三角函数五点法作图
- 格式:pdf
- 大小:33.68 KB
- 文档页数:2
三角函数的图像和性质一、用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0) (2π,1) (,0) (23π,-1) (2,0)余弦函数y=cosx x [0,2]的图像中,五个关键点是:(0,1) (2π,0) (,-1) (23π,0) (2,1)二、正弦函数、余弦函数和正切函数的图象与性质:sin y x = cos y x = tan y x =图象定义域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值 当22x k ππ=+时,max 1y =;当22x k ππ=- 时,min 1y =-.当2x k π=时,max 1y =;当2x k ππ=+时,min1y =-.既无最大值也无最小值周期性 2π 2ππ奇偶性奇函数 偶函数 奇函数单调性 在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦上是增函数; 在32,222k k ππππ⎡⎤++⎢⎥⎣⎦上是减函数. 在[]2,2k k πππ-上是增函数; 在[]2,2k k πππ+上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭上是增函数.对称性 对称中心(),0k π 对称轴2x k ππ=+对称中心,02k ππ⎛⎫+ ⎪⎝⎭对称轴x k π=对称中心,02k π⎛⎫⎪⎝⎭无对称轴函 数 性 质例作以下函数的简图(1)y=|sinx|,x ∈[0,2π], (2)y=-cosx ,x ∈[0,2π]例利用正弦函数和余弦函数的图象,求知足以下条件的x 的集合:21sin )1(≥x 21cos )2(≤x3、周期函数概念:关于函数()y f x =,若是存在一个非零常数T ,使适当x 取概念域内的每一个值时,都有:()()f x T f x +=,那么函数()y f x =就叫做周期函数,非零常数T 叫做那个函数的周期。
注意: 周期T 往往是多值的(如sin y x = 2π,4π,…,-2π,-4π,…都是周期)周期T 中最小的正数叫做()y f x =的最小正周期(有些周期函数没有最小正周期)sin y x =, cos y x =的最小正周期为2π (一样称为周期) 正弦函数、余弦函数:ωπ=2T 。
-φ-φ1.y=A sin(ωx+φ)的有关概念y=A sin(ωx+φ)(A>0,ω>0),x∈R振幅A周期2πT=ω频率1ωf=T=2π相位ωx+φ初相φ2.用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个特征点如下表所示:x0-φωπ2ωπ-φω3π2ω2π-φωωx+φy=A sin(ωx+φ)π2Aπ3π2-A2π0 3.函数y=sin x的图象经变换得到y=A sin(ωx+φ)(A>0,ω>0)的图象的步骤如下:【思考辨析】(2)y =sin ⎝x -4⎭的图象是由 y =sin ⎝x +4⎭的图象向右平移个单位得到的.(√ )1.y =2sin ⎝2x -4⎭的振幅、频率和初相分别为2.已知函数 f (x )=sin ⎝2x +6⎭.若 y =f (x -φ) (0<φ< )是偶函数,则 φ=解析 因为 y =f (x -φ)=sin ⎣2(x -φ)+6⎦=sin ⎝2x -2φ+6⎭是偶函数,所以-2φ+ = +k π, k ∈Z ,得 φ=- - ,k ∈Z .又 0<φ< ,所以 φ= .3.(2015· 湖南改编)将函数 f (x )=sin 2x 的图象向右平移 φ⎝0<φ<2⎭个单位后得到函数 g (x )的]判断下面结论是否正确(请在括号中打“√”或“×”)(1) 利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.( × )⎛ π⎫ ⎛ π⎫ π 2(3)由图象求解析式时,振幅 A 的大小是由一个周期内的图象中的最高点的值与最低点的值确定的.( √ )(4)函数 f (x )=A sin(ωx +φ)的图象的两个相邻对称轴间的距离为一个周期.( × )(5)函数 y =A cos(ωx +φ)的最小正周期为 T ,那么函数图象的两个相邻对称中心之间的距离为T2.( √ )⎛ π⎫1 π答案 2,π,-4.⎛ π⎫ π 2.答案π3⎡ π⎤ ⎛ π⎫ π π 6 2π k π π π6 2 2 3⎛ π⎫π图象,若对满足|f (x 1)-g (x 2)|=2 的 x 1,x 2,有|x 1-x 2|min =3,则 φ=.答案π6解析 因为 g (x )=sin [2 x -φ =sin(2x -2φ),所以|f (x 1)-g (x 2)|=|sin 2x 1-sin(2x 2-2φ)|=2.因为-1≤sin 2x 1≤1,-1≤sin(2x 2-2φ)≤1,所以 sin 2x 1 和 sin(2x 2-2φ)的值中,一个为 1,另一个为-1,不妨取 sin 2x 1=1,sin(2x 2-2φ)π π=-1,则 2x 1=2k 1π+2,k 1∈Z,2x 2-2φ=2k 2π-2,k 2∈Z,2x 1-2x 2+2φ=2(k 1-k 2)π+π,(k 1⎪⎪因为0<φ<,所以0<-φ<,则φ=.答案y=10sin⎝8x+4⎭+20,x∈[6,14]所以A=×(30-10)=10,b=×(30+10)=20,所以ω=.又×10+φ=2π,4所以y=10sin⎝8x+4⎭+20,x∈[6,14].5.(2014·安徽)若将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象关于y轴对称,答案3π-k2)∈Z,π得|x1-x2|=⎪(k1-k2)π+2-φ⎪.πππ222ππ故当k1-k2=0时,|x1-x2|min=2-φ=3,π64.(教材改编)如图,某地一天从6~14时的温度变化曲线近似满足函数y=A sin(ωx+φ)+b,则这段曲线的函数解析式为.⎛π3π⎫解析从图中可以看出,从6~14时的是函数y=A sin(ωx+φ)+b的半个周期,121212π又2×ω=14-6,π8π83π解得φ=,⎛π3π⎫π4则φ的最小正值是.8解析∵函数f(x)=sin(2x+)的图象向右平移φ个单位得到g(x)=sin[2(x-φ)+]=sin(2x+又∵g(x)是偶函数,∴-2φ=kπ+(k∈Z).∴φ=--(k∈Z).当k=-1时,φ取得最小正值.例1已知函数y=2sin⎝2x+3⎭.(3)说明y=2sin⎝2x+3⎭的图象可由y=sin x的图象经过怎样的变换而得到.解(1)y=2sin⎝2x+3⎭的振幅A=2,周期T==π,初相φ=.(2)令X=2x+,则y=2sin⎝2x+3⎭=2sin X.6y=2sin⎝2x+3⎭πππ444-2φ),ππ42kππ283π8题型一函数y=A sin(ωx+φ)的图象及变换⎛π⎫(1)求它的振幅、周期、初相;(2)用“五点法”作出它在一个周期内的图象;⎛π⎫⎛π⎫2ππ23π⎛π⎫3列表如下:xXy=sinX⎛π⎫π-π12π212π3π7π123π2-1-25π62π描点画出图象,如图所示:(3)方法一 把 y =sin x 的图象上所有的点向左平移 个单位长度,得到 y =sin ⎝x +3⎭的图象; 再把 y = sin ⎝x +3⎭ 的图象上所有点的横坐标缩短到原来的sin ⎝2x +3⎭的图象;最后把 y =sin ⎝2x +3⎭上所有点的纵坐标伸长到原来的 2 倍(横坐标不变 ),即可得到 y =2sin ⎝2x +3⎭的图象.方法二 将 y =sin x 的图象上所有点的横坐标缩短为原来的 倍(纵坐标不变),得到 y =sin 2x再将 y =sin 2x 的图象向左平移 个单位长度,得到 y =sin ⎣2⎝x +6⎭⎦=sin ⎝2x +3⎭的图象;再将 y =sin ⎝2x +3⎭的图象上所有点的纵坐标伸长为原来的 2 倍(横坐标不变),即得到 y =2sin ⎝2x +3⎭的图象.设 z =ωx +φ,由 z 取 0, ,π, π,2π 来求出相应的 x ,通过列表,计算得出五点坐标,描(1)把函数 y =sin(x + )图象上各点的横坐标缩短到原来的 (纵坐标不变),再将图象向右平移 个单位长度,那么所得图象的一条对称轴方程为(填正确的序号).①x =- ;②x =- ;③x = ;④x = .(2)设函数 f (x )=cos ωx ( ω>0),将 y =f (x )的图象向右平移 个单位长度后,所得的图象与原图π ⎛ π⎫ 3⎛ π⎫ 1 2倍 ( 纵坐标不变 ) ,得到 y =⎛ π⎫⎛ π⎫⎛ π⎫12的图象;π ⎡ ⎛ π⎫⎤ ⎛ π⎫ 6⎛ π⎫⎛ π⎫思维升华 (1)五点法作简图:用“五点法”作 y =A sin(ωx +φ)的简图,主要是通过变量代换,π 3 2 2点后得出图象.(2)图象变换:由函数 y =sin x 的图象通过变换得到 y =A sin(ωx +φ)的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”.π 162π3π π π π2 4 8 4π3象重合,则 ω 的最小值等于.答案 (1)① (2)6解析(1)将y=sin(x+)图象上各点的横坐标缩短到原来的(纵坐标不变),得到函数y=sin(2x+);再将图象向右平移个单位长度,得到函数y=sin[2(x-)+]=sin(2x-),故x 2(2)由题意可知,nT=(n∈N*),例2(1)已知函数y=A sin(ωx+φ)(A>0,ω>0,|φ|<)的图象上一个最高点的坐标为(2,2),答案(1)y=2sin⎝8x+4⎭(2)f(x)=2sin(2x+)⎫解析(1)由题意得A=2,=6-2,所以T=16,ω==.又sin⎝8×2+φ⎭=1,所以+φ=+2kπ(k∈Z).又因为|φ|<,所以φ=.41234π162πππππ63362π=-是其图象的一条对称轴方程.π32ππ∴n·ω=3(n∈N*),∴ω=6n(n∈N*),∴当n=1时,ω取得最小值6.题型二由图象确定y=Asin(ωx+φ)的解析式π2由这个最高点到其右侧相邻最低点间的图象与x轴交于点(6,0),则此函数的解析式为.(2)函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,则函数f(x)的解析式为.⎛ππ⎫π3T2ππ⎛ππ4T84πππ224(2)由题图可知A=2,T7πππ=-=,所以T=π,故ω=2,因此f(x)=2sin(2x+φ),又⎝12π,- 2⎭为最小值点, ∴2× π+φ=2k π+ ,k ∈Z ,∴φ=2k π+ ,k ∈Z ,∴φ= .故 f (x )= 2sin(2x + ).则 A = ,b = .(2)求 ω,确定函数的最小正周期 T ,则可得 ω= . “最大值点”(即图象的“峰点”)时 ωx +φ= ;“最小值点”(即图象的“谷点”)时 ωx +φ= .函数 f (x )=2sin(ωx +φ)⎝ω>0,-2<φ<2⎭的部分图象如图所示,则 φ=3解析 ∵ = π- π,⎛ 7 ⎫7 3π12 2π3又|φ|<π,π3π3思维升华 确定 y =A sin(ωx +φ)+b (A >0,ω>0)的步骤和方法:(1)求 A ,b ,确定函数的最大值 M 和最小值 m ,M -m M +m2 22πT(3)求 φ,常用的方法有:①代入法:把图象上的一个已知点代入(此时 A ,ω,b 已知)或代入图象与直线 y =b 的交点求 解(此时要注意交点在上升区间上还是在下降区间上).②特殊点法:确定 φ 值时,往往以寻找“最值点”为突破口.具体如下:π23π 2π答案 -T 1152 12 12∴T =π.2π又 T = ω (ω>0),2π∴ ω =π,⎛ ππ⎫.由五点作图法可知当x=π时,2即2×π+φ=,∴φ=-.y).若初始位置为P0⎝2,⎭,当秒针从P(注:此时t=0)正常开始走时,那么点P的纵坐答案y=sin⎝-30t+6⎭位是.又函数周期是60(秒)且秒针按顺时针旋转,即T=⎪ω⎪=60,所以|ω|=π⎪2π⎪ππ63030所以y=sin⎝-30t+6⎭.例4已知关于x的方程2sin2x-3sin2x+m-1=0在⎝2,π⎭上有两个不同的实数根,则m ∴ω=2.512πωx+φ=,5π122π3题型三三角函数图象性质的应用命题点1三角函数模型的应用例3如图,为了研究钟表与三角函数的关系,建立如图所示的坐标系,设秒针尖位置P(x,⎛31⎫2标y与时间t的函数关系式为.⎛ππ⎫解析设点P的纵坐标y与时间t的函数关系式为y=sin(ωt+φ).由题意可得,函数的初相,即ω=-,⎛ππ⎫命题点2方程根(函数零点问题)⎛π⎫的取值范围是.答案(-2,-1)解析方程2sin2x-3sin2x+m-1=0可转化为m=1-2sin2x+3sin2x=cos2x+3sin2x=2sin⎝2x+6⎭,x∈⎝2,π⎭.设2x+=t,则t∈⎝6π,6π⎭,6=sin t,t∈⎝6π,6π⎭,有两个不同的实数根.∴y=和y=sin t,t∈⎝6π,6π⎭的图象有两个不同交点,如图:2由图象观察知,的范围为(-1,-),解析由例4知,的范围是⎣-1,2⎭,∴-2≤m<1,图象的两相邻对称轴间的距离为.(1)求f⎝8⎭的值;(2)求函数y=f(x)+f⎝x+4⎭的最大值及对应的x的值.=2⎣2=2sin⎝ωx+φ-6⎭.⎛π⎫⎛π⎫π⎛713⎫∴题目条件可转化为m⎛713⎫2m⎛713⎫m122故m的取值范围是(-2,-1).引申探究例4中,“有两个不同的实数根”改成“有实根”,则m的取值范围是.答案[-2,1)m⎡1⎫2∴m的取值范围是[-2,1).命题点3图象性质综合应用例5已知函数f(x)=3sin(ωx+φ)-cos(ωx+φ)(0<φ<π,ω>0)为偶函数,且函数y=f(x)π2⎛π⎫⎛π⎫解(1)f(x)=3sin(ωx+φ)-cos(ωx+φ)⎡31⎤sin(ωx+φ)-2cos(ωx+φ)⎦⎛π⎫因为f(x)是偶函数,则 φ- = +k π(k ∈Z ),所以 φ= +k π(k ∈Z ),又因为 0<φ<π,所以 φ= ,ωx +=2cos ωx .所以 f (x )=2sin 2⎭⎝因此 f =2cos = 2.⎝8⎭x +(2)y =2cos 2x +2cos 2⎣ ⎝ 4⎭⎦2x +=2cos 2x +2cos 2⎭⎝-2x =2 2sin ⎝4 ⎭2x -=-2 2sin4⎭⎝令 2x - =2k π- (k ∈Z ),y 有最大值 2 2,所以当 x =k π- (k ∈Z )时,y 有最大值 2 2.设函数 f (x )=3sin(ωx +φ)(ω>0,- <φ< )的图象关于直线 x = 对称,它的周期①f (x )的图象过点(0, );π π6 22π32π3⎛ π⎫ 2π π由题意得 ω =2· 2,所以 ω=2.故 f (x )=2cos 2x .⎛π⎫ π4⎡ ⎛ π⎫⎤⎛ π⎫=2cos 2x -2sin 2x⎛π ⎫⎛ π⎫ π π4 2π8思维升华 (1)三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题;二是把实际问题抽象转化成数学问题,建立数学模型再利用三角函数的有关知识解决问题.(2)方程 根的个数可转化为两个函数图象的交点个数.(3)研究 y =A sin(ωx +φ)的性质时可将 ωx +φ 视 为一个整体,利用换元法和数形结合思想进行解题.π π 2π2 2 3是 π,则下列说法正确的是.(填序号)32②f (x )在[ , ]上是减函数;③f (x )的一个对称中心是( ,0);∴f (x )=3sin(2x +φ),f ( )=3sin( +φ),则 sin( +φ)=1 或-1.又 φ∈(- , ), +φ∈( , π),∴ +φ= ⇒φ= ,∴f (x )=3sin(2x + ).①:令 x =0⇒f (x )= ,正确.②:令 2k π+ <2x + <2k π+ ,k ∈Z⇒k π+ <x <k π+ ,k ∈Z .令 k =0⇒ <x < ,即 f (x )在( , )上单调递减,而在( , )上单调递增,错误.③:令 x = ⇒f (x )=3sin π=0,正确.④:应平移 个单位长度,错误.典例 (14 分)已知函数 f (x )=2 3sin( + )·cos( + )-sin(x +π).π 2π12 35π12④将 f (x )的图象向右平移|φ|个单位长度得到函数 y =3sin ωx 的图象.答案 ①③2π解析 ∵周期为 π,∴ ω =π⇒ω=2,2π 4π3 34π3π π 4π 5π 112 23 6 64π 3π π3 2 6π 632π π 3π2 6 2π 2π6 3π 2π63π 2π π π6 3 12 65π12π124.三角函数图象与性质的综合问题x π x π2 4 2 4(1)求 f (x )的最小正周期;(2)若将f(x)的图象向右平移个单位长度,得到函数g(x)的图象,求函数g(x)在区间[0,π]上(2)将f(x)解析式中的x换成x-,得g(x),然后利用整体思想求最值.解(1)f(x)=23sin(+)·cos(+)-sin(x+π)=3cos x+sin x[4分]=2sin(x+),[6分]于是T==2π.[7分](2)由已知得g(x)=f(x-)=2sin(x+),[9分]∵x∈[0,π],∴x+∈[,],∴sin(x+)∈[-,1],[12分]∴g(x)=2sin(x+)∈[-1,2].[13分]a sinα+b cosα=a2+b2sin(α+φ)(其中tanφ=),或a sinα+b cosα=a2+b2cos(α-φ)(其中tanφ=),在历年高考中使用频率是相当高的,几乎年年使用到、考查到,应特别加以关注.(sin x·aπ6的最大值和最小值.思维点拨(1)先将f(x)化成y=A sin(ωx+φ)的形式再求周期;π6规范解答xπxπ2424π32π1ππ66ππ7π666π162π6故函数g(x)在区间[0,π]上的最大值为2,最小值为-1.[14分]解决三角函数图象与性质的综合问题的一般步骤:第一步:(化简)将f(x)化为a sin x+b cos x的形式;第二步:(用辅助角公式)构造f(x)=a2+b2·b+cos x·);a2+b2a2+b2第三步:(求性质)利用f(x)=a2+b2sin(x+φ)研究三角函数的性质;第四步:(反思)反思回顾,查看关键点、易错点和答题规范.温馨提醒(1)在第(1)问的解法中,使用辅助角公式baab(2)求g(x)的最值一定要重视定义域,可以结合三角函数图象进行求解.±1.函数y=cos⎝2x-3⎭的部分图象可能是⎫[方法与技巧]1.五点法作图及图象变换问题(1)五点法作简图要取好五个关键点,注意曲线凸凹方向;(2)图象变换时的伸缩、平移总是针对自变量x而言,而不是看角ωx+φ的变化.2.由图象确定函数解析式由图象确定y=A sin(ωx+φ)时,φ的确定是关键,尽量选择图象的最值点代入;若选零点代入,应根据图象升降找“五点法”作图中第一个零点.3.对称问题函数y=A sin(ωx+φ)的图象与x轴的每一个交点均为其对称中心,经过该图象上坐标为(x,A)的点与x轴垂直的每一条直线均为其图象的对称轴,这样的最近两点间横坐标的差的绝对值是半个周期(或两个相邻对称中心的距离).[失误与防范]1.由函数y=sin x的图象经过变换得到y=A sin(ωx+φ)的图象,如先伸缩,再平移时,要把x前面的系数提取出来.2.复合形式的三角函数的单调区间的求法.函数y=A sin(ωx+φ)(A>0,ω>0)的单调区间的确定,基本思想是把ωx+φ看做一个整体.若ω<0,要先根据诱导公式进行转化.3.函数y=A sin(ωx+φ)在x∈[m,n]上的最值可先求t=ωx+φ的范围,再结合图象得出y =A sin t的值域.A组专项基础训练(时间:40分钟)⎛π.2x -,∴当2x - =0,解析∵y =cos 3⎭⎝即 x = 时,函数取得最大值 1,结合图象看,可使函数在 x = 时取得最大值的只有④. 解析 取 K ,L 中点 N ,则 MN = ,因此 A = .由 T =2 得 ω=π.∵函数为偶函数,0<φ<π,∴φ= ,∴f (x )= cos πx ,3.已知函数 f (x )=2sin(ωx +φ)(ω>0,且|φ|< )的部分图象如图所示,则函数 解析 由函数的图象可得 T = π- π,又图象过点( π,2),∴2sin(2× π+φ)=2, ∴φ=- +2k π,k ∈Z ,∵|φ|< ,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则 f ( )的值为.答案3 ∴f ( )= cos = .答案 [k π- ,k π+ ],k ∈Z答案 ④⎛ π⎫ π 3π π6 62.设偶函数 f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,1641212π 2121 1 π 3 62 6 4π2f (x )的单调递增区间是.π 5π12 121 2 54 3 12∴T =π,则 ω=2.5 512 12π3π2∴取 k =0,则 φ=- ,即得 f (x )=2sin(2x - ),∴f (x )的单调增区间为 2k π- ≤2x - ≤2k π+ ,k ∈Z ,即单调递增区间为[k π- ,k π+ ],k ∈Z .4.已知曲线 f (x )=sin ωx + 3cos ωx (ω>0)相邻的两条对称轴之间的距离为 ,且曲线关于点 (x 0,0)中心对称,若 x 0∈⎣0,2⎦,则 x 0==2⎝ sin ωx + =2sin ⎝ωx +3⎭.∵曲线 f (x )=2sin ⎝ωx+3⎭相邻的两条对称轴之间的距离为 ,∴f (x )=2sin ⎝2x +3⎭. 又 x 0∈⎣0,2⎦,∴x 0= . 5.函数 f (x )=sin(2x +φ)⎝|φ|<2⎭的图象向左平移 个单位后所得函数图象的解析式是奇函数,则函数 f (x )在⎣0,2⎦上的最小值为 答案 - 3解析 由函数 f (x )的图象向左平移 个单位得 g (x )=sin ⎝2x +φ+3⎭的图象,π π3 3π π π2 3 2π 5π12 12π2⎡ π⎤.答案π3解析 f (x )=sin ωx + 3cos ωx⎛1 2 3 ⎫ 2 cosωx ⎭⎛ π⎫⎛ π⎫ π 22π∴最小正周期 T =π= ω ,∴ω=2,⎛ π⎫∵曲线关于点(x 0,0)中心对称;π∴2x 0+3=k π(k ∈Z ),k π π∴x 0= 2 -6(k ∈Z ),⎡ π⎤ π 3⎛ π⎫ π 6⎡ π⎤.2π ⎛ π⎫ 6因为是奇函数,所以 φ+ =k π,k ∈Z ,又因为|φ|< ,所以 φ=- ,2x -.所以 f (x )=sin 3⎭⎝0,,所以 2x - ∈ - ,,又 x ∈⎣ 2⎦ ⎣ 33 ⎦ ∴ω= =100π.∴I =10sin(100πt +φ).,10 ,∵图象过点⎝300⎭∴sin( +φ)=1, +φ=2k π+ ,k ∈Z ,∴φ=2k π+ ,k ∈Z ,又∵0<φ< ,∴φ= .100πt +,∴I =10sin6⎭⎝所以当 x =0 时,f (x )取得最小值为- 3.ω>0,0<φ< ) 的图象如右图所示,则当 t =秒时,电流强度是解析由图象知 A =10, = - = , ∴10sin(100π× +φ)=10,当 t = 秒时,I =-5 安.7.若函数 f (x )=sin(ωx +φ) (ω>0 且|φ|< )在区间⎣6, 3 ⎦上是单调递减函数,且函数从 1 减小2到-1,则 f ⎝4⎭= .答案3π3π π2 3⎛ π⎫⎡ π⎤ π ⎡ π 2π⎤ 326. 电流强度 I ( 安 ) 随时间 t ( 秒 ) 变化的函数I = A sin(ωt + φ)(A >0 ,π 12 100安.答案 -5T4 1 12 300 300 1002πT⎛ 1 ⎫ 1300π π π3 3 2π6π π2 6⎛ π⎫1100π ⎡π 2π⎤⎛π⎫2解析由题意可得,函数的周期为2×⎝3-6⎭=π,⎛⎫∴f(x)=sin⎝2x+6⎭,∴f⎝4⎭=sin⎝2+6⎭=cos=.8.已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)在一个周期内的图象如图所示.若方程可得φ=答案或π解析由图象可知y=m和y=f(x)图象的两个交点关于直线x=或x=π对称,9.(2015·天津)已知函数f(x)=sin2x-sin2⎝x-6⎭,x∈R.(2)求f(x)在区间⎣-3,4⎦上的最大值和最小值.1-cos⎝2x-3⎭解(1)由已知,有f(x)=-⎛sin2x-所以f(x)的最小正周期T==π.⎛2ππ⎫2π即ω=π,∴ω=2,∴f(x)=sin(2x+φ).πππ由sin⎝2×6+φ⎭=1,|φ|<26,⎛π⎫⎛π⎫⎛ππ⎫π362π2f(x)=m在区间[0,π]上有两个不同的实数x1,x2,则x1+x2的值为.π433π263π4∴x1+x2=3或3π.⎛π⎫(1)求f(x)的最小正周期;⎡ππ⎤⎛π⎫1-cos2x221⎛13=2⎝2cos2x+2⎫1sin2x⎭-2cos2x=311π⎫44cos2x=2sin⎝2x-6⎭.2π2⎡ππ⎤⎡ππ⎤⎛π⎫1 (2)因为f(x)在区间⎣-3,-6⎦上是减函数,在区间⎣-6,4⎦上是增函数,且f⎝-3⎭=-4,4 所以 f (x )在区间⎣-3,4⎦上的最大值为 最小值为- .10.设函数 f (x )= 3- 3sin 2ωx -sin ωx cos ωx (ω>0),且 y =f (x )图象的一个对称中心到最近 的对称轴的距离为 .(2)求 f (x )在区间⎣π, 2 ⎦上的最大值和最小值.解 (1)f (x )= 3- 3sin 2ωx -sin ωx cos ωx= - 3× - sin 2ωx = 3 cos 2ωx - sin 2ωx=-sin ⎝2ωx -3⎭.依题意知 =4× ,ω>0,所以 ω=1.(2)由(1)知 f (x )=-sin ⎝2x -3⎭.当 π≤x ≤ 时, ≤2x - ≤ .⎛2 故 f (x )在区间⎣π, 2 ⎦上的最大值和最小值分别为 ,-1.11.已知函数 f (x )=A sin(ωx +φ) (A >0,|φ|< ,ω>0)的图象的一部分如图所⎛ π⎫1⎛π⎫3f ⎝-6⎭=-2,f ⎝4⎭=,⎡ π π⎤34 ,1 22π 4(1)求 ω 的值; ⎡ 3π⎤231-cos 2ωx 1 2 2 2 12 2⎛π⎫2π π 2ω 4⎛ π⎫3π 5π π 8π 2 3 3 3 所以- 3 π⎫2 ≤sin ⎝2x -3⎭≤1.所以-1≤f (x )≤ 3.⎡ 3π⎤3 2B 组 专项能力提升(时间:20 分钟)π 2示,则该函数的解析式为 .答案 f (x )=2sin ⎝2x +6⎭∴1=2sin(ω·0+φ),即 sin φ= .∵|φ|< ,∴φ= .又∵ π 是函数的一个零点,且是图象递增穿过 x 轴形成的零点,∴ ω+ =2π,∴ω=2. ∴f (x )=2sin ⎝2x +6⎭. 的交点中,若相邻交点距离的最小值为 ,则 f (x )的最小正周期为.解析 f (x )= 3sin ωx +cos ωx =2sin(ωx + )(ω>0).由 2sin(ωx + )=1 得 sin(ωx + )= ,∴ωx + =2k π+ 或 ωx + =2k π+ π(k ∈Z ).故 f (x )的最小正周期 T = =π.13.已知函数 f (x )=cos ⎝3x +3⎭,其中 x ∈⎣6,m ⎦,若 f (x )的值域是⎣-1,- 答案 ⎣ 9 ,18⎦⎛ π⎫解析 观察图象可知:A =2 且点(0,1)在图象上,1 π π2 2 611 11π π12 12 6⎛ π⎫12.(2014· 天津改编)已知函数 f (x )= 3sin ωx +cos ωx (ω>0),x ∈R .在曲线 y =f (x )与直线 y =1π3答案 ππ6π π 16 6 2π π π 56 6 6 6π π π 5令 k =0,得 ωx 1+6=6,ωx 2+6=6π,2π∴x 1=0,x 2=3ω.π 2π π由|x 1-x 2|=3,得3ω=3,∴ω=2.2π2值范围是.⎡2π 5π⎤解析 画出函数的图象.⎛ π⎫ ⎡π ⎤ ⎡ 3⎤ 2 ⎦ ,则 m 的取由 x ∈⎣6,m ⎦,可知 ≤3x + ≤3m + ,且 f ⎝ 9 ⎭=cos π=-1,=- 要使 f (x )的值域是⎣-1,-2 ⎦ 所以 π≤3m + ≤ π,则 ≤m ≤ ,即 m ∈⎣ 9 ,18⎦.14.已知 f (x )=sin ⎝ωx +3⎭ (ω>0),f ⎝6⎭=f ⎝3⎭,且 f (x )在区间⎝6,3⎭上有最小值,无最大值, 答案 146 3 π解析 依题意,x = = 时,y 有最小值,∴sin ⎝4ω+3⎭=-1,∴ ω+ =2k π+ (k ∈Z ),∴ω=8k + (k ∈Z ),∵f (x )在区间⎝6,3⎭上有最小值,无最大值, 15.已知函数 f (x )= 3sin ωx cos ωx +cos 2ωx - (ω>0),其最小正周期为 . (2)将函数 f (x )的图象向右平移 个单位长度,再将图象上各点的横坐标伸长到原来的 2 倍(纵坐标不变),得到函数 y =g (x )的图象,若关于 x 的方程 g (x )+k =0 在区间[0, ]上有且只有一解 (1)f (x )= 3sin ωx cos ωx +cos 2ωx -⎡π ⎤ 5π π π 6 3 3⎛π⎫ 5π 3 因为 f ⎝6⎭=cos 6 2⎛2π⎫,⎡ 3⎤ ,π 7 2π 5π3 6 9 18⎡2π 5π⎤⎛ π⎫ ⎛π⎫ ⎛π⎫ ⎛π π⎫则 ω=.3π π + 2 4⎛π π⎫π π 3π4 3 2143⎛π π⎫π π π 14 ∴3-4<ω,即 ω<12,令 k =0,得 ω= 3 .1 π2 2(1)求 f (x )的表达式;π8π2个实数解,求实数 k 的取值范围.12=sin2ωx+-=sin(2ωx+),所以ω=2,所以f(x)=sin(4x+).(2)将f(x)的图象向右平移个单位长度后,得到y=sin(4x-)的图象;再将所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=sin(2x-)的图象,所以g(x)=sin(2x-),因为0≤x≤,所以-≤2x-≤,cos2ωx+11所以g(x)∈[-3又g(x)+k=0在区间[0,]上有且只有一个实数解,即函数y=g(x)与y=-k在区间[0,]上≤-k<或-k=1,解得-3<k≤或k=-1,,]∪{-1}.3π2226π2πππ由题意知f(x)的最小正周期T=2,T=2ω=ω=2,π6ππ83ππ33πππ2π23332,1].ππ22有且只有一个交点,由正弦函数的图象可知-32233 22所以实数k的取值范围是(-33 22。
函数y =A sin(ωx +φ)的图象及应用1.y =A sin(ωx +φ)的有关概念y=A sin(ωx +φ)(A >0,ω>0),x ∈[0,+∞)振幅 周期 频率 相位 初相A T =2πωf =1T =ω2πωx +φ φ2.如下表所示.x0-φωπ2-φωπ-φω3π2-φω2π-φωωx +φ 0 π2π 3π2 2π y =A sin(ωx +φ)A-A3.函数【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)作函数y =sin(x -π6)在一个周期内的图象时,确定的五点是(0,0),(π2,1),(π,0),(3π2,-1),(2π,0)这五个点.(×)(2)将函数y =3sin2x 的图象左移π4个单位长度后所得图象的解析式是y =3sin(2x +π4).(×)(3)函数y =sin(x -π4)的图象是由y =sin(x +π4)的图象向右移π2个单位长度得到的.(√)(4)函数y =sin(-2x )的递减区间是(-3π4-k π,-π4-k π),k ∈Z .(×)(5)函数f (x )=sin 2x 的最小正周期和最小值分别为π,0.(√)(6)函数y =A cos(ωx +φ)的最小正周期为T ,那么函数图象的两个相邻对称中心之间的距离为T2.(√)1.(2014·XX)为了得到函数y =sin(2x +1)的图象,只需把函数y =sin2x 的图象上所有的点() A .向左平行移动12个单位长度B .向右平行移动12个单位长度C .向左平行移动1个单位长度D .向右平行移动1个单位长度 答案A解析y =sin2x 的图象向左平移12个单位长度得到函数y =sin2(x +12)的图象,即函数y =sin(2x+1)的图象.2.(2013·XX)函数f (x )=2sin(ωx +φ)(ω>0,-π2<φ<π2)的部分图象如图所示,则ω,φ的值分别是() A .2,-π3B .2,-π6C .4,-π6D .4,π3答案A解析∵34T =5π12-⎝ ⎛⎭⎪⎫-π3,∴T =π,∴ω=2,∴2×5π12+φ=2k π+π2,k ∈Z ,∴φ=2k π-π3,k ∈Z ,又φ∈⎝ ⎛⎭⎪⎫-π2,π2,∴φ=-π3,故选A. 3.设函数f (x )=cos ωx (ω>0),将y =f (x )的图象向右平移π3个单位长度后,所得的图象与原图象重合,则ω的最小值等于() A.13B .3 C .6D .9 答案C解析由题意可知,nT =π3 (n ∈N *),∴n ·2πω=π3(n ∈N *),∴ω=6n (n ∈N *),∴当n =1时,ω取得最小值6.4.设函数f (x )=3sin(ωx +φ)(ω>0,-π2<φ<π2)的图象关于直线x =2π3对称,它的周期是π,则下列说法正确的是________.(填序号) ①f (x )的图象过点(0,32);②f (x )在[π12,2π3]上是减函数;③f (x )的一个对称中心是(5π12,0);④将f (x )的图象向右平移|φ|个单位长度得到函数y =3sin ωx 的图象. 答案①③解析∵周期为π,∴2πω=π⇒ω=2,∴f (x )=3sin(2x +φ),f (23π)=3sin(4π3+φ),则sin(4π3+φ)=1或-1.又φ∈(-π2,π2),4π3+φ∈(5π6,116π),∴4π3+φ=3π2⇒φ=π6, ∴f (x )=3sin(2x +π6).①:令x =0⇒f (x )=32,正确.②:令2k π+π2<2x +π6<2k π+3π2,k ∈Z⇒k π+π6<x <k π+2π3,k ∈Z .令k =0⇒π6<x <2π3,即f (x )在(π6,23π)上单调递减,而在(π12,π6)上单调递增,错误.③:令x =5π12⇒f (x )=3sinπ=0,正确.④:应平移π12个单位长度,错误.题型一函数y =A sin(ωx +φ)的图象及变换例1设函数f (x )=sin ωx +3cos ωx (ω>0)的周期为π. (1)求它的振幅、初相;(2)用五点法作出它在长度为一个周期的闭区间上的图象;(3)说明函数f (x )的图象可由y =sin x 的图象经过怎样的变换而得到的. 解(1)f (x )=sin ωx +3cos ωx=2(12sin ωx +32cos ωx )=2sin(ωx +π3),又∵T =π,∴2πω=π,即ω=2.∴f (x )=2sin(2x +π3).∴函数f (x )=sin ωx +3cos ωx 的振幅为2,初相为π3.(2)令X =2x +π3,则y =2sin ⎝ ⎛⎭⎪⎫2x +π3=2sin X . 列表,并描点画出图象:x-π6 π12 π3 7π12 5π6X 0 π2 π 3π2 2π y =sin X 01 0 -1 0 y =2sin ⎝⎛⎭⎪⎫2x +π32-2(3)方法一把y =sin x 的图象上所有的点向左平移π3个单位长度,得到y =sin ⎝ ⎛⎭⎪⎫x +π3的图象,再把y =sin ⎝ ⎛⎭⎪⎫x +π3的图象上的点的横坐标缩短到原来的12倍(纵坐标不变),得到y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象,最后把y =sin ⎝ ⎛⎭⎪⎫2x +π3上所有点的纵坐标伸长到原来的2倍(横坐标不变),即可得到y=2sin ⎝ ⎛⎭⎪⎫2x +π3的图象.方法二将y =sin x 的图象上每一点的横坐标x 缩短为原来的12倍,纵坐标不变,得到y =sin2x的图象;再将y =sin2x 的图象向左平移π6个单位长度,得到y =sin2⎝ ⎛⎭⎪⎫x +π6=sin ⎝ ⎛⎭⎪⎫2x +π3的图象;再将y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象上每一点的横坐标保持不变,纵坐标伸长为原来的2倍,得到y =2sin ⎝ ⎛⎭⎪⎫2x +π3的图象.思维升华(1)五点法作简图:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.(2)图象变换:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”.(1)把函数y =sin(x +π6)图象上各点的横坐标缩短到原来的12(纵坐标不变),再将图象向右平移π3个单位长度,那么所得图象的一条对称轴方程为()A .x =-π2B .x =-π4C .x =π8D .x =π4(2)(2014·XX)将函数y =3sin(2x +π3)的图象向右平移π2个单位长度,所得图象对应的函数()A .在区间[π12,7π12]上单调递减B .在区间[π12,7π12]上单调递增C .在区间[-π6,π3]上单调递减D .在区间[-π6,π3]上单调递增答案(1)A(2)B解析(1)将y =sin(x +π6)图象上各点的横坐标缩短到原来的12(纵坐标不变),得到函数y =sin(2x+π6);再将图象向右平移π3个单位长度,得到函数y =sin[2(x -π3)+π6]=sin(2x -π2),故x =-π2是其图象的一条对称轴方程.(2)y =3sin(2x +π3)的图象向右平移π2个单位长度得到y =3sin[2(x -π2)+π3]=3sin(2x -23π).令2k π-π2≤2x -23π≤2k π+π2得k π+π12≤x ≤k π+712π,k ∈Z ,则y =3sin(2x -23π)的增区间为[k π+π12,k π+712π],k ∈Z . 令k =0得其中一个增区间为[π12,712π],故B 正确.画出y =3sin(2x -23π)在[-π6,π3]上的简图,如图,可知y =3sin(2x-23π)在[-π6,π3]上不具有单调性,故C ,D 错误. 题型二由图象求函数y =A sin(ωx +φ)的解析式例2(1)已知函数f (x )=2sin(ωx +φ)(其中ω>0,|φ|<π2)的最小正周期是π,且f (0)=3,则()A .ω=12,φ=π6B .ω=12,φ=π3C .ω=2,φ=π6D .ω=2,φ=π3(2)已知函数f (x )=A sin(ωx +φ) (A >0,|φ|<π2,ω>0)的图象的一部分如图所示,则该函数的解析式为____________. 答案(1)D(2)f (x )=2sin ⎝⎛⎭⎪⎫2x +π6解析(1)∵f (x )(ω>0,|φ|<π2)的最小正周期为π,∴T =2πω=π,ω=2.∵f (0)=2sin φ=3,即sin φ=32(|φ|<π2),∴φ=π3. (2)观察图象可知:A =2且点(0,1)在图象上, ∴1=2sin(ω·0+φ),即sin φ=12.∵|φ|<π2,∴φ=π6.又∵1112π是函数的一个零点,且是图象递增穿过x 轴形成的零点,∴11π12ω+π6=2π,∴ω=2.∴f (x )=2sin ⎝⎛⎭⎪⎫2x +π6.思维升华根据y =A sin(ωx +φ)+k 的图象求其解析式的问题,主要从以下四个方面来考虑: ①A 的确定:根据图象的最高点和最低点,即A =最大值-最小值2;②k 的确定:根据图象的最高点和最低点,即k =最大值+最小值2;③ω的确定:结合图象,先求出周期T ,然后由T =2πω(ω>0)来确定ω;④φ的确定:由函数y =A sin(ωx +φ)+k 最开始与x 轴的交点(最靠近原点)的横坐标为-φω(即令ωx +φ=0,x =-φω)确定φ.如图为y =A sin(ωx +φ)的图象的一段.(1)求其解析式;(2)若将y =A sin(ωx +φ)的图象向左平移π6个单位长度后得y =f (x ),求f (x )的对称轴方程.解(1)由图象知A =3,以M ⎝ ⎛⎭⎪⎫π3,0为第一个零点,N ⎝ ⎛⎭⎪⎫5π6,0为第二个零点.列方程组⎩⎪⎨⎪⎧ω·π3+φ=0,ω·5π6+φ=π,解得⎩⎪⎨⎪⎧ω=2,φ=-2π3.∴所求解析式为y =3sin ⎝ ⎛⎭⎪⎫2x -2π3.(2)f (x )=3sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6-2π3=3sin ⎝⎛⎭⎪⎫2x -π3,令2x -π3=π2+k π(k ∈Z ),则x =512π+k π2 (k ∈Z ),∴f (x )的对称轴方程为x =512π+k π2 (k ∈Z ).题型三函数y =A sin(ωx +φ)的性质例3(2014·XX 改编)已知函数f (x )=3sin(ωx +φ)(ω>0,-π2≤φ<π2)的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π. (1)求ω和φ的值;(2)当x ∈[0,π2]时,求函数y =f (x )的最大值和最小值.解(1)因为f (x )的图象上相邻两个最高点的距离为π,所以f (x )的最小正周期T =π,从而ω=2πT=2.又因f (x )的图象关于直线x =π3对称,所以2·π3+φ=k π+π2,k ∈Z , 由-π2≤φ<π2得k =0所以φ=π2-2π3=-π6.综上,ω=2,φ=-π6.(2)由(1)知f (x )=3sin(2x -π6),当x ∈[0,π2]时,-π6≤2x -π6≤56π,∴当2x -π6=π2,即x =π3时,f (x )最大=3;当2x -π6=-π6,即x =0时,f (x )最小=-32.思维升华函数y =A sin(ωx +φ)(A >0,ω>0)的性质(1)奇偶性:φ=k π(k ∈Z )时,函数y =A sin(ωx +φ)为奇函数;φ=k π+π2(k ∈Z )时,函数y =A sin(ωx +φ)为偶函数.(2)周期性:y =A sin(ωx +φ)存在周期性,其最小正周期为T =2πω.(3)单调性:根据y =sin t 和t =ωx +φ(ω>0)的单调性来研究,由-π2+2k π≤ωx +φ≤π2+2k π(k∈Z )得单调增区间;由π2+2k π≤ωx +φ≤3π2+2k π(k ∈Z )得单调减区间.(4)对称性:利用y =sin x 的对称中心为(k π,0)(k ∈Z )来解,令ωx +φ=k π(k ∈Z ),求得其对称中心.利用y =sin x 的对称轴为x =k π+π2(k ∈Z )来解,令ωx +φ=k π+π2(k ∈Z )得其对称轴.已知函数f (x )=A sin(ωx +φ)(x ∈R ,ω,A >0,0<φ<π2)的最大值为2,最小正周期为π,直线x =π6是其图象的一条对称轴.(1)求函数f (x )的解析式;(2)求函数g (x )=f (x -π12)-f (x +π12)的单调递增区间.解(1)∵最小正周期为π. ∴2πω=π.即ω=2.又∵直线x =π6是函数图象的一条对称轴,∴2×π6+φ=k π+π2,k ∈Z ,即φ=k π+π6,k ∈Z .又∵φ∈(0,π2),∴φ=π6.又∵A =2,∴函数f (x )的解析式为f (x )=2sin(2x +π6).(2)g (x )=f (x -π12)-f (x +π12)=2sin[2(x -π12)+π6]-2sin[2(x +π12)+π6]=2sin2x -2sin(2x +π3)=2sin(2x -π3).由2k π-π2≤2x -π3≤2k π+π2,k ∈Z 可得k π-π12≤x ≤k π+512π,k ∈Z .即函数g (x )的单调递增区间是 [k π-π12,k π+512π],k ∈Z .三角函数图象与性质的综合问题典例:(12分)已知函数f (x )=23sin(x 2+π4)·cos(x 2+π4)-sin(x +π).(1)求f (x )的最小正周期.(2)若将f (x )的图象向右平移π6个单位长度,得到函数g (x )的图象,求函数g (x )在区间[0,π]上的最大值和最小值.思维点拨(1)先将f (x )化成y =A sin(ωx +φ)的形式再求周期;(2)将f (x )解析式中的x 换成x -π6,得g (x ),然后利用整体思想求最值.规X 解答解(1)f (x )=23sin(x 2+π4)·cos(x 2+π4)-sin(x +π)=3cos x +sin x [3分]=2sin(x +π3),[5分]于是T =2π1=2π.[6分](2)由已知得g (x )=f (x -π6)=2sin(x +π6),[8分]∵x ∈[0,π],∴x +π6∈[π6,7π6],∴sin(x +π6)∈[-12,1],[10分]∴g (x )=2sin(x +π6)∈[-1,2][11分]故函数g (x )在区间[0,π]上的最大值为2,最小值为-1.[12分] 答题模板解决三角函数图象与性质的综合问题的一般步骤 第一步:(化简)将f (x )化为a sin x +b cos x 的形式. 第二步:(用辅助角公式)构造f (x )=a 2+b 2·(sin x ·aa 2+b2+cos x ·ba 2+b 2).第三步:(求性质)利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质. 第四步:(反思)反思回顾,查看关键点、易错点和答题规X . 温馨提醒(1)在第(1)问的解法中,使用辅助角公式a sin α+b cos α=a 2+b 2sin(α+φ)(其中tan φ=ba),或a sin α+b cos α=a 2+b 2cos(α-φ)(其中tan φ=ab),在历年高考中使用频率是相当高的,几乎年年使用到、考查到,应特别加以关注. (2)求g (x )的最值一定要重视定义域,可以结合三角函数图象进行求解.方法与技巧1.五点法作图及图象变换问题(1)五点法作简图要取好五个关键点,注意曲线凸凹方向;(2)图象变换时的伸缩、平移总是针对自变量x 而言,而不是看角ωx +φ的变化.2.由图象确定函数解析式由函数y =A sin(ωx +φ)的图象确定A 、ω、φ的题型,常常以“五点法”中的第一个零点⎝ ⎛⎭⎪⎫-φω,0作为突破口,要从图象的升降情况找准第一个零点的位置.要善于抓住特殊量和特殊点. 3.对称问题函数y =A sin(ωx +φ)的图象与x 轴的每一个交点均为其对称中心,经过该图象上坐标为(x ,±A )的点与x 轴垂直的每一条直线均为其图象的对称轴,这样的最近两点间横坐标的差的绝对值是半个周期(或两个相邻对称中心的距离). 失误与防X1.由函数y =sin x 的图象经过变换得到y =A sin(ωx +φ)的图象,如:先伸缩,再平移时,要把x 前面的系数提取出来.2.复合形式的三角函数的单调区间的求法.函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间的确定,基本思想是把ωx +φ看做一个整体.若ω<0,要先根据诱导公式进行转化. 3.函数y =A sin(ωx +φ)在x ∈[m ,n ]上的最值可先求t =ωx +φ的X 围,再结合图象得出y =A sin t 的值域.A 组专项基础训练 (时间:45分钟)1.(2013·XX)将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为() A.3π4B.π4C .0D .-π4 答案B解析把函数y =sin(2x +φ)沿x 轴向左平移π8个单位后得到函数y =sin2⎝ ⎛⎭⎪⎫x +φ2+π8=sin ⎝ ⎛⎭⎪⎫2x +φ+π4为偶函数,则φ的一个可能取值是π4.2.(2013·XX)函数f (x )=sin x cos x +32cos2x 的最小正周期和振幅分别是() A .π,1B .π,2C .2π,1D .2π,2 答案A解析f (x )=sin x cos x +32cos2x =12sin2x +32cos2x =sin ⎝⎛⎭⎪⎫2x +π3.所以最小正周期为π,振幅为1. 故选A.3.已知函数f (x )=2sin(ωx +φ)(ω>0,且|φ|<π2)的部分图象如图所示,则函数f (x )的一个单调递增区间是() A .[-7π12,5π12]B .[-7π12,-π12]C .[-π12,7π12]D .[-π12,5π12]答案D解析由函数的图象可得14T =23π-512π,∴T =π,则ω=2.又图象过点(512π,2),∴2sin(2×512π+φ)=2,∴φ=-π3+2k π,k ∈Z ,∵|φ|<π2.∴取k =0,即得f (x )=2sin(2x -π3),其单调递增区间为[k π-π12,k π+5π12],k ∈Z ,取k =0,即得选项D.4.电流强度I (安)随时间t (秒)变化的函数I =A sin(ωt +φ)(A >0,ω>0,0<φ<π2)的图象如右图所示,则当t =1100秒时,电流强度是()A .-5安B .5安C .53安D .10安 答案A解析由图象知A =10,T 2=4300-1300=1100,∴ω=2πT=100π.∴I =10sin(100πt +φ).⎝ ⎛⎭⎪⎫1300,10为五点中的第二个点, ∴100π×1300+φ=π2.∴φ=π6.∴I =10sin ⎝ ⎛⎭⎪⎫100πt +π6,当t =1100秒时,I =-5安.5.已知函数f (x )=2sin ωx 在区间[-π3,π4]上的最小值为-2,则ω的取值X 围是()A .(-∞,-92]∪[6,+∞)B .(-∞,-92]∪[32,+∞)C .(-∞,-2]∪[6,+∞)D .(-∞,-2]∪[32,+∞)答案D解析当ω>0时,-π3ω≤ωx ≤π4ω,由题意知-π3ω≤-π2,即ω≥32;当ω<0时,π4ω≤ωx ≤-π3ω,由题意知π4ω≤-π2,∴ω≤-2.综上可知,ω的取值X 围是(-∞,-2]∪[32,+∞).6.设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f (16)的值为________.答案34解析取K ,L 中点N ,则MN =12,因此A =12.由T =2得ω=π.∵函数为偶函数,0<φ<π,∴φ=π2,∴f (x )=12cosπx ,∴f (16)=12cos π6=34.7.某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +A cos ⎣⎢⎡⎦⎥⎤π6(x -6)(x =1,2,3,…,12,A >0)来表示,已知6月份的月平均气温最高,为28℃,12月份的月平均气温最低,为18℃,则10月份的平均气温值为________℃. 答案20.5 解析由题意得⎩⎨⎧ a +A =28,a -A =18,∴⎩⎨⎧a =23,A =5,∴y =23+5cos ⎣⎢⎡⎦⎥⎤π6(x -6),当x =10时,y =23+5×⎝ ⎛⎭⎪⎫-12=20.5.8.已知函数f (x )=cos x sin x (x ∈R ),给出下列四个命题: ①若f (x 1)=-f (x 2),则x 1=-x 2; ②f (x )的最小正周期是2π; ③f (x )在区间[-π4,π4]上是增函数;④f (x )的图象关于直线x =3π4对称.其中真命题是________. 答案③④解析f (x )=12sin2x ,当x 1=0,x 2=π2时,f (x 1)=-f (x 2),但x 1≠-x 2,故①是假命题; f (x )的最小正周期为π,故②是假命题;当x ∈[-π4,π4]时,2x ∈[-π2,π2],故③是真命题;因为f (3π4)=12sin 32π=-12,故f (x )的图象关于直线x =34π对称,故④是真命题.9.已知函数f (x )=cos x ·cos(x -π3).(1)求f (2π3)的值;(2)求使f (x )<14成立的x 的取值集合.解(1)f (2π3)=cos 2π3·cos π3=-cos π3·cos π3=-(12)2=-14.(2)f (x )=cos x cos(x -π3)=cos x ·(12cos x +32sin x )=12cos 2x +32sin x cos x =14(1+cos2x )+34sin2x =12cos(2x -π3)+14. f (x )<14等价于12cos(2x -π3)+14<14,即cos(2x -π3)<0,于是2k π+π2<2x -π3<2k π+3π2,k ∈Z .解得k π+5π12<x <k π+11π12,k ∈Z .故使f (x )<14成立的x 的取值集合为{x |k π+5π12<x <k π+11π12,k ∈Z }.10.(2014·XX)已知函数f (x )=cos x (sin x +cos x )-12.(1)若0<α<π2,且sin α=22,求f (α)的值;(2)求函数f (x )的最小正周期及单调递增区间. 解方法一(1)因为0<α<π2,sin α=22,所以cos α=22. 所以f (α)=22×(22+22)-12=12. (2)因为f (x )=sin x cos x +cos 2x -12=12sin2x +1+cos2x 2-12 =12sin2x +12cos2x =22sin(2x +π4), 所以T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z . 所以f (x )的单调递增区间为[k π-3π8,k π+π8],k ∈Z .方法二f (x )=sin x cos x +cos 2x -12=12sin2x +1+cos2x 2-12 =12sin2x +12cos2x =22sin(2x +π4). (1)因为0<α<π2,sin α=22,所以α=π4,从而f (α)=22sin(2α+π4)=22sin 3π4=12.(2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z . 所以f (x )的单调递增区间为[k π-3π8,k π+π8],k ∈Z .B 组专项能力提升 (时间:20分钟)11.将函数y =sin(x +φ)的图象F 向左平移π6个单位长度后得到图象F ′,若F ′的一个对称中心为⎝ ⎛⎭⎪⎫π4,0,则φ的一个可能取值是() A.π12B.π6C.5π6D.7π12 答案D解析图像F ′对应的函数y =sin ⎝ ⎛⎭⎪⎫x +π6+φ, 则π4+π6+φ=k π,k ∈Z ,即φ=k π-5π12,k ∈Z , 当k =1时,φ=7π12,故选D.12.已知A ,B ,C ,D 是函数y =sin(ωx +φ)(ω>0,0<φ<π2)一个周期内的图象上的四个点,如图所示,A (-π6,0),B 为y 轴上的点,C 为图象上的最低点,E 为该函数图象的一个对称中心,B 与D 关于点E 对称,CD →在x 轴上的投影为π12,则ω,φ的值为()A .ω=2,φ=π3B .ω=2,φ=π6C .ω=12,φ=π3D .ω=12,φ=π6答案A解析因为CD →在x 轴上的投影为π12,又点A (-π6,0),所以函数的四分之一个最小正周期为π6+π12=π4.即函数的最小正周期为π,故ω=2ππ=2. 又点A (-π6,0)是处于递增区间上的零点,所以2×(-π6)+φ=2k π(k ∈Z ),则φ=2k π+π3(k ∈Z ).又因为0<φ<π2,所以φ=π3.故选A.13.(2014·XX)已知函数f (x )=sin(ωx +φ) (ω>0,-π2≤φ≤π2)的图象上的两个相邻的最高点和最低点的距离为22,且过点⎝ ⎛⎭⎪⎫2,-12,则函数的解析式为_________________________.答案f (x )=sin ⎝⎛⎭⎪⎫πx 2+π6解析据已知两个相邻最高点和最低点距离为22,可得⎝ ⎛⎭⎪⎫T 22+(1+1)2=22,解得T =4,故ω=2πT =π2,即f (x )=sin ⎝ ⎛⎭⎪⎫πx 2+φ,又函数图象过点⎝ ⎛⎭⎪⎫2,-12,故f (2)=sin(π+φ)=-sin φ=-12,又-π2≤φ≤π2,解得φ=π6,故f (x )=sin ⎝ ⎛⎭⎪⎫πx 2+π6.14.(2014·XX)某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)XX 验室这一天的最大温差;(2)若要XX 验室温度不高于11℃,则在哪段时间实验室需要降温? 解(1)因为f (t )=10-2(32cos π12t +12sin π12t ) =10-2sin(π12t +π3),又0≤t <24,所以π3≤π12t +π3<7π3,-1≤sin(π12t +π3)≤1.当t =2时,sin(π12t +π3)=1;当t =14时,sin(π12t +π3)=-1.于是f (t )在[0,24)上的最大值为12,最小值为8.故实验室这一天最高温度为12℃,最低温度为8℃,最大温差为4℃.(2)依题意,当f (t )>11时实验室需要降温. 由(1)得f (t )=10-2sin(π12t +π3),故有10-2sin(π12t +π3)>11,即sin(π12t +π3)<-12.又0≤t <24,因此7π6<π12t +π3<11π6,即10<t <18.故在10时至18时实验室需要降温.15.已知函数f (x )=3sin ωx ·cos ωx +cos 2ωx -12(ω>0),其最小正周期为π2.(1)求f (x )的表达式;(2)将函数f (x )的图象向右平移π8个单位长度,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y =g (x )的图象,若关于x 的方程g (x )+k =0在区间[0,π2]上有且只有一个实数解,XX 数k 的取值X 围. 解(1)f (x )=3sin ωx ·cos ωx +cos 2ωx -12=32sin2ωx +cos2ωx +12-12=sin(2ωx +π6), 由题意知f (x )的最小正周期T =π2,T =2π2ω=πω=π2,所以ω=2,所以f (x )=sin(4x +π6).(2)将f (x )的图象向右平移π8个单位长度后,得到y =sin(4x -π3)的图象;再将所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =sin(2x -π3)的图象,所以g (x )=sin(2x -π3),因为0≤x ≤π2,所以-π3≤2x -π3≤2π3,所以g (x )∈[-32,1] 又g (x )+k =0在区间[0,π2]上有且只有一个实数解,即函数y =g (x )与y =-k 在区间[0,π2]上有且只有一个交点,由正弦函数的图象可知-32≤-k<32或-k=1,解得-32<k≤32或k=-1,所以实数k的取值X围是(-32,32]∪{-1}.。
229课题:三角函数的图象考纲要求:1.掌握正弦、余弦、正切、余切函数的图象2.会用“五点法”画正弦、余弦函数和函数sin()y A x ωϕ=+的简图.3.了解sin()y A x ωϕ=+的物理意义,了解参数,,A ωϕ对函数变化的影响.自主学习1.用五点法画y即五点的横坐标总由ϕω+x =ππ2220、、、、来确定. 2.函数sin y x =的图象变换得到sin()y A x ωϕ=+的图象的步骤:由于x y sin =的图象得到)sin(ϕω+=x A y 的图象主要有下列两种方法:①x y sin =(相位变换)→ (周期变换) → (振幅变换)→ ; ②x y sin =(周期变换)→ (相位变换)→ (振幅变换)→ .3.当函数sin()y A x ωϕ=+(0,0A ω>>,x ∈[)0,+∞表示一个振动时,A 叫做振幅,2T πω=叫做周期,1f T=叫做频率,x ωϕ+叫做相位,ϕ叫做初相. 基本知识方法1.“五点法”画正弦、余弦函数和函数sin()y A x ωϕ=+的简图,五个特殊点通常都是取三个平衡点,一个最高、一个最低点;2.给出图象求sin()y A x B ωϕ=++的解析式的难点在于,ωϕ的确定,本质为待定系数230法,基本方法是:①寻找特殊点(平衡点、最值点)代入解析式;②图象变换法,即考察已知图象可由哪个函数的图象经过变换得到的,通常可由平衡点或最值点确定周期T ,进而确定ω;③“对应点法”.3.对称性:()1函数sin()y A x ωϕ=+对称轴可由2x k πωϕπ+=+()k Z ∈解出;对称中心的横坐标是方程x k ωϕπ+=()k Z ∈的解,对称中心的纵坐标为0.( 即整体代换法)()2函数()cos y A x ωϕ=+对称轴可由x k ωϕπ+=()k Z ∈解出;对称中心的纵坐标是方程2x k πωϕπ+=+()k Z ∈的解,对称中心的横坐标为0.( 即整体代换法)正、余弦函数在对称轴处(最值处)的导数值为零.()3函数()tan y A x ωϕ=+对称中心的横坐标可由2k x ωϕπ+=()k Z ∈解出,对称中心的纵坐标为0,函数()tan y x ωϕ=+不具有轴对称性.4.0A >时,()sin y A x ωϕ=+,当22x k πωϕπ+=+()k Z ∈时,有最大值A , 当22x k πωϕπ+=-()k Z ∈时,有最小值A -;0A >时,与上述情况相反.典例分析:考点一:利用“五点法”作图 问题1.已知函数cos 22x xy =+()x R ∈. ()1用“五点法”画出它的图象;()2求它的振幅、周期和初相;()3说明该函数的图象可由sin y x =的图象经过怎样的变换而得到.考点二:利用图像求三角函数解析式问题2.()1(2013四川)函数()2sin()f x x ωϕ=+231(0,)22ππωϕ>-<<的部分图象如图所示,则,ωϕ的值分别是 .A 2,3π- .B 2,6π-.C 4,6π-.D 4,3π()2(05天津文)函数sin()y A x ωϕ=+(20,,x πωϕ><的部分图象如图所示,则函数表达式为 .A )48sin(4ππ+-=x y .B )48sin(4ππ-=x y .C )48sin(4ππ--=x y .D )48sin(4ππ+=x y考点三:三角函数的图像变换问题3.()1将函数5sin(3)y x =-的周期扩大到原来的2倍,再将函数图象左移3π,得到图象对应解析式是 .A 335sin()22x y π=- .B 735sin()102x y π=- .C 5sin(6)6y x π=- .D 35cos 2xy =()2(07山东文)要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=-⎪3⎝⎭的图象 .A 向右平移π6个单位;.B 向右平移π3个单位;232.C 向左平移π3个单位;.D 向左平移π6个单位 ()3(04山东)为了得到函数6sin(2)y x π=-的图象,可以将函数x y 2cos =的图象.A 向右平移6π个单位长度 .B 向右平移3π个单位长度 .C 向左平移6π个单位长度 .D 向左平移3π个单位长度考点三:三角函数的图像对称性的考查问题4.()1(07福建)已知函数()sin (0)f x x ωωπ⎛⎫=+> ⎪3⎝⎭的最小正周期为π,则 该函数的图象 .A 关于点0π⎛⎫ ⎪3⎝⎭,对称 .B 关于直线x π=4对称 .C 关于点0π⎛⎫⎪4⎝⎭,对称 .D .关于直线x π=3对称()2(05山东)已知函数)12cos()12sin(π-π-=x x y ,则下列判断正确的是 .A 此函数的最小正周期为π2,其图象的一个对称中心是,012π⎛⎫⎪⎝⎭.B 此函数的最小正周期为π,其图象的一个对称中心是,012π⎛⎫⎪⎝⎭ .C 此函数的最小正周期为π2,其图象的一个对称中心是,06π⎛⎫⎪⎝⎭.D 此函数的最小正周期为π,其图象的一个对称中心是,06π⎛⎫⎪⎝⎭考点四:三角函数的图像的综合应用问题5.(07陕西)设函数()f x a b =⋅,其中向量(cos2)a m x =,,(1sin21)b x =+,,x R ∈,且()y f x =的图象经过点π24⎛⎫ ⎪⎝⎭,.(Ⅰ)求实数m 的值;(Ⅱ)求函数()f x 的最小值及此233时x 值的集合.课外作业:1.要得到x x y 2cos 2sin +=的图象,只需将x x y 2cos 2sin -=的图象.A 向左平移8π .B 向右平移8π .C 向左平移4π .D 向右平移4π2.如果函数sin 2cos 2y x a x =+的图象关于直线8x π=-对称,则a =3.函数tan cos y x x = 的部分图象是4.(2013昆明调研)已知a R ∈,则函数()cos f x a ax =的图象可能是.A .B .C .D.A .B .C.D2345.(2013浙江六校联考)函数()()sin 04f x x πωω⎛⎫=+> ⎪⎝⎭与函数()()cos 2g x x ϕ=+,(ϕ≤2π的对称轴完全相同,则ϕ的值为.A 4π .B 4π- .C 2π .D 2π-走向高考:6.(05天津)要得到函数x y cos 2=的图象,只需将函数)42sin(2π+=x y 的图象上所有的点的.A 横坐标缩短到原来的21倍(纵坐标不变),再向左平行移动8π个单位长度 .B 横坐标缩短到原来的21倍(纵坐标不变),再向右平行移动4π个单位长度.C 横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动4π个单位长度 .D 横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动8π个单位长度7.(06江苏)为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点.A 向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) .B 向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) .C 向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) .D 向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)8. (07安徽)函数()3sin 2f x x π⎛⎫=- ⎪3⎝⎭的图象为C ,①图象C 关于直线1112x =π对称;②函数()f x 在区间5ππ⎛⎫- ⎪1212⎝⎭,内是增函数;235③由3sin 2y x =的图象向右平移π3个单位长度可以得到图象C . 以上三个论断中,正确论断的个数是 .A 0 .B 1 .C 2 .D 39.(06安徽)将函数sin (0)y x ωω=>,06a π⎛⎫=- ⎪⎝⎭平移,平移后的图象如图所示,则平移后的图象所对应函数的解析式是.A sin()6y x π=+.B sin()6y x π=- .C sin(2)3y x π=+.D sin(2)3y x π=-10.(05福建)函数sin()y x ωϕ=+(,x R ∈02ϕπ≤<)的部分图象如图,则.A 4,2πϕπω==.B 6,3πϕπω==.C 4,4πϕπω== .D 45,4πϕπω==11.(07广东文)已知简谐运动ππ()2sin 32f x x ϕϕ⎛⎫⎛⎫=+< ⎪⎪⎝⎭⎝⎭的图象经过点(01),,则该简谐运动的最小正周期T 和初相ϕ分别为.A 6T =,π6ϕ=;.B 6T =,π3ϕ=;.C 6πT =,π6ϕ=;.D 6πT =,π3ϕ= 12.(2011辽宁)已知函数()()tan f x A x ωϕ=+0,2πωϕ⎛⎫>< ⎪⎝⎭,()y f x =的部分图像如下图,236则24f π⎛⎫=⎪⎝⎭________. 13.(07海南)函数πsin 23y x ⎛⎫=- ⎪⎝⎭在区ππ2⎡⎤-⎢⎥⎣,的简图是13.(2013湖北)将函数()sin y x x x R =+∈的图像向左平移()0m m >个长度单位后,所得到的图像关于y 轴对称,则m 的最小值是 .A 12π.B 6π.C 3π.D 56πx-.B .C.D。
5点法画三角函数 “5点法画三角函数”是一种用于绘制正弦函数、余弦函数和正切函数图像的简单方法。这个方法的核心是通过选择合适的函数值来确定函数图像的特征点,进而连线得到函数图像。下面我们就来详细地介绍一下“5点法画三角函数”的实现步骤。 第一步:确定函数定义域 在绘制三角函数图像之前,我们需要确定三角函数的定义域和值域。对于正弦函数和余弦函数来说,它们的定义域是实数集R,值域是[-1,1]。而正切函数的定义域是实数集R-{(2n+1)*Pi/2 | n属于整数},值域是全体实数R。 第二步:选择特征点 在“5点法画三角函数”中,我们选择5个特征点来确定函数图像的形状。对于正弦函数和余弦函数来说,我们选择0度、30度、45度、60度和90度这五个特征点。对于正切函数来说,我们选择-45度、-30度、0度、30度和45度这五个特征点。 第三步:确定特征点的函数值 根据三角函数在特定角度上的函数值,我们可以得到上一步中选择的五个特征点的函数值。对于正弦函数和余弦函数来说,我们可以使用科学计算器来计算特征点的函数值。对于正切函数来说,我们需要使用tan函数计算特征点的函数值。 第四步:连线得到函数图像 有了五个特征点的函数值之后,我们就可以通过连线来得到函数图像。对于正弦函数和余弦函数来说,我们用曲线来连接这五个点,得到一个波浪形的图像。对于正切函数来说,我们在特征点之间画直线,得到一条波动的直线。 第五步:根据周期性复制图像 我们知道,三角函数图像具有周期性。因此,我们可以通过复制图像来得到整个函数的图像。对于正弦函数和余弦函数来说,它们的周期是360度(也就是2Pi弧度)。因此,我们可以将图像复制4次,即在[0,360]、[360,720]、[720,1080]和[1080,1440]上绘制波浪形的图像。对于正切函数来说,它的周期是180度(也就是Pi弧度)。因此,我们可以将图像复制2次,即在[-90,90]和[90,270]上绘制波动的直线。 总结起来,“5点法画三角函数”的步骤如下: 1. 确定函数定义域和值域; 2. 选择特征点; 3. 确定特征点的函数值; 4. 根据特征点连线得到函数图像; 5. 根据周期性复制图像。 这个方法简单易懂,适用于初学者学习三角函数。需要注意的是,为了绘制出更加精确的图像,我们可以增加特征点的数量,使得连线更加平滑。不过,这也会增加计算和绘图的时间和难度。
4.4三角函数图象的变换1.用五点法画y=A sin(ωx+φ)在一个周期内的简图用五点法画y=A sin(ωx+φ)在一个周期内的简图时,要找五个特征点,如下表所示.2.图象变换(ω>0)路径①:先向左(φ>0)或向右(φ<0)平移________个单位长度,得到函数y=sin(x+φ)的图象;然后使曲线上各点的横坐标变为原来的________倍(纵坐标不变),得到函数y=sin(ωx+φ)的图象;最后把曲线上各点的纵坐标变为原来的________倍(横坐标不变),这时的曲线就是y=A sin(ωx+φ)的图象.路径②:先将曲线上各点的横坐标变为原来的________倍(纵坐标不变),得到函数y=sinωx的图象;然后把曲线向左(φ>0)或向右(φ<0)平移________个单位长度,得到函数y=sin(ωx+φ)的图象;最后把曲线上各点的纵坐标变为原来的________倍(横坐标不变),这时的曲线就是y=A sin(ωx+φ)的图象.3.函数y=A sin(ωx+φ)(A>0,ω>0)的物理意义简谐运动的图象所对应的函数解析式y=A sin(ωx+φ),x∈[0,+∞),其中A>0,ω>0.在物理中,描述简谐运动的物理量,如振幅、周期和频率等都与这个解析式中的常数有关:A就是这个简谐运动的振幅,它是做简谐运动的物体离开平衡位置的最大距离;这个简谐运动的周期是T=________,这是做简谐运动的物体往复运动一次所需要的时间;这个简谐运动的频率由公式f=1T=________给出,它是做简谐运动的物体在单位时间内往复运动的次数;ωx+φ称为相位;x=________时的相位φ称为初相.自查自纠1.2.||φ1ωA1ω⎪⎪⎪⎪φωA3. 2πωω2π0(2016·四川)为了得到函数y =sin ⎝⎛⎭⎫x +π3的图象,只需把函数y =sin x 的图象上所有的点( ) A .向左平行移动π3个单位长度B .向右平行移动π3个单位长度C .向上平行移动π3个单位长度D .向下平行移动π3个单位长度解:把函数y =sin x 的图象上所有的点向左平行移动π3个单位长度就得到函数y =sin ⎝⎛⎭⎫x +π3的图象.故选A .(2016·全国卷Ⅰ)将函数y =2sin ⎝⎛⎭⎫2x +π6的图象向右平移14个周期后,所得图象对应的函数为( ) A .y =2sin ⎝⎛⎭⎫2x +π4 B .y =2sin ⎝⎛⎭⎫2x +π3 C .y =2sin ⎝⎛⎫2x -π4 D .y =2sin ⎝⎛⎫2x -π3 解:函数y =2sin ⎝⎛⎭⎫2x +π6的周期为π,将函数y =2sin ⎝⎛⎭⎫2x +π6的图象向右平移14个周期即π4个单位,所得函数为y =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π4+π6=2sin ⎝⎛⎭⎫2x -π3.故选D .(2017·全国卷Ⅰ)已知曲线C 1:y =cos x ,C 2:y =sin ⎝⎛⎭⎫2x +2π3,则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2解:y =cos x =sin ⎝⎛⎭⎫x +π2,把曲线C 1上的各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数y =sin ⎝⎛⎭⎫2x +π2的图象,再把所得的图象向左平移π12个单位长度,可得函数y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π12+π2=sin ⎝⎛⎭⎫2x +2π3的图象,即曲线C 2.故选D .(南京市、盐城市2017届高三一模)将函数y =3sin ⎝⎛⎭⎫2x +π3的图象向右平移φ⎝⎛⎭⎫0<φ<π2个单位后,所得函数为偶函数,则φ=________.解:因为y =3sin ⎝⎛⎭⎫2x +π3的图象向右平移φ⎝⎛⎭⎫0<φ<π2个单位后,所得函数为y =3sin ⎝⎛⎭⎫2(x -φ)+π3,即y =3sin ⎝⎛⎭⎫2x +π3-2φ是偶函数,则2×0+π3-2φ=k π+π2,φ=-k 2π-π12,k ∈Z ,又因为0<φ<π2,所以k =-1,φ=5π12.故填5π12.(2016·全国卷Ⅲ)函数y =sin x -3cos x 的图象可由函数y =sin x +3cos x 的图象至少向右平移________个单位长度得到.解:因为y =sin x +3cos x =2sin ⎝⎛⎭⎫x +π3,y =sin x -3cos x =2sin ⎝⎛⎭⎫x -π3=2sin ⎣⎡⎦⎤⎝⎛⎫x +π3-2π3,所以函数y =sin x -3cos x 的图象可由函数y =sin x +3cos x 的图象至少向右平移2π3个单位长度得到.故填2π3.类型一 五点法作图与求解析式(1)作出函数y =2sin ⎝⎛⎭⎫x 2+π3的图象. 解:周期T =2π12=4π,振幅A =2.描点作图:【点拨】用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设X =ωx +φ,由X =0,π2,π,32π,2π来求出相应的x 值,通过列表,计算得出五点坐标,描点后得出图象.(2)(2016·全国卷Ⅱ)函数y =A sin(ωx +φ)的部分图象如图所示,则( )A .y =2sin ⎝⎛⎭⎫2x -π6B .y =2sin ⎝⎛⎭⎫2x -π3C .y =2sin ⎝⎛⎭⎫x +π6D .y =2sin ⎝⎛⎭⎫x +π3 解:由图可知,T =2⎣⎡⎦⎤π3-⎝⎛⎭⎫-π6=π,所以ω=2,由五点作图法结合各选项可知2×π3+φ=π2,所以φ=-π6,所以函数的解析式为y =2sin ⎝⎛⎭⎫2x -π6.故选A . 【点拨】已知f (x )=A sin(ωx +φ)(A >0,ω>0)的部分图象求其解析式,常用如下两种方法:(1)升降零点法,由ω=2πT ,即可求出ω;求φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ;(2)代入最值法,将最值点(最高点、最低点)坐标代入解析式,再结合图形解出ω和φ.(2016·安徽安庆二模)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的图象如图所示,则f (x )的递增区间为( )A.⎝⎛⎭⎫-π12+k π2,5π12+k π2,k ∈Z B.⎝⎛⎭⎫-π12+k π,5π12+k π,k ∈Z C.⎝⎛⎭⎫-π6+2k π,5π6+2k π,k ∈Z D.⎝⎛⎭⎫-π6+k π,5π6+k π,k ∈Z 解法一:由图象可知A =2,34T =11π12-π6=3π4,所以T =π,故ω=2.由f ⎝⎛⎭⎫1112π=-2,得φ=2k π-π3(k ∈Z ). 因为|φ|<π2,所以φ=-π3.所以f (x )=2sin ⎝⎛⎭⎫2x -π3. 由2x -π3∈⎝⎛⎭⎫2k π-π2,2k π+π2(k ∈Z ), 得x ∈⎝⎛⎭⎫-π12+k π,5π12+k π(k ∈Z ). 解法二:34T =11π12-π6=3π4,所以T =π,π6-T 4=π6-π4=-π12,π6+T 4=π6+π4=5π12, 所以f (x )的递增区间是⎝⎛⎭⎫k π-π12,k π+5π12(k ∈Z ).故选B . 类型二 三角函数的图象变换说明由函数y =sin x 的图象经过怎样的变换就能得到下列函数的图象.(1)y =sin ⎝⎛⎭⎫x +π3;(2)y =sin ⎝⎛⎭⎫2x -23π; (3)y =||sin x ;(4)y =sin ||x .解:(1)将y =sin x 的图象向左平移π3个单位长度,得到y =sin ⎝⎛⎭⎫x +π3的图象. (2)解法一:将y =sin x 的图象向右平移23π个单位长度,得到y =sin ⎝⎛⎭⎫x -23π的图象,再把y =sin ⎝⎛⎭⎫x -23π图象上所有点的横坐标缩短到原来的12(纵坐标不变),就得到y =sin ⎝⎛⎭⎫2x -23π的图象. 解法二:先把y =sin x 的图象上所有点的横坐标缩短到原来的12(纵坐标不变),得到y =sin2x 的图象,再将y =sin2x 的图象向右平移π3个单位长度,就得到y =sin ⎝⎛⎭⎫2x -23π的图象.(3)将y =sin x 的图象的x 轴下方部分翻折到x 轴上方,去掉x 轴下方图象,即可得到y =||sin x 的图象. (4)先去掉y 轴左边的y =sin x 的图象,再将y 轴右边的图象翻折到y 轴左边,保留y 轴右边的图象,即可得到y =sin ||x 的图象.【点拨】(1)本题主要考查图象的平移、伸缩、对称变换.三角函数的图象变换,有两种选择:一是先伸缩再平移,二是先平移再伸缩.特别注意平移变换时,当自变量x 的系数不为1时,要将系数先提出.对称变换要注意翻折的方向.(2)三角函数名不同的图象变换问题,应先将三角函数名统一,再进行变换.(荆门市2017届调考)若将函数y =12sin(2x +π3)图象上的每一个点都向左平移π3个单位,得到g (x )的图象,则函数g (x )的单调递增区间为( )A.⎣⎡⎦⎤k π-π4,k π+π4(k ∈Z ) B.⎣⎡⎦⎤k π+π4,k π+3π4(k ∈Z ) C.⎣⎡⎦⎤k π-2π3,k π-π6(k ∈Z ) D.⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ) 解:因为y =12sin ⎝⎛⎭⎫2x +π3的图象上的每一个点都向左平移π3个单位,得到g (x )的图象, 所以g (x )=12sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π3+π3, 即g (x )=12sin(2x +π)=-12sin2x ,令2k π+π2≤2x ≤2k π+3π2,即k π+π4≤x ≤k π+3π4,函数g (x )的单调递增区间为⎣⎡⎦⎤k π+π4,k π+3π4(k ∈Z ). 故选B .类型三 函数y =Asin (ωx +φ)+k 的图象及其变换(2017·山东)设函数f(x)=sin ⎝⎛⎭⎫ωx -π6+sin ⎝⎛⎭⎫ωx -π2,其中0<ω<3.已知f ⎝⎛⎭⎫π6=0. (1)求ω;(2)将函数y =f(x)的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g(x)的图象,求g(x)在⎣⎡⎦⎤-π4,3π4上的最小值. 解:(1)因为f(x)=sin ⎝⎛⎭⎫ωx -π6+sin ⎝⎛⎭⎫ωx -π2, 所以f(x)=32sin ωx -12cos ωx -cos ωx=32sin ωx -32cos ωx =3·⎝⎛⎭⎫12sin ωx -32cos ωx=3sin ⎝⎛⎭⎫ωx -π3. 由题设知f ⎝⎛⎭⎫π6=0,所以ωπ6-π3=k π,k ∈Z . 故ω=6k +2,k ∈Z ,又0<ω<3,所以ω=2.(2)由(1)得f (x )=3sin ⎝⎛⎭⎫2x -π3, 所以g (x )=3sin ⎝⎛⎭⎫x +π4-π3=3sin ⎝⎛⎭⎫x -π12. 因为x ∈⎣⎡⎦⎤-π4,3π4,所以x -π12∈⎣⎡⎦⎤-π3,2π3, 当x -π12=-π3,即x =-π4时,g (x )取得最小值-32.【点拨】(1)用辅助角法,将较复杂的三角式转化成y =A sin(ωx +φ)的形式.(2)要看清由谁平移到谁,若自变量的系数不为1时,要将系数先提出来,再平移.(2015·湖北)某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列(1)请将上表数据补充完整,并直接写出函数f (x )的解析式;(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y =g (x )图象的一个对称中心为⎝⎛⎭⎫5π12,0,求θ的最小值.解:(1)根据表中已知数据,解得A =5,ω=2,φ=-π.数据补全如下表:且函数表达式为f (x )=5sin ⎝⎭⎫2x -π6. (2)由(1)知f (x )=5sin ⎝⎛⎭⎫2x -π6,将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得g (x )=5sin ⎝⎛⎭⎫2x +2θ-π6. 令2x +2θ-π6=k π,k ∈Z ,解得x =k π2+π12-θ,k ∈Z .由于函数y =g (x )的图象关于点⎝⎛⎭⎫5π12,0成中心对称,令k π2+π12-θ=5π12,解得θ=k π2-π3,k ∈Z .由θ>0可知,当k =1时,θ取得最小值π6.1.五点法作函数图象及函数图象变换问题(1)当明确了函数图象基本特征后,“描点法”是作函数图象的快捷方式.“五点法”作图的优点是用简单的计算、列表、描点替代图形变换,不易出错,且图形简洁.(2)在进行三角函数图象变换时,提倡“先平移,后伸缩”,而“先伸缩,后平移”也经常出现在题目中,所以也必须熟练掌握,但要注意:先伸缩后平移时要把x 前面的系数提取出来. 2.根据y =A sin(ωx +φ),x ∈R 的图象求解析式的步骤: (1)首先确定振幅和周期,从而得到A 与ω.(Ⅰ)A 为离开平衡位置的最大距离,即最大值与最小值的差的一半.(Ⅱ)ω由周期得到:①函数图象在其对称轴处取得最大值或最小值,且相邻的两条对称轴之间的距离为函数的半个周期;②函数图象与x 轴的交点是其对称中心,相邻两个对称中心间的距离也是函数的半个周期;③一条对称轴与其相邻的一个对称中心间的距离为函数的14个周期(借助图象很好理解记忆).(2)求φ的值时最好选用最值点求.峰点:ωx +φ=π2+2k π;谷点:ωx +φ=-π2+2k π.也可用零点求,但要区分该零点是升零点,还是降零点. 升零点(图象上升时与x 轴的交点):ωx +φ=2k π;降零点(图象下降时与x 轴的交点):ωx +φ=π+2k π(以上k ∈Z ).3.辅助角公式a sin α+b cos α=a 2+b 2sin(α+φ)(φ由tan α=ba 确定)的应用是高考的热点,应予以重视.1.为了得到函数y =sin(2x +1)的图象,只需把函数y =sin2x 的图象上所有的点( )A .向左平行移动12个单位长度B .向右平行移动12个单位长度C .向左平行移动1个单位长度D .向右平行移动1个单位长度解:因为y =sin(2x +1)=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +12,所以只需把函数y =sin2x 的图象上所有的点向左平移12个单位长度即可.故选A .2.将函数y =sin x 的图象上所有的点向右平行移动π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( )A .y =sin ⎝⎛⎭⎫2x -π10B .y =sin ⎝⎛⎭⎫2x -π5C .y =sin ⎝⎛⎭⎫12x -π10D .y =sin ⎝⎛⎭⎫12x -π20 解:将函数y =sin x 的图象上所有的点向右平行移动π10个单位长度可得y =sin ⎝⎛⎭⎫x -π10,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),可得y =sin ⎝⎛⎭⎫12x -π10.故选C . 3.(北京昌平区2017届期末)已知函数f (x )=2sin(ωx +φ)(ω>0,|φ|<π2)的图象如图所示,则函数f (x )的解析式为( )A .f (x )=2sin ⎝⎛⎭⎫2x +π6B .f (x )=2sin ⎝⎛⎭⎫2x +π3C .f (x )=2sin ⎝⎛⎭⎫x +π6D .f (x )=2sin ⎝⎛⎭⎫x +π3 解:由图可知周期为T =2⎝⎛⎭⎫x 0+π2-x 0=π,所以ω=2,f (x )=2sin(2x +φ),又函数图象经过点(0,3),故f (x )=2sin(2×0+φ)=3,sin φ=32,又|φ|<π2,所以φ=π3,则f (x )=2sin ⎝⎛⎭⎫2x +π3.故选B . 4.函数f (x )=2sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2<φ<π2的部分图象如图所示,则ω,φ的值分别是( )A .2,-π3B .2,-π6C .4,-π6D .4,π3解:由图可知,34T =5π12+π3=3π4,T =π,ω=2πT =2.因为点⎝⎛⎭⎫5π12,2在图象上,所以2·5π12+φ=π2+2k π,φ=-π3+2k π,k ∈Z .又-π2<φ<π2,所以φ=-π3.故选A .5.(2017·辽宁抚顺模拟)将函数f (x )=2sin ⎝⎛⎭⎫2x +π6的图象向左平移π12个单位,再向上平移1个单位,得到g (x )的图象.若g (x 1)g (x 2)=9,且x 1,x 2∈[-2π,2π],则2x 1-x 2的最大值为( )A.25π16B.35π6C.49π12D.17π4解:由题意可得g (x )=f ⎝⎛⎭⎫x +π12+1=2sin ⎝⎛⎭⎫2x +π3+1,所以g (x )max =3,又g (x 1)g (x 2)=9,所以g (x 1)=g (x 2)=3,由g (x )=2sin ⎝⎛⎭⎫2x +π3+1=3,得2x +π3=π2+2k π(k ∈Z ),所以x =π12+k π,因为x 1,x 2∈[-2π,2π],所以(2x 1-x 2)max =2×⎝⎛⎭⎫π12+π-⎝⎛⎭⎫π12-2π=49π12.故选C . 6. (2016·北京)将函数y =sin ⎝⎛⎭⎫2x -π3图象上的点P ⎝⎛⎭⎫π4,t 向左平移s (s >0)个单位长度得到点P ′.若P ′位于函数y =sin2x 的图象上,则( )A .t =12,s 的最小值为π6B .t =32,s 的最小值为π6C .t =12,s 的最小值为π3D .t =32,s 的最小值为π3解:因为点P ⎝⎛⎭⎫π4,t 在函数y =sin ⎝⎛⎭⎫2x -π3的图象上,所以t =sin ⎝⎛⎭⎫2×π4-π3=sin π6=12.又P ′⎝⎛⎭⎫π4-s ,12在函数y =sin2x 的图象上,所以12=sin2⎝⎛⎭⎫π4-s ,则2⎝⎛⎭⎫π4-s =2k π+π6或2⎝⎛⎭⎫π4-s =2k π+56π,k ∈Z ,得s =-k π+π6或s =-k π-π6,k ∈Z ,又s >0,故s 的最小值为π6.故选A .7.函数y =A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0)在闭区间[-π,0]上的图象如图所示,则ω=________.解:由图象知T =2π3,则ω=2πT =2π2π3=3.故填3.8.(2015·昆明模拟)把函数y =sin2x 的图象沿x 轴向左平移π6个单位,纵坐标伸长到原来的2倍(横坐标不变)后得到函数y =f (x )的图象,对于函数y =f (x )有以下四个判断:①该函数的解析式为y =2sin ⎝⎛⎫2x +π6; ②该函数图象关于点⎝⎛⎭⎫π3,0对称;③该函数在⎣⎡⎦⎤0,π6上是增函数; ④若函数y =f (x )+a 在⎣⎡⎦⎤0,π2上的最小值为3,则a =2 3. 其中正确判断的序号是________.解:将函数y =sin2x 的图象向左平移π6得到y =sin2⎝⎛⎭⎫x +π6=sin ⎝⎛⎭⎫2x +π3的图象,然后纵坐标伸长到原来的2倍得到y =2sin ⎝⎛⎭⎫2x +π3的图象,①不正确;y =f ⎝⎛⎭⎫π3=2sin ⎝⎛⎭⎫2×π3+π3=2sin π=0,函数图象关于点⎝⎛⎭⎫π3,0对称,②正确;由-π2+2k π≤2x +π3≤π2+2k π,k ∈Z ,得-5π12+k π≤x ≤π12+k π,k ∈Z ,即函数的单调增区间为[-5π12+k π,π12+k π],k ∈Z ,当k =0时,增区间为⎣⎡⎦⎤-5π12,π12,③不正确;y =f (x )+a =2sin ⎝⎛⎭⎫2x +π3+a ,当0≤x ≤π2时,π3≤2x +π3≤4π3,当2x +π3=4π3,即x =π2时,函数取得最小值,有y min =2sin 4π3+a =-3+a =3,得a =23,④正确.故填②④.9.已知函数f (x )=3sin(ωx +φ)(ω>0,-π2≤φ<π2)的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π,求ω和φ的值.解:由题意,函数f (x )的最小正周期T =π,ω=2πT =2ππ=2.因为f (x )的图象关于直线x =π3对称,所以2·π3+φ=k π+π2,φ=k π-π6,k ∈Z .又-π2≤φ<π2,所以φ=-π6.10.(2016·山东)设f (x )=23sin (π-x )sin x -(sin x -cos x )2. (1)求f (x )的单调递增区间;(2)把y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移π3个单位,得到函数y =g (x )的图象,求g ⎝⎛⎭⎫π6的值. 解:(1)由f (x )=23sin (π-x )sin x -(sin x -cos x )2 =23sin 2x -(1-2sin x cos x )=3(1-cos2x )+sin2x -1=sin2x -3cos2x +3-1=2sin ⎝⎛⎭⎫2x -π3+3-1, 由2k π-π2≤2x -π3≤2k π+π2(k ∈Z ),得k π-π12≤x ≤k π+5π12(k ∈Z ),所以f (x )的单调递增区间是⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ).(2)由(1)知f (x )=2sin ⎝⎛⎭⎫2x -π3+3-1, 把y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变), 得到y =2sin ⎝⎛⎭⎫x -π3+3-1的图象, 再把得到的图象向左平移π3个单位,得到y =2sin x +3-1的图象,即g (x )=2sin x +3-1.所以g ⎝⎛⎭⎫π6=2sin π6+3-1= 3. 11.(2017·福建福州模拟)已知函数f (x )=3sin2ωx +cos 4ωx -sin 4ωx +1(其中0<ω<1),若点⎝⎛⎭⎫-π6,1是函数f (x )图象的一个对称中心.(1)求f (x )的解析式,并求距y 轴最近的一条对称轴的方程; (2)先列表,再作出函数f (x )在区间[-π,π]上的图象.解:(1)f (x )=3sin2ωx +(cos 2ωx -sin 2ωx )(cos 2ωx +sin 2ωx )+1 =3sin2ωx +cos2ωx +1=2sin ⎝⎛⎭⎫2ωx +π6+1. 因为点⎝⎛⎭⎫-π6,1是函数f (x )图象的一个对称中心, 所以-ωπ3+π6=k π,k ∈Z ,所以ω=-3k +12,k ∈Z .因为0<ω<1,所以k =0,ω=12,所以f (x )=2sin ⎝⎛⎭⎫x +π6+1. 由x +π6=k π+π2,k ∈Z ,得x =k π+π3,k ∈Z .令k =0,得距y 轴最近的一条对称轴方程为x =π3.(2)由(1)知,f (x )=2sin ⎛⎭⎫x +π+1,当x ∈[-π,π]时,列表如下:则函数f (x )在区间[-π,π]上的图象如图所示.(2016·厦门模拟)已知向量a =(2cos x ,3sin x ),b =(cos x ,2cos x ),函数f (x )=a ·b +m ,m ∈R ,且当x ∈⎣⎡⎦⎤0,π2时,f (x )的最小值为2. (1)求f (x )的单调递增区间;专业文档珍贵文档 (2)先将函数y =f (x )的图象上点的纵坐标不变,横坐标缩短到原来的12,再把所得的图象向右平移π12个单位,得到函数y =g (x )的图象,求方程g (x )=4在区间⎣⎡⎦⎤0,π2上的所有根之和. 解:(1)f (x )=2cos 2x +23sin x cos x +m=cos2x +3sin2x +m +1=2sin ⎝⎛⎭⎫2x +π6+m +1. 因为x ∈⎣⎡⎦⎤0,π2,所以2x +π6∈⎣⎡⎦⎤π6,7π6,当2x +π6=76π,即x =π2时,f (x )min =2×⎝⎛⎭⎫-12+m +1=2,解得m =2,所以f (x )=2sin ⎝⎛⎭⎫2x +π6+3,令2k π-π2≤2x +π6≤2k π+π2得f (x )的增区间为⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ). (2)将函数y =f (x )的图象上点的纵坐标不变,横坐标缩短到原来的12,得到f (x )=2sin ⎝⎛⎭⎫4x +π6+3,再把所得的图象向右平移π12个单位,得到函数y =g (x )的图象, 所以g (x )=2sin ⎣⎡⎦⎤4⎝⎛⎭⎫x -π12+π6+3=2sin ⎝⎛⎭⎫4x -π6+3,又g (x )=4,得sin ⎝⎛⎭⎫4x -π6=12,解得4x -π6=2k π+π6或4x -π6=2k π+5π6,k ∈Z . 即x =k π2+π12或x =k π2+π4(k ∈Z ),因为x ∈⎣⎡⎦⎤0,π2,所以x =π12或π4,故所有根之和为π12+π4=π3.。
5.4 三角函数的图象与性质 5.4.1 正弦函数、余弦函数的图象 课标要求 素养要求 1.能利用三角函数的定义,画y=sin x,y=cos x的图象. 2.掌握“五点法”画y=sin x,y=cos x的图象的步骤和方法,能利用“五点法”作出简单的正弦、余弦曲线. 3.理解y=sin x与y=cos x图象之间的联系. 通过利用定义和“五点法”作y=sin x与y=cos x的图象,重点提升学生的数学抽象、逻辑推理和直观想象素养.
新知探究 将塑料瓶底部扎一个小孔做成一个漏斗,再挂在架子上,就做成了一个简易单摆(如图(1)所示).在漏斗下方放一块纸板,板的中间画一条直线作为坐标系的横轴.把漏斗灌上细沙并拉离平衡位置,放手使它摆动,同时匀速拉动纸板.这样就可在纸板上得到一条曲线,它就是简谐运动的图象.物理中把简谐运动的图象叫做“正弦曲线”或“余弦曲线”.它表示了漏斗对平衡位置的位移s(纵坐标)随时间t(横坐标)变化的情况.图(2)就是某个简谐运动的图象. 问题 1.通过上述实验,你对正弦函数、余弦函数图象的直观印象是怎样的? 2.你能比较精确地画出y=sin x在[0,2π]上的图象吗? 3.以上方法作图虽然精确,但太麻烦,有没有快捷画y=sin x,x∈[0,2π]图象的方法?你认为图象上哪些点是关键点? 提示 1.正、余弦函数的图象是“波浪起伏”的连续光滑曲线. 2.能,利用特殊角的三角函数值. 3.五点作图法 y=sin x的五点:(0,0),π2,1,(π,0),
3π
2,-1,(2π,0);
y=cos x的五点:(0,1),π2,0,(π,-1),
3π
2,0,(2π,1).
1.正弦函数、余弦函数的图象 两者的图象可以通过左右平移得到 函数 y=sin x y=cos x
图象 图象画法 “五点法” “五点法” 关键五点 (0,0),(π2,1),(π,0),(3π2,-1),(2π,0) (0,1),(π2,0),(π,-1),(3π2,0),(2π,1) 2.(1)正弦函数的图象叫做正弦曲线,是一条“波浪起伏”的连续光滑曲线. (2)余弦函数y=cos x,x∈R的图象叫做余弦曲线,它是与正弦曲线具有相同形状的“波浪起伏”的连续光滑曲线. 3.正弦函数、余弦函数的值域 (1)y=sin x,x∈R的值域为[-1,1]; (2)y=cos x,x∈R的值域为[-1,1]. 拓展深化 [微判断] 1.正弦函数y=sin x的图象向左右和上下无限伸展.(×) 提示 正弦函数y=sin x的图象向左右无限伸展,但上下限定在直线y=1和y=-1之间. 2.函数y=sin x与y=sin(-x)的图象完全相同.(×) 提示 二者图象不同,而是关于x轴对称.
三角函数的图象和性质点点突破热门考点01 “五点法”做函数()sin y A x h ωϕ=++的图象“五点法”作图:先列表,令30,,,,222x ππωϕππ+=,求出对应的五个x 的值和五个y 值,再根据求出的对应的五个点的坐标描出五个点,再把五个点利用平滑的曲线连接起来,即得到()sin y A x h ωϕ=++在一个周期的图象,最后把这个周期的图象以周期为单位,向左右两边平移,则得到函数()sin y A x h ωϕ=++的图象.【典例1】(2020·全国高一课时练习)在同一直角坐标系中,画出函数sin y x =,[0,2]x π,cos y x =,3,22x ππ⎡⎤∈-⎢⎥⎣⎦的图象.通过观察两条曲线,说出它们的异同. 【答案】见解析 【解析】可以用“五点法”作出它们的图象,还可以用图形计算器或计算机直接作出它们的图象,图象如图.两条曲线的形状相同,位置不同.【典例2】(2020·全国高三(文))(1)利用“五点法”画出函数1()sin()26f x y x π==+在长度为一个周期的闭区间的简图. 列表:126x π+x y作图:(2)并说明该函数图象可由sin (R)y x x =∈的图象经过怎么变换得到的. (3)求函数()f x 图象的对称轴方程.【答案】(1)见解析(2) 见解析(3) 22,3x k k Z ππ=+∈. 【解析】(1)先列表,后描点并画图126x π+ 02ππ32π 2πx3π-23π 53π 83π 113πy 0 1 0 -1 0;(2)把sin y x =的图象上所有的点向左平移6π个单位, 再把所得图象的点的横坐标伸长到原来的2倍(纵坐标不变),得到1sin()26y x π=+的图象,即1sin()26y x π=+的图象; (3)由12,2,2623x kx x k k Z ππππ+=+=+∈, 所以函数的对称轴方程是22,3x k k Z ππ=+∈. 【总结提升】用“五点法”作图应抓住四条:①将原函数化为()sin y A x h ωϕ=++()0,0A ω>>或()cos y A x h ωϕ=++()0,0A ω>>的形式;②求出周期2T πω=;③求出振幅A ;④列出一个周期内的五个特殊点,当画出某指定区间上的图象时,应列出该区间内的特殊点.热门考点02 三角函数的图象和性质正弦函数sin y x =,余弦函数cos y x =,正切函数tan y x =的图象与性质 性质sin y x =cos y x = tan y x =图象定义域R R,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭值域[]1,1- []1,1-R最值当()22x k k Z ππ=+∈时,max 1y =;当()22x k k Z ππ=-∈时,min 1y =-.当()2x k k Z π=∈时,max 1y =;当()2x k k Z ππ=+∈时,min 1y =-.既无最大值,也无最小值周期性2π 2ππ奇偶性 ()sin sin x x -=-,奇函数()cos cos x x -=偶函数()tan tan x x -=-奇函数单调性 在()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上是增函数;在()32,222k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦上是减函数.在[]()2,2k k k Z πππ-∈上是增函数;在π[]()2,2k k k Z πππ+∈上是减函数.在(),22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭上是增函数.对称性 对称中心()(),0k k Z π∈对称轴()2x k k Z ππ=+∈,既是中心对称又是轴对称图形.对称中心(),02k k Z ππ⎛⎫+∈ ⎪⎝⎭对称轴()x k k Z π=∈,既是中心对称又是轴对称图形.对称中心(),02k k Z π⎛⎫∈⎪⎝⎭无对称轴,是中心对称但不是轴对称图形.【典例3】(2020·全国高考真题(理))设函数()cos ()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A .10π9B .7π6C .4π3D .3π2【答案】C 【解析】由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭, 将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭又4,09π⎛⎫-⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点, 所以4962πππω-⋅+=-,解得:32ω=所以函数()f x 的最小正周期为224332T πππω=== 故选:C【典例4】(2019年高考北京卷文)设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】C【解析】0b =时,()cos sin cos f x x b x x =+=,()f x 为偶函数;()f x 为偶函数时,()=()f x f x -对任意的x 恒成立,即()cos()sin()cos sin f x x b x x b x -=-+-=-,cos sin cos sin x b x x b x +=-,得sin 0b x =对任意的x 恒成立,从而0b =.从而“0b =”是“()f x 为偶函数”的充分必要条件,故选C.【典例5】(2020·海南省高考真题)下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)= ( )A .πsin(3x +)B .πsin(2)3x - C .πcos(26x +) D .5πcos(2)6x - 【答案】BC 【解析】由函数图像可知:22362T πππ=-=,则222T ππωπ===,所以不选A, 当2536212x πππ+==时,1y =-∴()5322122k k Z ππϕπ⨯+=+∈, 解得:()223k k ϕππ=+∈Z ,即函数的解析式为:2sin 22sin 2cos 2sin 236263y x k x x x ππππππ⎛⎫⎛⎫⎛⎫⎛⎫=++=++=+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.而5cos 2cos(2)66x x ππ⎛⎫+=-- ⎪⎝⎭ 故选:BC.【典例6】(2019年高考全国Ⅱ卷文)若x 1=4π,x 2=43π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω=( )A .2B .32 C .1D .12【答案】A【解析】由题意知,()sin f x x ω=的周期232()44T ωπππ==-=π,解得2ω=.故选A .【典例7】(2019年高考全国Ⅰ卷文)函数f (x )=2sin cos ++x xx x 在[,]-ππ的图象大致为( )A .B .C .D .【答案】D 【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x-+----===--+-+,得()f x 是奇函数,其图象关于原点对称,排除A .又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,排除B ,C ,故选D . 【典例8】(2020·全国高考真题(理))关于函数f (x )=1sin sin x x+有如下四个命题:①f (x )的图像关于y 轴对称. ②f (x )的图像关于原点对称. ③f (x )的图像关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 【答案】②③ 【解析】 对于命题①,152622f π⎛⎫=+=⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭, 11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<, 命题④错误. 故答案为:②③.【典例9】(2018年全国卷Ⅲ文)函数的最小正周期为( )A. B. C. D.【答案】C 【解析】 由已知得的最小正周期故选C.【典例10】(2020·山东高一期末)函数tan 2xy =的定义域为_____. 【答案】{}2,x x k k Z ππ≠+∈ 【解析】 解不等式()22x k k Z ππ≠+∈,可得()2x k k Z ππ≠+∈, 因此,函数tan2xy =的定义域为{}2,x x k k Z ππ≠+∈.故答案为:{}2,x x k k Z ππ≠+∈.【典例11】(2017新课标2)函数()的最大值是__________.【答案】1【解析】化简三角函数的解析式,则,由可得,当时,函数取得最大值1.【典例12】(2017新课标2)函数()的最大值是__________.【答案】1【解析】化简三角函数的解析式,则,由可得,当时,函数取得最大值1.【典例13】(2018年江苏卷)已知函数的图象关于直线对称,则的值是________. 【答案】【解析】 由题意可得,所以,因为,所以【典例14】(2018年理北京卷】设函数f (x )=,若对任意的实数x 都成立,则ω的最小值为__________.【答案】 【解析】 因为对任意的实数x 都成立,所以取最大值,所以,因为,所以当时,ω取最小值为.【总结提升】1.三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解. 2.三角函数值域的不同求法(1)利用sin x 和cos x 的值域直接求;(2)把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域; (3)把sin x 或cos x 看作一个整体,转换成二次函数求值域; (4)利用sin x ±cos x 和sin x cos x 的关系转换成二次函数求值域.3.求形如()sin y A x ωϕ=+或()cos y A x ωϕ=+ (其中A ≠0,0ω>)的函数的单调区间,可以通过解不等式的方法去解答,列不等式的原则是:①把“x ωϕ+ (0ω>)”视为一个“整体”;②A>0(A<0)时,所列不等式的方向与sin y x = (x R ∈),cos y x = (x R ∈)的单调区间对应的不等式方向相同(反).4.当0ω<时,需要利用诱导公式把负号提出来,转化为sin()y A x ωϕ=---的形式,然后求其单调递增区间,应把x ωϕ--放在正弦函数的递减区间之内;若求其递减区间,应把x ωϕ--放在正弦函数的递增区间之内.5.已知三角函数的单调区间求参数的取值范围的三种方法(1)子集法:求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解. (2)反子集法:由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解.6.求三角函数的周期的方法(1)定义法:使得当x 取定义域内的每一个值时,都有()()f x T f x +=.利用定义我们可采用取值进行验证的思路,非常适合选择题;(2)公式法:使用周期公式,必须先将解析式化为sin()y A x h ωϕ=++或cos()y A x h ωϕ=++的形式;正弦余弦函数的最小正周期是2T πϖ=,正切函数的最小正周期公式是T πϖ=;注意一定要注意加绝对值,两个公式不要弄混.(3)图象法:可以画出函数的图象,利用图象的重复的特征进行确定,一般适应于不易直接判断,但是能够容易画出函数草图的函数;(4)绝对值或平方对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变,其它不定. 如x y x y sin ,sin 2==的周期都是π, 但sin y x =cos x +的周期为2π,而1|2sin(3)|,|2sin(3)2|626y x y x ππ=-+=-+,|tan |y x =的周期不变.7.对称与周期:正弦曲线、余弦曲线相邻的两个对称中心、相邻的两条对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是四分之一个周期;正切曲线相邻两个对称中心之间的距离是半个周期. 8. 一般根据函数的奇偶性的定义解答,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数;如果函数的定义域关于原点对称,则继续求()f x -;最后比较()f x -和()f x 的关系,如果有()f x -=()f x ,则函数是偶函数,如果有()f x -=-()f x ,则函数是奇函数,否则是非奇非偶函数.9. 如何判断函数()f x ωϕ+的奇偶性:根据三角函数的奇偶性,利用诱导公式可推得函数()f x ωϕ+的奇偶性,常见的结论如下:(1)若sin()y A x ωϕ=+为偶函数,则有()2k k Z πϕπ=+∈;若为奇函数则有()k k Z ϕπ=∈;(2)若cos()y A x ωϕ=+为偶函数,则有()k k Z ϕπ=∈;若为奇函数则有()2k k Z πϕπ=+∈;(3)若tan()y A x ωϕ=+为奇函数则有()k k Z ϕπ=∈.10.函数的对称性问题,往往先将函数化成sin )y A x B ωϕ=++(的形式,其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心, 关键是记住三角函数的图象,根据图象并结合整体代入的基本思想即可求三角函数的对称轴与对称中心. 11.函数的性质(1).(2)周期(3)由 求对称轴,最大值对应自变量满足,最小值对应自变量满足,(4)由求增区间; 由求减区间.12.对正弦函数、余弦函数单调性的两点说明(1)正弦函数、余弦函数在定义域R 上均不是单调函数,但存在单调区间.(2)由正弦函数、余弦函数的最小正周期为2π,所以任给一个正弦函数、余弦函数的单调区间,加上2k π,(k ∈Z)后,仍是单调区间,且单调性相同. 13.对正弦函数、余弦函数最值的三点说明(1)明确正、余弦函数的有界性,即|sin x |≤1,|cos x |≤1.(2)函数y =sin x ,x ∈D ,(y =cos x ,x ∈D )的最值不一定是1或-1,要依赖函数定义域D 来决定. (3)形如y =A sin(ωx +φ)(A >0,ω>0)的函数最值通常利用“整体代换”,即令ωx +φ=Z ,将函数转化为y =A sin Z 的形式求最值.14.正切函数单调性的三个关注点 (1)正切函数在定义域上不具有单调性.(2)正切函数无单调递减区间,有无数个单调递增区间,在(-π2,π2),(π2,32π),…上都是增函数.(3)正切函数的每个单调区间均为开区间,不能写成闭区间,也不能说正切函数在(-π2,π2)∪(π2,3π2)∪…上是增函数.巩固提升1.(2020·福建高二学业考试)函数cos y x =的最小正周期为( ) A .2πB .πC .32π D .2π【答案】D 【解析】函数cos y x =的最小正周期为:2π 故选:D2.(2020·河南开封�高一期末)设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A .10π9 B .7π6 C .4π3D .3π2【答案】C 【解析】由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭, 将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭又4,09π⎛⎫-⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点, 所以4962πππω-⋅+=-,解得:32ω=所以函数()f x 的最小正周期为224332T πππω=== 故选:C3.( 2019届四川省成都市摸底)“”是“函数的图象关于直线对称”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 【答案】A 【解析】当时,,,所以是函数的对称轴;令,,,,当时,,当取值不同时,的值也在发生变化.综上,是函数图象关于直线对称的充分不必要条件.选A.4.(2018届河北省唐山市三模)已知函数的图象与轴相切,则()A. B. C. D.【答案】B【解析】,且的图象与轴相切,所以最大值,,即,,,故选B.5.(浙江省七彩联盟2019届高三上期中)已函数是奇函数,且,则()A. B. C.1 D.2【答案】A【解析】根据题意,函数是奇函数,则,解可得:,故选:A.6.(浙北四校2019届高三12月模拟)若函数,,则是()A.最小正周期为为奇函数 B.最小正周期为为偶函数C.最小正周期为为奇函数 D.最小正周期为为偶函数【答案】A【解析】∵=-sin2x,∴f(x)=-sin2x,可得f(x)是奇函数,最小正周期T==π故选:A.7.(2018届福建省厦门市第二次质量检查)函数的周期为,,在上单调递减,则的一个可能值为()A. B. C. D.【答案】D【解析】由函数的周期为,得,,,或,令,或,,在不是单调函数,不合题意,故,故选D.8.(2017课标3,理6)设函数f (x )=cos (x +3π),则下列结论错误的是( ) A .f(x)的一个周期为−2πB .y=f(x)的图象关于直线x=83π对称C .f(x+π)的一个零点为x=6π D .f(x)在(2π,π)单调递减【答案】D 【解析】9.(2020·辽宁沈阳�高一期末)【多选题】己知函数()sin cos f x x x =,3,22x ππ⎡⎤∈-⎢⎥⎣⎦,下列结论正确的是( )A .()f x 的图象关于直线y 轴对称B .()f x 在区间35,44ππ⎡⎤⎢⎥⎣⎦上单调递减 C.()f x 的图象关于直线2x π=轴对称 D .()f x 的最大值为12【答案】BCD 【解析】1sin 2,,222()sin cos 13sin 2,,222x x f x x x x x ππππ⎧⎡⎤∈-⎪⎢⎥⎪⎣⎦==⎨⎛⎤⎪-∈ ⎥⎪⎝⎦⎩,其图象如下所示:由图可知,()f x 的图象关于直线2x π=对称,故A 错误,C 正确;()f x 在区间35,44ππ⎡⎤⎢⎥⎣⎦上单调递减,故B 正确; ()f x 的最大值为12,()f x 的最小值为12-,故D 正确 故选:BCD10.(2020·全国高三其他)【多选题】函数()())()sin 0,0,2f x x ωϕωϕπ⎡=+>∈⎣的部分图象如图所示,点P 是图象上的最高点,点A 是图象与x 轴的交点,点B 在x 轴上.若PAB △是等腰直角三角形,则下列结论正确的是( )A .()12f =B .()f x 在区间()1,2上单调递增C .()f x 的图象关于点3,02⎛⎫⎪⎝⎭对称 D .()f x 在区间[]5,10上有1个极值点 【答案】AC 【解析】由题意可得1AB PB ==,则1,02B ⎛⎫⎪⎝⎭, 该函数的最小正周期24T πω==,则2πω=.又点112P ⎛⎫⎪⎝⎭,在()f x 的图像上,所以11sin 1222f πϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,)0,2ϕπ⎡∈⎣,则4πϕ=,所以()sin 24f x x ππ⎛⎫=+⎪⎝⎭,所以()31sin 42f π==,A 正确;当()1,2x ∈时,352444x ππππ⎛⎫+∈ ⎪⎝⎭,,()f x 单调递减,B 错误; 3sin 02f π⎛⎫== ⎪⎝⎭,所以()f x 的图像关于点3,02⎛⎫ ⎪⎝⎭对称,C 正确: 令()sin 124f x x ππ⎛⎫=+=± ⎪⎝⎭,则242x k ππππ+=+,k ∈Z ,即122x k =+,k ∈Z . 又[]5,10x ∈,则3k =或4,即()f x 在区间[]5,10上有2个极值点,D 错误. 故选:AC.11.(2020·宁县第二中学高一期中)函数y =的定义域是________. 【答案】()2,2k k k Z πππ+∈ 【解析】因为y =,所以sin 0x >,解得22,k x k k Z πππ<<+∈,即函数的定义域为()2,2k k k Z πππ+∈故答案为:()2,2k k k Z πππ+∈12.(2020·河南林州一中高一月考)函数224sin 6cos 633y x x x ππ⎛⎫=+--≤≤ ⎪⎝⎭的值域________.【答案】16,4⎡⎤-⎢⎥⎣⎦【解析】224sin 6cos 64(1cos )6cos 6y x x x x =+-=-+-22314cos 6cos 24(cos )44x x x =-+-=--+,233x ππ-≤≤,1cos 12x ∴-≤≤ ,故231164(cos )444x -≤--+≤,故答案为:16,4⎡⎤-⎢⎥⎣⎦13.(2020·上海高一课时练习)若函数2()cos sin (0)=-+>f x x a x b a 的最大值为0,最小值为4-,则实数a =_________,b =________. 【答案】2 2- 【解析】2sin si )n (1x f a x b x =--++,令sin (11)t x t =-≤≤,则21(11)y t at b t --++≤≤=-,函数的对称轴为2a t =-, 当12a-≤-,即2a ≥时,110,2,114,2,a b a a b b -+++==⎧⎧⇒⎨⎨--++=-=-⎩⎩当102a -<-<,即02a <<时,2()()1022a aa b ---⋅-++=且114a b --++=-, 此时方程组无解;∴2,2,a b =⎧⎨=-⎩故答案为:2,2-.14.(2020·武功县普集高级中学高一月考)用五点法作出函数32cos y x =+在[]0,2π内的图像. 【答案】见解析 【解析】 列表:x0 2ππ32π 2πcos y x =10 -1 0 1 32cos y x =+ 53135描点得32cos y x =+在[]0,2π内的图像(如图所示):15.(浙江省名校新高考研究联盟(Z20)2019届高三第一次联考)已知函数Ⅰ求的最小正周期及单调递增区间;1 / 1 Ⅱ求在区间上的最大值. 【答案】Ⅰ最小正周期,单调递增区间为,;Ⅱ. 【解析】 Ⅰ. 的最小正周期, 令,, 得,, 的单调递增区间为,; Ⅱ时,,, 所以的最大值为2, 在区间上的最大值为3.16.(2020·镇原中学高一期末)已知函数()()()sin 0,0,f x A x A ωϕωϕπ=+>><,在一周期内,当12x π=时,y 取得最大值3,当712x π=时,y 取得最小值3-,求 (1)函数的解析式;1 / 1(2)求出函数()f x 的单调递增区间、对称轴方程、对称中心坐标; (3)当,1212x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的值域.【答案】(1)()3sin 23f x x π⎛⎫=+ ⎪⎝⎭;(2)增区间为()5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,对称轴方程为212k x ππ=+,k Z ∈,对称中心为,062k ππ⎛⎫-+ ⎪⎝⎭(k Z ∈);(3)3,32⎡⎤⎢⎥⎣⎦.【解析】(1)由题设知,3A =, 周期7212122Tπππ=-=,T π=,由2T πω=得2ω=.所以()()3sin 2f x x ϕ=+. 又因为12x π=时,y 取得最大值3, 即3sin 36ϕπ⎛⎫+= ⎪⎝⎭,262k ππϕπ∴+=+,解得23k πϕπ=+,又ϕπ<, 所以3πϕ=,所以()3sin 23f x x π⎛⎫=+ ⎪⎝⎭.(2)由222232k x k πππππ-≤+≤+,得51212k x k ππππ-≤≤+.所以函数()f x 的单调递增区间为()5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. 由232x k πππ+=+,k Z ∈,得212k x ππ=+,k Z ∈. 对称轴方程为212k x ππ=+,k Z ∈.. 由23x k ππ+=,得62πk πx =-+(k Z ∈). 所以,该函数的对称中心为,062k ππ⎛⎫-+ ⎪⎝⎭(k Z ∈).1 / 1(3)因为,1212x ππ⎡⎤∈-⎢⎥⎣⎦,所以2,362x πππ⎡⎤+∈⎢⎥⎣⎦,则1sin 2,132x π⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦, 所以33sin 2323x π⎛⎫≤+≤ ⎪⎝⎭.所以值域为:3,32⎡⎤⎢⎥⎣⎦. 所以函数()f x 的值域为3,32⎡⎤⎢⎥⎣⎦.。