面功能化处理的方法主要有化学修饰、物理修饰和生物修饰三种。
其中,化学修饰主要是通过将化学处理剂与材料表面接触,通过表面反应将功能基团引入材料表面;物理修饰主要是通过物理手段将功能基团吸附在材料表面;生物修饰主要是利用生物体系中的酶、细胞等成分,将功能基团引入材料表面。
下面我们将详细介绍这三种方法。
1.化学修饰化学修饰是材料表面功能化处理的主要手段之一,主要通过表面反应的方式引入新的功能基团。
通常的化学修饰包括表面硅化、表面磷化、表面氧化、表面羧基化等。
其中,表面硅化主要是利用硅化合物如SiCl4,SiHCl3等与材料表面的羟基反应,引入硅基团;表面磷化主要是利用磷酸或磷酸酯与材料表面反应,引入磷基团;表面氧化主要是利用表面活性氧与材料表面反应,引入羟基基团;表面羧基化主要是利用卡宾化反应、氧化反应等方法将COOH基团引入材料表面。
这些化学方法可以在不同的温度下进行,因而可以对不同材料进行不同的表面处理。
2.物理修饰物理修饰是一种无需化学反应的表面修饰方法,主要通过物理吸附将功能基团吸附在材料表面。
通常的物理修饰包括辐射法、离子束法、薄膜沉积法和常温等离子体处理法等。
其中,离子束法和薄膜沉积法是常用的方法,主要是通过物理吸附或化学反应的方法将功能基团吸附或沉积到材料表面。
3.生物修饰生物修饰是一种利用生物体系的酶、细胞或其他生物成分将功能基团引入材料表面的方法。
这种方法主要应用于生物医学领域,可以将有益的、具有生物学活性的生物材料、蛋白质等修饰到人工材料表面,以实现与生物体相容性、易于生物分解和可程式化等优点。
收稿:2011-04-25;修回:2011-07-18;基金项目:国家高技术研究发展计划(863计划)项目(2009A A03Z528);作者简介:邱军,男,工学博士,教授,博士研究生导师,研究方向为高性能聚合物基复合材料;E -mail :qiujun @tong ji .edu .cn .碳纳米管及碳纤维增强环氧树脂复合材料研究进展邱 军,陈典兵(同济大学材料科学与工程学院,先进土木工程材料教育部重点实验室,上海 201804) 摘要:碳纳米管与碳纤维具有优异的力学、电学等性能,广泛用做复合材料增强体,但目前碳纳米管/碳纤维/环氧树脂复合材料的研究具有一定的局限性,只考虑了两相材料间的作用,即仅对单一相进行处理而忽略了另一相的改性。
本文从碳纳米管/碳纤维协同增强环氧树脂基体复合材料的思路入手,结合自己的研究成果,综述了国内外相关研究进展。
从研究结果可以看出,将三相材料之间完全有效地联系起来,发挥三者间的协同效应,复合材料的性能可以发生质的飞跃。
关键词:碳纳米管;碳纤维;环氧树脂;三相复合材料引言日本科学家Iijim a [1]在1991年首次发现碳纳米管(CN Ts )。
碳纳米管具有着优异的力学、电性能和热性能,抗拉强度达到200GPa ,弹性模量可达1TPa ,并且具有低密度、高长径比等结构特点,因此成为聚合物复合材料的理想增强材料。
碳纤维(CF )具有十分优异的力学性能,同时耐高温、耐腐蚀、耐摩擦、抗疲劳、低热膨胀系数、导电导性、电磁屏蔽性优良等。
碳纤维复合材料同样具有其它复合材料无法比拟的优良性能,广泛应用于航空航天、汽车、电子电气等领域[2]。
环氧树脂(EP )是一种高性能复合材料基体,具有优良的机械性能、绝缘性能、耐腐蚀性能、黏接性能和低收缩性能。
当前以环氧树脂为基体的高性能复合材料应用广泛,碳纳米管/环氧树脂复合材料和碳纤维/环氧树脂复合材料凸显了优异的力学和综合性能,那么如何再进一步提高这两类复合材料的性能呢?本文在简要综述碳纳米管和碳纤维对环氧树脂复合材料性能改善的前提下,进一步综述了碳纳米管/碳纤维/环氧树脂三相复合材料的研究进展,并对其可能的发展进行了预测。
电催化剂碳载体的功能化概述及解释说明1. 引言1.1 概述在过去几十年里,电催化剂碳载体的功能化已经成为能源转换和环境领域研究的热点之一。
电催化剂是一种可以在电化学反应中促进电子转移的材料,而碳载体则是一种优秀的催化支撑材料,具有高比表面积、良好的导电性和化学稳定性等特点。
因此,将电催化剂与碳载体相结合进行功能化研究,不仅可以提高其催化活性和稳定性,还可以拓宽其应用范围,并在能源转换和环境领域中发挥重要作用。
1.2 文章结构本文主要分为五个部分。
首先,在引言部分我们将对电催化剂碳载体的功能化进行概述,并介绍文章的目的。
接下来,在“2. 电催化剂碳载体的功能化”部分将详细解释碳载体的概念以及电催化剂功能化的定义和意义。
然后,在“3. 实现电催化剂碳载体功能化的关键要点”部分我们将讨论实现该功能化过程所需考虑的关键因素和方法。
随后,在“4. 碳载体功能化在能源转换和环境领域的应用案例分析”部分将展示电催化氧还原反应、电催化析氢反应以及其他相关领域中碳载体功能化的研究进展和应用案例。
最后,在“5. 结论”部分我们将总结本文的主要内容并对未来的研究方向进行展望。
1.3 目的本文旨在系统概述电催化剂碳载体的功能化,并对其在能源转换和环境领域中的应用进行详细分析。
通过探讨材料选择与制备技术、表面修饰与改性策略以及催化性能评价与优化方法等关键要点,我们希望为相关研究提供一些有益的指导,并为该领域未来的研究方向提供参考。
此外,通过介绍具体的应用案例,我们还将展示电催化剂碳载体功能化在实际工程中的巨大潜力,为推动能源转换和环境保护做出贡献。
2. 电催化剂碳载体的功能化2.1 碳载体介绍在电化学领域,碳材料作为电催化剂的载体具有独特的优势。
碳材料广泛存在于自然界中,如天然石墨、活性炭等,同时还可以通过多种方法制备得到,如染料敏化太阳能电池中常用的石墨烯等。
由于其高比表面积、丰富的孔隙结构以及良好的导电性能,碳材料被广泛应用于能源转换和环境领域。
十二烷基硫酸钠对碳纳米管悬浮液分散性能的影响黄苏萍;肖奇【摘要】以十二烷基硫酸钠(SDS)为分散剂,制备碳纳米管悬浮液.通过测定SDS在碳纳米管表面的等温吸附曲线和悬浮液的Zeta电位,研究SDS对碳纳米管表面性质的影响.结果表明:SDS的加入使Zeta电位由-28 mV变为-48 mV左右,SDS浓度c(SDS)为2.0× 10-3 mol/L左右时达到最大电位值并最终趋于稳定;SDS在碳纳米管表面的等温吸附曲线为典型的双平台型(LS型)吸附曲线.SDS吸附量在低浓度下(0.7× 10-3~1.2× 10-3 mol/L范围内)处于第一平台吸附值;随后SDS浓度进一步增大,吸附量迅速上升,在2× 10-3 mol/L处趋近饱和吸附,吸附量达到第2个平台.悬浮碳纳米管浓度测定结果表明SDS可作为水性体系碳纳米管的分散剂,SDS的最佳浓度范围为2.0×10-3~8.0×10-3 mol/L,通过静电排斥和位阻效应有效阻止碳纳米管的团聚.【期刊名称】《粉末冶金材料科学与工程》【年(卷),期】2012(017)001【总页数】6页(P133-138)【关键词】碳纳米管;十二烷基硫酸钠;分散【作者】黄苏萍;肖奇【作者单位】中南大学粉末冶金国家重点实验室,长沙410083;中南大学资源加工与生物工程学院,长沙410083【正文语种】中文【中图分类】O648碳纳米管(carbon nanotubes, CNTs)自 1991年由Iijima[1]发现以来,由于其独有的结构和奇特的物理、化学特性,成为世界范围内的研究热点之一[2]。
提高碳纳米管的分散性能,消除大的团聚,是碳纳米管应用的重要前提条件[3-4]。
碳纳米管的分散与表面改性可分为共价功能化修饰[5]和非共价功能化修饰 2类。
共价功能化修饰含破坏碳纳米管功能化位点的sp2结构,从而可能对碳纳米管的电子特性造成一定程度的破坏。
纳米材料在能源存储与转换中的性能优化摘要:能源存储与转换技术的发展对应对日益紧迫的能源需求和环境保护提出了挑战。
纳米材料,由于其尺寸和结构上的独特特性,已成为改善能源存储设备和能源转换技术性能的关键因素。
本文旨在探讨纳米材料在这一领域的应用,重点关注其在电池技术、太阳能电池、燃料电池等方面的性能优化。
关键词:纳米材料、能源存储、能源转换、电池技术、设计与性能优化1.纳米材料的概述1.1纳米材料的定义和分类对纳米材料的定义涉及到其尺寸和结构。
一般来说,纳米材料的至少一个维度应小于100纳米。
这种定义反映了材料在纳米尺度下的尺寸限制。
根据其维度和结构,纳米材料可以被分类为不同的类别。
零维纳米材料是具有各向同性的纳米颗粒,一维纳米材料具有一维的结构,例如纳米线和纳米管,而二维纳米材料则具有二维结构,如石墨烯。
这些分类基于纳米材料的几何形状和维度,对其性能和应用有着深远的影响[1]。
1.2特性和优势纳米材料的独特特性源于其尺寸和结构。
其中最重要的是其巨大的比表面积,也就是单位质量或体积下的表面积非常大。
这使得纳米材料具有出色的吸附性能和催化活性。
另一个重要特性是尺寸量子效应,即纳米材料的电子和光学性质在纳米尺度下发生显著变化。
此外,纳米材料通常表现出更高的电导率和更快的电荷传输速度,这在电池和超级电容器等能源存储设备中非常有价值。
纳米材料还具有出色的机械强度和稳定性,这在能源存储设备和能源转换技术中非常重要,特别是在高压和高温条件下。
1.3纳米材料在能源存储与转换中的应用概览纳米材料在能源存储与转换领域的应用非常广泛。
在能源存储方面,纳米材料可用于改进电池技术,包括锂离子电池、钠离子电池和超级电容器。
通过利用纳米材料的巨大比表面积和高电导率,这些电池可以提高储能密度和充放电速率,从而提高性能。
在能源转换方面,纳米材料在太阳能电池、燃料电池和热电材料中具有重要作用。
通过结构和表面修饰,纳米材料可以增加太阳能吸收率、催化反应速率和热电效率。
多壁碳纳米管的有机修饰与表征刘道辉;吕兆萍;窦国庆;王海洋;王瑞海【摘要】In order to increase the multi-walled carbon nanotubes (MWCNTs) surface reaction properties, the organic diamine functionalized MWCNTs was obtained by treated MWCNTS with H2SO4 and HNO3 reluxed with SOC12 and synthesized 3,6 diamino-N-ethylcarbazole. FTIR was used to characterize their chemical structure. The IR results indicated that there were absorption peak in the 1617 and 1673cm-1, diamine are grafted on the MWCNTs and the dispersion of MWNTs in DMF is enhanced. MWCNTs still have electrical conductivity at room temperature of 67.8S-cm-1%为了增加多壁碳纳米管(MWCNTs)表面活性,通过浓H2SO4和浓HNO3处理过的MWCNTs与SOCl2回流进而与合成的N-乙基-3,6-二氨基咔唑反应,得到了有机修饰的MWCNTs.用傅立叶变换红外(FTIR)光谱对有机修饰的MWCNTs结构进行研究.研究结果结构表明:有机修饰的MWCNTs红外光谱在1617和1673cm-1处出现了吸收峰,在多壁碳纳米管上引入了胺基,增强了碳纳米管在DMF中的分散性,室温下有机修饰的MWCNTs仍具67.8S·cm-1的电导率.【期刊名称】《化学工程师》【年(卷),期】2011(000)011【总页数】4页(P13-16)【关键词】多壁碳纳米管;N-乙基-3,6-二氨基咔唑;有机修饰;分散性;电导率【作者】刘道辉;吕兆萍;窦国庆;王海洋;王瑞海【作者单位】南京航空航天大学材料科学与技术学院,江苏南京211000;南京航空航天大学材料科学与技术学院,江苏南京211000;南京航空航天大学材料科学与技术学院,江苏南京211000;南京航空航天大学材料科学与技术学院,江苏南京211000;南京航空航天大学材料科学与技术学院,江苏南京211000【正文语种】中文【中图分类】TB383多壁碳纳米管含有多层石墨烯片,形状像个同轴电缆。
碳纳米材料综述课程:纳米材料日期:2015 年12 月碳纳米材料综述摘要:纳米材料是一种处于纳米量级的新一代材料,具有多种奇异的特性,展现特异的光、电、磁、热、力学、机械等物理化学性能,这使得纳米技术迅速地渗透到各个研究领域,引起了国内外众多的物理学家、化学家和材料学家的广泛关注,也成为当前世界最热门的科学研究热点。
物理学家对纳米材料感兴趣是因为它具有独特的电磁性质,化学家是因为它的化学活性以及潜在的应用价值,材料学家所感兴趣的是它的硬度、强度和弹性。
毫无疑问,基于纳米材料的纳米科技必将对当今世界的经济发展和社会进步产生重要的影响。
因此,对纳米材料的科学研究具有非常重要的意义。
其中,碳纳米材料是最热的科学研究材料之一。
我们知道,碳元素是自然界中存在的最重要的元素之一,具有sp、sp2、sp3等多种轨道杂化特性。
因此,以碳为基础的纳米材料是多种多样的,包括常见的石墨和金刚石,还包括近几年比较热门的碳纳米管、碳纳米线、富勒烯和石墨烯等新型碳纳米材料。
关键词:纳米材料碳纳米材料碳纳米管富勒烯石墨烯1.前言从人类认识世界的精度来看,人类的文明发展进程可以划分为模糊时代(工业革命之前)、毫米时代(工业革命到20世纪初)、微米和纳米时代(20世纪40年代开始至今)。
自20世纪80年代初,德国科学家Gleiter提出“纳米晶体材料’,的概念,随后采用人工制备首次获得纳米晶体,并对其各种物性进行系统的研究以来,纳米材料己引起世界各国科技界及产业界的广泛关注。
纳米材料是指特征尺寸在纳米数量级(通常指1—100 nm)的极细颗粒组成的固体材料。
从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。
通常分为零维材料(纳米微粒),一维材料(直径为纳米量级的纤维),二维材料(厚度为纳米量级的薄膜与多层膜),以及基于上述低维材料所构成的固体。
从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体(体材料与微粒膜)。
第14卷 第2期2006年4月材 料 科 学 与 工 艺MATER I A LS SC I ENCE &TECHNOLOGYVol 114No 12Ap r .,2006陶瓷/碳纳米管复合材料的制备、性能及韧化机理沈 军1,张法明1,2,孙剑飞1(1.哈尔滨工业大学材料科学与工程学院,黑龙江哈尔滨150001,E 2mail:junshen@hit .edu .cn;2.中国科学院上海硅酸盐研究所,上海200050)摘 要:评述和讨论了碳纳米管增强陶瓷基复合材料的制备工艺,包括碳纳米管在陶瓷基体上的分散和材料的烧结成型,添加碳纳米管后材料力学性能、导电和导热等物理性能的改善以及韧化机理,指出碳纳米管在陶瓷材料基体上的均匀分散,碳纳米管在组织中存活,碳纳米管与陶瓷基体的界面结合状态是影响碳纳米管增强陶瓷基复合材料性能提高的关键.关键词:碳纳米管;陶瓷基复合材料;韧化机理;力学性能;物理性能中图分类号:T B332文献标识码:A文章编号:1005-0299(2006)02-0165-06prepara ti on,properti es and tough i n g m echan is m s of carbonnanotubes re i n forced ceram i c ma tr i x co m positesSHEN Jun 1,Z HANG Fa 2m ing1,2,S UN J ian 2fei1(1.School of Materials Science and Engineering,Harbin I nstitute of Technol ogy,Harbin 150001,China,E 2mail:junshen@hit .edu .cn;2.Shanghai I nstitute of Cera m ics,Chinese Acade my of Science,Shanghai 200050,China )Abstract:Carbon nanotubes (CNTs )de monstrate excep ti onal p r operties and their unique tubular structures are believed t o be the ulti m ate reinf orce ment in composites .The mechanical and physical p r operties of brittle cera m ics could be i m p r oved by incor porating CNTs in the matrix .The p reparati on p r ocess for dis persi on of CNTs in the cera m ic matrix,sintering methods,mechanical p r operties,physical p r operties (such as electric conductivity and ther mal conductivity ),as well as t oughing mechanis m s in CNTs reinforced ceram ic matrix composites were revie wed and discussed .It is p r oposed that the key fact ors for i m p r oving the perf ora mce char 2acteristics of CNTs/cera m ic composites are unif or m distributi on of CNTs,the surviving of CNTs in the m icr o 2structures,and the interfacial bonding bet w een CNTs and the cera m ic matrix.Key words:carbon nanotubes;cera m ic matrix composites;t oughing mechanis m s;mechanical p r operties;physical p r operties收稿日期:2004-10-18.基金项目:国家自然科学基金资助项目(50374035).作者简介:沈 军(1965-),男,博士,教授,博士生导师;孙剑飞(1962-),男,博士,教授,博士生导师. 处于s p 2-3杂化态的碳元素可以形成多形态的结构,除金刚石和石墨外,晶态碳还可形成足球结构的C 60和一维管状的碳纳米管.碳纳米管可以看做由六边形的石墨板成360°卷曲而成的管状材料,管的内径在几纳米到几十纳米之间,长度可达微米甚至厘米尺度,长径比高达1000至10000,比表面积大,热稳定性高.在力学性能方面,碳纳米管强度、韧性高,延伸率、弹性模量大,耐磨性优良;尤其是单壁碳纳米管作为一种新型的自组装单分子材料,理论估算其杨氏模量高达5TPa,与金刚石相同,强度约为钢的100倍,而密度却只有钢的1/6,可能是目前比强度和比刚度最高的材料(见表1).碳纳米管还具有优异的导热性能和电学性能等物理特性.因此,碳纳米管被认为是最理想的纳米晶须增韧材料,是纤维类强化相的终极形式[1].陶瓷材料具有共价键和复杂离子键的键合以及复杂的晶体结构,因而呈现耐高温、耐磨损和重量轻等优异的性能,在航空航天,国防军工及工业生产等领域应用十分广泛,但陶瓷材料的脆性问题一直制约着其进一步发展和应用.通过引入增强介质,如第二相颗粒,纤维与晶须等合成陶瓷基复合材料来强韧化陶瓷材料的研究取得了一些成果,但增韧幅度不大.由于碳纳米管特殊的结构和优异的性能,合成碳纳米管增强的复合材料,已经在高分子基、金属基的材料中取得了显著的效果[2].目前,国内外对于碳纳米管增强高分子基复合材料的研究已经较系统,但碳纳米管增强陶瓷基复合材料的研究刚起步.本文对碳纳米管增强陶瓷基复合材料的制备(主要包括碳纳米管在基体上的分散和材料的烧结成型),复合材料的力学性能、物理性能的改善以及强韧化机理进行了评述,对研究中存在的问题进行了分析.表1 纤维材料的性能比较纤维直径/μm密度/(g・cm-3)拉伸强度/GPa弹性模量/GPa碳纳米管01001~0111133~212010~52400~5000碳纤维71166214~311120~170玻璃纤维72150314~41690尼龙纤维12114421870~170硼纤维100~1402150315400石英纤维9212031470碳化硅纤维10~202130218190碳化硅晶须0100231156194821 碳纳米管在陶瓷基体上的分散 碳纳米管比表面积大,表面能高,碳管之间以较强的范德华力团聚在一起,尤其是有机物催化裂解法制备的碳纳米管经常弯曲缠绕在一起.此现象的产生将会减小碳纳米管的长径比,影响碳纳米管增强复合材料的增强效果.因此,如何将碳纳米管引入并均匀分散在基体上非常关键,碳纳米管的引入方式有原位自生法和外加混入法两种.111 原位自生碳纳米管Peigney等首先在A l2O3粉末基体上通过催化反应(Catalytic Method)[3]原位生长出碳纳米管网状束,发现在粉末中碳纳米管长约几十微米呈网络状较均匀的分布在粉末颗粒周围,经热压烧结后碳纳米管量比粉末中有所减少.Ka malakaran 等报道采用喷雾热解工艺[4]在A l2O3基体上原位生长了碳纳米管,发现纳米管在基体上分布很均匀,样品为2~4c m2的薄片,而且此种工艺还可优化制备出碳纳米管原位增强的陶瓷薄膜.Rul等采用凝胶泡沫法[5]在Co-Mg A l2O4氧化物固溶体基体上原位自生了碳纳米管,发现此种工艺碳纳米管产量很高,而且70%以上为单壁碳管, 95%以上为单壁和双壁碳纳米管;他们还在尖晶石(Mg A l2O4)基体上通过CCVD[6]的方法原位生长了碳纳米管,发现原位自生的碳纳米管非常均匀的分布在基体上.112 外加混入碳纳米管11211 物理分散法物理分散法指利用物理作用力将碳纳米管分散开,包括超声波法,球磨法,研磨法,高速剪切法等.但有学者认为物理方法只能分开碳纳米管的团聚体,而且会破坏碳纳米管[7];超声波法会使纳米管变短,随着分散时间延长碳管外壁会剥落,导致管壁变薄[8],而且只能够分散单一的团聚体,不能分散大团聚体[9];球磨和研磨等物理方法只能够将碳纳米管大块的团聚体分散成为小团聚体[9].清华大学L i等[10]对碳纳米管与颗粒尺寸为1μm铁粉混合进行了不同时间的震动球磨处理,磨球为直径不一的钢球,发现球磨15m in,许多碳纳米管端头破坏,而且有许多巴基葱颗粒出现,高能球磨60m in后,大部分碳纳米管变成了无定形碳,铁粉可以看作微小的磨球,其加入促进了碳纳米管的结构转变.11212 化学分散法化学分散法是指利用表面活性剂、表面改性剂或表面功能化来改变碳纳米管的表面能,提高其润湿或粘附特性,降低其在连续溶剂中的团聚倾向.(1)酸处理:采用浓H2S O4/HNO3混合溶液酸处理可以将碳纳米管完全分散开,原因是碳纳米管在酸处理过程中会变短而且增加亲水性官能团如羟基官能团等[9];如果采用浓硝酸处理后,碳纳米管的长度变短,管身变直,管壁上有—OH,>C—O和—COOH功能性官能团吸附,碳管在溶液中分散很均匀[11].Shaffer等也发现通过对催化裂解生长的碳纳米管进行酸氧化处理(HNO3:H2S O4=1:3)会给纳米管表面增加酚基和羟基官能团,这些官能团的存在可以使碳管以较高的浓度在水中稳定分散[12].(2)添加表面活性剂:添加表面活性剂如次乙亚胺(Ethyleni m ine)或者十二烷基硫酸钠(S DS)可以将碳纳米管在水溶液中均匀分散,通过溶胶杂凝聚的工艺,由于不同成分间静电相互作用,可以得到氧化钛和氧化铝颗粒包覆的碳纳米管[13];添加聚乙烯胺和阴离子柠檬酸于水溶液中作为分散剂对碳纳米管表面进行改性处理,然后在NH3中热处理,金纳米粒子可以吸附并填充到纳米管上表面和内部[14].在酒精溶液中添加20d mb%的共聚物作为分散剂可以成功的将110wt.%多壁碳纳米管均匀的分散开[15];在水・661・材 料 科 学 与 工 艺 第14卷 中添加溴化十六烷基三甲铵(C 16T MAB )或聚丙烯酸(P AA )或C 16EO 作为分散剂都可以将碳纳米管均匀分散开,但不可能得到绝对的均匀[16].研究发现,添加阴离子表面活性剂十二烷基硫酸钠和阳离子表面活性剂柠檬酸铵都可以将碳纳米管较均匀的分散在水溶液中,阴、阳离子表面活性剂均以纳米颗粒的形式均匀的吸附在碳纳米管的表面上,如图1所示.图1 碳纳米管表面活化后的TE M 形貌11213 物理化学分散法物理化学分散法是将物理方法,如超声波法、球磨法等,与化学方法,如酸处理、添加表面活性剂等进行组合,以期达到将纳米管更加均匀分散在基体上的目的.采用添加表面活性剂与超声波振荡和球磨工艺结合,可将碳纳米管较均匀的分布在纳米WC /Co 粉末中[17].2 碳纳米管增强陶瓷基复合材料的烧结成型 碳纳米管增强陶瓷基复合材料大部分采用烧结成型,通常制备纳米陶瓷材料和陶瓷基复合材料的工艺均可以用于制备碳纳米管增强陶瓷基复合材料,但烧结气氛必须是真空或惰性气体保护,以防止碳纳米管的氧化,碳纳米管在陶瓷烧结后组织中的存活状况非常重要.(1)热压烧结:热压烧结是最常用的一种制备碳纳米管增强陶瓷基复合材料的烧结工艺,采用热压烧结工艺所制备的碳纳米管增强的复合材料有Si C,Si O 2,A l 2O 3,Fe -A l 2O 3,Fe /Co -Mg A l 2O 4,Co -Mg O 基等材料[18~22],复合材料的性能均有所提高但不大.(2)烧结-热等静压:Balazsi 等采用烧结-热等静压(Sinter -H I P )烧结工艺制备了多壁碳纳米管增强Si 3N 4基复合材料,复合材料的弯曲强度和弹性模量均有可观的提高[23].(3)放电等离子烧结:放电等离子烧结(Spark Plas ma Sintering,简称SPS )是近年来发展起来的一种新型的烧结工艺,该系统利用脉冲能、放电脉冲压力和焦耳热产生的瞬时高温场来实现烧结过程,它在粉末之间能瞬时产生放电等离子体,使被烧结体内部每个颗粒均匀的自身发热,并且使颗粒表面活化更易于烧结;同时,烧结时在样品两端施加轴向压力,可以使烧结体更加致密和烧结温度降低.可以在极快的升温速度、低的烧结温度、极短的保温时间、较高的烧结压力下制得致密的块状纳米材料.有学者认为采用热压烧结工艺制备碳纳米管增强陶瓷基的复合材料,由于所需的烧结温度较高,保温时间较长,会对复合材料中的碳纳米管造成破坏,因此会降低甚至会丧失增韧效果[24].放电等离子烧结是非常有发展前景的制备碳纳米管增强陶瓷基复合材料的工艺.(4)其他工艺:Peigney 等采用高温挤压成型制备了碳纳米管增强金属氧化物复合材料,发现由于碳纳米管的引入,复合材料的超塑性成型更易进行,碳纳米管抑制了基体晶粒长大,并具有润滑介质的作用.研究发现,将碳纳米管在陶瓷材料基体上定向排列是可能的,通过控制碳纳米管的含量来调制纳米复合材料的导电性能[22].3 碳纳米管增强陶瓷基复合材料的性能改善 将碳纳米管添加到陶瓷材料基体上,由于碳纳米管的分散程度和制备工艺的差别,导致复合材料的力学性能提高不一,有的甚至降低.除了力学性能外,碳纳米管增强陶瓷基复合材料的物理性能,如导电性能、导热性能均有较大的改善.311 力学性能1998年清华大学Ma 等首先尝试了在纳米Si C 陶瓷的基体上添加多壁碳纳米管,其断裂韧性仅提高了10%[18].Flahaut 等通过在Fe -A l 2O 3基体上原位生长碳纳米管,使复合材料的断裂强度比氧化铝稍有提高,但比Fe -A l 2O 3降低很多,其断裂韧性比纯氧化铝有所降低或相近[25].2001年Siegel 等报道在氧化铝基体上添加10vol%的多壁碳纳米管,其断裂韧性比纯氧化铝提高了24%[26].2003年Nature 发表了华人Zhan 等[24]的研究结果,他们在纳米A l 2O 3基体上添加10vol%的单壁碳纳米管,于1150℃放电等离子烧结(SPS )3m in 得到的复合材料的维氏硬度达到了・761・第2期沈 军,等:陶瓷/碳纳米管复合材料的制备、性能及韧化机理1611GPa,断裂韧性K I C达到了917MPa・m1/2,约为单纯纳米氧化铝材料的3倍,为迄今增韧效果最佳的报道.Balazsi等研究了碳纳米管与碳纤维、碳黑和石墨复合Si3N4陶瓷的增韧效果,发现Si3N4-CNTs的力学性能比其他碳材料如碳纤维、碳黑和石墨复合Si3N4提高了15%~37%[23].An等对A l2O3-CNTs复合材料的摩擦学特性进行了研究,发现添加4wt%以内的碳纳米管可以提高材料的耐磨性能[27].2004年中科院上硅所N ing等在Si O2添加5vol%的多壁碳纳米管,由于碳纳米管较均匀的分散,添加了5v ol.%的碳纳米管的Si O2弯曲强度和断裂韧性分别提高了88%与146%,而不添加分散剂的5v ol.%CNTs-Si O2复合材料的力学性能提高较少[16].我课题组采用放电等离子烧结工艺制备了纳米WC-Co-CNTs复合材料,研究发现复合材料的硬度和断裂韧性可以同时提高,硬度和断裂韧性比不添加碳纳米管的纳米WC-Co硬质合金分别提高了17%和35%[17],起到了强韧化效果. 312 物理性能单壁纳米碳管的室温纵向电导率达106S/m, Zhan等后续的研究结果表明,S WCNT/A l2O3的导电性能随着碳纳米管含量的增加而提高, 15vol%S WCNT/A l2O3的导电率达3345S/m[28]. Flahaut碳纳米管可以使其由绝缘体变为导体,电导率在012~410S/m,电导率的值与组织中碳纳米管的破坏程度有关,当管结构完全破坏时,就不再导电[29].单独一根多壁纳米碳管的室温热导率预计达3000W/mK,单独一根单壁碳纳米管室温热导率达6000W/mK,而单壁碳纳米管束的室温热导率大于200W/mK[30],碳纳米管被认为是目前世界上最好的导热材料.N ing等随后的研究发现在Si O2的基体上添加碳纳米管,材料的热扩散系数和热导率随着碳纳米管的含量的增加而增大,在650℃含10vol%碳纳米管的Si O2的热扩散系数和导热率分别提高了1613%和2016%[31].4 碳纳米管增强陶瓷基复合材料的强韧化机理 有关研究发现,在碳纳米管增强纳米陶瓷基复合材料中,碳纳米管可以在一定程度抑制纳米陶瓷晶粒长大,并促进陶瓷致密度的提高,使材料强度提高.Zhan等在单壁纳米碳管增强纳米氧化铝基复合材料中,发现碳纳米管包围在纳米氧化铝晶粒周围,有效地抑制了晶粒的长大[24].中科院金属所的钟等在碳纳米管增强纳米铝基复合材料制备过程中发现碳纳米管具有阻止纳米A l晶粒长大的作用[32].碳纳米管的引入会与基体产生界面反应,清华大学Xu等[33]发现,A l/CNTs复合材料的界面形成了A l C和A l C2脆性碳化物,消弱了界面的结合强度.浙江大学吴等[34]对含有微量碳纳米管的纳米WC-Co硬质合金做了初步研究,发现碳纳米管与WC粒子形成了W-C化学键,强化了界面结合.我课题组对纳米WC-Co-CNTs硬质合金材料的研究表明,添加适量的碳纳米管在纳米WC-Co基体上,在烧结过程中碳纳米管可以填充显微空隙,以及碳纳米管的添加引起合金中碳含量的稍微提高,致使液相量增加从而促进了烧结致密化进程;碳纳米管与WC晶界相互作用可以一定程度上抑制纳米WC的晶粒长大,所以材料的硬度和韧性同时提高[17].对于微米级纤维复合的陶瓷材料,增韧机理有桥联增韧,裂纹偏转增韧,拔出效应.Ma认为在纳米Si C-10%CNTs中断裂韧性提高是由于碳纳米管的裂纹偏转和拔出效应造成的[18].N ing报道碳纳米管增强Si O2复合材料中桥联、裂纹偏转和拔出效应都起作用[19].Zhan[24]发现:纳米A l2O3 -10vol%S WCNTs复合材料的裂纹扩展路径仍然呈沿晶断裂,没有发现桥联和拔出现象,认为碳管拔出是由于碳管与基体结合不牢固造成的,他认为其性能大幅度提高是由于单壁碳纳米管比多壁管力学性能和结构更加优异,单壁碳管呈网络状连续的环绕在纳米氧化铝晶粒周围造成了裂纹的偏转,增韧如图2所示,箭头所指为碳纳米管;放电等离子烧结的低温短时没有造成单壁碳纳米管的破坏等原因引起的.Xia等[35]在氧化铝基体上原位定向生长了多壁碳纳米管,制备出20μm和90μm厚的涂层材料,经纳米硬度计和扫描电镜分析发现,在微米级纤维增强的陶瓷基复合材料中的增韧机制,在碳纳米管增强陶瓷基复合材料中仍然都存在,而且呈现了新的机制,碳纳米管在图2 单壁碳纳米管增强纳米氧化铝基复合材料・861・材 料 科 学 与 工 艺 第14卷 剪切带附近产生倒塌而不产生裂纹,说明此材料具有多向破坏承受能力,三维有限元分析表明,碳纳米管增强的氧化铝陶瓷基复合材料基体上的残余应力达300MPa,提高了材料的工程使用性能.对放电等离子烧结制备的纳米WC-Co-CNTs 复合材料的增韧机理初步研究发现,烧结后碳纳米管仍然存活在组织中,断裂面上存在着碳纳米管桥联和拔出增韧现象[17].5 研究中存在的问题1)碳纳米管在基体上分散效果和状态直接影响复合材料的性能提高,原位自生法与外加混入法相比,能够得到纳米管在基体上更加均匀的分布,但技术设备要求高.迄今为止,如何将碳纳米管在不破坏或少破坏其完美结构的前提下非常均匀的分散到陶瓷材料基体上,仍有待深入研究.2)烧结成型是碳纳米管增强陶瓷基复合材料制备过程中的最后也是关键的一步,保证碳纳米管在组织中的存活十分重要.低温、短时、快速烧结工艺———放电等离子烧结,可以在保持碳纳米管在陶瓷组织中的完整性,较适合制备碳纳米管增强陶瓷基复合材料.但放电等离子烧结的内在烧结机制,以及碳纳米管复合的纳米材料在SPS工艺下的烧结动力学机理有待研究.3)采用碳纳米管复合陶瓷材料不仅可以改善材料的力学性能,还可以增加其功能特性,如导电性能、导热性能等,并且可以通过碳纳米管含量和排列方向的控制来对陶瓷材料的性能进行调制.碳纳米管还具有波吸收特性、场致发射性能等,制备高力学性能兼多功能化的陶瓷材料,碳纳米管是最理想的增强纤维选择.但目前碳纳米管较昂贵,如何大幅度地提高复合材料的性能,提高材料的性价比,并达到性能可预测、可控制,有待于深入研究.6 结 语 碳纳米管具有优异的力学性能,电学性能和导热性能等物理性能,极高的长径比以及独特的一维管状纳米结构,碳纳米管复合材料的研究已成为碳纳米管应用研究的重要方向和国内外的研究热点.引入碳纳米管来复合陶瓷材料有望进一步提高陶瓷材料的力学性能,同时增加其功能特性,实现结构功能一体化,并且通过对碳纳米管的排列和含量控制可以对陶瓷材料的性能进行调制.碳纳米管在陶瓷材料基体上的增强效果主要取决于碳纳米管在陶瓷材料基体上的分散程度,碳纳米管在组织中的存活,及碳纳米管与陶瓷基体的界面结合状态等因素.碳纳米管增强陶瓷基复合材料在纳米尺度上的成型、特性、破坏和强韧化机制的研究将大大丰富陶瓷材料的研究内容,并将为进一步拓宽陶瓷材料作为先进材料的应用范畴奠定基础.参考文献:[1]DA I H.Carbon nanotubes:opportunities and challenges[J].Surface Science,2002,500:218-241.[2]LAU K T,DAV I D H.The revoluti onary creati on of ne wadvanced materials2carbon nanotube composites[J].Composites:Part B,2002,33:263-277.[3]PE I G NEY A,LAURE NT Ch,ROUSSET A.Synthesisand characterizati on of alu m ina matrix nanocomposites containing carbon nanotubes[J].Key Engineering M a2 terials,1997,743-746:132-136.[4]K AMALAK ARAN R,LUP O F,GROBERT N.I n2situfor mati on of carbon nanotubes in an alu m ina2nanotube composite by s p ray pyr olysis[J].Carbon,2003,41:2737-2741.[5]RUL S,LAURE NT Ch,PE I G NEY A,et a l.Carbonnanotubes p repared in situ in acellular cera m ic by the gelcasting f oa m method[J].Journal of the Eur opean Ceram ic Society,2003,23:1233-1241.[6]RUL S,LEFE VRESCHL I CK F,C APR I A E,et a l.Per2colati on of single2walled carbon nanotubes in ceram ic matrix nanocomposites[J].Acta M aterialia,2004,52:1061-1067.[7]H I L D I N G J,GRULKE E A,Z HANG Z G,et a l.D is2persi on of carbon nanotubes in liquids[J].Journal ofD is per Sci Technol,2003,24(1):1-41.[8]LU K L,LAG O R M,CHE N Y K,et a l.M echanicalda mage of carbon nanotubes by ultras ound[J].Car2 bon,1996,34:814-816.[9]WANG Yao,WU Jun,W E I Fei.A treat m ent method t ogive separated multi2walled carbon nanotubes with high purity,high crystallizati on and a large as pect rati o[J].Carbon,2003,41:2939-2948.[10]L I Y B,W E IB Q,L I A NG J,et a l.Transfor mati on ofcarbon nanotubes t o nanoparticles by ball m illingp r ocess[J].Carbon,1999,37:493-497.[11]J I A Z,WANG Z,L I A NG J,et a l.Pr oducti on of shortmulti2walled carbon nanotubes[J].Carbon,1999,37:903-906[12]SHAFFER M S P,F AN X,W I N DLE A H.D is persi onand Packing of Carbon Nanotubes[J].Carbon,1998,36(11):1603-1612.[13]S UN J,G AO L.Devel opment of a dis persi on p r ocessf or carbon nanotubes in cera m ic matrix by heter ocoagu2lati on[J].Carbon,2003,41:1063-1068.・961・第2期沈 军,等:陶瓷/碳纳米管复合材料的制备、性能及韧化机理[14]J I A NG L,G AO L.Modified carbon nanotubes:an ef2fective way t o selective attach ment of gold nanoparticles[J].Carbon,2003,41:2923-2929.[15]Z HAO L,G AO L.Stability of multi2walled carbonnanotubes dis persi on with copoly mer in ethanol[J].Coll oids and Surfaces A,2003,224:127-134. [16]N I N G J,Z HANG J,P AN Y,et al.Surfactants assistedpr ocessing of carbon nanotube reinf orced Si O2matrix co m2 posites[J].Cera mics I nternati onal,2004,30:63-67. [17]Z HANG F,S HE N J,S UN J.Pr ocessing and p r operties ofcarbon nanotubes2nano2WC2Co co mposite[J].MaterialsScience&Engineering A,2004,381(1-2):87-92. [18]MA R Z,WU J,W E IB Q,et a l.Pr ocessing and p r op2erties of carbon nanotubes2nano2Si C cera m ic[J].Journal ofM aterials Science,1998,33:5243-5246.[19]N I N G J,ZHANG J,P AN Y,et a l.Fabricati on and me2chanical p r operties of Si O2matrix composites reinf orcedby carbon nanotubes[J].M aterials Science&Engi2 neering A,2003,357(1-2):392-396.[20]CHANG S,DORE MUS R H,AJAY AN P M.Pr ocess2ing and mechanical p r operties of carbon nanotube rein2 forced alu m ina composites[J].Cera m ic Engineeringand Science Pr oceedings,2000,21(3):653-658. [21]PE I G NEY A,LAURE NT Ch,F LAJAUT E,et a l.Car2bon nanotubes in novel cera m ic matrix nanocomposites[J].Cera m ics I nternati onal,2000,26:677-683. [22]PE I G NEY A,F LAHAUT E,LAURE NT Ch,et a l.A2ligned carbon nanotubes in cera m ic2matrix nanocompos2ites p repared by high2temperature extrusi on[J].Chem ical Physics Letters,2002,352:20-25. [23]BALAZSI Cs,K ONY A Z,W E BER F,et a l.Prepara2ti on and characterizati on of carbon nanotube reinf orcedsilicon nitride composites[J].Materials Science&Engineering C,2003,23:1133-1137.[24]ZHAN G D,K UNTZ J D,WAN J,et a l.Single2wallcarbon nanotubes as attractive t oughing agents in alu m i2 na2based nanocomposites[J].Nature Materials,2003,2:38-42.[25]LAURE NT Ch,PE I G NEY A,DUMORTI ER O,et a l.Carbon nanotubes2Fe2A lu m ina nanocomposites.PartII:m icr ostructure and mechanical p r operties of the hot2 Pressed composites[J].Journal of the Eur opean Ce2ra m ic Society,1998,18(14):2005-2013.[26]SI EGE L R W,CHANG S K,ASH B J.Mechanical be2havi or of poly mer and cera m ic matrix nanocomposites[J].Scri p ta M aterialia,2001,44:1472-1475. [27]AN J W,Y OU D H,L I M D S.Tribol ogical p r opertiesof hot2p ressed alu m ina2C NT composites[J].W ear,2003,255(1-6):677-681.[28]ZHAN G D,K UNTZ J D,G ARAY J E.Electricalp r operties of nanocera m ics reinf orced with r opes of sin2gle walled carbon nanotubes[J].App lied Physics Let2ters,2003,83(6):1228-1230.[29]F LAHAUT E,PE I G NEY A,LAURE NT Ch,et a l.Car2bon nanotube2metal2oxide nanocomposites:M icr ostruc2ture,Electrical conductivity and mechanical p r operties[J].Acta Materialia,2000,48:3803-3812. [30]B I ERUK M J,L I A G UNO M C,RADOS AV I JE V I C M.Carbon nanotube co mposites f or ther malmanage ment[J].Applied Physics Letters,2002,80(15):2767-2769. [31]N I N G J,ZHANG J,P AN Y,et a l.Fabricati on andther mal p r operties of carbon nanotube/Si O2composites[J].Journal of Materials Science Letters,2003,22:1019-1021.[32]钟 蓉,丛红涛,成会明,等.单壁纳米碳管增强纳米铝基复合材料的制备[J].材料研究学报,2002,16(4):344-348.[33]XU C L,W E IB Q,MA R Z,et a l.Fabricati on of alu2m inu m2carbon nanotubes and their electrical p r operties[J].Carbon,1999,37(5):855-858.[34]吴希俊,谭国龙.纳米碳化钨-钴-碳化钒硬质合金的制备方法及设备[P].中国专利:1240639,2000-01-19.[35]X I A Z,R I ESTER L,C URTI N W A.D irect observati onof t oughing mechanis m s in carbon nanotube ceram icmatrix composites[J].Acta Materialia,2004,52:931-944.(编辑 吕雪梅)(上接第164页)[4]王成莲,刘 莉.比色法测定抗坏血酸体系产生的・OH[J].生物化学与生物物理进展,1989,16(6): 473-475.[5]JE N J F,LE LL M F,T HOMAS C Y.Deter m inati on ofhydr oxyl radicals in an advanced oxidati on p r ocess with salicylic acid trapp ing and liquid chr omat ography[J].Journal of Chr omat ography A,1998,796:283-288. [6]金 鸣,蔡亚欣,李金荣,等.邻二氮菲-Fe2+氧化法检测H2O2/Fe2+产生的羟自由基[J].生物化学与生物物理进展,1996,23(6):543-553.[7]张乃东,郑 威.UV-V is-草酸铁络合物-H2O2体系产生羟自由基的Fe(phen)32+光度法测定[J].分析测试学报,2002,21(5):36-39.[8]L I X Z,F AN C M,S UN Y P.Enhancement of phot ocata2lytic oxidati on of hu m ic acid in Ti O2sus pensi on by in2creasing i on strength[J].Che mos phere,2002,48(4):453-460.(编辑 吕雪梅)・71・材 料 科 学 与 工 艺 第14卷 。
【碳材料】碳纳米管表面功能化修饰及改性
碳纳米管是由单层石墨烯和多层石墨烯片层卷曲而成的一维纳米管状材料,具有机械强度高、化学稳定性好以及优异的导电性和电磁屏蔽性等特点,被认为是高性能复合材料的一种理想填料。
但其表面缺少活性基团、分散性差、加工困难,限制了其应用。
因此,研究者通过对其进行表面修饰改性来提高它的溶解性和分散性。
同时,通过化学或物理的方法将所需功能性基团接到碳纳米管的表面制备多功能性材料,目前,碳纳米管表面进行修饰及功能化改性成为了研究热门领域。
图1 碳纳米管示意图
一、碳纳米管表面修饰及改性
碳纳米管表面功能化修饰主要分为有机修饰、机械修饰、无机包覆。
1、有机修饰及改性
碳纳米管有机修饰及改性主要有共价修饰、非共价修饰。
(1)碳纳米管表面共价修饰
碳纳米管表面共价修饰是在其管壁上通过化学反应引入新的共价键来优化碳纳米管的性能,包含的主要反应有氧化反应、自由基加成、电化学反应、热化学反应等。
氧化反应是通过化学方法在碳纳米管表面引入极性较大的羧基或羟基,从而使碳纳米管材料表面具有活性基团,再通过共价交联反应来引入不同的功能基团。
图2 碳纳米管表面共价修饰示意图
上海交通大学纳米电子材料与器件研究组采用混酸
(H2SO4:HNO3=1:3)和强碱(NaOH)来处理多壁碳纳米管,得到碳纳米。