华师大版初三数学27.1二次函数的定义
- 格式:ppt
- 大小:1.84 MB
- 文档页数:15
二次函数知识点全总结初中二次函数是代数学中的重要内容,也是中学数学中的重要内容之一。
在学习二次函数时,不仅要掌握它的基本概念和性质,还要掌握它的图像、方程和应用等方面的知识。
下面对二次函数的知识点进行全面总结。
一、二次函数的基本概念和性质1. 二次函数的定义二次函数是形如f(x) = ax² + bx + c (a≠0)的函数,其中a、b、c为常数。
二次函数的自变量x的最高次数是2,因此称为二次函数。
2. 二次函数的图像二次函数的图像通常是一个开口向上或向下的抛物线。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
抛物线的开口方向由二次项的系数a决定。
3. 二次函数的顶点二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, f(-b/2a))。
顶点的横坐标为-x轴上的对称轴,纵坐标为抛物线的最低值或最高值。
4. 二次函数的对称轴对称轴是过顶点并垂直于x轴的直线,对称轴的方程为x = -b/2a。
5. 二次函数的零点二次函数与x轴相交的点称为零点,其坐标为(x, 0)。
二次函数的零点可以由解二次方程ax² + bx + c = 0得到。
6. 二次函数的凹凸性凹凸性是指二次函数的图像的形状,当a>0时,抛物线开口向上,图像是凹的;当a<0时,抛物线开口向下,图像是凸的。
二、二次函数的图像与性质1. 二次函数图像的平移二次函数y = ax² + bx + c的图像平移,一般可以通过改变常数c来实现。
当c>0时,图像上移;当c<0时,图像下移。
常数b则可以控制图像的水平平移。
2. 二次函数图像的伸缩二次函数图像的伸缩可以通过改变系数a来实现。
当|a|>1时,图像纵向伸缩;当0<|a|<1时,图像纵向压缩。
系数b则可以控制图像的水平伸缩。
3. 二次函数的最值对于二次函数y = ax² + bx + c,当a>0时,最小值为f(-b/2a),最大值为正无穷;当a<0时,最大值为f(-b/2a),最小值为负无穷。
初三数学二次函数二次函数(quadratic function)是指未知数的最高次数为二次的多项式函数。
二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。
其图像是一条主轴平行于y轴的抛物线。
我们把形如y=ax+bx+c(其中a,b,c是常数,a0)的函数叫做二次函数(quadratic function),称a为二次项系数,b为一次项系数,c为常数项。
一般的,形如y=ax+bx+c(a0)的函数叫二次函数。
自变量(通常为x)和因变量(通常为y)。
右边是整式,且自变量的最高次数是2。
注意,变量不同于未知数,不能说二次函数是指未知数的最高次数为二次的多项式函数。
未知数只是一个数(具体值未知,但是只取一个值),变量可在一定范围内任意取值。
在方程中适用未知数的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。
从函数的定义也可看出二者的差别。
什么是二次函数
二次函数是数学中一个重要的函数概念。
它是指形式为y = ax^2 + bx + c的函数,其中a、b、c为实数且a不等于0。
在二次函数中,x 的最高次数为2,因此被称为二次函数。
二次函数的图像通常呈现出一条弯曲的抛物线形状。
这条抛物线所表现出的特性与二次函数中各个参数的取值有关。
其中,参数a决定了抛物线的开口方向,正值a对应着向上开口的抛物线,负值a对应着向下开口的抛物线。
参数b和c则会影响抛物线的位置和形状。
二次函数在实际生活中有着广泛的应用。
下面将从数学、物理和经济等领域来探讨二次函数的应用。
数学应用:
1. 解析几何:二次函数的图像可以用来描述抛物线、拱形等几何图形的形状。
2. 最优化问题:很多最优化问题可以转化为二次函数的优化问题,通过求解二次函数的顶点,可以找到使函数取得最大或最小值的点。
物理应用:
1. 自由落体运动:当物体在重力作用下自由下落时,其下降轨迹可以用二次函数描述。
2. 抛体运动:抛出物体后,其运动轨迹同样可以用二次函数表达。
经济应用:
1. 成本函数:在经济学中,生产成本可以用二次函数来描述,使得企业能够在最小化生产成本的同时,获得最大的利润。
2. 收入函数:某些商品的价格与销量之间的关系可以用二次函数模型来表示,通过求解该模型,可以找到使收入最大化的销售量。
总的来说,二次函数是一种重要的数学工具,它不仅在纯粹数学领域中发挥作用,同时也在物理、经济等实际问题的建模中起到关键作用。
通过研究二次函数的特性和应用,我们可以更好地理解和解决各种实际问题。
二次函数知识归纳二次函数知识点:1. 二次函数的概念:一般地,形如2=++(a b cy ax bx ca≠)的函数,,,是常数,0叫做二次函数.这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数2=++的结构特征:y ax bx c(1) 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.(2)a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二次函数的基本形式1. 二次函数基本形式:2=的性质:y ax结论:a 的绝对值越大,抛物线的开口越小.总结:2. 2=+的性质:y ax c总结:3. ()2=-的性质:y a x h结论:左加右减.总结:Array 4. ()2y a x h k=-+的性质:总结:二次函数图象的平移 1. 平移步骤:(1) 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; (2)保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 二次函数()2y a x h k =-+与2y ax bx c =++的比较请将2245y x x =++利用配方的形式配成顶点式.请将2y a xb xc =++配成()2y a x h k =-+.总结:从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2bx a=-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2bx a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 二次函数的图象与各项系数之间的关系 1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.(1) 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;(2) 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. (1) 在0a >的前提下, 当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. (2)在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置. 总结:3. 常数项c(1)当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;(2)当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;(3)当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式. 二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y a x b xc =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y a x b xc =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y a x b xc =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称2y a x b x c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-; ()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k=-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式. 二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况.图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:(1) 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;(2) 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;(3) 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;(4) 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. (5) 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系: 图像参考:y=-2x 2y=3(x+4)22y=3x2y=-2(x-3)222-32。
2024年华师大版九下《二次函数》教案一、教学内容本节课选自2024年华师大版九年级下册《二次函数》章节。
详细内容包括:二次函数的定义与性质,二次函数的图像,二次函数的顶点式及其应用,二次方程与二次不等式的联系,以及二次函数在实际问题中的应用。
二、教学目标1. 理解二次函数的定义,掌握二次函数的性质及其图像特点。
2. 学会使用二次函数顶点式解析二次函数,并能解决相关问题。
3. 能够建立二次方程与二次不等式之间的关系,运用二次函数解决实际问题。
三、教学难点与重点教学难点:二次函数顶点式的应用,二次方程与二次不等式的联系。
教学重点:二次函数的定义,性质,图像及其在实际问题中的应用。
四、教具与学具准备1. 教具:多媒体教学设备,投影仪,黑板。
2. 学具:直尺,圆规,铅笔,橡皮,草稿纸。
五、教学过程1. 实践情景引入(5分钟)利用多媒体展示二次函数在实际问题中的应用,如抛物线运动,引导学生思考二次函数的基本概念。
2. 基本概念讲解(15分钟)讲解二次函数的定义,性质,图像,让学生掌握二次函数的基本知识。
3. 例题讲解(15分钟)选取典型例题,通过讲解与解析,让学生学会使用二次函数顶点式解决问题。
4. 随堂练习(10分钟)设计相关练习题,让学生及时巩固所学知识。
5. 知识拓展(5分钟)引导学生探讨二次方程与二次不等式之间的关系。
六、板书设计1. 二次函数定义2. 二次函数性质3. 二次函数图像4. 二次函数顶点式5. 二次方程与二次不等式的关系七、作业设计1. 作业题目:(1)求下列二次函数的顶点坐标:y = x^2 4x + 3(2)解下列二次方程:x^2 5x + 6 = 0(3)已知二次函数y = x^2 + 2x + 3,求该函数的最大值。
答案:(1)顶点坐标为(2,1)(2)解为x = 2或x = 3(3)最大值为4八、课后反思及拓展延伸本节课通过实践情景引入,让学生了解二次函数在实际问题中的应用,激发学生的学习兴趣。
二次函数的定义及特点二次函数是形如f(x) = ax² + bx + c的数学函数,其中a、b、c都是实数且a ≠ 0。
特点一:二次函数的图像是抛物线。
抛物线可以是开口向上的,也可以是开口向下的,这取决于二次项系数a的正负。
特点二:二次函数的对称轴垂直于x轴,具有形如x=-b/(2a)的垂直线对称轴方程。
特点三:二次函数的顶点是抛物线的最高或最低点,具有形如(-b/(2a),f(-b/(2a)))的坐标。
特点四:二次函数的自变量x在整个实数范围内都有定义,即定义域为全体实数R。
特点五:二次函数的值域的范围是根据二次项系数a的正负而定。
若a>0,则值域为[f(-b/(2a)),+∞),即抛物线开口向上的情况;若a<0,则值域为(-∞,f(-b/(2a))],即抛物线开口向下的情况。
特点六:根据二次函数的图像,可以分析二次函数的零点和极值。
零点是函数图像与x轴的交点,是方程ax² + bx + c = 0的根;极值则是函数图像的最高或最低点,是顶点坐标的纵坐标值。
特点七:二次函数的导数是一次函数,导数函数f'(x) = 2ax + b,而且对于开口向上的二次函数,导数恒大于0;对于开口向下的二次函数,导数恒小于0。
特点八:二次函数的最大值或最小值是在其顶点处取得的,与一次函数不同,二次函数的最大值或最小值唯一存在。
特点九:二次函数与x轴的交点个数根据二次方程ax² + bx + c = 0的判别式来确定。
若判别式Δ = b² - 4ac > 0,则有两个不同实根,即抛物线与x轴有两个交点;若Δ = 0,则有一个重根,即抛物线与x 轴有一个交点;若Δ < 0,则无实根,即抛物线与x轴无交点。
特点十:二次函数的图像可以通过平移图像、伸缩图像、翻转图像等操作来得到其他二次函数的图像。
根据平移、伸缩和翻转的参数不同,可以得到不同形状和位置的抛物线图像。
二次函数的基本概念二次函数是一种重要的数学概念,广泛应用于数学、物理、经济等领域。
它的基本形式为 y = ax^2 + bx + c,其中 a、b、c 是实数且a ≠ 0。
本文将介绍二次函数的定义、图像特征以及常见的应用。
一、二次函数的定义二次函数是一个具有二次项的多项式,其中最高次数是 2。
它的标准形式为 y = ax^2 + bx + c,其中 a 是二次项的系数,b 是一次项的系数,c 是常数项。
二、二次函数的图像特征1. 开口方向二次函数图像的开口方向由二次项的系数 a 决定。
如果 a > 0,图像开口向上;如果 a < 0,图像开口向下。
2. 对称轴二次函数的图像是关于对称轴对称的,对称轴的方程为 x = -b/2a。
3. 顶点对于开口向上的二次函数,顶点是图像的最低点;对于开口向下的二次函数,顶点是图像的最高点。
顶点的 x 坐标为 -b/2a,y 坐标为代入 x 值所得到的 y 值。
4. 零点零点是二次函数图像与 x 轴交点的横坐标值,可以通过求解方程ax^2 + bx + c = 0 来确定。
三、二次函数的常见应用1. 抛物线二次函数的图像形状类似于一个U型的抛物线,因此在物理学中经常用于描述抛体运动的轨迹。
例如,从地面抛出的物体在忽略风阻等因素时,其运动轨迹可以使用二次函数来描述。
2. 经济学在经济学中,二次函数常常用于建模分析。
例如,成本函数、收益函数等均可使用二次函数来表达。
通过对二次函数的研究,可以分析经济决策的最优解以及变化的趋势。
3. 工程工程领域中,二次函数广泛应用于设计和优化问题。
例如,工程结构的抗弯强度、最优路径的寻找等问题都可以通过建立相应的二次函数模型来解决。
4. 自然科学自然科学中,二次函数可以用于描述和分析物理量之间的关系。
例如,光的折射、声音的传播等现象可以通过二次函数来描绘。
总结通过对二次函数的基本概念的介绍,我们了解了二次函数的定义、图像特征以及常见的应用。