八年级数学平面图形的密铺
- 格式:doc
- 大小:34.00 KB
- 文档页数:5
镶嵌(八年级上P26)1.平面图形的镶嵌(密铺)概念:用形状、大小完全相同的一种或几种平面图形实行拼接,彼此之间不留空隙、不重叠地铺成一片,就是平面图形的镶嵌(密铺)。
2.理解平面图形的密铺:(1)要用几个形状、大小完全相同的图形不留空隙、不重叠地密铺一个平面,需使得拼接点处的各角之和为360°。
(2)单一多边形密铺:任意三角形(6个)、四边形(4个)、正六边形(3个)能够密铺;(3)单一正n边形密铺的条件:假设360°除以正n边形的一个内角等于整数,则能够单独用它密铺;就是说:正多边形的一个内角度数能整除360°。
(4)多种正多边形组合起来镶嵌成一个平面的条件:a. n个正多边形中的一个内角的倍数的和是360°;b. n个正多边形的边长相等,或其中一个或n个正多边形的边长是另一个或n个正多边形的边长的整数倍。
典型例题为了美化校园环境,在学校广场用两种边长相等的正多边形地砖镶地面,现已有一种正方形,则另一种正多边形能够是()A.正三角形B.正五边形C.正六角形D.正三角形或正八边形答案:D解析:分别求出各个正多边形的每个内角的度数,结合镶嵌的条件即可求出答案.解:正三角形的每个内角是60°,正方形的每个内角是90°,∵3×60°+2×90°=360°,∴正三角形能够;正五边形每个内角是180°-360°÷5=108°,正方形的每个内角是90°,108m+90n=360°显然n取任何正整数时,m不能得正整数,故不能铺满;正方形的每个内角是90°,正六边形的每个内角是120度.90m+120n=360°,m=4-4/3n,显然n取任何正整数时,m不能得正整数,故不能铺满;正方形的每个内角是90°,正八边形的每个内角为:180°-360°÷8=135°,∵90°+2×135°=360°,∴正八边形能够.应选D.。
如何引导学生开展探究性数学学习-------------《平面图形的密铺》教学案例湖北省水果湖第一中学刘军·使用教材义务教育课程标准实验教科书数学(北师大版)八年级下册·教学环境多媒体教室(有视频展示台)一、教学目标1. 知识与技能目标:(1)通过对“拼地板”的探索,让学生经历探索多边形密铺(镶嵌)的条件的过程,强化学生对多边形内角和其及有关几何事实的认识,知道任意一个三角形、四边形或正六边形可以密铺;并能运用这几种图形进行简单的密铺设计;(2)培养学生观察、动手操作能力。
2. 过程与方法目标:渗透初步的数学“建模”思想,引导学生在拼接实验的过程中,通过观察、判断、归纳、总结并发现规律,并能用所发现的规律去解决一些实际问题,进一步发展学生的合情推理能力。
3. 情感与态度目标:(1)让学生进一步体会平面图形在现实生活中的广泛应用,将书本知识与生产生活实践有机地结合;(2)开发、培养学生实践意识、创新精神和团结协作的精神;(3)学生在活动中感受数学的朴实之美,数学的和谐之美,进一步发展学生的审美情趣。
二、教材分析教学重点:探索多边形密铺的条件的过程以及多边形密铺的条件。
教学难点:如何运用多边形的有关知识,解决密铺中的问题,并寻找多边形密铺的条件。
三、学校及学生状况分析我校是湖北省教育厅直属的示范中学,办学条件良好,有一栋教学楼,一栋实验楼,一栋综合楼,一栋办公楼,一个多功能报告厅,3间多媒体教室,每个班配有电脑和大屏幕电视。
本班的学生绝大部分来自武汉大学等高校和省直机关,有较好的学习基础。
四、课前准备教学设备或教辅工具:1.将学生按四人一组进行分组。
2.多媒体、教学图片。
3.颜色各异的各种多边形图纸。
学生课前准备:全等的多边形纸板、胶水、笔、纸等。
五、教学实录1.创设情境,提出本次学习活动的主题师:在我们的周围有一些美丽、神奇的图案,请我们一起来欣赏一组图案:(多媒体展示一组时装秀和密铺图案)师:这些图案有什么共同特征呢?(同学们分组讨论、交流)生:这些图案是用一种或几种形状相同的图形组成的。
4·7 平面图形的密铺1. 密铺的定义用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠的铺成一片,叫作平面图形的密铺.2. 密铺的特征(1)边长都相等;(2)顶点公用;(3)在一个顶点处各正多边形的内角和为3600.3. 能够密铺的多边形能够密铺的多边形有三种:三角形、四边形、正六边形.学习中不仅要了解能密铺的多边形有哪些,还要了解为什么这些图形能够密铺,除了通过实际操作探索外,还要明白内在的数学上的理由.因为三角形的内角和是180°,把相同三角形的顶点拼结在一起时能够容纳6个角(其中三组角两两相等,恰好是两个三角形的内角),可以无重叠无空隙地拼接在一起,四边形是同样的解释.正六边形是因为它的每个内角是120°,把三个正六边形拼接在一起,三个内角的和恰为360°,也能无重叠、无空隙地拼接在一起.难点:不理解密铺所具备的条件.密铺所具备的条件是:多边形的几个内角拼在一起,恰好是360°,即这几个内角的和为360°.易错点:误认为边数为偶数的正多边形都能够密铺.比如:认为正八边形、正十边形可以密铺;其实正八边形、正十边形不能密铺,理由是正八边形的每个内角为135°,两个内角拼在一起小于360°,三个内角拼在一起大于 360°.不能无重叠、无空隙地拼在一起;正十边形也是同样的道理. 例1. 由7个大小、形状完全相同的矩形不重复,无重叠地拼成如图所示的大矩形,大矩形的周长为68,则此大矩形的面积为多少?解:设小矩形的长为x ,宽为y ,由图可知:53452y x y y x ++==⎧⎨⎩即:63452y x y x +==⎧⎨⎩∴=∴=y x 410,∴小矩形的面积为4×10=40,大矩形的面积为7×40=280一变:如图所示,正方形是由K 个形状大小完全相同的矩形密铺而成,其中上下各横排2个,中间竖排若干个,求K 的值.一变解:∴中间有4个矩形,∴共有8个矩形,即:K=8.点拨:此种题要与代数知识、及密铺的一些知识结合起来考虑.设正方形的边长为,矩形的宽为,则矩形的长为a x a 2由图可知:,a x a x a 224+==。
平面图形的密铺教学目标(一)教学知识点:1.了解平面图形的密铺的含义.2.掌握哪些平面图形可以密铺,密铺的理由及简单的密铺设计.(二)能力训练要求:1.经历探索多边形密铺(镶嵌)条件的过程,进一步发展学生的合情推理能力.2.通过探索平面图形的密铺,知道任意一个三角形、四边形或正六边形可以密铺,并能运用这几种图形进行简单的密铺设计.(三)情感与价值观要求:平面图形的密铺是体现电冰箱在现实生活中应用的一个方面;也是开发、培养学生创造性思维的一个重要渠道。
教学重点:三角形、四边形和正六边形可以密铺。
教学难点:用同一种平面图形或者几种平面图形可以密铺的条件。
教学过程:一.巧设情景问题,引入课题我们经常能见到各种建筑物的地板,观察地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.(展示各种地板图片)这些地板漂亮吗?这种用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙,不重叠地铺成一片,这就是平面图形的密铺.这节课我们来探索平面图形的密铺.二.讲授新课平面图形的密铺,又称做平面图形的镶嵌,在平面上密铺需注意:各种图形拼接后要既无缝隙,又不重叠.那我们先来探索多边形密铺的条件,大家拿出准备好的剪刀和硬纸片分组来做一做:(1)用形状、大小完全相同的三角形能否密铺?(2)用同一种四边形可以密铺吗?用硬纸板剪制若干形状、大小完全相同的四边形做实验,并与同伴交流.(3)在用三角形密铺的图案中,观察每个拼接点处有几个角?它们与这种三角形的三个内角有什么关系?(4)在用四边形密铺的图案中,观察每个拼接点处的四个角与这种四边形的四个内角有什么关系?(学生动手制作、教师强调:大家要注意:三角形、四边形的形状,可以是任意的,但裁剪出的每种图形一定是全等形.)(学生分组拼接、讨论,寻找规律,教师巡视指导)1.用形状、大小完全相同的三角形可以密铺.因为三角形的内角和为180°,所以,用6个这样的三角形就可以组合起来镶嵌成一个平面.从用三角形密铺的图案中,观察到:每个拼接点处有6个角,这6个角分别是这种三角形的内角(其中有三组分别相等),它们可以组成两个三角形的内角,它们的和为360°.2.用同一种四边形也可以密铺,在用四边形密铺的图案中,观察到:每个拼接点处的四个角恰好是一个四边形的四个内角.四边形的内角和为360°,所以它们的和为360°.3.从拼接活动中,我们知道了:要用几个形状、大小完全相同的图形不留空隙、不重叠地密铺一个平面,需使得拼接点处的各角之和为360°.通过探索活动,我们得知:用形状、大小完全相同的四边形或三角形可以密铺一个平面,那么其他的多边形能否密铺?下面大家来想一想,议一议:(1)正六边形能否密铺?简述你的理由.(2)分析如下图,讨论正五边形不能密铺.(3)还能找到能密铺的其他正多边形吗?(学生分析、讨论、归纳)小节:要用正多边形镶嵌成一个平面的关键是看:这种正多边形的一个内角的倍数是否是360°,在正多边形里,正三角形的每个内角都是60°,正四边形的每个内角都是90°,正六边形的每个内角都是120°,这三种多边形的一个内角的倍数都是360°,而其他的正多边形的每个内角的倍数都不是360°,所以说:在正多边形里只有正三角形、正四边形、正六边形可以密铺,而其他的正多边形不可密铺.一般三角形、四边形也可以密铺.虽然它们的内角未必都相等.三.课堂练习:(一)课本P114随堂练习1.如图,在一个正方形的内部按图示(1)的方式剪去一个正三角形,并平移,形成如图(2)所示的新图案,以这个图案为“基本单位”能否进行密铺?说说理由.2.利用习题3.7第三题所得的“鱼”形图案能否密铺?根据上面的思路,自己独立设计一个可以密铺的“基本单位”图形.答案:可以密铺.(二)试一试:同时用边长相同的正八边形和正方形能否密铺?用硬纸板为材料进行实验.答案:可以密铺四..课时小结本节课我们通过活动,探讨,知道任意一个三角形,四边形或正六边形可以镶嵌成一个平面,并且探索出正多边形密铺的条件.即:一种正多边形的一个内角的倍数是否是360°.五.课后作业课本P 115习题4.13 1、2、3六.课后探索:探索用两种正多边形镶嵌平面的条件.过程:让学生先从简单的两种正多边形开始探索.(1)正三角形与正方形正方形的每个内角是90°,正三角形的每个内角是60°,对于某个拼结点处,设有x 个60°角,有y 个90°角,则:60x +90y =360即:2x +3y =12又x 、y 是正整数解得:x =3,y =2即:每个顶点处用正三角形的三个内角,正方形的两个内角进行拼接.(如下图)(2)正三角形与正六边形正三角形的每个内角是60°,正六边形的每个内角是120°,对于某个拼结点处,设有x 个60°角,有y 个120°角,即:60x +120y =360°即x +2y =6x 、y 是正整数解得:⎩⎨⎧==⎩⎨⎧==2214y x y x 或 即:每个顶点处用四个正三角形和一个正六边形,或者用二个正三角形和两个正六边形,如下图.(3)正三角形和正十二边形与前一样讨论,得每个顶点处用一个正三角形和两个正十二边形由以上讨论可找到镶嵌平面的条件.结论:由n种正多边形组合起来镶嵌成一个平面的条件:(1)n个正多边形中的一个内角的和的倍数是360°;(2)n个正多边形的边长相等,或其中一个或n个正多边形的边长是另一个或n个正多边形的边长的整数倍.。
初中数学八年级《平面图形的密铺》教案附教学反思平面图形的密铺一、设计意图:平面图形的密铺这一节是新课标中增加的内容,在新课标中明确指出本节课的目的是让学生通过探索平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用这几种图形进行简单的镶嵌设计。
可以看出,新课标对此内容的知识要求并不高,主要是让学生在课堂教学中经历探索多边形密铺条件的过程,从而发展学生的合情推理能力、合作交流意识和一定的审美情趣,进一步体会平面图形在现实生活中的广泛应用性和普遍存在性。
基于此,本节课的教学设计,主要采用观察、实际操作、合作设计等各种手段,在借助图形直观进行合情推理的过程中,增强学生的探究好奇心,加深对数学的理解,激发出潜在的创造力,逐步形成创新意识.本节课的教学目标:(1)经历探索多边形密铺(镶嵌)条件的过程,进一步发展学生的合情推理能力。
(2)通过探索平面图形的密铺,知道任意一个三角形、四边形或正六边形可以密铺,并能运用这几种图形进行简单的密铺设计。
( 3)在探索活动中,培养学生的合作交流意识和一定的审美情感,使学生进一步体会平面图形在现实生活中的广泛应用。
(4)在探索性活动中,开发、培养学生的创造性思维,使其理论联系实际。
教学重点是多边形密铺的条件,难点是运用三角形、四边形或正六边形进行简单的密铺设计。
b5E2RGbCAP二、设计方案:1、情景导入:(展示一组校园的地面、墙面图片)师:展示的图片都是我们美丽校园的一部分,图片上的地面、墙面,漂亮吗?生齐:漂亮。
师:(揭示平面图形密铺的定义)很好,这种用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙,不重叠地铺成一片,就是平面图形的密铺。
请大家寻找身边存在的密铺现象。
p1EanqFDPw 生 1:教室的天花板是由平面图形密铺得到的。
生2:有的格子花布,窗帘。
生3:有的包上也存在平面图形的密铺。
师:是的,平面图形的密铺在生活中处处存在。
---------------------------------------------------------------最新资料推荐------------------------------------------------------
八年级数学平面图形的密铺
平面图形的密铺教学目标 (一)教学知识点:
1.了解平面图形的密铺的含义.
2.掌握哪些平面图形可以密铺,密铺的理由及简单的密铺设计. (二)能力训练要求:
1.经历探索多边形密铺(镶嵌)条件的过程,进一步发展学生的合情推理能力.
2.通过探索平面图形的密铺,知道任意一个三角形、四边形或正六边形可以密铺,并能运用这几种图形进行简单的密铺设计. (三)情感与价值观要求:
平面图形的密铺是体现电冰箱在现实生活中应用的一个方面;也是开发、培养学生创造性思维的一个重要渠道。
教学重点:
三角形、四边形和正六边形可以密铺。
教学难点:
用同一种平面图形或者几种平面图形可以密铺的条件。
教学过程:
一.巧设情景问题,引入课题我们经常能见到各种建筑物的地板,观察地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.(展示各种地板图片)这些地板漂亮吗?这种用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙,不重叠地铺成一片,这就是平面图形的密铺. 这节课我们来探索平面图形的密铺. 二.讲授新课平面图形的密铺,又称做平面图形的镶
1 / 5
嵌,在平面上密铺需注意:
各种图形拼接后要既无缝隙,又不重叠.那我们先来探索多边形密铺的条件,大家拿出准备好的剪刀和硬纸片分组来做一做:
(1)用形状、大小完全相同的三角形能否密铺? (2)用同一种四边形可以密铺吗?用硬纸板剪制若干形状、大小完全相同的四边形做实验,并与同伴交流. (3)在用三角形密铺的图案中,观察每个拼接点处有几个角?它们与这种三角形的三个内角有什么关系? (4)在用四边形密铺的图案中,观察每个拼接点处的四个角与这种四边形的四个内角有什么关系? (学生动手制作、教师强调:大家要注意:
三角形、四边形的形状,可以是任意的,但裁剪出的每种图形一定是全等形.) (学生分组拼接、讨论,寻找规律,教师巡视指导) 1.用形状、大小完全相同的三角形可以密铺.因为三角形的内角和为180 ,所以,用 6 个这样的三角形就可以组合起来镶嵌成一个平面. 从用三角形密铺的图案中,观察到:
每个拼接点处有 6 个角,这6 个角分别是这种三角形的内角(其中有三组分别相等),它们可以组成两个三角形的内角,它们的和为 360 . 2.用同一种四边形也可以密铺,在用四边形密铺的图案中,观察到:
每个拼接点处的四个角恰好是一个四边形的四个内角.四边形的内角和为 360 ,所以它们的和为 360 . 3.从拼接活动中,我们知道了:
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 要用几个形状、大小完全相同的图形不留空隙、不重叠地密铺一个平面,需使得拼接点处的各角之和为 360 . 通过探索活动,我们得知:
用形状、大小完全相同的四边形或三角形可以密铺一个平面,那么其他的多边形能否密铺?下面大家来想一想,议一议:
(1)正六边形能否密铺?简述你的理由. (2)分析如下图,讨论正五边形不能密铺. (3)还能找到能密铺的其他正多边形吗?(学生分析、讨论、归纳) 小节:
要用正多边形镶嵌成一个平面的关键是看:
这种正多边形的一个内角的倍数是否是 360 ,在正多边形里,正三角形的每个内角都是 60 ,正四边形的每个内角都是 90 ,正六边形的每个内角都是120 ,这三种多边形的一个内角的倍数都是360 ,而其他的正多边形的每个内角的倍数都不是 360 ,所以说:在正多边形里只有正三角形、正四边形、正六边形可以密铺,而其他的正多边形不可密铺.一般三角形、四边形也可以密铺.虽然它们的内角未必都相等. 三.课堂练习:
(一)课本 P114随堂练习如图,在一个正方形的内部按图示(1)的方式剪去一个正三角形,并平移,形成如图(2)所示的新图案,以这个图案为基本单位能否进行密铺?说说理由. 2.利用习题 3.7 第三题所得的鱼形图案能否密铺?根据上面的思路,自己独立设计一个可以密铺的基本单位图形. 答案:
3 / 5
可以密铺. (二)试一试:
同时用边长相同的正八边形和正方形能否密铺?用硬纸板为材料进行实验.答案:
可以密铺四. .课时小结本节课我们通过活动,探讨,知道任意一个三角形,四边形或正六边形可以镶嵌成一个平面,并且探索出正多边形密铺的条件.即:
一种正多边形的一个内角的倍数是否是 360 . 五.课后作业课本 P115习题 4.13 1、 2、 3 六.课后探索:
探索用两种正多边形镶嵌平面的条件. 过程:
让学生先从简单的两种正多边形开始探索. (1)正三角形与正方形正方形的每个内角是 90 ,正三角形的每个内角是 60 ,对于某个拼结点处,设有 x 个 60 角,有 y 个 90 角,则:
60x+90y=360 即:
2x+3y=12 又 x、 y 是正整数解得:
x=3,y=2 即:
每个顶点处用正三角形的三个内角,正方形的两个内角进行拼接.(如下图) (2)正三角形与正六边形正三角形的每个内角是60 ,正六边形的每个内角是 120 ,对于某个拼结点处,设有 x 个60 角,有 y 个 120 角,即:
60x+120y=360 即 x+2y=6 x、 y 是正整数解得:
或即:
每个顶点处用四个正三角形和一个正六边形,或者用二个正三
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 角形和两个正六边形,如下图. (3)正三角形和正十二边形与前一样讨论,得每个顶点处用一个正三角形和两个正十二边形由以上讨论可找到镶嵌平面的条件. 结论:
由 n 种正多边形组合起来镶嵌成一个平面的条件:
(1)n 个正多边形中的一个内角的和的倍数是 360 ; (2)n 个正多边形的边长相等,或其中一个或 n 个正多边形的边长是另一个或 n 个正多边形的边长的整数倍.
5 / 5。