高二精选题库数学 课堂训练10-4北师大版
- 格式:doc
- 大小:72.50 KB
- 文档页数:5
北师大版高二数学练习册试题及答案【一】1.下列说法中不正确的是()A.数列a,a,a,…是无穷数列B.1,-3,45,-7,-8,10不是一个数列C.数列0,-1,-2,-3,…不一定是递减数列D.已知数列{an},则{an+1-an}也是一个数列解析:选B.A,D显然正确;对于B,是按照一定的顺序排列的一列数,是数列,所以B 不正确;对于C,数列只给出前四项,后面的项不确定,所以不一定是递减数列.故选B.2.已知数列{an}的通项公式为an=1+(-1)n+12,则该数列的前4项依次为()A.1,0,1,0B.0,1,0,1C.12,0,12,0D.2,0,2,0解析:选A.当n分别等于1,2,3,4时,a1=1,a2=0,a3=1,a4=0.3.已知数列{an}的通项公式是an=2n2-n,那么()A.30是数列{an}的一项B.44是数列{an}的一项C.66是数列{an}的一项D.90是数列{an}的一项解析:选C.分别令2n2-n的值为30,44,66,90,可知只有2n2-n=66时,n=6(负值舍去),为正整数,故66是数列{an}的一项.4.已知数列的通项公式是an=2,n=1,n2-2,n≥2,则该数列的前两项分别是()A.2,4B.2,2C.2,0D.1,2解析:选B.当n=1时,a1=2;当n=2时,a2=22-2=2.5.如图,各图形中的点的个数构成一个数列,该数列的一个通项公式是()A.an=n2-n+1B.an=n(n-1)2C.an=n(n+1)2D.an=n(n+2)2解析:选C.法一:将各图形中点的个数代入四个选项便可得到正确结果.图形中,点的个数依次为1,3,6,10,代入验证可知正确答案为C.法二:观察各个图中点的个数,寻找相邻图形中点个数之间的关系,然后归纳一个通项公式.观察点的个数的增加趋势可以发现,a1=1×22,a2=2×32,a3=3×42,a4=4×52,所以猜想an=n(n+1)2,故选C.6.若数列{an}的通项满足ann=n-2,那么15是这个数列的第________项.解析:由ann=n-2可知,an=n2-2n.令n2-2n=15,得n=5.答案:57.已知数列{an}的前4项为11,102,1003,10004,则它的一个通项公式为________.解析:由于11=10+1,102=102+2,1003=103+3,10004=104+4,…,所以该数列的一个通项公式是an=10n+n.答案:an=10n+n8.已知数列{an}的通项公式为an=2017-3n,则使an>0成立的正整数n的值为________.解析:由an=2017-3n>0,得n答案:6729.已知数列{n(n+2)}:(1)写出这个数列的第8项和第20项;(2)323是不是这个数列中的项?如果是,是第几项?解:(1)an=n(n+2)=n2+2n,所以a8=80,a20=440.(2)由an=n2+2n=323,解得n=17.所以323是数列{n(n+2)}中的项,是第17项.10.已知数列2,74,2,…的通项公式为an=an2+bcn,求a4,a5.解:将a1=2,a2=74代入通项公式,得a+bc=2,4a+b2c=74,解得b=3a,c=2a,所以an=n2+32n,所以a4=42+32×4=198,a5=52+32×5=145.[B能力提升]11.已知数列{an}的通项公式为an=sinnθ,0解析:a3=sin3θ=12,又0答案:1212.“中国剩余定理”又称“孙子定理”.1852年英国来华传教士伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{an},则此数列的项数为________.解析:能被3除余1且被5除余1的数就是能被15整除余1的数,故an=15n-14.由an=15n-14≤2017得n≤135.4,当n=1时,此时a1=1,不符合,故此数列的项数为135-1=134.答案:13413.在数列{an}中,a1=3,a17=67,通项公式是关于n的一次函数.(1)求数列{an}的通项公式;(2)求a2016;(3)2017是否为数列{an}中的项?若是,为第几项?解:(1)设an=kn+b(k≠0).由a1=3,且a17=67,得k+b=317k+b=67,解之得k=4且b=-1.所以an=4n-1.(2)易得a2016=4×2016-1=8063.(3)令2017=4n-1,得n=20184=10092∉N+,所以2017不是数列{an}中的项.14.(选做题)已知数列9n2-9n+29n2-1,(1)求这个数列的第10项;(2)98101是不是该数列中的项,为什么?(3)求证:数列中的各项都在区间(0,1)内;(4)在区间13,23内是否有数列中的项?若有,有几项?若没有,说明理由.解:(1)设an=9n2-9n+29n2-1=(3n-1)(3n-2)(3n-1)(3n+1)=3n-23n+1.令n=10,得第10项a10=2831.(2)令3n-23n+1=98101,得9n=300.此方程无正整数解,所以98101不是该数列中的项.(3)证明:因为an=3n-23n+1=3n+1-33n+1=1-33n+1,又n∈N+,所以0所以数列中的各项都在区间(0,1)内.(4)令13所以n>76,n当且仅当n=2时,上式成立,故区间13,23内有数列中的项,且只有一项为a2=47.【二】1.为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为()A.50B.40C.25D.20解析:选C.根据系统抽样的特点,可知分段间隔为100040=25.2.某城区有农民、工人、知识分子家庭共计2000户,其中农民家庭1800户,工人家庭100户,知识分子家庭100户.现要从中抽取容量为40的样本,以调查家庭收入情况,则在整个抽样过程中,可以用到的抽样方法有()①简单随机抽样;②系统抽样;③分层抽样.A.②③B.①③C.③D.①②③解析:选 D.由于各类家庭有明显差异,所以首先应用分层抽样的方法分别从三类家庭中抽出若干户.又由于农民家庭户数较多,那么在农民家庭这一层宜采用系统抽样;而工人、知识分子家庭户数较少,宜采用简单随机抽样.故整个抽样过程要用到①②③三种抽样方法.3.从2004名学生中选取50名组成参观团,若采用下面的方法选取:先利用简单随机抽样从2004人中剔除4人,剩下的2000人再按系统抽样的方法进行,则每人入选的机会() A.不全相等B.均不相等C.都相等D.无法确定解析:选C.系统抽样是等可能的,每人入样的机率均为502004.4.总体容量为524,若采用系统抽样,当抽样的间距为下列哪一个数时,不需要剔除个体()A.3B.4C.5D.6解析:选B.由于只有524÷4没有余数,故选B.5.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为() A.11B.12C.13D.14解析:选B.法一:分段间隔为84042=20.设在1,2,…,20中抽取的号码为x0,在[481,720]之间抽取的号码记为20k+x0,则481≤20k+x0≤720,k∈N*,所以24120≤k+x020≤36.因为x020∈120,1,所以k=24,25,26, (35)所以k值共有35-24+1=12(个),即所求人数为12.法二:使用系统抽样的方法,从840人中抽取42人,即每20人中抽取1人,所以在区间[481,720]抽取的人数为720-48020=12.6.为了了解1203名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,现采用选取的号码间隔一样的系统抽样方法来确定所选取样本,则抽样间隔k=________.解析:由于120340不是整数,所以从1203名学生中随机剔除3名,则抽样间隔k=120040=30.答案:307.某高三(1)班有学生56人,学生编号依次为01,02,03,…,56.现用系统抽样的方法抽取一个容量为4的样本,已知编号为06,34,48的同学在样本中,那么样本中另一位同学的编号应该是________.解析:由于系统抽样的样本中个体编号是等距的,且间距为564=14,所以样本编号应为06,20,34,48.答案:208.为了了解学生对某网络游戏的态度,高三(11)班计划在全班60人中展开调查.根据调查结果,班主任计划采用系统抽样的方法抽取若干名学生进行座谈,为此先对60名学生进行编号:01,02,03,…,60.已知抽取的学生中最小的两个编号为03,09,则抽取的学生中的编号为________.解析:由最小的两个编号为03,09可知,抽样距为k=9-3=6,而总体容量N=60,所以样本容量n=Nk=10,即抽取10名同学,的编号为第10组抽取的个体的编号,故编号为3+9×6=57.答案:579.某批产品共有1564件,产品按出厂顺序编号,号码从1到1564,检测员要从中抽取15件产品做检测,请你给出一个系统抽样方案.解:(1)先从1564件产品中,用简单随机抽样的方法抽出4件产品,将其剔除.(2)将余下的1560件产品编号:1,2,3, (1560)(3)取k=156015=104,将总体均分为15组,每组含104个个体.(4)从第一组,即1号到104号利用简单随机抽样法抽取一个编号s.(5)按编号把s,104+s,208+s,…,1456+s共15个编号选出,这15个编号所对应的产品组成样本.10.下面给出某村委会调查本村各户收入情况做的抽样,阅读并回答问题.本村人口数:1200,户数300,每户平均人口数4人;应抽户数:30;抽样间隔:120030=40;确定随机数字:从标有1~30的号码中随机抽取一张,为12.确定第一样本户:编号12的户为第一样本户;确定第二样本户:12+40=52,52号为第二样本户;…(1)该村委会采用了何种抽样方法?(2)抽样过程存在哪些问题?试修改;(3)何处是用简单随机抽样?解:(1)系统抽样.(2)本题是对某村各户进行抽样,而不是对某村人口抽样.抽样间隔30030=10,其他步骤相应改为确定随机数字:从标有1~10的号码中随机抽取一张,为2.(假设)确定第一样本户:编号02的住户为第一样本户;确定第二样本户:2+10=12,12号为第二样本户.(3)确定随机数字:从标有1~30的号码中随机抽取一张,为12.[B能力提升]11.为了检测125个电子元件的质量,欲利用系统抽样的方法从中抽取容量为1Δ(Δ中的数字被墨水污染,无法分辨)的样本进行检测,若在抽样时首先利用简单随机抽样剔除了5个个体,则Δ中的数字有()A.1种可能B.2种可能C.3种可能D.4种可能解析:选C.由于125-5=120=10×12=15×8,故有3种可能,分别为0,2,5.12.已知某种型号的产品共有N件,且40<N<50,现需要利用系统抽样抽取样本进行质量检测,若样本容量为7,则不需要剔除;若样本容量为8,则需要剔除1个个体,则N=________.解析:因为样本容量为7时,不需要剔除,所以总体的容量N为7的倍数,又40<N <50,所以N=42或49.若N=42,因为42除以8的余数为2,所以当样本容量为8时,需要剔除2个个体,不符合题意;若N=49,因为49除以8的余数为1,所以当样本容量为8时,需要剔除1个个体,满足题意,故N=49.答案:4913.为了调查某路口一个月的车流量情况,*采用系统抽样的方法,样本距为7,从每周中随机抽取一天,他正好抽取的是星期日,经过调查后做出报告.你认为*这样的抽样方法有什么问题?应当怎样改进?如果是调查一年的车流量情况呢?解:*所统计的数据以及由此所推断出来的结论,只能代表星期日的交通流量.由于星期日是休息时间,很多人不上班,不能代表其他几天的情况.改进方法可以将所要调查的时间段的每一天先随机地编号,再用系统抽样方法来抽样,或者使用简单随机抽样来抽样亦可.如果是调查一年的交通流量,使用简单随机抽样法显然已不合适,比较简单可行的方法是把样本距改为8.14.(选做题)一个总体中的1000个个体编号为0,1,2,…,999,并依次将其均分为10个小组,组号为0,1,2,…,9,要用系统抽样方法抽取一个容量为10的样本,规定如果在第0组随机抽取的号码为x,那么依次错位地得到后面各组的号码,即第k组中抽取的号码的后两位数为x+33k的后两位数.(1)当x=24时,写出所抽取样本的10个号码;(2)若所抽取样本的10个号码中有一个的后两位数是87,求x的取值范围.解:(1)由题意知此系统抽样的间隔是100,根据x=24和题意得,24+33×1=57,第1组抽取的号码是157;由24+33×2=90,则在第2组抽取的号码是290,…故依次是24,157,290,323,456,589,622,755,888,921.(2)由x+33×0=87得x=87,由x+33×1=87得x=54,由x+33×2=87,得x=21,由x+33×3=187得x=88…,依次求得x值可能为21,22,23,54,55,56,87,88,89,90.。
第2章 第1节时间:45分钟 满分:100分一、选择题(每小题7分,共42分)1. [2012·浙江嘉兴一中模拟]设集合M ={x |-2≤x ≤2},N ={y |0≤y ≤2},给出下列四个图形,其中能表示以集合M 为定义域,N 为值域的函数关系的是( )答案:B解析:利用函数的定义,要求定义域内的任一变量都有唯一的函数值与之对应,A 中(0,2]没有函数值,C 中函数值不唯一,D 中的值域不是N ,所以选B.2. 已知f :x →-sin x 是集合A (A ⊆[0,2π])到集合B ={0,12}的一个映射,则集合A 中的元素个数最多有( )A. 4个B. 5个C. 6个D. 7个答案:B解析:A ⊆[0,2π],由-sin x =0得x =0,π,2π;由-sin x =12得x =7π6,11π6,∴A 中最多有5个元素.3. 定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 2(4-x ), x ≤0f (x -1)-f (x -2), x >0,则f (3)的值为( )A. -1B. -2C. 1D. 2答案:B解析:f (3)=f (3-1)-f (3-2)=f (2)-f (1) =f (2-1)-f (2-2)-f (1)=f (1)-f (0)-f (1)=-f (0)=-log 24=-2.4. [2012·天津模拟]若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为f (x )=x 2,值域为{1,4}的“同族函数”共有 ( )A. 7个B. 8个C. 9个D. 10个答案:C解析:先确定定义域的构成元素,再分类计数得到满足条件的定义域. 由已知x 2=1,得x =±1; x 2=4,得x =±2.∴“同族函数”的定义域必须是由±1,±2两组数中至少各取一个构成的集合. 当定义域中有两个元素时有{-1,-2},{-1,2},{1,-2},{1,2}共4个. 有三个元素时有{-1,-2,2},{-1,-2,1},{-1,2,1},{-2,2,1}共4个. 有四个元素时有{-2,-1,1,2}1个. 综上共有:4+4+1=9个.5. [2012·福建省宁德市模拟]若函数y =mx -1mx 2+4mx +3的定义域为R ,则实数m 的取值范围是( )A. (0,34]B. (0,34)C. [0,34]D. [0,34)答案:D解析:∵y =mx -1mx 2+4mx +3的定义域为R ,当m =0,∴mx 2+4mx +3=3满足题意. 当m >0时,Δ=16m 2-12m <0, 解得0<m <34,当m <0时,Δ=16m 2-12m <0,无解. 综上,0≤m <34,即m ∈[0,34).6. [2012·宁波市“十校联考”]设集合A =[0,12),B =[12,1],函数f (x )=⎩⎪⎨⎪⎧x +12,x ∈A 2(1-x ),x ∈B ,若x 0∈A ,且f [f (x 0)]∈A ,则x 0的取值范围是( )A. (0,14]B. (14,12)C. (14,12]D. [0,38]答案:B解析:因为f [f (x 0)]=f (x 0+12)=2(1-x 0-12)=1-2x 0,所以0≤1-2x 0<12,故14<x 0≤12,又x 0∈A ,所以14<x 0<12.二、填空题(每小题7分,共21分)7. 如图,函数f (x )的图像是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f [1f (3)]的值等于__________.答案:2解析:f [1f (3)]=f (1)=2.8. (1)若2f (x )-f (-x )=x +1,则f (x )=__________;(2)若函数f (x )=xax +b ,f (2)=1,又方程f (x )=x 有唯一解,则f (x )=__________.答案:(1)x 3+1 (2)2xx +2解析:(1)∵2f (x )-f (-x )=x +1,用-x 去替换式子中的x , 得2f (-x )-f (x )=-x +1,即有⎩⎪⎨⎪⎧2f (x )-f (-x )=x +12f (-x )-f (x )=-x +1,解方程组消去f (-x ),得f (x )=x3+1.(2)由f (2)=1得22a +b =1,即2a +b =2;由f (x )=x 得x ax +b =x ,变形得x (1ax +b-1)=0,解此方程得x =0或x =1-b a ,又∵方程有唯一解,∴1-b a =0,解得b =1,代入2a +b =2得a =12,∴f (x )=2xx +2.9. [2012·南通六校联考(一)]定义新运算“⊕”如下:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2.设函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2],则函数f (x )的值域为__________.答案:[-4,6]解析:由题意知f (x )=⎩⎪⎨⎪⎧x -2,x ∈[-2,1]x 3-2,x ∈(1,2],当x ∈[-2,1]时,f (x )∈[-4,-1],当x∈(1,2]时,f (x )∈(-1,6],故当x ∈[-2,2]时,f (x )∈[-4,6].三、解答题(10、11题12分、12题13分)10. (1)已知f (x )的定义域为[0,1),求函数f (x +1)及f (x 2)的定义域; (2)已知f (x 2-3)=lg x 2x 2-6,求f (x )的定义域.解:(1)依题意,0≤x +1<1,∴-1≤x <0, ∴f (x +1)的定义域为[-1,0).由0≤x 2<1得-1<x <1,∴f (x 2)的定义域为(-1,1). (2)令u =x 2-3,则f (x )的定义域就是u 的值域. 要使lg x 2x 2-6有意义,只需x 2>6,即x 2-3>3,∴u >3, 即f (x )的定义域是(3,+∞).11.如图,在△AOB 中,点A (2,1),B (3,0),点E 在射线OB 上自O 开始移动.设OE =x ,过E 作OB 的垂线l ,记△AOB 在直线l 左边部分的面积为S ,试写出S 与x 的函数关系式,并画出大致的图像.解:当0≤x ≤2时,△OEF 的高EF =12x ,∴S =12x ·12x =14x 2;当2<x ≤3时,△BEF 的高EF =3-x ,∴S =12×3×1-12(3-x )·(3-x )=-12x 2+3x -3;当x >3时,S =32.所以S =f (x )=⎩⎪⎨⎪⎧x 24(0≤x ≤2)-12x 2+3x -3(2<x ≤3).32(x >3)函数图像如图所示.12. 定义在正整数集上的函数f (x )对任意m ,n ∈N *,都有f (m +n )=f (m )+f (n )+4(m +n )-2,且f (1)=1.(1)求函数f (x )的表达式;(2)若m 2-tm -1≤f (x )对于任意的m ∈[-1,1],x ∈N *恒成立,求实数t 的取值范围. 解:(1)取m =1,则有f (n +1)-f (n )=f (1)+4(1+n )-2=4n +3,当n ≥2时,f (n )=f (1)+[f (2)-f (1)]+[f (3)-f (2)]+…+[f (n )-f (n -1)]=2n 2+n -2, 又f (1)=1,∴f (x )=2x 2+x -2(x ∈N *). (2)f (x )=2(x +14)2-178,∴x =1时f (x )min =1,由条件得m 2-tm -1≤1在m ∈[-1,1]上恒成立,即m 2-tm -2≤0, 若m =0,则t ∈R ,若0<m ≤1,则t ≥m -2m ,即t ≥-1,若-1≤m <0,则t ≤m -2m ,即t ≤1,综上-1≤t ≤1.。
第5章 第4节时间:45分钟 满分:100分一、选择题(每小题7分,共42分)1. 数列{a n }、{b n }满足a n b n =1,a n =n 2+3n +2,则{b n }的前10项之和为( ) A. 13B. 512C. 12D. 712答案:B解析:b n =1a n =1(n +1)(n +2)=1n +1-1n +2,S 10=b 1+b 2+b 3+…+b 10=12-13+13-14+14-15+…+111-112=12-112=512. 2.数列1,11+2,11+2+3,…,11+2+…+n,…的前n 项和为( ) A.2n2n +1 B.2nn +1 C.n +2n +1D.n2n +1 答案:B 解析:a n =11+2+…+n =2n (n +1)=2n -2n +1,∴S n =(21-22)+(22-23)+(23-24)+…+(2n -2n +1)=2(1-1n +1)=2nn +1.3. [原创题]已知数列{a n }的前n 项的乘积为T n =3n 2(n ∈N *),则数列{a n }的前n 项的和为( )A. 32(3n -1)B. 92(3n -1) C. 38(9n -1) D. 98(9n -1)答案:C解析:当n =1时,a 1=T 1=3,当n ≥2时,a n =T n T n -1=3n 23(n -1)2=32n -1,当n =1时也适合上式,所以当n ∈N *时,a n =32n -1,于是前n 项的和S n =3(1-9n )1-9=38(9n-1),故选C.4. 已知数列{a n }的通项公式是a n =2n -12n ,其前n 项和S n =32164,则项数n 等于( )A. 13B. 10C. 9D. 6答案:D解析:∵a n =2n -12n =1-12n ,∴S n =(1-12)+(1-14)+(1-18)+…+(1-12n )=n -(12+14+18+…+12n )=n -12[1-(12)n ]1-12=n -1+12n ,令n -1+12n =32164,可得n =6.5.[2012·皖南联考]今年“十一”迎来祖国62周年华诞,北京十家重点公园将举行免费游园活动,北海公园免费开放一天,早晨6时30分有2人进入公园,接下来的第一个30分钟内有4人进去1人出来,第二个30分钟内有8人进去2人出来,第三个30分钟内有16人进去3人出来,第四个30分钟内有32人进去4人出来……按照这种规律进行下去,到上午11时30分公园内的人数是( )A .211-47 B .212-57 C .213-68 D .214-80答案:B解析:由题意可知,从早晨6时30分开始,接下来的每个30分钟内进入的人数构成以4为首项,2为公比的等比数列,出来的人数构成以1为首项,1为公差的等差数列,记第n 个30分钟内进入公园的人数为a n ,第n 个30分钟内出来的人数为b n ,则a n =4×2n -1,b n=n ,则上午11时30分公园内的人数为S =2+4(1-210)1-2-10(1+10)2212-57,所以答案为B.6. 设f (x )是定义在R 上恒不为0的函数,对任意x ,y ∈R ,都有f (x )·f (y )=f (x +y ),若a 1=12,a n =f (n )(n 为常数),则数列{a n }的前n 项和S n 的取值范围是( )A. [12,2)B. [12,2]C. [12,1]D. [12,1)答案:D解析:f (2)=f 2(1),f (3)=f (1)f (2)=f 3(1), f (4)=f (1)f (3)=f 4(1),a 1=f (1)=12,∴f (n )=(12)n ,S n =12(1-12n )1-12=1-12n ∈[12,1).二、填空题(每小题7分,共21分)7. 若数列{a n }是正项数列,且a 1+a 2+…+a n =n 2+3n (n ∈N *),则a 12+a 23+…+ann +1=__________.答案:2n 2+6n解析:令n =1得a 1=4,即a 1=16,当n ≥2时,a n =(n 2+3n )-[(n -1)2+3(n -1)]=2n +2,所以a n =4(n +1)2,当n =1时,也适合,所以a n =4(n +1)2(n ∈N *).于是a n n +1=4(n +1),故a 12+a 23+…+an n +1=2n 2+6n .8. 对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,{a n }的“差数列”的通项为2n,则数列{a n }的前n 项和S n =__________.答案:2n +1-2解析:由题意知a n +1-a n =2n ,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+2=2-2n1-2+2=2n -2+2=2n .∴S n =2-2n +11-2=2n +1-2.9.等差数列{a n }的公差不为零,a 4=7,a 1,a 2,a 5成等比数列,数列{T n }满足条件T n=a 2+a 4+a 8+…+a 2n ,则T n =________.答案:2n +2-n -4解析:设{a n }的公差为d ≠0,由a 1,a 2,a 5成等比数列, 得a 22=a 1a 5,即(7-2d )2=(7-3d )(7+d ) ∴d =2或d =0(舍去). ∴a n =7+(n -4)×2=2n -1. 又a 2n =2·2n -1=2n +1-1,∴T n =(22-1)+(23-1)+(24-1)+…+(2n +1-1) =(22+23+…+2n +1)-n =2n +2-n -4.三、解答题(10、11题12分、12题13分)10.[2012·福建质检一]在等差数列{a n }中,a 1=1,S n 为前n 项和,且满足S 2n -2S n =n 2,n ∈N *.(1)求a 2及{a n }的通项公式;(2)记b n =n +qa n (q >0),求{b n }的前n 项和T n .解:(1)令n =1,由S 2n -2S n =n 2得S 2-2S 1=12,即a 1+a 2-2a 1=1.又∵a 1=1,∴a 2=2,∴公差d =1. ∴a n =1+(n -1)·1=n . (2)由(1)得b n =n +q n ,若q ≠1,则T n =(1+2+3+…+n )+(q 1+q 2+…+q n)=n (n +1)2+q (1-q n )1-q.若q =1,则b n =n +1,T n =n ·(b 1+b n )2=n (n +3)2.11. 等差数列{a n }的各项均为正数,a 1=3,前n 项和为S n ,{b n }为等比数列,b 1=1,且b 2S 2=64,b 3S 3=960.(1)求a n 与b n ; (2)求1S 1+1S 2+…+1S n.解:(1)设{a n }的公差为d ,{b n }的公比为q ,则d 为正数, a n =3+(n -1)d ,b n =q n -1.依题意有⎩⎪⎨⎪⎧S 2b 2=(6+d )q =64,S 3b 3=(9+3d )q 2=960,解得⎩⎪⎨⎪⎧d =2q =8或⎩⎨⎧d =-65,q =403(舍去)故a n =3+2(n -1)=2n +1,b n =8n -1. (2)S n =3+5+…+(2n +1)=n (n +2), 所以1S 1+1S 2+…+1S n=11×3+12×4+13×5+…+1n (n +2)=12(1-13+12-14+13-15+…+1n -1n +2) =12(1+12-1n +1-1n +2) =34-2n +32(n +1)(n +2)12. 已知函数f (x )对任意实数p ,q 都满足:f (p +q )=f (p )·f (q ),且f (1)=13.(1)当n ∈N *时,求f (n )的表达式;(2)设a n =nf (n )(n ∈N *),S n 是数列{a n }的前n 项的和,求证:S n <34(3)设b n =nf (n +1)f (n )(n ∈N *),数列{b n }的前n 项和为T n ,试比较1T 1+1T 2+1T 3+…+1T n与6的大小.解:(1)由题意知,f (n +1)=f (n )·f (1),f (1)=13,∴f (n +1)=13f (n )(n ∈N *),∴数列{f (n )}(n ∈N *)是以f (1)=13为首项,13为公比的等比数列,∴f (n )=13×(13)n -1,即f (n )=(13)n (n ∈N *).(2)由(1)知,a n =n (13)n ,则S n =1×13+2×(132+3×(13)3+…+(n -1)(13)n -1+n (13)n ,①13S n =1×(13)2+2×(13)3+3×(13)4+…+(n -1)(13)n +n (13)n +1,② ①-②得:23S n =13+(13)2+(13)3+…+(13)n -n (13)n +1 =13[1-(13)n]1-13-n (13)n +1=12[1-(13)n ]-n (13)n +1, ∴S n =34-34(13)n -n 2(13)n .∵n ∈N *,∴S n <34.(3)由题意知,b n =nf (n +1)f (n )=13n ,则T n =13×n (n +1)2=n (n +1)6,∴1T n =6(1n -1n +1).∴1T 1+1T 2+1T 3+…+1T n =6(1-12+12-13+13-14+…+1n -1n +1)=6(1-1n +1). ∵n ∈N *,∴1T 1+1T 2+1T 3+…+1T n<6.。
课时作业4一、选择题1.由1、4、5、x四个数字组成没有重复数字的四位数,若所有这些四位数各位上的数字之和为288,则数字x等于()A.1B.2C.3 D.6【解析】共有不同的四位数24个,每个四位数各位上的和都是1+4+5+x=10+x,∴24(10+x)=288,解得x=2.【答案】 B2.从8人中选3人排队,其中甲乙不分开参排,若参排,就一定排在一起,其不同的排法共有()A.252种B.278种C.144种D.362种【解析】根据甲、乙的参排情况加以分类.若甲乙不参排,不同的排法有A36=120种;若甲、乙参排,不同的排法有A16A22A22=24种;所以共有不同的排法120+24=144种,即选择C.【答案】 C3.(2012·北京高考)从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A.24B.18C.12D.6【解析】当选0时,先从1,3,5中选2个数字有3种方法,然后从选中的2个数字中选1个排在末位有两种方法,剩余1个数字排在首位,共有3×2=6(种)方法;当选2时,先从1,3,5中选2个数字有3种方法,然后从选中的2个数字中选1个排在末位有两种方法,其余2个数字全排列,共有3×2A22=12(种)方法.依分类加法计数原理知共有6+12=18(个)奇数.【答案】 B4.若把英语单词“Look”的字母顺序写错了,则可能出现的错误的种数为() A.24 B.10C.9 D.11【解析】Look有两个相同字母,故可能出现错误A44-3A22·A22-1=11(种).本题也可列举求解.【答案】 D5.从0,1,3,5,7中取出不同的三个数作为一元二次方程ax2+bx+c=0的系数,其中有实数根的不同的一元二次方程有()A.16个B.17个C.18个D.19个【解析】方程有实根,需Δ=b2-4ac≥0.当c=0时,a,b可在1,3,5,7中任取两个,有A24个;当c≠0时,b只能取5,7,b取5时,a,c只能取1,3,共有A22个;b取7时,a,c可取1,3或1,5,有2A22个,所以有实数根的不同的一元二次方程共有A24+A22+2A22=18个.【答案】 C二、填空题6.把6位同学排成前后两排,每排3人,则不同排法共有________种(用数字作答).【解析】相当于6个人进行全排列,故有A66=6×5×4×3×2×1=720种排法.【答案】7207.显示屏上的七个小孔排成一排,每个小孔可以显示红、黄、蓝三种颜色,或不显示.若每次由其中三个小孔显示一组红、黄、蓝三色信号,但相邻的两个小孔不同时显示,则该显示屏能够显示的不同信号数为________.【解析】3个显示小孔不相邻,即在4个不显示的小孔的5个空当中插入3个显示的小孔,又因3个小孔显示的颜色不相同,故有A35=60种不同的信号数.【答案】608.从1、2、3、4,…,10十个数中任取两个数,分别做对数的底数与真数,可得到________个不同的对数值.【解析】从10个数中取出两个数的所有排列数为:A210=10×9=90.当1为底数时,不合题意的共有9个,共1为真数时,对数值都是零,应去掉8个,又因log23与log49同,log32与log94同,log24与log39同,log42与log93同.∴共有不同对数值90-9-8-4=69.【答案】69三、解答题图1-2-19.如图,某伞厂生产的“太阳”牌太阳伞蓬是由太阳光的七种颜色组成的,七种颜色分别涂在伞蓬的八个区域内,且恰有一种颜色涂在相对区域内,则不同的颜色图案的此类太阳伞至多有多少种?【解】如图,对8个区域进行编号,任选一组对称区域(如1与5)同色,用7种颜色涂8个区域的不同涂法有7!种,又由于1与5,2与6,3与7,4与8是对称的,通过旋转后5,6,7, 8,1,2,3,4与1,2,3,4,5,6,7,8是同一种涂色,即重复染色2次,故此种图案至多有7!2=2 520种.10.某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排法?【解】6门课总的排法是A66种,其中不符合要求的可分为:体育排在第一节有A55种排法;数学排在最后一节有A55种排法;但这两种方法,都包括体育在第一节,数学排在最后一节,这种情况有A44种排法,因此符合条件的排法应是:A66-2A55+A44=504种.11.用0,1,2,3,4这五个数字,可以组成多少个满足下列条件的没有重复数字的五位数.(1)被4整除.(2)比21 034大的偶数.(3)左起第二、四位是奇数的偶数.【解】(1)被4整除的数,其特征是末两位数是4的倍数,可分两类:当末两位数是20,40,04时,其排列数为3A33=18个,当末位数是12,24,32时,其排列数为3·A12A22=12个,故满足条件的五位数共有:3A33+3A12A22=30个.(2)可分五类:当末位数字是0,而首位数字是2时,有A12A22+A22=6个;当末位数字是0,而首位数字是3或4时,有A12A33=12个;当末位数字是2,而首位数字是3或4时,有A12A33=12个;当末位数字是4,而首位数字是2时,有A22+A11=3个;当末位数字是4,而首位数字是3时,有A33=6个.故有(A12A22+A22)+A12A33+A12A33+(A22+A11)+A33=39个.(3)可分两类,0是末位数有A22A22=4个,2或4是末位数有A22A12=4个,故共有A22A22+A22A12=8个.。
第6章 第7节时间:45分钟 满分:100分一、选择题(每小题7分,共42分)1. 证明1+12+13+14+…+12n <n +1(n >1),当n =2时,左边式子等于( )A. 1B. 1+12C. 1+12+13D. 1+12+13+14答案:D解析:当n =2时,左边的式子为 1+12+13+122=1+12+13+14.2.若命题A (n )(n ∈N *)在n =k (k ∈N *)时命题成立,则有n =k +1时命题成立.现知命题对n =n 0(n 0∈N *)时命题成立,则有( )A .命题对所有正整数都成立B .命题对小于n 0的正整数不成立,对大于或等于n 0的正整数都成立C .命题对小于n 0的正整数成立与否不能确定,对大于或等于n 0的正整数都成立D .以上说法都不正确 答案:C3. [2012·辽宁沈阳质检]用数学归纳法证明1+12+14+…+12n -1>12764(n ∈N *)成立,其初始值至少应取( )A. 7B. 8C. 9D. 10答案:B解析:左边=1+12+14…+12n -1=1-12n1-12=2-12n -1,代入验证可知n 的最小值是8.4.用数学归纳法证明“n 3+(n +1)3+(n +2)3,(n ∈N *)能被9整除”,要利用归纳假设证n =k +1时的情况,只需展开( )A .(k +3)3B .(k +2)3C .(k +1)3D .(k +1)3+(k +2)3答案:A解析:假设当n =k 时,原式能被9整除,即k 3+(k +1)3+(k +2)3能被9整除.当n =k +1时,(k +1)3+(k +2)3+(k +3)3为了能用上面的归纳假设,只需将(k +3)3展开,让其出现k 3即可.5. [2012·怀化模拟]用数学归纳法证明命题“当n 是正奇数时,x n +y n 能被x +y 整除”,在第二步时,正确的证法是( )A .假设n =k (k ∈N +),证明n =k +1命题成立B .假设n =k (k 是正奇数),证明n =k +1命题成立C .假设n =2k +1(k ∈N +),证明n =k +1命题成立D .假设n =k (k 是正奇数),证明n =k +2命题成立 答案:D解析:A 、B 、C 中,k +1不一定表示奇数,只有D 中k 为奇数,k +2为奇数. 6.已知数列{a n }的前n 项和S n =n 2a n (n ≥2),而a 1=1,通过计算a 2,a 3,a 4,则猜想a n 等于( )A.2(n +1)2B.2n (n +1)C.22n-1D.22n -1答案:B解析:由S n =n 2a n 知,S n +1=(n +1)2a n +1, 所以S n +1-S n =(n +1)2a n +1-n 2a n , 所以a n +1=(n +1)2a n +1-n 2a n , 所以a n +1=nn +2a n(n ≥2).当n =2时,S 2=4a 2,又S 2=a 1+a 2,所以a 2=a 13=13,a 3=24a 2=16,a 4=35a 3=110.由a 1=1,a 2=13,a 3=16,a 4=110猜想a n =2n (n +1),故选B.二、填空题(每小题7分,共21分)7.用数学归纳法证明“2n >n 2+1对于n ≥n 0的所有正整数n 都成立”时,第一步证明中的起始值n 0应取______.答案:5解析:当n =1时,2>2不成立;当n =2时,4>5不成立;当n =3时,8>10不成立;当n =4时,16>17不成立;当n =5时,32>26成立;当n =6时,64>37成立,由此猜测n 0应取5.8. [2012·淮南调研]若f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的递推关系式是________.答案:f (k +1)=f (k )+(2k +1)2+(2k +2)2解析:∵f (k )=12+22+…+(2k )2,∴f (k +1)=12+22+…+(2k )2+(2k +1)2+(2k +2)2, ∴f (k +1)=f (k )+(2k +1)2+(2k +2)2.9.如下图是一系列有机物的结构简图,图中的“小黑点”表示原子,两黑点间的“短线”表示化学键,则第n 个图中所含化学键的个数为________.答案:5n +1解析:每个结构简图去掉最左边的一个化学键后,每个环上有5个化学键,故第n 个结构简图有(5n +1)个化学键.可用数学归纳法验证该结论是否正确.三、解答题(10、11题12分、12题13分) 10.用数学归纳法证明:1+122+132+…+1n 2≥3n 2n +1(n ∈N *).证明:(1)当n =1时,左边=1,右边=1, n =2,左边=54,右边=65,∴左≥右,即命题成立.(2)假设当n =k (k ∈N *,k ≥1)时,命题成立, 即1+122+132+…+1k 2≥3k2k +1.那么当n =k +1时,要证1+122+132+…+1k 2+1(k +1)2≥3(k +1)2(k +1)+1, 只要证3k 2k +1+1(k +1)2≥3(k +1)2k +3. ∵3(k +1)2k +3-3k 2k +1-1(k +1)2=1-(k +1)2(k +1)2[4(k +1)2-1] =-k (k +2)(k +1)2(4k 2+8k +3)<0,∴3k 2k +1+1(k +1)2≥3(k +1)2k +3成立, 即1+122+132+…+1k 2+1(k +1)2≥3(k +1)2(k +1)+1成立. ∴当n =k +1时命题成立.由(1)、(2)知,不等式对一切n ∈N *均成立.11. [2012·浙江宁波]是否存在常数a 、b 、c 使等式12+22+32+…+n 2+(n -1)2+…+22+12=an (bn 2+c )对于一切n ∈N *都成立,若存在,求出a 、b 、c 并证明;若不存在,试说明理由.解:假设存在a 、b 、c 使12+22+32+…+n 2+(n -1)2+…+22+12=an (bn 2+c )对于一切n ∈N *都成立.当n =1时,a (b +c )=1; 当n =2时,2a (4b +c )=6; 当n =3时,3a (9b +c )=19. 解方程组⎩⎪⎨⎪⎧a (b +c )=1,a (4b +c )=3,3a (9b +c )=19,解得⎩⎪⎨⎪⎧a =13,b =2,c =1.证明如下:①当n =1时,由以上知存在常数a ,b ,c 使等式成立. ②假设n =k (k ∈N *)时等式成立,即12+22+32+…+k 2+(k -1)2+…+22+12=13k (2k 2+1);当n =k +1时,12+22+32+…+k 2+(k +1)2+k 2+(k -1)2+…+22+12=13k (2k 2+1)+(k +1)2+k 2 =13k (2k 2+3k +1)+(k +1)2 =13k (2k +1)(k +1)+(k +1)2 =13(k +1)(2k 2+4k +3) =13(k +1)[2(k +1)2+1]. 即n =k +1时,等式成立.因此存在a =13,b =2,c =1使等式对一切n ∈N *都成立.12. 已知数列{a n }中,a 1=2,a n +1=(2-1)(a n +2),n =1,2,3,…. (1)求数列{a n }的通项公式;(2)若数列{b n }中,b 1=2,b n +1=3b n +42b n +3n =1,2,3,…,证明:2<b n ≤a 4n -3,n =1,2,3,….解:(1)因为a n +1=(2-1)(a n +2)=(2-1)(a n -2)+(2-1)(2+2)=(2-1)(a n -2)+2,所以a n +1-2=(2-1)(a n -2).所以数列{a n -2}是首项为2-2,公比为 2-1的等比数列, 所以a n -2=2(2-1)n,即{a n }的通项公式a n =2[(2-1)n +1],n =1,2,3,…. (2)用数学归纳法证明:(ⅰ)当n =1时,因为2<2=b 1=a 1=2,所以2<b 1≤a 1,结论成立;(ⅱ)假设当n =k (k ≥1且k ∈N *)时,结论成立,即2<b k ≤a 4k -3,即0<b k -2≤a 4k -3- 2. 当n =k +1时,b k +1-2=3b k +42b k +3- 2=(3-22)b k +(4-32)2b k +3=(3-22)(b k -2)2b k +3>0,又12b k +3<122+3=3-22,所以b k +1-2=(3-22)(b k -2)2b k +3<(3-22)2(b k -2)≤(2-1)4(a 4k -3-2)=a 4k +1-2.也就是说,当n =k +1时,结论成立. 根据(ⅰ)和(ⅱ)知,2<b n ≤a 4n -3,n =1,2,3,….。
2024年北师大版高二数学上册阶段测试试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共9题,共18分)1、已知=+,则x等于()A. 7B. 9C. 7或92、二项式(2x+)7的展开式中的系数是()A. 42B. 168C. 84D. 213、以下命题中,①回归直线必过样本点的中心;②残差平方和越小,则预报精度越高;③若一组数据x1,x2,,x n的平均数为3,方差为4,则2x1+1,2x2+1,,2x n+1的平均值为7,方差不变;④若线性相关系数r=±1;则表示两个变量完全线性相关;⑤商场应根据上月所卖货品尺寸的中位数决定本月的进货比例.正确命题个数有()A. 2个。
B. 3个。
C. 4个。
D. 5个。
4、若直线l的参数方程为则直线l倾斜角的余弦值为()A.B.C.D.5、设等差数列满足:公差.若当且仅当时,数列的前项和取得最大值,则首项的取值范围是().A.B.C.D.6、已知函数为偶函数,则的值()A. 1B.C.D.7、【题文】不等式的解为()A.B.C.D.8、有4名优秀的大学毕业生被某公司录用,该公司共有5个部门,由公司人事部分安排他们去其中任意3各部门上班,每个部门至少安排一人,则不同的安排方法为()A. 120B. 240C. 360D. 4809、某几何体的三视图如图所示,网格纸的小方格是边长为1的正方形,则该几何体中最长的棱长是()A.B.C.D. 3评卷人得分二、填空题(共7题,共14分)10、若≠0,≠0,且==,则与+所在直线的夹角是____.11、若一系列函数的解析式和值域相同,但定义域互不相同,则称这些函数为“同族函数”.例如函数y=x2,x∈[1,2]与y=x2,x∈[-2,-1]即为“同族函数”、下面6个函数:①y=tanx;②y=cosx;③y=x3;④y=2x;⑤y=lgx;⑥y=x4.其中能够被用来构造“同族函数”的有____.12、已知函数,若函数f(x)的图象经过点(3,),则a=____;若函数f(x)满足对任意x1≠x2,都有成立,那么实数a的取值范围是____.13、如图是某几何体的三视图,其中正视图、俯视图的长均为4,宽分别为2与3,侧视图是等腰三角形,则该几何体的体积是____.14、已知双曲线点为其两个焦点,点P为双曲线上一点,若则的值为__________.15、命题“若m2+n2=0,则mn=0”的逆否命题是 ______ .16、关于函数y=f(x);有下列命题:①若a∈[-2,2],则函数f(x)=的定义域为R;②若f(x)=(x2-3x+2),则f(x)的单调增区间为(-∞,);③函数的值域为R;则实数a 的取值范围是0<a≤4且a≠1;④定义在R上的函数f(x);若对任意的x∈R都有:f(-x)=-f(x),f(1+x)=f(1-x)则4是y=f(x)的一个周期.其中真命题的序号是 ______ .评卷人得分三、作图题(共6题,共12分)17、用斜二测画法画出下列水平放置的平面图形的直观图.(1)任意三角形;(2)平行四边形;(3)正八边形.18、用一平面去截一个圆锥;设圆锥的母线与其高的夹角为α,平面的倾斜角为β,求下列情况下β的取值范围:(1)所截图形为椭圆;(2)所截图形为双曲线。
第8章 第4节时间:45分钟 满分:100分一、选择题(每小题7分,共42分)1. [2012·江西联考]方程x 2sin2+cos2-y 2cos2-sin2=1所表示的曲线是( )A. 焦点在x 轴上的椭圆B. 焦点在y 轴上的椭圆C. 焦点在x 轴上的双曲线D. 焦点在y 轴上的双曲线 答案:B解析:∵π2<2<3π4,∴sin2>0,cos2<0且|sin2|>|cos2|,∴sin2+cos2>0,cos2-sin2<0且sin2-cos2>sin2+cos2,故表示焦点在y 轴上的椭圆.2. [2012·广东联考]椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( ) A. 14B. 12C. 2D. 4答案:A解析:将原方程变形为x 2+y 21m=1,由题意知a 2=1m ,b 2=1,∴a =1m ,b =1,∴1m =2,∴m =14,故选A.3. [2012·河北唐山]P 为椭圆x 24+y 23=1上一点,F 1、F 2为该椭圆的两个焦点,若∠F 1PF 2=60°,则PF 1→·PF 2→等于( )A. 3B. 3C. 2 3D. 2答案:D解析:由题意可得|F 1F 2|=2,|PF 1|+|PF 2|=4, |F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|·cos60° =(|PF 1|+|PF 2|)2-3|PF 1||PF 2|,所以4=42-3|PF 1||PF 2|,|PF 1||PF 2|=4, PF 1→·PF 2→=|PF 1→||PF 2→|·cos60°=4×12=2,故选D.4. [2012·辽宁协作体]已知椭圆x 236+y29=1上有两个动点P 、Q ,E (3,0),EP ⊥EQ ,则E P →·Q P →的最小值为( )A. 6B. 3- 3C. 9D. 12-6 3答案:A解析:设P (x 0,y 0),则EP →·Q P →=|E P →|·|QP →|cos 〈EP →,Q P →〉=|E P →|2=(x 0-3)2+y 20=(x 0-3)2+9-1420=34x 20-6x 0+18=34[(x 0-4)2-16]+18≥6,当x 0=4时取“=”,故选A. 5.[2012·抚顺一模]已知椭圆x 24y 2=1的左、右焦点分别为F 1、F 2,点M 在该椭圆上,且MF 1→·MF 2→=0,则点M 到y 轴的距离为( )A.233 B.263 C.33D. 3答案:B解析:由题意,得F 1(-3,0),F 2(3,0).设M (x ,y ),则MF 1→·MF 2→=(-3-x ,-y )·(3-x ,-y )=0,整理得x 2+y 2=3 ①.又因为点M 在椭圆上,故x 24+y 2=1,即y 2=1-x 24 ②.将②代入①,得34x 2=2,解得x =±263.故点M 到y 轴的距离为263.6. 已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是等腰直角三角形,则这个椭圆的离心率是 ( )A.32B.22C. 2-1D. 2答案:C解析:∵△ABF 2是等腰直角三角形,设点A (x 0,y 0)在x 轴上方,∴|AF 1|=|F 1F 2|.将x 0=-c 代入椭圆方程x 2a 2+y 2b 2=1,得A (-c ,b 2a ),从而b2a =2c ,即a 2-c 2=2ac ,整理得e 2+2e -1=0,解得e =-1±2.由e ∈(0,1)得e =2-1.故选C. 二、填空题(每小题7分,共21分)7. [2012·长春调研]已知抛物线y 2=2px (p >0)的焦点F 与椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点重合,它们在第一象限内的交点为T ,且TF 与x 轴垂直,则椭圆的离心率为__________.答案:2-1解析:依题意c =p 2,b2a =p ,∴b 2=2ac ,∴c 2+2ac -a 2=0, ∴e 2+2e -1=0,又∵e >0,∴解得e =2-1.8.在平面直角坐标系xOy 中,已知△ABC 的顶点A (-4,0)和C (4,0),顶点B 在椭圆x 225+y29=1上,则sin A +sin C sin B=________.答案:54解析:利用椭圆定义得a +c =2×5=10,b =2×4=8,利用正弦定理得sin A +sin C sin B =a +c b =108=54.9. [2011·江西]若椭圆x 2a 2+y 2b 2=1的焦点在x 轴上,过点(1,12)作圆x 2+y 2=1的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是__________.答案:x 25+y 24=1解析:由图知切点A (1,0),设另一切线y -12=k (x -1),即kx -y -k +12=0,圆心(0,0)到切线距离d =|-k +12|k 2+1=1,∴k =-34,则OB 的直线方程为y =43x ,∴y =43x 与x 2+y 2=1联立得B (35,45),∴AB 方程为y =-2(x -1),得椭圆右焦点(1,0)、上顶点(0,2), ∴c =1,b =2,a 2=5, ∴椭圆方程x 25+y241.三、解答题(10、11题12分、12题13分)10.[2012·山东东营]已知F 1,F 2是椭圆C :x 2a 2+y2b 2=1(a >b >0)的左、右焦点,点P (-2,1)在椭圆上,线段PF 2与y 轴的交点M 满足PM →+F 2M →=0.(1)求椭圆C 的方程;(2)椭圆C 上任一动点M (x 0,y 0)关于直线y =2x 的对称点为M 1(x 1,y 1),求 3x 1-4y 1的取值范围. 解:(1)由已知点P (-2,1)在椭圆上, ∴2a 2+1b2=1.① 又∵PM →+F 2M →=0,M 在y 轴上, ∴M 为PF 2的中点. ∴-2+c =0,c = 2. ∴a 2-b 2=2.②由①②,解得b 2=2(b 2=-1舍去), ∴a 2=4.故所求椭圆C 的方程为x 24+y 22=1.(2)∵点M (x 0,y 0)关于直线y =2x 的对称点为M 1(x 1,y 1), ∴⎩⎨⎧ y 0-y1x 0-x 1×2=-1,y 0+y 12=2×x 0+x12,解得⎩⎨⎧x 1=4y 0-3x5,y 1=3y 0+4x5∴3x 1-4y 1=-5x 0.∵点M (x 0,y 0)在椭圆C :x 24+y221上,∴-2≤x 0≤2, ∴-10≤-5x 0≤10.即3x 1-4y 1的取值范围为[-10,10].11. [2011·辽宁]如图,已知椭圆C 1的中心在原点O ,长轴左、右端点M ,N 在x 轴上,椭圆C 2的短轴为MN ,且C 1,C 2的离心率都为e ,直线l ⊥MN ,l 与C 1交于两点,与C 2交于两点,这四点按纵坐标从大到小依次为A ,B ,C ,D .(1)设e =12,求|BC |与|AD |的比值;(2)当e 变化时,是否存在直线l ,使得BO ∥AN ,并说明理由. 解:(1)因为C 1,C 2的离心率相同,故依题意可设 C 1:x 2a 2+y 2b 2=1,C 2:b 2y 2a 4+x2a2=1(a >b >0),设直线l :x =t (|t |<a ),分别与C 1,C 2的方程联立,求得 A (t ,a b a 2-t 2),B (t ,baa 2-t 2).当e =12时,b =32a ,分别用y A ,y B 表示A ,B 的纵坐标,可知|BC |∶|AD |=2|y B |2|y A |=b 2a 2=34.(2)当t =0时的l 不符合题意,当t ≠0时,BO ∥AN 当且仅当BO 的斜率k BO 与AN 的斜率k AN 相等,即b a a 2-t 2t =a ba 2-t 2t -a . 解得t =-ab 2a 2-b 2=-1-e 2e 2·a . 因为|t |<a ,又0<e <1,所以1-e 2e 2<1,解得22<e <1. 所以当0<e ≤22时,不存在直线l ,使得BO ∥AN ;当22<e <1时,存在直线l ,使得BO ∥AN . 12. [2012·北京东城]已知椭圆C 的中心在坐标原点,焦点在x 轴上,离心率为12,且椭圆的左顶点到右焦点的距离为3.(1)求椭圆C 的标准方程;(2)若过点P (0,m )的直线l 与椭圆C 交于不同的两点A ,B ,且AP →=3PB →,求实数m 的取值范围. 解:(1)设所求的椭圆方程为x 2a 2+y2b 2=1(a >b >0),由题意知⎩⎪⎨⎪⎧c a =12,a +c =3,a 2=b 2+c 2,可得⎩⎪⎨⎪⎧a =2,b =3,c =1.所以所求椭圆方程为x 24+y23=1.(2)若过点P (0,m )的斜率不存在,则m =±32.若过点P (0,m )的直线斜率存在, 设直线l 的方程为y -m =kx ,由⎩⎪⎨⎪⎧y =kx +m ,3x 2+4y 2=12,可得(3+4k 2)x 2+8kmx +4m 2-12=0. Δ=64m 2k 2-4(3+4k 2)(4m 2-12). 因为直线l 与椭圆C 交于不同两点, 所以Δ>0,整理得4k 2-m 2+3>0. 即4k 2>m 2-3,① 设A (x 1,y 1),B (x 2,y 2).则x 1+x 2=-8km 3+4k 2,x 1x 2=4m 2-123+4k 2.②由已知AP →=3P B →,因为AP →=(-x 1,m -y 1),P B →=(x 2,y 2-m ). 所以-x 1=3x 2.③将③代入②得-3(4km 3+4k 2)2=4m 2-123+4k 2,整理得16m 2k 2-12k 2+3m 2-9=0,将k 2=9-3m 216m 2-12代入①式得4k 2=9-3m 24m 2-3>m 2-3. 4m 2(m 2-3)4m 2-3<0,解得34<m 2<3. 所以-3<m <-32或32<m < 3. 综上可得,实数m 的取值范围为(-3,-32]∪[32,3).。
第10章 第6节时间:45分钟 满分:100分一、选择题(每小题7分,共42分)1.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数,则P (ξ≤1)=( )A. 15 B. 25 C. 35 D. 45答案:D解析:P (ξ≤1)=P (ξ=0)+P (ξ=1)=C 34C 36+C 24C 12C 36=45.2.若离散型随机变量ξ的分布列为( )则常数c 的值为( ) A.23或13 B.23 C.13 D .1 答案:C解析:由题意知(9c 2-c )+(3-8c )=1, 解得c =23或c =13,当c =23时,3-8c =-73<0,不合题意,当c =13时,3-8c =13,9c 2-c =23,∴c =13.3.某射手射击所得环数X 的分布列为:A .0.28B .0.88C .0.79D .0.51答案:C解析:P (X >7)=P (X =8)+P (X =9)+P (X =10)=0.28+0.29+0.22=0.79.4.在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,下列概率中等于C 47C 68C 1015的是( )A .P (X =2)B .P (X ≤2)C .P (X =4)D .P (X ≤4)答案:C解析:X 服从超几何分布,故P (X =k )=C k 7C 10-k 8C 1015,k =4.5.设随机变量X 等可能取值1,2,3,…,n ,如果P (X <4)=0.3,那么( ) A .n =3 B .n =4 C .n =10 D .n =9答案:C解析:∵P (X =k )=1n(k =1,2,3,…,n ),∴0.3=P (X <4)=P (X =1)+P (X =2)+P (X =3)=3n,∴n =10.6.[2012·山东烟台]一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,则P (X =4)的值是( )A.1220B.2755C.27220D.2155答案:C解析:“X =4”表示从盒中取了2个旧球,1个新球,故P (X =4)=C 23C 19C 312=27220.二、填空题(每小题7分,共21分) 7.已知随机变量ξ的分布列为若η=2ξ-3,则η答案:解析:由η=2ξ-38.随机变量ξ的分布列如下:若a 、b 、c 成等差数列,则答案:23解析:∵a 、b 、c 成等差数列,∴2b =a +c ,又a +b +c =1, ∴b =13,∴P (|ξ|=1)=a +c =23.9.抛掷两颗骰子,设掷得点数和为随机变量ξ,则P (3<ξ<7)=__________. 答案:13解析:抛掷两颗骰子所得的点数之和情况如下表:因此P (ξ=4)=336=112;P (ξ=5)=436=19;P (ξ=6)=536.故P (3<ξ<7)=P (ξ=4)+P (ξ=5)+P (ξ=6)=13.三、解答题(10、11题12分、12题13分)10. [2012·江西六校联考]小明打算从A 组和B 组两组花样滑冰动作中选择一组参加比赛.已知小明选择A 组动作的概率是选择B 组动作的概率的3倍,若小明选择A 组动作并正常发挥可获得10分,没有正常发挥只能获得6分;若小明选择B 组动作则一定能正常发挥并获得8分.据平时训练成绩统计,小明能正常发挥A 组动作的概率是0.8.(1)求小明选择A 组动作的概率;(2)设x 表示小明比赛时获得的分数,求x 的分布列.解:(1)设小明选择A 组动作的概率为P (A ),选择B 组动作的概率为P (B ), 由题知P (A )=3P (B ),P (A )+P (B )=1, 解得P (A )=0.75.(2)由题知x 的取值为6,8,10. P (x =6)=0.75×0.2=0.15, P (x =8)=0.25,P (x =10)=0.75×0.8=0.6.其分布列为11.[2011·湖南]3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X 为第二天开始营业时该商品的件数,求X 的分布列.解:(1)P (“当天商店不进货”)=P (“当天商店销售量为0件”)+P (当天商品销售量为1件”)=120+520=310. (2)由题意知,X 的可能取值为2,3.P (X =2)=P (“当天商品销售量为1件”)=520=14;P (X =3)=P (“当天商品销售量为0件”)+P (“当天商品销售量为2件”)+P (“当天商品销售量为3件”)=120+920+520=34.故X 的分布列为12.40人,成绩分为1~5五个档次,例如表中所示跳高成绩为4分,跳远成绩为2分的队员为5人.将全部队员的姓名卡混合在一起,任取一张,该卡片上队员的跳高成绩为X ,跳远成绩为Y ,设X ,Y 为随机变量(注:没有相同姓名的队员).(1)求X =4的概率及X ≥3且y =5的概率; (2)求m +n 的值;(3)若Y 的均值为10540,求m ,n 的值.解:(1)当X =4时的概率为P 1=940;当X ≥3且Y =5时的概率为P 2=440=110.(2)m +n =40-37=3.(3)P (Y =1)=8+n 40;P (Y =2)=14;P (Y =3)=14;P (Y =4)=4+m 40;P (Y =5)=18.因为Y 的均值为10540,所以99+n +4m 40=10540,于是m =1,n =2.。
第10章 第8节时间:45分钟 满分:100分一、选择题(每小题7分,共42分) 1.随机变量ξ的分布列为,则E (5ξ+4)等于( ) A .13 B .11 C .2.2 D .2.3 答案:A 解析:由已知得E (ξ)=0×0.4+2×0.3+4×0.3=1.8, ∴E (5ξ+4)=5E (ξ)+4=5×1.8+4=13. 2. [2012·荆州质检]随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,若E (ξ)=3,则D (ξ)的值是( )A. 13B. 23 C. 59 D. 79答案:C解析:∵a ,b ,c 成等差数列,∴2b =a +c ,又a +b +c =1,且E (ξ)=-1×a +1×c =c -a =13,∴a =16,b =13,c =12,∴D (ξ)=(-1-13)2×16+(0-13)2×13+(1-13)2×12=59.3. 设ξ是离散型随机变量,P (ξ=x 1)=23,P (ξ=x 2)=13x 1<x 2,又已知E (ξ)=43,D (ξ)=29,则x 1+x 2的值为( ) A. 53B. 73C. 3D.113答案:C解析:由E (ξ)=43,D (ξ)=29得:⎩⎨⎧23x 1+13x 2=43(x 1-43)2·23+(x 2-43)2·13=29,解得:⎩⎨⎧x 1=53x 2=23或⎩⎪⎨⎪⎧x 1=1x 2=2,由于x 1<x 2,∴⎩⎪⎨⎪⎧x 1=1x 2=2,∴x 1+x 2=3.4. [2012·浙江嘉兴]甲乙两人分别独立参加某高校自主招生面试,若甲、乙能通过面试的概率都是23,则面试结束后通过的人数ξ的期望是( )A. 43B.119C. 1D. 89答案:A解析:依题意,ξ的取值为0,1,2. 且P (ξ=0)=(1-23×(1-23)=19,P (ξ=1)=23×(1-23)+(1-23)×23=49,P (ξ=2)=23×23=49.故ξ的期望E (ξ)=0×19+1×49+2×49=129=43.5.已知三个正态分布密度函数φi (x )=12πσie-(x -μi )22σ2i(x ∈R,i =1,2,3)的图像如图所示,则( )A .μ1<μ2=μ3,σ1=σ2>σ3B .μ1>μ2=μ3,σ1=σ2<σ3C .μ1=μ2<μ3,σ1<σ2=σ3D .μ1<μ2=μ3,σ1=σ2<σ3 答案:D解析:正态分布密度函数φ2(x )和φ3(x )的图像都是关于同一条直线对称,所以其平均数相同,故μ2=μ3,又φ2(x )的对称轴的横坐标值比φ1(x )的对称轴的横坐标值大,故有μ1<μ2=μ3.又σ越大,曲线越“矮胖”,σ越小,曲线越“瘦高”,由图像可知,正态分布密度函数φ1(x )和φ2(x )的图像一样“瘦高”,φ3(x )明显“矮胖”,从而可知σ1=σ2<σ3.6. 若随机事件A 在1次试验中发生的概率为p (0<p <1),用随机变量ξ表示A 在1次试验中发生的次数,则2D (ξ)-1E (ξ)的最大值为( )A. 2+2 2B. 2 2C. 2- 2D. 2-2 2答案:D解析:随机变量ξ的所有可能取值为0,1,且有P (ξ=1)=p ,P (ξ=0)=1-p ,∴E (ξ)=0×(1-p )+1×p =p ,D (ξ)=(0-p )2·(1-p )+(1-p )2·p =p -p 2,∴2D (ξ)-1E (ξ)=2-(2p +1p ),∵0<p <1,∴2p +1p≥ 22,当且仅当2p =1p p =22时等号成立,因此当p =22时,2D (ξ)-1E (ξ)取最大值2-2 2. 二、填空题(每小题7分,共21分)7.[2011·上海]马老师从课本上抄录一个随机变量ξ的概率分布列如下表:请小牛同学计算ξ且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案E (ξ)=__________.答案:2解析:设P (ξ=1)=x ,则P (ξ=2)=1-2x ,P (ξ=3)=x , ∴E (ξ)=1·x +2·(1-2x )+3·x =2.8.[2012·广东江门]已知X ~N (μ,σ2),P (μ-σ<X ≤μ+σ)=0.68,P (μ-2σ<X ≤μ+2σ)=0.95,某次全市20000人参加的考试,数学成绩大致服从正态分布N (100,100),则本次考试120分以上的学生约有__________.答案:500解析:依题意可知μ=100,σ=10, 由于P (μ-2σ<X ≤μ+2σ)=0.95, 所以P (80<X ≤120)=0.95,因此本次考试120分以上的学生约有 20000×(1-0.95)2=500.9.甲、乙两工人在一天生产中出现废品数分别是两个随机变量ξ、η,其分布列分别为:若甲、乙两人的日产量相等,则甲、乙两人中技术较好的是________. 答案:乙解析:甲、乙的均值分别为Eξ=0×0.4+1×0.3+2×0.2+3×0.1=1, Eη=0×0.3+1×0.5+2×0.2=0.9,所以Eξ>Eη, 故乙的技术较好.三、解答题(10、11题12分、12题13分)10.设ξ是一个离散型随机变量,其分布列如下表,求q 的值,并求E (ξ),D(ξ)的值.解:(1)0≤P i ≤1 i =1,2,...; (2)p 1+p 2+ (1)所以有⎩⎪⎨⎪⎧12+1-2q +q 2=1,0≤1-2q ≤1,q 2≤1,解得q =1-12. 故ξ的分布列应为:所以E (ξ)=(-1)×12+0×(2-1)+1×(32-2)=1-2,D (ξ)=[-1-(1-2)]2×12+[0-(1-2)]2×(2-1)+[1-(1-2)]2×(32-2)=2-1.11. [2011·天津]学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同.每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱).(1)求在1次游戏中, ①摸出3个白球的概率; ②获奖的概率;(2)求在2次游戏中获奖次数X 的分布列及数学期望E (X ). 解:(1)设A i =“在1次游戏中摸出i 个白球”(i =0,1,2,3),则①P (A 3)=C 23C 25·C 12C 23=15,②P (A 2)=C 23C 25·C 22C 23+C 13C 12C 25·C 12C 23=12.又A 2与A 3互斥,∴P (A 2+A 3)=P (A 2)+P (A 3)=12+15=710.即获奖的概率为710.(2)X 的可能取值为0,1,2. P (X =0)=(1-710)2=9100,P (X =1)=C 12·710·(1-710)=2150, P (X =2)=C 22(710)2=49100.所以X 的分布列是∴X 的数学期望E (X )=0×9100+1×2150+2×49100=75.12. [2011·福建]某产品按行业生产标准分成8个等级,等级系数X 依次为1,2,…,8,其中X ≥5为标准A ,X ≥3为标准B .已知甲厂执行标准A 生产该产品,产品的零售价为6元/件;乙厂执行标准B 生产该产品,产品的零售价为4元/件,假定甲、乙两厂的产品都符合相应的执行标准.(1)已知甲厂产品的等级系数X 1的概率分布列如下所示:且X 1的数学期望E (X 1)(2)为分析乙厂产品的等级系数X 2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:3 5 3 3 8 5 5 6 34 6 3 4 75 3 4 8 5 3 8 3 4 3 4 4 7 56 7用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X 2的数学期望. (3)在(1)、(2)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.注:(1)产品的“性价比”=产品的等级系数的数学期望产品的零售价;(2)“性价比”大的产品更具可购买性.解:(1)因为E (X 1)=6,所以5×0.4+6a +7b +8×0.1=6, 即6a +7b =3.2.又由X 1的概率分布列得0.4+a +b +0.1=1, 即a +b =0.5.由⎩⎪⎨⎪⎧ 6a +7b =3.2,a +b =0.5,解得 ⎩⎪⎨⎪⎧a =0.3,b =0.2.(2)由已知得,样本的频率分布表如下:X 2的概率分布列如下:所以E (X 2)=3P 22222=7)+8P (X 2=8) =3×0.3+4×0.2+5×0.2+6×0.1+7×0.1+8×0.1=4.8. 即乙厂产品的等级系数的数学期望等于4.8. (3)乙厂的产品更具可购买性.现由如下:因为甲厂产品的等级系数的数学期望等于6,价格为6元/件,所以其性价比为66=1.因为乙厂产品的等级系数的数学期望等于4.8,价格为4元/件,所以其性价比为4.84=1.2.据此,乙厂的产品更具可购买性.。
第10章 第4节
时间:45分钟 满分:100分
一、选择题(每小题7分,共42分)
1. [2012·浙江金华]下课后教室里最后还剩下2位男同学和2位女同学,如果没有2位同学一块走,则第二位走的是男同学的概率是( )
A. 1
2 B. 1
3 C. 1
4 D. 15
答案:A
解析:每个同学均可能在第二位走,故共有4种情况,而男同学有2个,故所求概率为P =24=1
2
,故选A.
2.某班准备到郊外野营,为此向商店定了帐篷,如果下雨与不下雨是等可能的,能否准时收到帐篷也是等可能的,只要帐篷如期运到,他们就不会淋雨,则下列说法正确的是( )
A .一定不会淋雨
B .淋雨的可能性为3
4
C .淋雨的可能性为1
2
D .淋雨的可能性为1
4
答案:D
解析:基本事件有“下雨帐篷到”“不下雨帐篷到”“下雨帐篷未到”“不下雨帐篷未到”4种情况,而只有“下雨帐篷未到”时会淋雨,故淋雨的可能性为14
.
3.某同学同时掷两颗骰子,得到点数分别为a ,b ,则椭圆x 2a 2+y 2
b 2=1(a >b >0)的离心率
e >
3
2的概率是( ) A.118 B.536 C.16 D.13
答案:C 解析:e =
1-b 2a 2>32⇒b a <1
2
⇒a >2b ,符合a >2b 的情况有:当b =1时,有a =3,4,5,6四种情况;当b =2时,有a =5,6两种情况,总共有6种情况.则概率为66×6=1
6
.
4.[2012·浙江联考]有编号分别为1,2,3,4,5的5个红球和5个黑球,从中取出4个,则
取出的编号互不相同的概率为( )
A. 521
B. 27
C. 13
D. 821
答案:D
解析:从10个球中任意取出4个,一共有C 410=210种取法,取出的小球编号互不相同的取法为C 45
·24
=80种取法,所以由古典概型公式得取出的编号互不相同的概率为P =80210=821
. 5.[2012·奉贤区检测]在一次读书活动中,一同学从4本不同的科技书和2本不同的文艺书中任选3本,则所选的书中既有科技书又有文艺书的概率为( )
A. 15
B. 12
C. 23
D. 45
答案:D
解析:因为文艺书只有2本,所以选取的3本书中必有科技书,这样问题就等价于求选取的3本书中有文艺书的概率.设4本不同的科技书为a ,b ,c ,d,2本不同的文艺书为e ,f ,则从这6本书中任选3本的可能情况有:(a ,b ,c ),(a ,b ,d ),(a ,b ,e ),(a ,b ,f ),(a ,c ,d ),(a ,c ,e ),(a ,c ,f ),(a ,d ,e ),(a ,d ,f ),(a ,e ,f ),(b ,c ,d ),(b ,c ,e ),(b ,c ,f ),(b ,d ,e ),(b ,d ,f ),(b ,e ,f ),(c ,d ,e ),(c ,d ,f ),(c ,e ,f ),(d ,e ,f ),共20种,记“选取的3本书中有文艺书”为事件A ,则事件A 包含的可能情况有:(a ,b ,c ),(a ,b ,d ),(a ,c ,d ),(b ,c ,d ),共4种,故P (A )=1-P (A )=1-420=4
5
.
6.[2011·安徽]从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于( )
A. 1
10
B. 18
C. 16
D. 15 答案:D
解析:如图正六边形ABCDEF ,从6个顶点中随机选择4个顶点有ABCD ,ABCE ,ABCF ,ABDE ,ABDF ,ACDE ,ACDF ,ACEF ,ADEF ,BCDE ,BCDF ,BCEF ,ABEF ,BDEF ,CDEF 共15种选法,基本事件总数为15,其中四边形是矩形的有ABDE ,BCEF ,CDF A 3种,所以所求概率为P =315=15
.
二、填空题(每小题7分,共21分)
7.连续掷两次骰子,出现向上的点数之和等于4的概率为________(结果用数值表示). 答案:112
解析:连续掷两次骰子出现向上的点数记作点坐标(x ,y ),则共可得点坐标的个数为6×6=36,而出现向上的点数之和为4的点坐标有(1,3),(3,1),(2,2),共3个.所以连续掷两次骰子出现向上的点数之和为4的概率为P =336=112
.
8. [2011·福建]盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于________.
答案:35
解析:此题属古典概型,从5个小球取出2个小球所有可能的取法n =C 25=10(种),而
若取出的2个小球颜色不同则红、黄各取一个,取法m =C 13·C 1
2=6(种),
∴所求事件的概率P =m n =610=3
5
.
9.[2011·湖北]在30瓶饮料中,有3瓶已过了保质期,从这30瓶饮料中任取2瓶.则至少取到1瓶已过保质期饮料的概率为__________.(结果用最简分数表示)
答案:28145
解析:1-C 227
C 230=168870=28145
.
三、解答题(10、11题12分、12题13分)
10.[2011·山东]甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女. (1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;
(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.
解:(1)甲校两男教师分别用A 、B 表示,女教师用C 表示;乙校男教师用D 表示,两女教师分别用E 、F 表示.
从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A ,D ),(A ,E ),(A ,F ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F )共9种,
从中选出两名教师性别相同的结果有:(A ,D ),(B ,D ),(C ,E ),(C ,F )共4种,选出
的两名教师性别相同的概率为P =4
9
.
(2)从甲校和乙校报名的教师中任选2名的所有可能的结果为:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F )共15种,
从中选出两名教师来自同一学校的结果有:
(A ,B ),(A ,C ),(B ,C ),(D ,E ),(D ,F ),(E ,F )共6种, 选出的两名教师来自同一学校的概率为P =615=2
5
.
11. [2011·天津]编号分别为A 1,A 2,…,A 16的16名篮球运动员在某次训练比赛中的得分记录如下:
(2)①用运动员编号列出所有可能的抽取结果; ②求这2人得分之和大于50的概率. 解:(1)4,6,6.
(2)①得分在[20,30)内的运动员编号为A 3,A 4,A 5,A 10,A 11,A 13,从中随机抽2人,所有可能抽取的结果有:
{A 3,A 4},{A 3,A 5},{A 3,A 10},{A 3,A 11},{A 3,A 13}, {A 4,A 5},{A 4,A 10},{A 4,A 11},{A 4,A 13},{A 5,A 11},{A 5,A 10},{A 5,A 13},{A 10,A 11},{A 10,A 13},{A 11,A 13},共15种.
②设B 表示“得分在[20,30)内的运动员中随机抽取2人,这两人得分之和大于50”,则所有可能的结果有:{A 4,A 5},{A 4,A 10},{A 4,A 11},{A 5,A 10},{A 10,A 11},共5种.
所以P (B )=515=13
.
12. [2012·惠州模拟]将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为a ,第二次出现的点数为b ,设复数z =a +b i.
(1)求事件“z -3i 为实数”的概率;
(2)求事件“复数z 在复平面内的对应点(a ,b )满足(a -2)2+b 2≤9”的概率. 解:(1)z -3i 为实数,即a +b i -3i =a +(b -3)i 为实数,∴b =3,
依题意a 可取1,2,3,4,5,6.将一颗质地均匀的正方体骰子先后抛掷两次的所有可能的结果为:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),…,(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共36种,出现b =3的结果有:(1,3),(2,3),(3,3),(4,3),(5,3),(6,3),共6种,
故出现b =3的概率为P 1=636=1
6,
即事件“z -3i 为实数”的概率为1
6.
(2)由条件可知,b 的值只能取1,2,3. 当b =1时,(a -2)2≤8,即a 可取1,2,3,4, 当b =2时,(a -2)2≤5,即a 可取1,2,3,4, 当b =3时,(a -2)2≤0,即a 可取2.
故共有9种情况可使所求事件发生,又(a ,b )的取值情况共有36种,所以事件“点(a ,b )满足(a -2)2+b 2≤9”的概率为P 2=436+436+136=1
4
.。