当前位置:文档之家› 中性点经消弧线圈接地

中性点经消弧线圈接地

中性点经消弧线圈接地
中性点经消弧线圈接地

中性点经消弧线圈接地

(2009-12-11 17:07:47)

转载

分类:电气知识

标签:

电气知识

杂谈

中性点经消弧线圈接地(谐振接地系统)

中性点经过消弧线圈接地的系统,也称为谐振接地系统。系统中性点与大地之间接入消弧线圈后,当发生单相接地故障时,接地处的接地电流就可以减少。消弧线圈是一个具有铁芯的电感线圈,线圈的电阻很小,电抗很大。消弧线圈的铁芯留有间隙,填以绝缘纸板,以避免饱和。它的线圈有分接头可调整匝数,以改变其电抗的大小。

(1)中性点经消弧线圈接地的系统在正常工作时,中性点的电位为零,消弧线圈两端没有电压,所以没有电流通过消弧线圈。当某一相发生金属性接地时,消弧线圈中就会有电感电流流过,补偿了单相接地电流,如果适当选择消弧线圈的匝数,就使消弧线圈的电感电流和接地的对地电容电流大致的相等,就可使流过接地故障电流变得很小,从而减轻了电弧的危害。

(2)中性点经消弧线圈接地的系统,如图2-1所示。当发生一相完全接地时,其电压的变化和中性点不接地系统完全一样,故障相对地的电压变为零,非故障相对地电压值升高到倍,各相对地的绝缘水平是按照线电压设计的,因为线电压没有变化,不影响用户的工作可以继续运行2个小时,值班人员应尽快查找故障并且加以消除。

(3)消弧线圈的补偿方法

在单相接地故障时,根据消弧线圈产生的电感电流对容性的接地故障电流补偿的程度,可分为三种补偿方式:完全补偿、欠补偿和过补偿。

完全补偿(I L=I C)

就是消弧线圈产生的电感电流刚好等于容性的接地电容电流,在接地故障处的电流等于零,不会产生电弧。

欠补偿(I L

就是由消弧线圈产生的电感电流略小于接地故障处流过的容性接地故障电流,在接地处仍有未补偿完的的容性接地故障电流IC—IL流过。产生电弧的情况由电流I=IC—IL的大小决定。电流I较小就不会产生稳定电弧,一般要求补偿到不会产生电弧为止。

过补偿(I L>I C)

就是由消弧线圈产生的电感电流略大于接地故障处流过的容性接地故障电流,在发生完全接地故障时,接地处有大小为I L>I C的感性电流流过,过补偿时,流过接地故障处的电流也不大,一般也要求补偿到不会产生电弧为止。

1)中性点经消弧线圈接地的系统在运行时,实际上都不采用完全补偿的方式,也不采用欠补偿的方式,而采用过补偿的方式。若采用完全补偿的方式运行,在发生单相接地故障时,是一个谐振的系统,完好相的电容与消弧线圈的电感形成串联谐振回路,串联谐振也是电压谐振,谐振过电压不但危及系统的对地绝缘,也对消弧线圈形成威胁。因此一般谐振系统都不采用完全补偿的运行方式。

2)谐振系统接地在运行时,一般情况下也不采用欠补偿的运行方式,而采用过补偿运行方式。因为若采用欠补偿运行方式,当发生单相接地时I L

3)但应该指出过补偿方式下接地点将流过某一数值的电流,这种电流不能超过某一规定值,否则故障点的电弧不能自动熄灭。一般采用过补偿方式,补偿后的残余电流不超过5—— 10A。运行经验证明,各种电压等级的电网,只要残余电流不超过下表的允许值,接地电弧就会自动熄灭。

表2—1 过补偿时残余电流的允许值

如果系统中性点位移电压过高,则单相接地时采用消弧线圈也难以灭弧。因此,要求中性点经消弧线圈接地的系统在正常运行时中性点的位移电压不得超过额定电压的15%,这样采用消弧线圈易于灭弧。

(4)自动跟踪补偿装置

1)目前,在谐振系统中,除了对消弧线圈合理调谐、正确动作和适当的运行维护外,还采用了自动跟踪补偿装置。它能够避免人工调节消弧线圈的诸多麻烦,不会使电网的部分活全部在调谐过程中暂时失去补偿,能够保持精确的精度,不仅提高了消弧线圈动作的成功率,同时还能限制接地过电压和谐振过电压。2.)自动补偿装置一般由驱动式消弧线圈和自动测控系统配套构成,自动完成跟踪测量和跟踪补偿。

3)当补偿电网的运行方式改变时,该装置便自动跟踪测量电网的电容电流,将消弧线圈调谐到合理的补偿状态;或者当电网发生单相接地故障时,迅速将消弧线圈调谐到接近谐振点的位置运行,使接地电弧瞬间熄灭。

4)为了提高消弧线圈的动作成功率,并减轻运行人员的操作负担,应优先选用自动跟踪补偿的消弧线圈。虽然投资有所增加,但可以对运行人员带来许多方便,而且还能显著提高电网的供电连续性。

消弧消谐装置与接地变

消弧消谐装置与接地变

接地变的作用 接地变压器简称接地变,根据填充介质,接地变可分为油式和干式;根据相数,接地变可分为三相接地变和单相接地变。 三相接地变:接地变压器的作用是在系统为△型接线或Y型接线,中性点无法引出时,引出中性点用于加接消弧线圈或电阻,此类变压器采用Z型接线(或称曲折型接线),与普通变压器的区别是,每相线圈分成两组分别反向绕在该相磁柱上,这样连接的好处是零序磁通可沿磁柱流通,而普通变压器的零序磁通是沿着漏磁磁路流通,所以Z型接地变压器的零序阻抗很小(10Ω左右),而普通变压器要大得多。按规程规定,用普通变压器带消弧线圈时,其容量不得超过变压器容量的20%。Z型变压器则可带90% ~100%容量的消弧线圈,接地变除可带消弧圈外,也可带二次负载,可代替所用变,从而节省投资费用。 单相接地变:单相接地变主要用于有中性点的发电机、变压器的中性点接地电阻柜,以降低电阻柜的造价和体积。 扩展阅读:我国电力系统中,的6kV、10kV、35kV电网中一般都采用中性点不接地的运行方式。电网中主变压器配电电压侧一般为三角形接法,没有可供接地电阻的中性点。当中性点不接地系统发生单相接地故障时,线电压三角形仍然保持对称,对用户继续工作影响不大,并且电容电流比较小(小于10A)时,一些瞬时性接地故障能够自行消失,这对提高供电可靠性,减少停电事故是非常有效的。 但是随着电力事业日益的壮大和发展,这中简单的方式已不在满足现在的需求,现在城市电网中电缆电路的增多,电容电流越来越大(超过10A),此时接地电弧不能可靠熄灭,就会产生以下后果。 1)单相接地电弧发生间歇性的熄灭与重燃,会产生弧光接地过电压,其幅值可达4U(U为正常相电压峰值)或者更高,持续时间长,会对电气设备的绝缘造成极大的危害,在绝缘薄弱处形成击穿;造成重大损失。 2)由于持续电弧造成空气的离解,破坏了周围空气的绝缘,容易发生相间短路。 3)产生铁磁谐振过电压,容易烧坏电压互感器并引起避雷器的损坏甚至可能使避雷器爆炸。这些后果将严重威胁电网设备的绝缘,危及电网的安全运行。 为了防止上述事故的发生,为系统提供足够的零序电流和零序电压,使接地保护可靠动作,需人为建立一个中性点,以便在中性点接入接地电阻。接地变压器(简称接地变)就在这样的情况下产生了。接地变就是人为制造了一个中性点接地电阻,它的接地电阻一般很小(一般要求小于5欧)。另外接地变有电磁特性,对正序负序电流呈高阻抗,绕组中只流过很小的励磁电流。由于每个铁心柱上两段绕组绕向相反,同心柱上两绕组流过相等的零序电流呈现低阻抗,零序电流在绕组上的压降很小。即当系统发生接地故障时,在绕组中将流过正序、负序和零序电流,该绕组对正序和负序电流呈现高阻抗,而对零序电流来说,由于在同一相的两绕组反极性串联,其感应电动势大小相等,方向相反,正好相互抵消,因此呈低阻抗。由于很多接地变只提供中性点接地小电阻,而不需带负载,所以很多接地变就是属于无二次的。接地变在电网正常运行时,接地变相当于空载状态。但是,

消弧线圈接地选线原理

1 选线原理 ⑴绝缘监察装置。绝缘监察装置利用接于公用母线的三相五柱式电压互感器,其一次线圈均接成星形,附加二次线圈接成开口三角形。接成星形的二次线圈供给绝缘监察用的电压表、保护及测量仪表。接成开口三角形的二次线圈供给绝缘监察继电器。系统正常时,三相电压正常,三相电压之和为零,开口三角形的二次线圈电压为零,绝缘监察继电器不动作。当发生单相接地故障时,开口三角形的二次端出现零序电压,电压继电器动作,发出系统接地故障的预告信号。其优点是投资小,接线简单、操作及维护方便。其缺点是只发出系统接地的无选择预告信号,不能准确判断发生接地的故障线路,运行人员需要通过推拉分割电网的试验方法才能进一步判定故障线路,影响了非故障线路的连续供电。 ⑵零序电流原理。在中性点不接地的电网中发生单相接地故障时,非故障线路零序电流的大小等于本线路的接地电容电流。故障线路零序电流的大小等于所有非故障线路的零序电流之和,也就是所有非故障线路的接地电容电流之和。通常故障线路的零序电流比非故障线路零序电流大得多,利用这一原则,可以采用电流元件区分出接地故障线路。 ⑶零序功率原理。在中性点不接地的电网中发生单相接地故障时,非故障线路的零序电流超前零序电压90°,故障线路的零序电流滞后零序电压90°,故障线路的零序电流与非故障线路的零序电流相位相差180°。根据这一原则,可以利用零序方向元件区分出接地故障线路。 2 消弧线圈接地系统的特点 随着国民经济的不断发展,配网规模日渐扩大,电缆出线日渐增多,系统对地电容电流急剧增加,接地弧光不易自动熄灭,容易产生间隙弧光过电压,进而造成相间短路,使事故扩大。为了防止这种事故,电力行业标准DL/T 620-1997《交流电气装置的过电压保护和绝缘配合》规定;3~10 kV架空线路构成的系统和所有35 kV、66 kV电网,当单相接地故障电流大于10 A时,中性点应装设消弧线圈,3~10 kV电缆线路构成的系统,当单相接地故障电流大于30 A时,中性点应装设消弧线圈。根据这一规定,潮州供电分公司对系统进行改造,采取中性点经消弧线圈接地的运行方式,但是造成了采用零序电流原理、零序功率方向原理的接地选线装置的选线正确率急剧下降。其原因是中性点经消弧线圈接地系统单相接地时,电容电流分布的情况与中性点不接地系统不一样了,如图1所示。

中性点经电阻接地方式的适用范围及优缺点正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal. 中性点经电阻接地方式的适用范围及优缺点正式版

中性点经电阻接地方式的适用范围及 优缺点正式版 下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。 中性点经电阻接地方式,即是中性点与大地之间接人一定电阻值的电阻。该电阻与系统对地电容构成并联回路,由于电阻是耗能元件,也是电容电荷释放元件和谐振的阻压元件,对防止谐振过电压和间歇性电弧接地过电压,有一定优越性。中性点经电阻接地的方式有高电阻接地、中电阻接地、低电阻接地等三种方式。这三种电阻接地方式各有优缺点,要根据具体情况选定。 对于用电容量大且以电缆线路为主的

电力系统,其电容电流往往大于30A,如果采用消弧线圈接地方式,不仅调谐工作繁琐困难,故障点不易寻找,而且消弧线圈补偿量增大,使得投资增加,占地面积也随之增大。电缆线路不宜带故障运行,采用消弧线圈可以带故障运行的优点也不能发挥,因此这样的系统常采用电阻接地。电阻接地根据系统电容电流的不同,分为高电阻接地和中电阻接地两种情况。 (1)高电阻接地 高电阻接地多用于电容电流为10A或稍大的系统内。接地电阻的电阻值按照流经该电阻上的电流稍大于系统的接地电容

消弧、接地变使用说明书 --中文

Sieyuan? 环氧浇注干式消弧线圈、接地变压器 使 用 说 明 书 思源电气股份有限公司 SIEYUAN ELECTRIC CO.,LTD

警告! 对于消弧线圈: 对短时运行的分接,必须在铭牌所标明的允许运行时间内运行。 对于接地变压器: 额定中性点电流的运行时间不得超过銘牌规定的运行时间。

1 适用范围 本说明书适用于额定容量5000kV A及以下,电压等级35kV及以下的环氧浇注干式消弧线圈(以下简称消弧线圈)以及无励磁调压环氧浇注干式接地变压器(以下简称接地变压器)的运输、储存、安装、运行及维护。 消弧线圈是用来补偿中性点绝缘系统发生对地故障时产生的容性电流的单相电抗器。在三相系统中接在电力变压器或接地变压器的中性点与大地之间。 接地变压器(中性点耦合器)为三相变压器(或三相电抗器),常用来为系统不接地的点提供一个人工的可带负载的中性点,以供系统接地用。该产品中性点连接到消弧线圈或电阻,然后再接地。可带有连续额定容量的二次绕组,可作为站(所)用电源。 2 执行标准 GB10229 《电抗器》 GB6450 《干式电力变压器》 GB1094 《电力变压器》 IEC289 《电抗器》 3产品型号标志 3.1 消弧线圈 □—□/ □ 电压等级(kV) 额定容量(kVA) 产品型号字母(见下表) 产品型号字母的排列顺序及涵义

3.2 接地变压器 D K S C-□-□/□ 一次额定电压(kV) 二次额定容量(kVA) 一次额定容量(kVA) 浇注“成”型固体 三相 接地变压器 4 使用条件 4.1 安装地点:户内。 4.2 海拔高度:≤1000m。 4.3 环境温度:-25℃~+40℃。 4.4 冷却方式: 空气自冷(AN)和强迫风冷(AF)两种。 4.5 绝缘耐热等级:F级。 4.6 当产品运行在环境温度低于-25℃时,必须加装辅助加热装置,以保证产品在-25℃以上的环境下运行。 4.7 产品四周需保证有良好的通风能力。当产品安装在地下室或其它空间受限制的场所时,应增设散热通风装置,保证有足够的通风量。一般地,每1kW损耗必须有2~4m3/min的通风量。 4.8 若超出以上使用条件时,均应按GB6450《干式电力变压器》的有关规定做适当的定额调整。 5 装卸 5.1 起吊产品可采用起重机、汽车或叉车等设备。 5.2 起吊有包装箱产品时: 5.2.1 对于起吊毛重≤3000kg的6、10kV产品,应在包装箱的四下角枕木处挂钢丝绳起吊; 5.2.2 对于起吊毛重>3000kg或35kV的产品,应将包装箱上盖去掉,直接起吊产品; 5.2.3 对于毛重≤3000kg的产品,可以使用叉车,装卸或短距离运输。其余情况下,严禁使用叉车进行以上操作。

消弧线圈接地方式

长期以来,我国6~35KV(含66KV)的电网大多采用中性点不接地的运行方式。此类运行方式的电网在发生单相接地时,故障相对地电压降为零,非故障相的对地电压将升高到线电压(UL),但系统的线电压维持不变。因此国家标准规定这类电网在发生单相接地故障后允许短时间(2小时)带故障运行,所以大大提高了该类电网的供电的可靠性。 现有的运行规程规定:“中性点非有效接地系统发生单相接地故障后,允许运行两小时”,但规程未对“单相接地故障”的概念加以明确界定。如果单相接地故障为金属性接地,则故障相的电压降为零,其余两健全相对地电压升高至线电压,这类电网的电气设备在正常情况下都应能承受这种过电压而不损坏。但是,如果单相接地故障为弧光接地,则会在系统中产生最高值达3.5倍相电压的过电压,这样高的过电压如果数小时作用于电网,势必会造成电气设备内绝缘的积累性损伤,如果在健全相的绝缘薄弱环节造成绝缘对地击穿,将会引发成相间短路的重大事故。 一、相接地电容电流的危害 中性点不接地的高压电网中,单相接地电容电流的危害主要体现在以下四个方面: 1.弧光接地过电压的危害 当电容电流一旦过大,接地点电弧不能自行熄灭。当出现间歇性电弧接地时,产生弧光接地过电压,这种过电压可达相电压的3~5倍或更高,它遍布于整个电网中,并且持续时间长,可达几个小时,它不仅击穿电网中的绝缘薄弱环节,而且对整个电网绝缘都有很大的危害。 2.造成接地点热破坏及接地网电压升高 单相接地电容电流过大,使接地点热效应增大,对电缆等设备造成热破坏,该电流流入大地后由于接地电阻的原因,使整个接地网电压升高,危害人身安全。 3.交流杂散电流危害 电容电流流入大地后,在大地中形成杂散电流,该电流可能产生火花,引燃瓦斯爆炸等,可能造成雷管先期放炮,并且腐蚀水管、气管等。 4.接地电弧引起瓦斯煤尘爆炸 二、消弧线圈的作用 电网安装消弧线圈后,发生单相接地时消弧线圈产生电感电流,该电感电流补偿因单相接地而形成的电容电流,使得接地电流减小,同时使得故障相恢复电压速度减小,治理电容电流过大所造成的危害。同时由于消弧线圈的嵌位作用,它可以有效的防止铁磁谐振过电压的发生概率。 三、消弧线圈接地方式存在的一些问题:

35kV系统中性点接地电阻及接地变压器设计选型

中性点接地电阻及接地变压器选型方案 一、系统设计现状及电容电流计算 变电站总共上3台的主变压器,联接组别Y/Δ,额定电压110kV/35kV。35kV配电系统全部采用电缆线路,根据变电站35kV电缆线路型号及长度计算系统电容电流如下: 据乔工介绍:I、II、III段母线对应的电容电流各为Ic=50A, 35kV侧共有三段母线,三段母线都采用中性点经电阻接地方式,因此三段母线应考虑并列运行情况 则系统总的对地电容电流为IcI+IcII+IcIII =50A+50A+50A=150A 考虑以后用电负荷增加和远期发展及变电站其他设备的对地电容电流。系统总的电容电流取150A*1.2=180A。 二、中性点经电阻接地方式优点 变电站35KV系统采用中性点经电阻接地方式的主要目的是限制系统过电压水平和单相接地故障情况下实现快速准确选线。 中性点经电阻接地方式的两个最主要优点即是:(1)有效限制系统各种过电压,特别是对间歇性弧光接地过电压水平的限制;(2)利用大的接地故障电流,解决选线难,达到准确快速选线切除故障线路的目的。 中性点经电阻接地方式特别适用于电缆线路为主的配电网,大型工矿企业、机场、港口、地铁、钢铁等重要电力用户,以及发电厂发电机和厂用电系统。其主要优点体现在: 1)降低工频过电压,非故障相电压升高小于倍; 2)有效限制间歇性弧光接地过电压; 3)消除谐振过电压;降低各种操作过电压; 4)可准确判断并及时切除故障线路; 5)系统承受过电压水平低,时间短;可适当降低设备的绝缘水平,提高系统设备的使用寿命,具有很好的经济效益。 6)有利于具有优良伏秒特性的氧化锌避雷器MOA的应用,降低雷电过电压水平;适用于系统以后扩容及对地电容电流大范围变化情况,电阻不需要调节;设备简单、可靠,投资少、寿命长。 三、中性点接地电阻选型 中性点接地电阻的选型主要依据系统总的电容电流选取。 采用中性点经电阻接地时,电阻值的选取必须根据电网的具体情况,应综合考虑限制过电压倍数,继电保护的灵敏度,对通信的影响,人身安全等因素。 变电站35KV配电网中性点接地电阻选择33.7Ω,即发生单相接地故障时流过电阻的额定电 ①从降低配电网过电压水平考虑: 中性点经电阻接地方式可以降低配电系统的弧光接地过电压水平,从而保证配电系统电气设备的安全运行。根据国内有关机构做的EMTP程序计算、过电压模拟装置的实际模拟及各地区局运行经验表明,弧光接地过电压水平随着电阻的额定通流 I R增加而降低,I C为系统电容电流。即: 当I R≈I C时,过电压水平可降到2.5PU以下; 当I R≈2I C时,过电压水平可降到2.2PU以下; 当I R≈4I C时,过电压水平可降到2.0 PU以下;

中性点经电阻接地方式的适用范围及优缺点

编订:__________________ 审核:__________________ 单位:__________________ 中性点经电阻接地方式的适用范围及优缺点Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-5969-82 中性点经电阻接地方式的适用范围 及优缺点 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 中性点经电阻接地方式,即是中性点与大地之间接人一定电阻值的电阻。该电阻与系统对地电容构成并联回路,由于电阻是耗能元件,也是电容电荷释放元件和谐振的阻压元件,对防止谐振过电压和间歇性电弧接地过电压,有一定优越性。中性点经电阻接地的方式有高电阻接地、中电阻接地、低电阻接地等三种方式。这三种电阻接地方式各有优缺点,要根据具体情况选定。 对于用电容量大且以电缆线路为主的电力系统,其电容电流往往大于30A,如果采用消弧线圈接地方式,不仅调谐工作繁琐困难,故障点不易寻找,而且消弧线圈补偿量增大,使得投资增加,占地面积也随

之增大。电缆线路不宜带故障运行,采用消弧线圈可以带故障运行的优点也不能发挥,因此这样的系统常采用电阻接地。电阻接地根据系统电容电流的不同,分为高电阻接地和中电阻接地两种情况。 (1)高电阻接地 高电阻接地多用于电容电流为10A或稍大的系统内。接地电阻的电阻值按照流经该电阻上的电流稍大于系统的接地电容电流的原则来选择。由于接地故障时总的接地电流比较小,对电气设备和线路所产生的机械应力和热效应也比较小,同样也减少人身遭受电击的危险和靠近接地故障点的人员遭受到电弧和闪络的危险,还可以带故障继续运行2h,以便利用这段时间消除接地故障,保持系统运行的可靠性。 (2)中电阻接地

消弧线圈工作原理分析

、消弧线圈的工作原理 配电系统是直接为用户生产生活提供电能支持的系统,其功能是把变电站或小型发电厂的电力输送给每一个用户,并在必要的地方转换成为适当的电压等级。国内外对于提高以可靠性和经济性为主要内容的配电网运行水平非常重视。影响配电系统运行水平的因素主要有网架结构、设备、控制策略和线路等,选择适当的中性点接地方式是最重要和最灵活的提高配电网可靠性和经济性的方法之一,因此进一步研究中性点运行方式对于提高配电系统运行水平有重要意义,中性点运行方式选择是一个重要且涉及面很广的综合技术经济问题,其方式对配电系统过电压、 可靠性、继电保护整定、电磁干扰、人身和设备安全等影响很大。 电力系统中中性点是指Y型连接的三相电,中间三相相连的一端。而电力系统中中性点接地方式主要分为中性点直接接地和中性点不直接接地或中性点经消弧线圈接地。两种接地方式各自优缺点:中性点不接地系统单相接地时,由于没有形成短路回路,流入接地点的电流是非故障相的电容电流之和,该值不大,且三相线电压不变且对称,不必切除接地相,允许继续运行,因此供电可靠性高,但其它两条完好相对地电压升到线电压,是正常时的V 3倍,因此绝缘水平要求高,增加绝缘费用,对无线通讯有一定影响。 中性点经消弧线圈接地系统单相接地时,除有中性点不接地系统的优点外,还可以减少接地电流,通过消弧线圈的感性补偿,熄灭接地电弧,但接地点的接地相容性电流为 3 倍的未接地相电容电流,随着网络的延伸,接地电流增大以致使接地电弧不能自行熄灭而引起弧光接地过电压,甚至发展成系统性事故,对无线通讯影响较大。 中性点直接接地系统单相接地时,发生单相接地时,其它两完好相对地电压不升高,因此绝缘水平要求低,可降低绝缘费用,但短路电流大,要迅速切除故障部分,对继电保护的要求高,从而供电可靠性差,对无线通讯影响不大。 随着社会经济的迅猛发展,电力系统的重要性日益凸显。因而近几年电网的安全可靠运行倍受关注。在电力系统中发生几率最大的故障类型为单相接地故障。而在发生故障后及时确定及切断线路故障则显得尤为重要 配电网中主要采用第二种中性点接地方式。但是以前以架空线路为主的配电网采

变压器中性点接地电阻柜选型说明书

变压器中性电阻柜说明书 目录 MRD-BJ系列变压器中性电阻柜 (1) 1.产品概述 (1) 2.执行标准 (2) 3. 产品特点 (2) 4.型号说明 (3) 5. 典型技术参数 (3) 6. 接线原理图 (4) 7.外形及安装尺寸 (5) 9.订货须知 (5) 10.现场安装注意事项 (5) 11.检查及试验 (6) 12.运行维护 .......................................................................................... 错误!未定义书签。 13.包装、运输和贮存.................................................................. 错误!未定义书签。1

MRD-BJ系列变压器中性电阻柜 1.产品概述 配电系统中性点接地方式通常有中性点不接地、中性点经电阻接地和中性点经消弧线圈接地。各种接地方式不同,使用方式也不同。随着国民经济的发展,许多城市配电网已经改变了过去以架空线路为主的局面,而是以电缆线路为主,与此同时,一些新型设备,如结构紧凑的封闭式SF6开关柜、交联聚乙Array烯电缆以及氧化锌避雷器等得到越来越广泛的应 用,这就使得原来沿用的非有效接地方式有些不适 用。因此,如何有效经济的设置中性点接地成为当 前供电工作的重点。 目前,我国已有不少配电网中性点采用了经电 阻接地的运行方式。安装中性点接地电阻柜后,当 发生非金属性接地时,受接地点电阻的影响,流过 接地点和中性点的电流比金属性接地时有显著降 低,同时,健全相电压上升也显著降低,零序电压 值约为单相金属性接地的一半。由此可见,采用中 性点经电阻接地,可降低单相接地时的暂态过电压、消除弧光接地过电压和某些谐振过电压,并能采用简单的继电保护装置迅速选择故障线路,切除故障点。 保定明瑞光电科技有限公司拥有技术优秀的研发队伍和精良的设备,专门从事配电系统中性点接地系列产品的研发、生产、销售及服务工作。开发和生产的变压器中性点接地电阻柜适用于6~35kV以电缆线路为主的城市配电网、大型工业企业、工厂、机场、 港口、地铁等重要电力用户配电网以及发电厂厂用电系统。 1

kV消弧线圈接地变成套装置、消弧线圈、接地变压器

(20015年版) 10kV消弧线圈接地变成套装置、消弧线圈、 接地变压器 通用技术规范 (编号:1013001/002/003-0010-00) 本规范对应的专用技术规范目录

标准技术规范使用说明 1、本标准技术规范分为通用部分、专用部分。 2、项目单位根据需求选择所需设备的技术规范,技术规范通用部分条款及专用部分固化的参数原则上不能更改。 3、项目单位应按实际要求填写“项目需求部分”。如确实需要改动以下部分,项目单位应填写专用部分“表6项目单位技术差异表”并加盖该网、省公司物资部(招投标管理中心)公章,与辅助说明文件随招标计划一起提交至招标文件审查会: ①改动通用部分条款及专用部分固化的参数; ②项目单位要求值超出标准技术参数值; ③需要修正污秽、温度、海拔等条件。 经标书审查会同意后,对专用部分的修改形成“项目单位技术差异表”,放入专用部分表6中,随招标文件同时发出并视为有效,否则将视为无差异。 4、对扩建工程,项目单位应在专用部分提出与原工程相适应的一次、二次及土建的接口要求。 5、技术规范的页面、标题、标准参数值等均为统一格式,不得随意更改。 6、投标人逐项响应技术规范专用部分中“1标准技术参数表”、“2项目需求部分”和“3投标人响应部分”三部分相应内容。填写投标人响应部分,应严格按招标文件技术规范专用部分的“招标人要求值”一栏填写相应的投标人响应部分的表格。投标人还应对项目需求部分的“项目单位技术偏差表”中给出的参数进行响应。“项目单位技术偏差表”与“标准技术参数表”和“使用条件表”中参数不同时,以偏差表给出的参数为准。投标人填写技术参数和性能要求响应表时,如有偏差除填写“表

消弧线圈原理及 (2)

自动控制消弧线圈 继电保护所保护四班 范永德

消弧线圈的作用 消弧线圈的作用主要是将系统的电容电流加以补偿,使接地点电 流补偿到较小的数值,防止弧光短路,保证安全供电。降低弧隙电压恢复速度,提高弧隙绝缘强度,防止电弧重燃,造成间歇性接地过电压。中性点不接地系统的特点 选择电网中性点接地方式是一个要考虑许多因素的问题,它与电压等级、单相接地短路电流数值、过电压水平、保护配置等有关。并直接影响电网的绝缘水平、系统供电的可靠性和连续性、主变压器和发电机的安全运行以及对通信线路的干扰。10kV中性点不接地系统(小电流接地系统)具有如下特点:当一相发生金属性接地故障时,接地相对地电位为零,其它两相对地电位比接地前升高√3倍,一般情况下,当发生单相金属性接地故障时,流过故障点的短路电流仅为全部线路接地电容电流之和其值并不大,发出接地信号,值班人员一般在2小时内选择和排除接地故障,保证连续不间断供电。 3、系统对地电容电流超标的危害 实践表明中性点不接地系统(小电流接地系统)也存在许多问题,随着电缆出线增多,10kV配电网络中单相接地电容电流将急剧增加,当系统电容电流大于10A后,将带来一系列危害,具体表现如下: (1)当发生间歇弧光接地时,可能引起高达3.5倍相电压(见参考文献1)的弧光过电压,引起多处绝缘薄弱的地方放电击穿和设备瞬间损坏,使小电流供电系统的可靠性这一优点大受影响。

消弧线圈的作用

消弧线圈的作用 一个电网的存在必然存在着漏电.从那里漏的电呢? 电缆对地的电 容!我们知道,我们采用的是50Hz的频率.而且在传输的过程中是没有零线的,主要的目的是为了节约成本!代替零线的自然就是大地. 三相点他们对大地的距离不一样也就是对大地的电容也不一样! 既然电容不一样,那么漏电流也不一样.漏掉的电流跑到那里去了呢? 这要取决于那条线路距离大地最近.因为漏掉的电流要跑到另外的 线路中!假如A失去电流,那么B或者C就得到电流!容性电流=A- B|A-C 线路越长容性电流就越大!容性电流越大,当发生接地的时候弧光 就不容易熄灭!通过引入消弧线圈来保证整个变电站的接地时候的电流<5A就可以消灭接地弧光!当然:引入消弧线圈后,变电站的系 统有可能是过补(电感电流大于电容电流)或者是欠补(电感电流小于电容电流)但绝对不能相同(电感电流等于电容电流)!

中性点经电阻接地方式

中性点经电阻接地方式 ——适宜于以电缆线路为主配电网的中性点接地方式 一、前言 三相交流电系统中性点与大地之间电气连接的方式,称为电网中性点接地方式。 中性点接地方式是一个综合性的、系统性的问题,既涉及到电网的安全可靠性、也涉及电网的经济性。中性点接地方式直接影响到系统设备绝缘水平的选择、系统过电压水平及过电压保护元件的选择、继电保护方式、系统的运行可靠性、通讯干扰等。在选择电网中性点接地方式时必须进行具体分析、全面考虑。 我国110kV及以上电压等级的电网一般都采用中性点直接接地方式,在中性点直接接地系统中,由于中性点电位固定为地电位,发生单相接地故障时,非故障相的工频电压升高不会超过1.4倍运行相电压;暂态过电压水平也相对较低;故障电流很大继电保护装置能迅速断开故障线路,系统设备承受过电压的时间很短,这样就可以使电网中设备的绝缘水平降低,从而使电网的造价降低。这里对中性点直接接地系统不做过多的讨论,下面主要讨论6~35kV配电网的接地方式。 配电网中性点的接地方式主要可分为以下三种: ●不接地 ●经消弧线圈接地 ●经电阻接地 自1949年至80年代我国基本上沿用前苏联的规定,6~35KV电网均采用中性点不接地或经消弧线圈(谐振)接地方式。近10多年来沿海一些大城市经济飞速发展,电网的容量和规模急剧扩大,配电线路逐步实现电缆化,系统电容电急剧增加、特别是近几年大规模城市电网改造,电缆线路逐步代替架空线路,电网结构大大加强。在电缆线路为主的城市电网中采用不接地或经消弧线圈接地方式,因单相接地过电压烧坏设备的事故概率大大增加,为了解决这一矛盾,许多城市电力部门广泛考察了国外配电网的中性点接地方式,结合本地电网的具体情况,经过充分的分析、研究,发现采用中性点经低电阻接地方式是解决这一矛盾的有效措施,20世纪80年代后期开

中性点接地电阻柜说明书

中性点接地电阻柜说明书 太原合创自动化有限公司 2011年2月

目录 一.概述 二.引用标准 三. 型号说明 四. 产品说明 五.使用条件 六.HCH-FZG型发电机中性点接地电阻柜原理及安装尺寸七.HCH-BZG型变压器中性点接地电阻柜原理及安装尺寸八订货参数:

一.概述 随着电力系统的发展,在6KV-35KV电力系统中,我国目前普遍采用小电流接地系统,既中性点不接地、经消弧线圈接地或经电阻接地方式。但是随着电力容量的增大,系统出线大多都采用电缆出线,造成配电网对地电容电流增大,从而超出设计规范中的标准。 如果中性点采用不接地方式,当发生单项接地故障时,使非故障相电压升高,易产生弧光放电,而产生过电压现象,危害系统稳定运行;采用消弧线圈接地方式,目前采用的补偿方式多为完全补偿,由于电网谐波的存在,配电网易发生谐振现象,从而导致设备的损坏;当中性点采用电阻接地时,则可以有效避免弧光接地闪络现象,降低非故障相的过电压,从而避免对电网及运行设备的危害,大大增加电网的可靠性,经过实际应用,此种方式是降低重压配电网内部过电压及消除谐振过电压的有效方式。 HCH-FZG或HCH-BZG系列中性点接地电阻柜,适用于6~35kV、50Hz中压配电电网中,是用于连接变压器或发电机与大地之间的一种限流保护电气设备。当配电网内部出现故障时(二相短路、单相接地、单相断路等),配电网中性点将产生偏移,此时中性点接地电阻将配电网中性点经电阻强制接地并限制其故障电流,使继电保护设备有足够时间进行检测实现跳闸和备用切换,避免配电网和电气设备遭到破坏。 现在,中性点经电阻接地方式已经写入电力行业规程中。 DL/T620 -1997 《交流电气装置的过电压保护和绝缘配合》 第3.1.4条规定“6~35KV主要由电缆线路构成的送、配电系统,单相故障接地电容电流较大时,可采用低电阻接地方式,但应考虑供电可靠性要求、故障时瞬态电压、瞬态电流对电气设备的影响、对通信的影响和继电保护技术要求以及本地的运行经验等。” 第3.1.5条规定“6KV和10KV配电系统以及发电厂用电系统,单相故障接地电容电流较小时,为防止谐振,间隙性电弧接地过电压等对设备的危害,可用高电阻接地方式。” 二.引用标准 中性点接地电阻柜的设计、安装制造、出厂检验,采用下列国家和电力行业标准: GB/T 10229—1988 电抗器 GB/T 12944.1—1991 高压穿墙瓷套管技术条件 GB/T 12944.2—1991 高压穿墙瓷套管尺寸与特性 GB4208—1993 外壳防护等级(IP代码) GB/T 16927.1—1997 高电压试验技术第一部分:一般试验要求

中性点经小电阻接地

中性点经小电阻接地零序过流 0 引言 电力系统的中性点接地方式是一个综合性的技术问题,它与系统的供电可靠性、人身安全、绝缘水平、过电压保护、继电保护、通信干扰(电磁环境)及接地装置等问题有密切的关系,早期惠州惠阳的配网主要以架空线为主,线路电容电流较小,因此配网主要采用中性点不接地或者经消弧线圈接地并取得较好的效果,随着城网改造的深入,越来越多的采用电缆代替架空线,使得这些地区接地电容电流迅速上升,在这种情况下,中性点不接地或者经过消弧线圈接地已经不能满足系统限制过电压的要求,而且电缆馈线发生故障一般为永久性故障,宜采用迅速切除故障防止故障扩大,所以惠州惠阳10kv配网基本上都采用中性点经低电阻接地(接地变/曲折变),即NRS,由于系统的零序阻抗较小,线路发生单相接地故障时,线路的零序过流保护能够迅速切除故障,10kv母线发生故障时,接入曲折变保护的零序过流保护会动作隔离故障。 1 中性点经小电阻接地的特点 1.1 降低工频过电压和抑制弧光过电压中性点经小电阻接地方式可降低单相接地工频过电压,因为能迅速切除故障线路,使得工频电压升高持续时间很短,中性点电位衰减很快,弧光重燃产生过电压幅值可明显降低,有效地抑制弧光接地过电压。 1.2 消除铁磁谐振过电压和防止断线谐振过电压在中性点不接地系统中,由于电磁式电压互感器的激磁电感和线路的对地电容形成非线型谐振回路,在特定情况下引起铁磁谐振过电压,在中性点经小电阻接地后谐振无法产生。配网中性点不接地系统发生断线时,配电变压器的铁芯线圈与线路对地电容组成的串联回路在特定条件下会发生谐振,产生过电压。中性点经小电阻接地可以防止大部分的断线谐振过电压,减少绝缘老化,延长电气设备使用寿命,提高网络和设备可靠性。 1.3 避免发生高压触电事故配网系统的架空线路分布较广,高度也不太高,时有发生外物误碰高压线路以及高压线断线情况,极易导致触电伤亡事故。中性点经小电阻接地系统装有保护装置,一旦发生接地故障,可以立即跳闸,断

变压器中性点接地电阻柜工作原理

目录 1. 概述................................................ - 1 - 2. 引用标准............................................ - 2 - 3. 型号含义............................................ - 2 - 4. 产品特点............................................ - 2 - 5. 使用条件............................................ - 3 - 6. 变压器中性点接地电阻柜工作原理 ...................... - 4 - 7. 变压器中性点接地电阻柜主要技术参数 .................. - 5 - 8. 变压器中性点接地电阻柜接线原理图 .................... - 6 - 9. 发电机中性点接地电阻柜工作原理 ...................... - 6 - 10. 发电机中性点接地电阻柜主要技术参数 .................. - 7 - 11. 发电机中性点接地电阻柜接线原理图 .................... - 7 - 12. 中性点接地电阻柜结构及安装尺寸 ...................... - 8 - 13. 订货须知............................................ - 9 -

1.概述 电网中性点接地方式是一个综合性的、系统性的问题,既涉及到电网的安全可靠性、也涉及电网的经济性。中性点电阻接地系统近年来在我国城市电网和工业企业的配电网中得到越来越广泛的应用。中性点经电阻接地系统在世界上很多国家,比如美国,欧洲,日本,俄罗斯等有着很多年的成熟可靠运行经验。 在6-35KV电网,我国基本上采用中性点不接地或消弧线圈(谐振)接地方式。近20多年来一些城市电网负荷迅速增长、电缆线路增加很快、系统电容电流急剧增加、特别是近几年大规模城市电网改造,电缆线路逐步代替架空线路,电网结构大大加强。在电缆线路为主的城市电网中采用不接地或经消弧线圈接地方式,因单相接地过电压烧坏设备的事故概率大大增加,为了解决这一矛盾,许多城市电力部门在广泛考察、了解国外配电网中性点接地情况的基础上,结合本地电网的具体情况,经过充分的分析、研究,逐步采用中性点经电阻接地方式。例如广州、深圳、上海、北京、珠海、天津、厦门、南京、苏州工业园区、无锡、汕头、惠州、顺德、东莞等。中性点经电阻接地方式在上述城市配网中已有多年运行经验,经过数个变电站及电厂实际应用证明,采用中性点接地是降低中压配电网内部过电压及消除谐振过电压的最有效的方式,对降低系统过电压水平、提高系统可靠性具有良好的效果。。 现在,中性点经电阻接地方式已被写入电力行业规程,电力行业标DL/T620-1997《交流电气装置的过电压保护和绝缘配合》第3.1.4条规定:“6-35KV主要由电缆线路构成的送、配电系统,单相接地故障电容电流较大时,可采用低电阻接地方式,但应考虑供电可靠性要求、故障时瞬态电压、瞬态电流对电气设备的影响、对通信的影响和继电保护技术要求以及本地的运行经验等。”第3.1.5条规定:“6KV和10KV配电系统以及发电厂厂用电系统,单相接地故障电容电流较小时,为防止谐振,间隙性电弧接地过电压等对设备的危害,可用高电阻接地方式。” HT—DZ型中性点接地电阻柜适用于6~35kV、50Hz中压配电电网中,是用于连接变压器或发电机与大地之间的一种限流保护电气设备。当配电网内部出现故障时(二相短路、单相接地、单相断路等),配电网中性点将产生偏移,此时中性点接地电阻将配电网中性点经电阻强制接地并限制其故障电流,使继电保护设备有足够时间进行检测实现跳闸和备 - 1 -

接地变压器简称接地变

接地变压器简称接地变,根据填充介质,接地变可分为油式和干式;根据相数,接地变可分为三相接地变和单相接地变。 三相接地变:接地变压器的作用是在系统为△型接线或Y型接线中性点无法引出时,引出中性点用于加接消弧线圈或电阻,此类变压器采用Z型接线(或称曲折型接线),与普通变压器的区别是,每相线圈分成两组分别反向绕在该相磁柱上,这样连接的好处是零序磁通可沿磁柱流通,而普通变压器的零序磁通是沿着漏磁磁路流通,所以Z型接地变压器的零序阻抗很小(10Ω左右),而普通变压器要大得多。按规程规定,用普通变压器带消弧线圈时,其容量不得超过变压器容量的20%。Z型变压器则可带90% ~100%容量的消弧线圈,接地变除可带消弧圈外,也可带二次负载,可代替所用变,从而节省投资费用。 单相接地变:单相接地变主要用于有中性点的发电机、变压器的中性点接地电阻柜,以降低电阻柜的造价和体积。 扩展阅读:我国电力系统中,的6kV、10kV、35kV电网中一般都采用中性点不接地的运行方式。电网中主变压器配电电压侧一般为三角形接法,没有可供接地电阻的中性点。当中性点不接地系统发生单相接地故障时,线电压三角形仍然保持对称,对用户继续工作影响不大,并且电容电流比较小(小于10A)时,一些瞬时性接地故障能够自行消失,这对提高供电可靠性,减少停电事故是非常有效的。但是随着电力事业日益的壮大和发展,这中简单的方式已不在满足现在的需求,现在城市电网中电缆电路的增多,电容电流越来越大(超过10A),此时接地电弧不能可靠熄灭,就会产生以下后果。 1)单相接地电弧发生间歇性的熄灭与重燃,会产生弧光接地过电压,其幅值可达4U(U为正常相电压峰值)或者更高,持续时间长,会对电气设备的绝缘造成极大的危害,在绝缘薄弱处形成击穿;造成重大损失。 2)由于持续电弧造成空气的离解,破坏了周围空气的绝缘,容易发生相间短路。3)产生铁磁谐振过电压,容易烧坏电压互感器并引起避雷器的损坏甚至可能使避雷器爆炸。这些后果将严重威胁电网设备的绝缘,危及电网的安全运行。 为了防止上述事故的发生,为系统提供足够的零序电流和零序电压,使接地保护可靠动作,需人为建立一个中性点,以便在中性点接入接地电阻。接地变压器(简称接地变)就在这样的情况下产生了。接地变就是人为制造了一个中性点接地电阻,它的接地电阻一般很小(一般要求小于5欧)。另外接地变有电磁特性,对正序负序电流呈高阻抗,绕组中只流过很小的励磁电流。由于每个铁心柱上两段绕组绕向相反,同心柱上两绕组流过相等的零序电流呈现低阻抗,零序电流在绕组上的压降很小。即当系统发生接地故障时,在绕组中将流过正序、负序和零序电流,该绕组对正序和负序电流呈现高阻抗,而对零序电流来说,由于在同一相的两绕组反极性串联,其感应电动势大小相等,方向相反,正好相互抵消,因此呈低阻抗。由于很多接地变只提供中性点接地小电阻,而不需带负载,所以很多接地变就是属于无二次的。接地变在电网正常运行时,接地变相当于空载状态。但是,当电网发生故障时,只在短时间内通过故障电流。中性点经小电阻接地电网发生单相接地故障时,高灵敏度的零序保护判断并短时切除故障线路,接地变只在接地故障至故障线路零序保护动作切除故障线路这段时间内起作用,中性点接地电阻和接地变才会通过零序电流。 根据上述分析,接地变的运行特点是;长时空载,短时过载。 接地变是人为的制造一个中性点,用来连接接地电阻。当系统发生接地故障时,对正序负序电流呈高阻抗,对零序电流呈低阻抗性使接地保护可靠动作。

中性点经电阻接地方式的适用范围及优缺点

编号:SM-ZD-64561 中性点经电阻接地方式的适用范围及优缺点 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

中性点经电阻接地方式的适用范围 及优缺点 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 中性点经电阻接地方式,即是中性点与大地之间接人一定电阻值的电阻。该电阻与系统对地电容构成并联回路,由于电阻是耗能元件,也是电容电荷释放元件和谐振的阻压元件,对防止谐振过电压和间歇性电弧接地过电压,有一定优越性。中性点经电阻接地的方式有高电阻接地、中电阻接地、低电阻接地等三种方式。这三种电阻接地方式各有优缺点,要根据具体情况选定。 对于用电容量大且以电缆线路为主的电力系统,其电容电流往往大于30A,如果采用消弧线圈接地方式,不仅调谐工作繁琐困难,故障点不易寻找,而且消弧线圈补偿量增大,使得投资增加,占地面积也随之增大。电缆线路不宜带故障运行,采用消弧线圈可以带故障运行的优点也不能发挥,因

中性点经电阻接地方式的适用范围及优缺点(标准版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 中性点经电阻接地方式的适用范 围及优缺点(标准版)

中性点经电阻接地方式的适用范围及优缺点 (标准版) 导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 中性点经电阻接地方式,即是中性点与大地之间接人一定电阻值的电阻。该电阻与系统对地电容构成并联回路,由于电阻是耗能元件,也是电容电荷释放元件和谐振的阻压元件,对防止谐振过电压和间歇性电弧接地过电压,有一定优越性。中性点经电阻接地的方式有高电阻接地、中电阻接地、低电阻接地等三种方式。这三种电阻接地方式各有优缺点,要根据具体情况选定。 对于用电容量大且以电缆线路为主的电力系统,其电容电流往往大于30A,如果采用消弧线圈接地方式,不仅调谐工作繁琐困难,故障点不易寻找,而且消弧线圈补偿量增大,使得投资增加,占地面积也随之增大。电缆线路不宜带故障运行,采用消弧线圈可以带故障运行的优点也不能发挥,因此这样的系统常采用电阻接地。电阻接地根据系统电容电流的不同,分为高电阻接地和中电阻接地两种情况。 (1)高电阻接地

相关主题
文本预览
相关文档 最新文档