2017-2018学年江苏省苏州市工业园区七年级上学期数学期末试卷带答案
- 格式:doc
- 大小:393.05 KB
- 文档页数:18
第二学期期末调研初 一 数 学本试卷由选择题、填空题和解答题三大题组成,共29小题,满分100分.考试时间100分钟. 注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上......... 1. 人体中红细胞的直径约为0.000 007 7 m ,用科学记数法表示该数据为A .7.7×106B .7.7×107C .7.7×10-6D .7.7×10-72. 下列运算结果等于a 6的是A .a 2+a 4B .a 2·a3C .(-a 2)3D .a 8÷a 23. 若a <b ,则下列不等式中成立的是A .a -b >0B .a -2<b -2C . 1 2 a > 12b D .-2a <-2b 4. 把a 2-2a 分解因式,正确的是 A .a (a -2)B .a (a +2)C .a (a 2-2)D .a (2-a )5. 如图,△DEF 是将△ABC 沿射线BC 的方向平移后得到的.若BC =5,EC =3,则CF 的长为A .2B .3C .5D .8C (第5题)ADBE F(第6题)AEDCB6. 如图,在△ABC 和△DEC 中,AB =DE .若添加条件后使得△ABC ≌△DEC ,则在下列条件中,不能添加的是A .BC =EC ,∠B =∠EB .BC =EC ,AC =DCC .∠B =∠E ,∠A =∠DD .BC =EC ,∠A =∠D7. 若4x 2+mx +9是一个完全平方式,则m 的值为 A .±6 B .±12 C .12D .-128. 轮船在B 处测得小岛A 在其北偏东32°方向,从小岛A 观测B 处的方向为A .北偏东32°B .南偏西32°C .南偏东32°D .南偏西58°9. 若△ABC 的边AB 、BC 的长是方程组⎩⎨⎧x +y =10,x -y =2的解,则边AC 的长可能是A .1B .2C .5D .1110.如图,∠A +∠B +∠C +∠D +∠E +∠F 的度数为 A .180° B .360°C .540°D .720°二、填空题:本大题共8小题,每小题2分,共16分.把答案直接填在答题卡相应位置上......... 11.不等式2x +3>1的解集为 ▲ .12.“对顶角相等”的逆命题是 ▲ 命题.(填“真”或“假”) 13.若⎩⎨⎧x =2,y =5是方程kx -2y =2的一个解,则k 的值为 ▲ .14.若a =19,b =9,则ab +81b 的值为 ▲ . 15.若3x=4,9y=7,则3x +2y的值为 ▲ .16.如图,将一块三角板的直角顶点放在直尺的一边上.若∠1=38°,则∠2= ▲ °. 50株,乙班植树的株数是甲班的18.如图,将四边形纸片ABCD 沿MN 折叠,点A 、D 分别落在点A 1、D 1处.若∠1+∠2=140°,则∠B +∠C = ▲ °.AFBCED (第10题)(第16题)(第18题)三、解答题:本大题共11小题,共64分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔. 19.(本题满分4分)计算:( 1 2 )-1+(π-2 016)0-(-1)2 017.20.(本题满分4分)分解因式:-2a 2b +12ab -18b .21.(本题满分5分)解方程组:⎩⎨⎧x +2y =15,4x +3y -30=0.22.(本题满分5分)已知:如图,AB ∥CD ,∠A =∠D .求证:AD =EB .24.(本题满分5分)求代数式 (2a +b )(a -b )-2(a -b )2的值,其中a =-1,b =- 1 3 .(第23题)AB DCEG ABCFD E(第26题)(本题满分BF 平分∠ABC 交AE 于点F .若∠ABC =46°,求∠AFB 的度数.27.(本题满分6分)用2个边长为a cm 的大正方形,2个边长为b cm 的小正方形,5个长、宽分别为a cm 、b cm 的全等小长方形拼成了如图所示的大长方形.若4个正方形的面积和为68 cm 2,1个小长方形的面积为15 cm 2,求这个大长方形的周长.28.(本题满分8分)已知Rt △ABC ≌Rt △ADE ,其中∠ACB =∠AED =90º.(1)将这两个三角形按图①方式摆放,使点E 落在AB 上,DE 的延长线交BC 于点F .求证:BF +EF =DE ;(2)改变△ADE 的位置,使DE 交BC 的延长线于点F (如图②),则(1)中的结论还成立吗?若成立,加以证明;若不成立,写出此时BF 、EF 与DE 之间的等量关系,并说明理由.AED(第27题)ab29.(本题满分10分)某商场有A、B两种商品,每件的进价分别为15元、35元.商场销售5件A商品和1件B商品,可获得利润35元;销售6件A商品和3件B商品,可获得利润60元.(1)求A、B两种商品的销售单价;(2)如果该商场计划最多投入2 000元用于购进A、B两种商品共80件,那么购进A种商品的件数应满足怎样的条件?(3)现该商场对A、B两种商品进行优惠促销,优惠措施如下表所示:。
2017―2018学年第一学期期末考试试卷初一数学 2018. 1本试卷由填空题、选择题和解答题三大题组成,共28小题,满分130分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的学校、班级、姓名、考试号、考场号、座位号,用0. 5毫米黑色墨水签字笔填写在答题卷相对应的位置上,并认真核对;2.答题必须用0. 5毫米黑色墨水签字笔写在答题卷指定的位置上,不在答题区域内的答案一律无效,不得用其它笔答题;3.考生答题必须答在答题卷上,保持纸面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填写在答题卷相应的位置上............. 1.3-的相反数是A. 3B. 13C. 3-D. 13- 2.某航空母舰的满载排水量为60900吨.将数60900用科学记数法表示为A. 50.60910⨯B. 46.0910⨯C. 360.910⨯D. 260910⨯3.下列计算正确的是A. 325a b ab +=B. 22523a a -=C. 277a a a +=D. 222242a b a b a b -=-4.已知1x =-是方程25x x m -=+的解,则m 的值是A. 6B.6-C.8-D.5-5.下列关于多项式221a b ab +-的说法中,正确的是A.次数是5B.二次项系数是0C.最高次项是22a bD.常数项是16.下列图形中,线段AD 的长表示点A 到直线BC 距离的是7.如图,点D 在AOB ∠的平分线OC 上,点E 在OB 上,//DE OA ,1124∠=︒,则AOD ∠的度数为A.23°B.28°C.34°D.56°8.小明在文具用品商店买了3件甲种文具和2件乙种文具,一共花了23元,已知甲种文具比乙种文具单价少1元,如果设乙种文具单价为x 元/件,那么下面所列方程正确的是A. 3(1)223x x -+=B.32(1)23x x +-=C. 3(1)223x x ++=D. 32(1)23x x ++=9.如图,小亮用6个相同的小正方体搭成的立体图形研究几何体的三视图的变化情况,若由图 ①变到图②,不改变的是A.主视图B.主视图和左视图C.主视图和俯视图D.左视图和俯视图10.如图,已知点A 是射线BE 上一点,过A 作AC BF ⊥,垂足为C ,CD BE ⊥,垂足为D .给出下列结论:①1∠是ACD ∠的余角;②图中互余的角共有3对;③1∠的补角只有DCF ∠;④与ADC ∠互补的角共有3个.其中正确结论有A.①B.①②③C.①④D.②③④二、填空题本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相应的位置上.11.比较大小:122-(填“>”“<”或“=”). 12.单项式327a b c -的次数是 .13.若单项式18ax y --与3214b x y 是同类项,则b a = . 14.当a =a 时,代数式123a +与13()3a -的值互为相反数. 15.若5412'α∠=︒,则α∠的补角是 °(结果化为度)16.一件商品标价121元,若九折出售,仍可获利10%,则这件商品的进价为 元.17.如图,数轴上点A 表示的数为a ,化简:321a a --+= .(用含a 的代数式表示)18.如图,填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,x 的值为.三、解答题本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B 铅笔或黑色墨水签字笔.19.(本题满分10分)计算:(1) 12(8)(7)15--+--; (2)23241(2)31(2)5---÷+⨯--. 20.(本题满分10分)解下列方程:(1) 13(2)5x x --=-; (2) 213136x x ---=-. 21.(本题满分6分)先化简,再求值:22211[3(159)]2()23a a ab a ab --+-,其中a 、b 满足22(3)0a b -++=.22.(本题满分6分)已知:122A x y =-+,314B x y =--. (1)求2A B -; (2)若3y x -的值为2,求2A B -的值.23.(本题满分5分)在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点. 已知三角形ABC 的三个顶点都在格点上.(1)按下列要求画图:过点B 和一格点D 画AC 的平行线BD ,过点C 和一格点E 画BC 的垂线CE ,并在图中标出格点D 和E ;(2)求三角形ABC 的面积.24.(本题满分5分)已知,点C 是线段AB 的中点,6AC =.点D 在直线AB 上,且12AD BD =.请画出相应的示意图,并求线段CD 的长.25.(本题满分6分)如图,已知12180∠+∠=︒,3B ∠=∠,BAC ∠与DEC ∠相等吗?为什么?26.(本题满分8分)如图,直线AB 、CD 相交于点O ,OE OD ⊥,OE 平分AOF ∠.(1)BOD ∠与DOF ∠相等吗?请说明理由.(2)若14DOF BOE ∠=∠,求AOD ∠的度数.(1)用代数式表示(所填结果需化简)设一次性购买的物品原价是x 元,当原价x 超过200元但不超过500元时,实际付款为 元;当原价x 超过500元时,实际付款为 元;(2)若甲购物时一次性付款490元,则所购物品的原价是多少元?(3)若乙分两次购物,两次所购物品的原价之和为1000元(第二次所购物品的原价高于第一次),两次实际付款共894元,则乙两次购物时,所购物品的原价分别是多少元?28.(本题满分10分)如图,在数轴上,点A 表示10-,点B 表示11,点C 表示18.动点P 从点A 出发,沿数轴正方向以每秒2个单位的速度匀速运动;同时,动点Q 从点C 出发,沿数轴负方向以每秒1个单位的速度匀速运动.设运动时间为t 秒.(1)当t 为何值时,P 、Q 两点相遇?相遇点M 所对应的数是多少?(2)在点Q 出发后到达点B 之前,求t 为何值时,点P 到点O 的距离与点Q 到点B 的距离相等;(3)在点P 向右运动的过程中,N 是AP 的中点,在点P 到达点C 之前,求2CN PC - 的值.。
2017-2018学年第二学期期末调研试卷初一数学 2018.06本试卷由选择题、填空题和解答题三大题组成.共28小题,满分100分.考试时间100分钟. 一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一个选项是正确的,请将正确选项前的字母填在答题卡相应位置上. 1.若a b >,则下列判断中错误的是A. 22a b +>+B. 22a b ->-C. 22a b >D. 22a b ->- 2.某种细菌的直径大约是0.000 005 m.这个数用科学记数法可以表示为A. 50X10-7B. 5X10-6C. 5X10-5D. 0.5X10-53.下列运算正确的是A. 33a a a ⋅= B. 632a a a ÷=C. 22(2)4a a -=- D. 2(3)(2)6a a a a -+=-- 4.如图,能判定//AB CE 的条件是A. A ACE ∠=∠ B . A ECD ∠=∠ C. B ACB ∠=∠ D. B ACE ∠=∠5.如图,已知ADB ADC ∠=∠.添加条件后,可得ABD ACD ∆≅∆,则在下列条件中,不能添加的是 A. BAD CAD ∠=∠ B. B C ∠=∠ C. BD CD = D. AB AC =6.若311393m⨯=,则m 的值为A. 2B. 3C. 4D. 5 7.若2216x mx ++是一个完全平方式,则m 的值为A.±4B. ±2C. 4D.-4 8.若一个多边形的内角和等于外角和的2倍,则这个多边形的边数为A. 8B. 6C. 5D. 49.某车工计划在15天内至少加工零件408个,前3天每天加工零件24个.该车工若在规定的时间内完成任务,此后平均每天需要加工零件A.最少28个B.最少29个C.最多28个D.最多29个 10.把15 cm 长的小木棒截成长度均为整数的三段后搭成三角形,截法共有A. 5种B. 6种C. 7种D. 8种 二、填空题:本大题共8小题,每小题2分,共16分.请将答案填在答题卡相应位置上.11.命题“全等三角形的对应边都相等”的逆命题是 命题.(填“真”或“假”) 12.若21x y =⎧⎨=⎩是方程230x y k -+=的解,则k = .13.已知235x y +=.若用含x 的代数式表示y ,则y = . 14.已知方程组2425m n m n +=⎧⎨+=⎩,则m n -= .15.若20x y +-=,则代数式224x y y +-的值等于 .16.如图,//a b ,将三角尺的直角顶点落在直线a 上.若160∠=︒, 250∠=︒,则3∠= .17.如图,,AD CE 分别是,ABC ACD ∆∆,的中线.若1ACE S ∆=,则ABC S ∆= . 18.对于有理数,a b ,定义}{min ,a b 的含义为:当a b ≥时,}{min ,a b b =;当a b ≤时, }{min ,a b a =.若}{22min 13,6413m n m n---=,则nm的值等于 .三、解答题:本大题共10小题,共64分.请将解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔. 19.(满分5分)计算: 2018011(1)( 3.14)()3π--+--.20.(本题满分5分)分解因式: 4221x x -+.21.(本题满分5分)解不等式组: 426113x x x x ≥-⎧⎪+⎨>-⎪⎩,并求出它的所有整数解的和.22.(本题满分5分)己知:如图,D 是AC 上一点,,//,AB DA DE AB B DAE =∠=∠. 求证: BC AE =.23.(本题满分6分)求代数式2()()()(23)a b a b a b a a b +-+---的值,其中1,22a b =-=.24.(本题满分6分)把如图所示的由12个小正方形组成的长方形,用三种不同的方法沿网格线分 割成两个全等的图形(三种方法得到的图形相互间不全等).25.(本题满分6分)观察下列等式:①1X3+1=4; ②3X5+1=16; ③5X7+1=36; … 根据上述式子的规律,解答下列问题:(1)第④个等式为 ; (2)写出第n 个等式,并验证其正确性.26.(本题满分8分)如图,已知//AB CD ,点E 在AC 的右侧,,BAE DCE ∠∠的平分线相交于 点F .探索AEC ∠与AFC ∠之间的等量关系,并证明你的结论.27.(本题满分8分)越来越多的人在用微信付款、转账.把微信账户里的钱转到银行卡叫做提现. 自2016年3月1日起,每个微信账户终身享有1 000元的免费提现额度,当累计提现金额 超过1 000元时,累计提现金额超出1 000元的部分需支付0.1%的手续费,以后每次提现支 付的手续费为提现金额的0.1%.(1)小明在今天第1次进行了提现,金额为1 800元,他需支付手续费 元;(2)小亮自2016年3月1日至今,用自己的微信账户共提现3次,3次提现金额和手续费分别 如下:问:小明3次提现金额共计多少元?28.(本题满分10分) 【提出问题】我们已经知道了三角形全等的判定方法(SAS, ASA, AAS, SSS )和直角三角形全等的判定方法(HL),请你继续对“两边分别相等且其中一组等边的对角相等的两个三角形(SSA )”的情形进行探究.【探索研究】已知:在ABC ∆和DEF ∆中,,,AB DE AC DF B E ==∠=∠.(1)如图①,当90B E ∠=∠=︒时,根据 ,可知Rt ABC Rt DEF ∆≅∆(2)如图②,当90B E ∠=∠<︒时,请用直尺和圆规作作出DEF ∆,通过作图,可知ABC ∆ 与DEF ∆ 全等.(填“一定”或“不一定”)(3)如图③,当90B E ∠=∠>︒时,ABC ∆与DEF ∆是否全等?若全等,请加以证明:若不 全等,请举出反例.【归纳总结】(4)如果两个三角形的两边分别相等且其中一组等边的对角相等,那么当这组对角是 时,这两个三角形一定全等.(填序号) ①锐角;②直角;③钝角.。
2017-2018学年江苏省苏州市工业园区七年级(下)期中数学试卷一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)一个银原子的直径约为0.003 μm,用科学记数法可表示为()A.3×104μm B.3×10﹣4μm C.3×10﹣3μm D.0.3×10﹣3μm2.(2分)下列运算正确的是()A.a4+a5=a9 B.a3•a3•a3=3a3 C.2a4•3a5=6a9D.(﹣a3)4=a73.(2分)下列各式从左边到右边的变形是因式分解的是()A.(a+1)(a﹣1)=a2﹣1 B.a2﹣6a+9=(a﹣3)2C.x2+2x+1=x(x+2x)+1 D.﹣18x4y3=﹣6x2y2•3x2y4.(2分)如果一个三角形的两边长分别为3和7,则第三边长可能是()A.3 B.4 C.8 D.105.(2分)若a=0.32,b=﹣3﹣2,c=(﹣3)0,那么a、b、c三数的大小为()A.a>c>b B.c>a>b C.a>b>c D.c>b>a6.(2分)如图所示,下列判断正确的是()A.若∠1=∠2,则AD∥BC B.若∠1=∠2,则AB∥CDC.若∠A=∠3,则AD∥BC D.若∠3+∠ADC=180°,则AB∥CD7.(2分)如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是()A.右转80°B.左转80°C.右转100°D.左转100°8.(2分)在△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.形状不确定9.(2分)把多项式x2+ax+b分解因式,得(x﹣1)(x﹣3),则a,b的值分别是()A.a=4,b=3 B.a=﹣4,b=﹣3 C.a=﹣4,b=3 D.a=4,b=﹣310.(2分)如图,A、B、C分别是线段A1B、B1C、C1A的中点,若△A1B l C1的面积是14,那么△ABC的面积是()A.2 B.C.3 D.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)如果等腰三角形的两边长分别是4、8,那么它的周长是.12.(3分)如图,AB∥CD,EG⊥AB于G,∠1=60°,则∠E=13.(3分)若x2+(m﹣2)x+9是一个完全平方式,则m的值是.14.(3分)如果(x+1)(x2﹣ax+a)的乘积中不含x2项,则a为15.(3分)一个凸多边形每一个内角都是135°,则这个多边形是边形.16.(3分)已知3n=a,3m=b,则3m+n+1=17.(3分)如图,∠A+∠ABC+∠C+∠D+∠E+∠F=度.18.(3分)如图,∠ABC=∠ACB,AD,BD,CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③BD平分∠ADC;④∠ADC=90°﹣∠ABD;⑤∠BDC=∠BAC其中正确的结论是.三、解答题(本大题共9题,共56分)19.(6分)计算:(1)|﹣1|+(3﹣π)0+(﹣2)3﹣()﹣2(2)(3x3)2•(﹣2y2)3÷(﹣6xy4)20.(6分)分解因式:(1)a﹣4ab2(2)(y﹣1)2+6(1﹣y)+921.(6分)如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′;(2)再在图中画出△A′B′C′的高C′D′,并求出四边形A′AC C′的面积.22.(5分)如图,A D∥BC,∠EAD=∠C,∠FEC=∠BAE,∠EFC=50°(1)求证:AE∥CD;(2)求∠B的度数.23.(5分)先化简,再求值:2(x+1)2﹣3(x﹣3)(3+x)+(x+5)(x﹣2),其中x=﹣.24.(5分)已知以a m=1,a n=3.(1)a m+n=;(2)若a3m﹣2n+k=3,求a k的值.25.(7分)动手操作:如图①是一个长为2a,宽为2b的长方形,沿图中的虚线剪开分成四个大小相等的长方形,然后按照图②所示拼成一个正方形.提出问题:(1)观察图②,请用两种不同的方法表示阴影部分的积:,;(2)请写出三个代数式(a+b)2,(a﹣b)2,ab之间的一个等量关系:;问题解决:根据上述(2)中得到的等量关系,解决下列问题:已知x+y=8,xy=7,求x﹣y的值.26.(8分)若∠C=α,∠EAC+∠FBC=β(1)如图①,AM是∠EAC的平分线,BN是∠FBC的平分线,若AM∥BN,则α与β有何关系?并说明理由.(2)如图②,若∠EAC的平分线所在直线与∠FBC平分线所在直线交于P,试探究∠APB与α、β的关系是.(用α、β表示)(3)如图③,若α≥β,∠EAC与∠FBC的平分线相交于P1,∠EAP1与∠FBP1的平分线交于P2;依此类推,则∠P5=.(用α、β表示)27.(8分)如图,已知AM∥BN,∠A=60°,点P是射线AM上一动点(与点A 不重合),BC,BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)求∠CBD的度数;(2)当点P运动时,∠APB:∠ADB的比值是否随之变化?若不变,请求出这个比值;若变化,请找出变化规律;(3)当点P运动到某处时,∠ACB=∠ABD,求此时∠ABC的度数.2017-2018学年江苏省苏州市工业园区七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)一个银原子的直径约为0.003 μm,用科学记数法可表示为()A.3×104μm B.3×10﹣4μm C.3×10﹣3μm D.0.3×10﹣3μm【解答】解:0.003=3×10﹣3.故选:C.2.(2分)下列运算正确的是()A.a4+a5=a9 B.a3•a3•a3=3a3 C.2a4•3a5=6a9D.(﹣a3)4=a7【解答】解:A、a4+a5=a4+a5,不是同类项不能相加;B、a3•a3•a3=a9,底数不变,指数相加;C、正确;D、(﹣a3)4=a12.底数取正值,指数相乘.故选:C.3.(2分)下列各式从左边到右边的变形是因式分解的是()A.(a+1)(a﹣1)=a2﹣1 B.a2﹣6a+9=(a﹣3)2C.x2+2x+1=x(x+2x)+1 D.﹣18x4y3=﹣6x2y2•3x2y【解答】解:A、是多项式乘法,不是因式分解,错误;B、是因式分解,正确.C、右边不是积的形式,错误;D、左边是单项式,不是因式分解,错误.故选:B.4.(2分)如果一个三角形的两边长分别为3和7,则第三边长可能是()A.3 B.4 C.8 D.10【解答】解:设第三边为x,则4<x<10,所以符合条件的整数为8,故选:C.5.(2分)若a=0.32,b=﹣3﹣2,c=(﹣3)0,那么a、b、c三数的大小为()A.a>c>b B.c>a>b C.a>b>c D.c>b>a【解答】解:a=0.32=0.09,b=﹣3﹣2=﹣,c=(﹣3)0=1,∴c>a>b,故选:B.6.(2分)如图所示,下列判断正确的是()A.若∠1=∠2,则AD∥BC B.若∠1=∠2,则AB∥CDC.若∠A=∠3,则A D∥BC D.若∠3+∠ADC=180°,则AB∥CD【解答】解:A、∵∠1=∠2,∵A B∥CD,故本选项错误;B、∵∠1=∠2,∵AB∥CD,故本选项正确;C、∠A=∠3,无法判定平行线,故本选项错误;D、∠3+∠ADC=180°,无法判定平行线,故本选项错误.故选:B.7.(2分)如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是()A.右转80°B.左转80°C.右转100°D.左转100°【解答】解:60°+20°=80°.由北偏西20°转向北偏东60°,需要向右转.故选:A.8.(2分)在△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.形状不确定【解答】解:∵在△ABC中,若∠A:∠B:∠C=1:2:3,∴设∠A=x,则∠B=2x,∠C=3x,∴x+2x+3x=180°,解得x=30°,∴∠C=3x=90°,∴此三角形是直角三角形.故选:B.9.(2分)把多项式x2+ax+b分解因式,得(x﹣1)(x﹣3),则a,b的值分别是()A.a=4,b=3 B.a=﹣4,b=﹣3 C.a=﹣4,b=3 D.a=4,b=﹣3【解答】解:x2+ax+b=(x﹣1)(x﹣3)=x2﹣4x+3,故a=﹣4,b=3,故选:C.10.(2分)如图,A、B、C分别是线段A1B、B1C、C1A的中点,若△A1B l C1的面积是14,那么△ABC的面积是()A.2 B.C.3 D.【解答】解:如图,连接AB1,BC1,CA1,∵A、B分别是线段A1B,B1C的中点,=S△ABC,∴S△ABB1S△A1AB1=S△ABB1=S△ABC,=S△A1AB1+S△ABB1=2S△ABC,∴S△A1BB1=2S△ABC,S△A1AC1=2S△ABC,同理:S△B1CC1∴△A1B1C1的面积=S△A1BB1+S△B1CC1+S△A1AC1+S△ABC=7S△ABC=14.=2,∴S△ABC故选:A.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)如果等腰三角形的两边长分别是4、8,那么它的周长是20.【解答】解:∵等腰三角形有两边分别分别是4和8,∴此题有两种情况:①4为底边,那么8就是腰,则等腰三角形的周长为4+8+8=20,②8底边,那么4是腰,4+4=8,所以不能围成三角形应舍去.∴该等腰三角形的周长为20,故答案为:2012.(3分)如图,AB∥CD,EG⊥AB于G,∠1=60°,则∠E=30°【解答】解:∵AB∥CD,∴∠AHG=∠1=60°,∴∠EHG=∠AHC=60°,∵EG⊥AB,∴∠EGH=90°,∴∠E=90°﹣∠EHG=30°.故答案为:30°.13.(3分)若x2+(m﹣2)x+9是一个完全平方式,则m的值是8或﹣4.【解答】解:∵x2+(m﹣2)x+9是一个完全平方式,∴x2+(m﹣2)x+9=(x±3)2,而(x±3)2═x2±6x+9,∴m﹣2=±6,∴m=8或m=﹣4.故答案为8或﹣4.14.(3分)如果(x+1)(x2﹣ax+a)的乘积中不含x2项,则a为1【解答】解:(x+1)(x2﹣ax+a)=x3﹣ax2+ax+x2﹣ax+a=x3+(﹣a+1)x2+a,∵(x+1)(x2﹣ax+a)的乘积中不含x2项,∴﹣a+1=0,∴a=1,故答案为:1.15.(3分)一个凸多边形每一个内角都是135°,则这个多边形是八边形.【解答】解:多边形的边数是:n=360°÷(180°﹣135°)=8.故这个多边形是八边形.故答案为:八.16.(3分)已知3n=a,3m=b,则3m+n+1=3ab【解答】解:∵3n=a,3m=b,∴3m+n+1=3n×3m×3=3ab.故答案为:3ab.17.(3分)如图,∠A+∠ABC+∠C+∠D+∠E+∠F=360度.【解答】解:在四边形BEFG中,∵∠EBG=∠C+∠D,∠BGF=∠A+∠ABC,∴∠A+∠ABC+∠C+∠D+∠E+∠F=∠EBG+∠BGF+∠E+∠F=360°.故答案为:360.18.(3分)如图,∠ABC=∠ACB,AD,BD,CD分别平分△AB C的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③BD平分∠ADC;④∠ADC=90°﹣∠ABD;⑤∠BDC=∠BAC其中正确的结论是①②④⑤.【解答】解:∵AD平分∠EAC,∴∠EAC=2∠EAD,∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,∴①正确;∵AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∠ABC=∠ACB,∴∠ABC=∠ACB=2∠DBC,∴∠ACB=2∠ADB,∴②正确;∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠ADB=∠DBC,∠ADC=90°﹣∠ABC,∴∠ADB不等于∠CDB,∴③错误;∵AD平分∠EAC,CD平分∠ACF,∴∠DAC=∠E AC,∠DCA=∠ACF,∵∠EAC=∠ACB+∠ACB,∠ACF=∠ABC+∠BAC,∠ABC+∠ACB+∠BAC=180°,∴∠ADC=180°﹣(∠DAC+∠ACD)=180°﹣(∠EAC+∠ACF)=180°﹣(∠ABC+∠AC B+∠ABC+∠BAC)=180°﹣(180°﹣∠ABC)=90°﹣∠ABC,∴④正确;∠BDC=∠DCF﹣∠DBF=∠ACF﹣∠ABC=∠BAC,∴⑤正确,故答案为:①②④⑤.三、解答题(本大题共9题,共56分)19.(6分)计算:(1)|﹣1|+(3﹣π)0+(﹣2)3﹣()﹣2(2)(3x3)2•(﹣2y2)3÷(﹣6xy4)【解答】解:(1)原式=1+1﹣8﹣9=﹣15;(2)原式=9x6•(﹣8y6)÷(﹣6xy4)=﹣72x6y6÷(﹣6xy4)=12x5y2.20.(6分)分解因式:(1)a﹣4ab2(2)(y﹣1)2+6(1﹣y)+9【解答】解:(1)原式=a(1﹣4b2)=a(1+2b)(1﹣2b);(2)原式=(y﹣1﹣3)2=(y﹣4)2.21.(6分)如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′;(2)再在图中画出△A′B′C′的高C′D′,并求出四边形A′AC C′的面积.【解答】解:(1)如图所示,△A′B′C′即为所求;(2)如图所示,C′D′即为所求,四边形A′AC C′的面积=8×8﹣×4×6×2﹣×2×4×2=32.22.(5分)如图,AD∥BC,∠EAD=∠C,∠FEC=∠BAE,∠EFC=50°(1)求证:AE∥CD;(2)求∠B的度数.【解答】(1)证明:∵AD∥BC,∴∠D+∠C=180°,∵∠EAD=∠C,∴∠EAD+∠D=180°,∴AE∥CD;(2)∵AE∥CD,∴∠AEB=∠C,∵∠FEC=∠BAE,∴∠B=∠EFC=50°.23.(5分)先化简,再求值:2(x+1)2﹣3(x﹣3)(3+x)+(x+5)(x﹣2),其中x=﹣.【解答】解:原式=2(x2+2x+1)﹣3(x2﹣9)+x2﹣2x+5x﹣10=2x2+4x+2﹣3x2+27+x2﹣2x+5x﹣10=7x+19,当x=﹣时,原式=7×(﹣)+19=﹣+=.24.(5分)已知以a m=1,a n=3.(1)a m+n=3;(2)若a3m﹣2n+k=3,求a k的值.【解答】解:(1)∵a m=1,a n=3,∴a m+n=1×3=3;(2)∵a3m﹣2n+k=3,∴(a m)3÷(a n)2×a k=3,则1÷9×a k=3,∴a k=27.故答案为:3 27.25.(7分)动手操作:如图①是一个长为2a,宽为2b的长方形,沿图中的虚线剪开分成四个大小相等的长方形,然后按照图②所示拼成一个正方形.提出问题:(1)观察图②,请用两种不同的方法表示阴影部分的积:(a﹣b)2,(a+b)2﹣4ab;(2)请写出三个代数式(a+b)2,(a﹣b)2,ab之间的一个等量关系:(a+b)2﹣4ab=(a﹣b)2;问题解决:根据上述(2)中得到的等量关系,解决下列问题:已知x+y=8,xy=7,求x﹣y的值.【解答】解:(1)(a+b)2﹣4ab或(a﹣b)2(2)(a+b)2﹣4ab=(a﹣b)2问题解决:(x﹣y)2=(x+y)2﹣4xy∵x+y=8,xy=7.∴(x﹣y)2=64﹣28=36.∴x﹣y=±6故答案为:(1)(a﹣b)2;(a+b)2﹣4ab;(2)(a﹣b)2=(a+b)2﹣4ab.26.(8分)若∠C=α,∠EAC+∠FBC=β(1)如图①,AM是∠EAC的平分线,BN是∠FBC的平分线,若AM∥BN,则α与β有何关系?并说明理由.(2)如图②,若∠EAC的平分线所在直线与∠FBC平分线所在直线交于P,试探究∠APB与α、β的关系是α=∠APB+β或α+∠APB=β.(用α、β表示)(3)如图③,若α≥β,∠EAC与∠FBC的平分线相交于P1,∠EAP1与∠FBP1的平分线交于P2;依此类推,则∠P5=α﹣β.(用α、β表示)【解答】解:(1)∵AM是∠EAC的平分线,BN是∠FBC的平分线,∴∠MAC+∠NCB=∠EAC+∠FBC=β,∵AM∥BN,∴∠C=∠MAC+∠NCB,即α=β;(2)∵∠EAC的平分线与∠FBC平分线相交于P,∴∠PAC+∠PBC=∠EAC+∠FBC=β,若点P在点C的下方,则∠C=∠APB+(∠PAC+∠PBC),即α=∠APB+β,若点P在点C的上方,则∠C+∠APB=∠PAC+∠PBC,即α+∠APB=β;综上所述,α=∠APB+β或α+∠APB=β;(3)由(2)得,∠P1=∠C﹣(∠PAC+∠PBC)=α﹣β,∠P2=∠P1﹣(∠P2AP1+∠P2BP1),=α﹣β﹣β=α﹣β,∠P3=α﹣β﹣β=α﹣β,∠P4=α﹣β﹣β=α﹣β,∠P5=α﹣β﹣β=α﹣β.故答案为:(2)α=∠APB+β或α+∠APB=β;(3)α﹣β.27.(8分)如图,已知AM∥BN,∠A=60°,点P是射线AM上一动点(与点A 不重合),BC,BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)求∠CBD的度数;(2)当点P运动时,∠APB:∠ADB的比值是否随之变化?若不变,请求出这个比值;若变化,请找出变化规律;(3)当点P运动到某处时,∠ACB=∠ABD,求此时∠ABC的度数.【解答】解:(1)∵AM∥BN,∴∠ABN=180°﹣∠A=120°,又∵BC,BD分别平分∠ABP和∠PBN,∴∠CBD=∠CBP+∠DBP=(∠ABP+∠PBN)=∠ABN=60°.(2)不变.理由如下:∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,又∵BD平分∠PBN,∴∠ADB=∠DBN=∠PBN=∠APB,即∠APB:∠ADB=2:1.(3)∵AM∥BN,∴∠ACB=∠CBN,又∵∠ACB=∠ABD,∴∠CBN=∠ABD,∴∠ABC=∠ABD﹣∠CBD=∠CBN﹣∠CBD=∠DBN,∴∠ABC=∠CBP=∠DBP=∠DBN,∴∠ABC=∠ABN=30°.。
江苏省苏州市太仓市七年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分.请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1.(3分)|﹣2|的值是()A.﹣2 B.2 C.﹣ D.2.(3分)下列计算正确的是()A.3a﹣2a=1 B.3a+2a=5a2C.3a+2b=5ab D.3ab﹣2ba=ab3.(3分)已知是关于、y的方程4﹣3y=﹣1的一个解,则的值为()A.1 B.﹣1 C.2 D.﹣24.(3分)如图,小军同学用剪刀沿虚线将一长方形剪掉一角,发现剩下图形的周长比原长方形的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短5.(3分)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A. B.C.D.6.(3分)某测绘装置上一枚指针原指向南偏西50°(如图),把这枚指针按逆时针方向旋转周,则结果指针的指向()A.南偏东20°B.北偏西80°C.南偏东70°D.北偏西10°7.(3分)今年苹果的价格比去年便宜了20%,已知今年苹果的价格是每千克a元,则去年的价格是每千克()元.A.(1+20%)a B.(1﹣20%)a C.D.8.(3分)若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.ac>bc B.ab>cb C.a+c>b+c D.a+b>c+b9.(3分)轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距千米.根据题意,可列出的方程是()A.B.C.D.10.(3分)正整数n小于100,并且满足等式,其中表示不超过的最大整数,这样的正整数n有()个A.2 B.3 C.12 D.16二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)据最新统计,苏州市常住人口约为1062万人.数据10 620 000用科学记数法可表示为.12.(3分)如图,A、B、C三点在一条直线上,若CD⊥CE,∠1=23°,则∠2的度数是.13.(3分)已知,y满足,则3+4y=.14.(3分)若不等式(a﹣3)≤3﹣a的解集在数轴上表示如图所示,则a的取值范围是.15.(3分)己知多项式A=ay﹣1,B=3ay﹣5y﹣1,且多项式2A+B中不含字母y,则a的值为.16.(3分)把面值20元的纸币换成1元和5元的两种纸币,则共有种换法.17.(3分)如图,将一张长方形的纸片沿折痕翻折,使点C、D分别落在点M、N的位置,且∠BFM=∠EFM,则∠BFM=度.18.(3分)如图,某点从数轴上的A点出发,第1次向右移动1个单位长度至B点,第2次从B点向左移动2个单位长度至C点,第3次从C点向右移动3个单位长度至D点,第4次从D点向左移动4个单位长度至E点,…,依此类推,经过次移动后该点到原点的距离为2018个单位长度.三、解答题(本大题共10小题,共76分,应写出必要的计算过程、推理步骤或文字说明)19.(8分)计算:(1);(2)(﹣1)2018÷(﹣5)2×+|0.8﹣1|20.(8分)解方程:(1)7﹣9=9﹣7(2)21.(6分)解不等式,并把它的解集在数轴上表示出.22.(5分)先化简,后求值:,其中|﹣2|+(y+2)2=0.23.(6分)己知关于,y的方程组的解满足+2y=2.(1)求m的值;(2)若a≥m,化简:|a+1|﹣|2﹣a|.24.(6分)在如图所示的5×5的方格纸中,每个小正方形的边长为1,点A、B、C均为格点(格点是指每个小正方形的顶点).(1)按下列要求画图:①标出格点D,使CD∥AB,并画出直线CD;②标出格点E,使CE⊥AB,并画出直线CE.(2)计算△ABC的面积.25.(7分)把边长为1厘米的6个相同正方体摆成如图的形式.(1)画出该几何体的主视图、左视图、俯视图;(2)直接写出该几何体的表面积为cm2;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加小正方体.26.(9分)如图,直线AB与CD相交于O.OF是∠BOD的平分线,OE⊥OF.(1)若∠BOE比∠DOF大38°,求∠DOF和∠AOC的度数;(2)试问∠COE与∠BOE之间有怎样的大小关系?请说明理由.(3)∠BOE的余角是,∠BOE的补角是.27.(10分)某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如表:(1)第一天,该经营户批发西红柿和西兰花两种蔬菜共300g,用去了1520元钱,这两种蔬菜当天全部售完一共能赚多少元钱?(2)第二天,该经营户用1520元钱仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发西红柿多少g?28.(11分)如图,动点M、N同时从原点出发沿数轴做匀速运动,己知动点M、N的运动速度比是1:2(速度单位:1个单位长度/秒),设运动时间为t秒.(1)若动点M向数轴负方向运动,动点N向数轴正方向运动,当t=2秒时,动点M运动到A点,动点N运动到B点,且AB=12(单位长度).①在直线l上画出A、B两点的位置,并回答:点A运动的速度是(单位长度/秒);点B运动的速度是(单位长度/秒).②若点P为数轴上一点,且PA﹣PB=OP,求的值;(2)由(1)中A、B两点的位置开始,若M、N同时再次开始按原速运动,且在数轴上的运动方向不限,再经过几秒,MN=4(单位长度)?江苏省苏州市太仓市七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1.(3分)|﹣2|的值是()A.﹣2 B.2 C.﹣ D.【解答】解:∵﹣2<0,∴|﹣2|=2.故选B.2.(3分)下列计算正确的是()A.3a﹣2a=1 B.3a+2a=5a2C.3a+2b=5ab D.3ab﹣2ba=ab【解答】解:A、3a﹣2a=a,此选项错误;B、3a+2a=5a,此选项错误;C、3a与2b不是同类项,不能合并,此选项错误;D、3ab﹣2ba=ab,此选项正确;故选:D.3.(3分)已知是关于、y的方程4﹣3y=﹣1的一个解,则的值为()A.1 B.﹣1 C.2 D.﹣2【解答】解:∵是关于、y的方程4﹣3y=﹣1的一个解,∴代入得:8﹣9=﹣1,解得:=1,故选A.4.(3分)如图,小军同学用剪刀沿虚线将一长方形剪掉一角,发现剩下图形的周长比原长方形的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短【解答】解:小军同学用剪刀沿虚线将一长方形剪掉一角,发现剩下图形的周长比原长方形的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.故选:D.5.(3分)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A. B.C.D.【解答】解:严格按照图中的顺序向右翻折,向右上角翻折,打出一个圆形小孔,展开得到结论.故选C.6.(3分)某测绘装置上一枚指针原指向南偏西50°(如图),把这枚指针按逆时针方向旋转周,则结果指针的指向()A.南偏东20°B.北偏西80°C.南偏东70°D.北偏西10°【解答】解:∵这枚指针按逆时针方向旋转周,∴按逆时针方向旋转了×360°=120°,∴120°﹣50°=70°,如图旋转后从OA到OB,即把这枚指针按逆时针方向旋转周,则结果指针的指向是南偏东70°,故选:C.7.(3分)今年苹果的价格比去年便宜了20%,已知今年苹果的价格是每千克a元,则去年的价格是每千克()元.A.(1+20%)a B.(1﹣20%)a C.D.【解答】解:由题意得,去年的价格×(1﹣20%)=a,则去年的价格=.故选C.8.(3分)若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.ac>bc B.ab>cb C.a+c>b+c D.a+b>c+b【解答】解:由图可知,a<b<0,c>0,A、ac<bc,故本选项错误;B、ab>cb,故本选项正确;C、a+c<b+c,故本选项错误;D、a+b<c+b,故本选项错误.故选B.9.(3分)轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距千米.根据题意,可列出的方程是()A.B.C.D.【解答】解:设A港和B港相距千米,可得方程:.故选A.10.(3分)正整数n小于100,并且满足等式,其中表示不超过的最大整数,这样的正整数n有()个A.2 B.3 C.12 D.16【解答】解:∵,若不是整数,则<,∴2|n,3|n,6|n,即n是6的倍数,∴小于100的这样的正整数有个.故选D.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)据最新统计,苏州市常住人口约为1062万人.数据10 620 000用科学记数法可表示为 1.062×107.【解答】解:数据10 620 000用科学记数法可表示为1.062×107,故答案为:1.062×107.12.(3分)如图,A、B、C三点在一条直线上,若CD⊥CE,∠1=23°,则∠2的度数是67°.【解答】解:∵CD⊥CE,∴∠ECD=90°,∵∠ACB=180°,∴∠2+∠1=90°,∵∠1=23°,∴∠2=90°﹣23°=67°,故答案为:67°.13.(3分)已知,y满足,则3+4y=10.【解答】解:,①×2﹣②得:y=1,把y=1代入①得:=2,把=2,y=1代入3+4y=10,故答案为:1014.(3分)若不等式(a﹣3)≤3﹣a的解集在数轴上表示如图所示,则a的取值范围是a <3.【解答】解:由题意得a﹣3<0,解得:a<3,故答案为:a<3.15.(3分)己知多项式A=ay﹣1,B=3ay﹣5y﹣1,且多项式2A+B中不含字母y,则a的值为1.【解答】解:2A+B=2(ay﹣1)+(3ay﹣5y﹣1)=2ay﹣2+3ay﹣5y﹣1=5ay﹣5y﹣3=5y(a﹣1)﹣3∴a﹣1=0,∴a=1故答案为:116.(3分)把面值20元的纸币换成1元和5元的两种纸币,则共有3种换法.【解答】解:设1元和5元的纸币各张、y张,根据题意得:+5y=20,整理得:=20﹣5y,当=1,y=15;=2,y=10;=3,y=5,则共有3种换法,故答案为:317.(3分)如图,将一张长方形的纸片沿折痕翻折,使点C、D分别落在点M、N的位置,且∠BFM=∠EFM,则∠BFM=36度.【解答】解:由折叠的性质可得:∠MFE=∠EFC,∵∠BFM=∠EFM,可设∠BFM=°,则∠MFE=∠EFC=2°,∵∠MFB+∠MFE+∠EFC=180°,∴+2+2=180,解得:=36°,∴∠BFM=36°.故答案为:36.18.(3分)如图,某点从数轴上的A点出发,第1次向右移动1个单位长度至B点,第2次从B点向左移动2个单位长度至C点,第3次从C点向右移动3个单位长度至D点,第4次从D点向左移动4个单位长度至E点,…,依此类推,经过4035或4036次移动后该点到原点的距离为2018个单位长度.【解答】解:由图可得:第1次点A向右移动1个单位长度至点B,则B表示的数为0+1=1;第2次从点B向左移动2个单位长度至点C,则C表示的数为1﹣2=﹣1;第3次从点C向右移动3个单位长度至点D,则D表示的数为﹣1+3=2;第4次从点D向左移动4个单位长度至点E,则点E表示的数为2﹣4=﹣2;第5次从点E向右移动5个单位长度至点F,则F表示的数为﹣2+5=3;…;由以上数据可知,当移动次数为奇数时,点在数轴上所表示的数满足:(n+1),当移动次数为偶数时,点在数轴上所表示的数满足:﹣n,当移动次数为奇数时,若(n+1)=2018,则n=4035,当移动次数为偶数时,若﹣n=﹣2018,则n=4036.故答案为:4035或4036.三、解答题(本大题共10小题,共76分,应写出必要的计算过程、推理步骤或文字说明)19.(8分)计算:(1);(2)(﹣1)2018÷(﹣5)2×+|0.8﹣1|【解答】解:(1)原式=18﹣30﹣8=﹣20;(2)原式=1××+0.2=+=.20.(8分)解方程:(1)7﹣9=9﹣7(2)【解答】解:(1)7﹣9=9﹣77﹣9=﹣7+9﹣2=2=﹣1;(2)5(﹣1)=20﹣2(+2)5﹣5=20﹣2﹣45+2=20﹣4+57=21=3.21.(6分)解不等式,并把它的解集在数轴上表示出.【解答】解:去分母,得:2(2﹣1)+15≥3(3+1),去括号,得:4+13≥9+3,移项,得:4﹣9≥3﹣13,合并同类项,得:﹣5≥﹣10,系数化为1,得:≤2,将解集表示在数轴上如下:.22.(5分)先化简,后求值:,其中|﹣2|+(y+2)2=0.【解答】解:∵|﹣2|+(y+2)2=0,∴=2,y=﹣2,=﹣+y2﹣+y2=﹣+y2,当=2,y=﹣2时,原式=﹣2+4=2.23.(6分)己知关于,y的方程组的解满足+2y=2.(1)求m的值;(2)若a≥m,化简:|a+1|﹣|2﹣a|.【解答】解:(1)∵∴①﹣②得:2(+2y)=m+1∵+2y=2,∴m+1=4,∴m=3,(2)∵a≥m,即a≥3,∴a+1>0,2﹣a<0,∴原式=a+1﹣(a﹣2)=324.(6分)在如图所示的5×5的方格纸中,每个小正方形的边长为1,点A、B、C均为格点(格点是指每个小正方形的顶点).(1)按下列要求画图:①标出格点D,使CD∥AB,并画出直线CD;②标出格点E,使CE⊥AB,并画出直线CE.(2)计算△ABC的面积.【解答】解:(1)如图所示:(2).25.(7分)把边长为1厘米的6个相同正方体摆成如图的形式.(1)画出该几何体的主视图、左视图、俯视图;(2)直接写出该几何体的表面积为24cm2;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加2小正方体.【解答】解:(1)如图所示:(2)几何体表面积:2×(5+4+3)=24(平方厘米),故答案为:24;(3)最多可以再添加2个小正方体.故答案为:2.26.(9分)如图,直线AB与CD相交于O.OF是∠BOD的平分线,OE⊥OF.(1)若∠BOE比∠DOF大38°,求∠DOF和∠AOC的度数;(2)试问∠COE与∠BOE之间有怎样的大小关系?请说明理由.(3)∠BOE的余角是∠BOF和∠DOF,∠BOE的补角是∠AOE和∠DOE.【解答】解:(1)设∠BOF=α,∵OF是∠BOD的平分线,∴∠DOF=∠BOF=α,∵∠BOE比∠DOF大38°,∴∠BOE=38°+∠DOF=38°+α,∵OE⊥OF,∴∠EOF=90°,∴38°+α+α+α=90°,解得:α=26°,∴∠DOF=26°,∠AOC=∠BOD=∠DOF+∠BOF=26°+26°=52°;(2)∠COE=∠BOE,理由是:∵∠COE=180°﹣∠DOE=180°﹣(90°+∠DOF)=90°﹣∠DOF,∵OF是∠BOD的平分线,∴∠DOF=∠BOF,∴∠COE=90°﹣∠BOF,∵OE⊥OF,∴∠EOF=90°,∴∠BOE=90°﹣∠BOF,∴∠COE=∠BOE;(3)∠BOE的余角是∠BOF和∠DOF,∠BOE的补角是∠AOE和∠DOE,故答案为:∠BOF和∠DOF,∠AOE和∠DOE.27.(10分)某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如表:(1)第一天,该经营户批发西红柿和西兰花两种蔬菜共300g,用去了1520元钱,这两种蔬菜当天全部售完一共能赚多少元钱?(2)第二天,该经营户用1520元钱仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发西红柿多少g?【解答】解:(1)设批发西红柿g,西兰花yg,由题意得,解得:,故批发西红柿200g,西兰花100g,则这两种蔬菜当天全部售完一共能赚:200×1.8+100×6=960(元),答:这两种蔬菜当天全部售完一共能赚960元;(2)设批发西红柿ag,由题意得,(5.4﹣3.6)a+(14﹣8)×≥1050,解得:a≤100.答:该经营户最多能批发西红柿100g.28.(11分)如图,动点M、N同时从原点出发沿数轴做匀速运动,己知动点M、N的运动速度比是1:2(速度单位:1个单位长度/秒),设运动时间为t秒.(1)若动点M向数轴负方向运动,动点N向数轴正方向运动,当t=2秒时,动点M运动到A点,动点N运动到B点,且AB=12(单位长度).①在直线l上画出A、B两点的位置,并回答:点A运动的速度是2(单位长度/秒);点B运动的速度是4(单位长度/秒).②若点P为数轴上一点,且PA﹣PB=OP,求的值;(2)由(1)中A、B两点的位置开始,若M、N同时再次开始按原速运动,且在数轴上的运动方向不限,再经过几秒,MN=4(单位长度)?【解答】解:(1)①画出数轴,如图所示:可得点M运动的速度是2(单位长度/秒);点N运动的速度是4(单位长度/秒);故答案为:2,4;②设点P在数轴上对应的数为,∵PA﹣PB=OP≥0,∴≥2,当2≤≤8时,PA﹣PB=(+4)﹣(8﹣)=+4﹣8+,即2﹣4=,此时=4;当>8时,PA﹣PB=(+4)﹣(﹣8)=12,此时=12,则=2或=4;(2)设再经过m秒,可得MN=4(单位长度),若M、N运动的方向相同,要使得MN=4,必为N追击M,∴|(8﹣4m)﹣(﹣4﹣2m)|=4,即|12﹣2m|=4,解得:m=4或m=8;若M、N运动方向相反,要使得MN=4,必为M、N相向而行,∴|(8﹣4m)﹣(﹣4+2m)|=4,即|12﹣6m|=4,解得:m=或m=,综上,m=4或m=8或m=或m=.。
2017-2018学年江苏省苏州市太仓市七年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分.请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1.(3分)|﹣2|的值是()A.﹣2 B.2 C.﹣ D.2.(3分)下列计算正确的是()A.3a﹣2a=1 B.3a+2a=5a2C.3a+2b=5ab D.3ab﹣2ba=ab3.(3分)已知是关于x、y的方程4kx﹣3y=﹣1的一个解,则k的值为()A.1 B.﹣1 C.2 D.﹣24.(3分)如图,小军同学用剪刀沿虚线将一长方形剪掉一角,发现剩下图形的周长比原长方形的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短5.(3分)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.6.(3分)某测绘装置上一枚指针原来指向南偏西50°(如图),把这枚指针按逆时针方向旋转周,则结果指针的指向()A.南偏东20°B.北偏西80°C.南偏东70°D.北偏西10°7.(3分)今年苹果的价格比去年便宜了20%,已知今年苹果的价格是每千克a 元,则去年的价格是每千克()元.A.(1+20%)a B.(1﹣20%)a C.D.8.(3分)若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.ac>bc B.ab>cb C.a+c>b+c D.a+b>c+b9.(3分)轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()A.B.C.D.10.(3分)正整数n小于100,并且满足等式,其中[x]表示不超过x的最大整数,这样的正整数n有()个A.2 B.3 C.12 D.16二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)据最新统计,苏州市常住人口约为1062万人.数据10 620 000用科学记数法可表示为.12.(3分)如图,A、B、C三点在一条直线上,若CD⊥CE,∠1=23°,则∠2的度数是.13.(3分)已知x,y满足,则3x+4y=.14.(3分)若不等式(a﹣3)x≤3﹣a的解集在数轴上表示如图所示,则a的取值范围是.15.(3分)己知多项式A=ay﹣1,B=3ay﹣5y﹣1,且多项式2A+B中不含字母y,则a的值为.16.(3分)把面值20元的纸币换成1元和5元的两种纸币,则共有种换法.17.(3分)如图,将一张长方形的纸片沿折痕翻折,使点C、D分别落在点M、N的位置,且∠BFM=∠EFM,则∠BFM=度.18.(3分)如图,某点从数轴上的A点出发,第1次向右移动1个单位长度至B点,第2次从B点向左移动2个单位长度至C点,第3次从C点向右移动3个单位长度至D点,第4次从D点向左移动4个单位长度至E点,…,依此类推,经过次移动后该点到原点的距离为2018个单位长度.三、解答题(本大题共10小题,共76分,应写出必要的计算过程、推理步骤或文字说明)19.(8分)计算:(1);(2)(﹣1)2018÷(﹣5)2×+|0.8﹣1|20.(8分)解方程:(1)7x﹣9=9x﹣7(2)21.(6分)解不等式,并把它的解集在数轴上表示出来.22.(5分)先化简,后求值:,其中|x﹣2|+(y+2)2=0.23.(6分)己知关于x,y的方程组的解满足x+2y=2.(1)求m的值;(2)若a≥m,化简:|a+1|﹣|2﹣a|.24.(6分)在如图所示的5×5的方格纸中,每个小正方形的边长为1,点A、B、C均为格点(格点是指每个小正方形的顶点).(1)按下列要求画图:①标出格点D,使CD∥AB,并画出直线CD;②标出格点E,使CE⊥AB,并画出直线CE.(2)计算△ABC的面积.25.(7分)把边长为1厘米的6个相同正方体摆成如图的形式.(1)画出该几何体的主视图、左视图、俯视图;(2)直接写出该几何体的表面积为cm2;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加小正方体.26.(9分)如图,直线AB与CD相交于O.OF是∠BOD的平分线,OE⊥OF.(1)若∠BOE比∠DOF大38°,求∠DOF和∠AOC的度数;(2)试问∠COE与∠BOE之间有怎样的大小关系?请说明理由.(3)∠BOE的余角是,∠BOE的补角是.27.(10分)某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如表:请解答下列问题:(1)第一天,该经营户批发西红柿和西兰花两种蔬菜共300kg,用去了1520元钱,这两种蔬菜当天全部售完一共能赚多少元钱?(2)第二天,该经营户用1520元钱仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发西红柿多少kg?28.(11分)如图,动点M、N同时从原点出发沿数轴做匀速运动,己知动点M、N的运动速度比是1:2(速度单位:1个单位长度/秒),设运动时间为t秒.(1)若动点M向数轴负方向运动,动点N向数轴正方向运动,当t=2秒时,动点M运动到A点,动点N运动到B点,且AB=12(单位长度).①在直线l上画出A、B两点的位置,并回答:点A运动的速度是(单位长度/秒);点B运动的速度是(单位长度/秒).②若点P为数轴上一点,且PA﹣PB=OP,求的值;(2)由(1)中A、B两点的位置开始,若M、N同时再次开始按原速运动,且在数轴上的运动方向不限,再经过几秒,MN=4(单位长度)?2017-2018学年江苏省苏州市太仓市七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1.(3分)|﹣2|的值是()A.﹣2 B.2 C.﹣ D.【解答】解:∵﹣2<0,∴|﹣2|=2.故选B.2.(3分)下列计算正确的是()A.3a﹣2a=1 B.3a+2a=5a2C.3a+2b=5ab D.3ab﹣2ba=ab【解答】解:A、3a﹣2a=a,此选项错误;B、3a+2a=5a,此选项错误;C、3a与2b不是同类项,不能合并,此选项错误;D、3ab﹣2ba=ab,此选项正确;故选:D.3.(3分)已知是关于x、y的方程4kx﹣3y=﹣1的一个解,则k的值为()A.1 B.﹣1 C.2 D.﹣2【解答】解:∵是关于x、y的方程4kx﹣3y=﹣1的一个解,∴代入得:8k﹣9=﹣1,解得:k=1,故选A.4.(3分)如图,小军同学用剪刀沿虚线将一长方形剪掉一角,发现剩下图形的周长比原长方形的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短【解答】解:小军同学用剪刀沿虚线将一长方形剪掉一角,发现剩下图形的周长比原长方形的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.故选:D.5.(3分)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.【解答】解:严格按照图中的顺序向右翻折,向右上角翻折,打出一个圆形小孔,展开得到结论.故选C.6.(3分)某测绘装置上一枚指针原来指向南偏西50°(如图),把这枚指针按逆时针方向旋转周,则结果指针的指向()A.南偏东20°B.北偏西80°C.南偏东70°D.北偏西10°【解答】解:∵这枚指针按逆时针方向旋转周,∴按逆时针方向旋转了×360°=120°,∴120°﹣50°=70°,如图旋转后从OA到OB,即把这枚指针按逆时针方向旋转周,则结果指针的指向是南偏东70°,故选:C.7.(3分)今年苹果的价格比去年便宜了20%,已知今年苹果的价格是每千克a 元,则去年的价格是每千克()元.A.(1+20%)a B.(1﹣20%)a C.D.【解答】解:由题意得,去年的价格×(1﹣20%)=a,则去年的价格=.故选C.8.(3分)若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.ac>bc B.ab>cb C.a+c>b+c D.a+b>c+b【解答】解:由图可知,a<b<0,c>0,A、ac<bc,故本选项错误;B、ab>cb,故本选项正确;C、a+c<b+c,故本选项错误;D、a+b<c+b,故本选项错误.故选B.9.(3分)轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()A.B.C.D.【解答】解:设A港和B港相距x千米,可得方程:.故选A.10.(3分)正整数n小于100,并且满足等式,其中[x]表示不超过x的最大整数,这样的正整数n有()个A.2 B.3 C.12 D.16【解答】解:∵,若x不是整数,则[x]<x,∴2|n,3|n,6|n,即n是6的倍数,∴小于100的这样的正整数有个.故选D.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)据最新统计,苏州市常住人口约为1062万人.数据10 620 000用科学记数法可表示为 1.062×107.【解答】解:数据10 620 000用科学记数法可表示为1.062×107,故答案为:1.062×107.12.(3分)如图,A、B、C三点在一条直线上,若CD⊥CE,∠1=23°,则∠2的度数是67°.【解答】解:∵CD⊥CE,∴∠ECD=90°,∵∠ACB=180°,∴∠2+∠1=90°,∵∠1=23°,∴∠2=90°﹣23°=67°,故答案为:67°.13.(3分)已知x,y满足,则3x+4y=10.【解答】解:,①×2﹣②得:y=1,把y=1代入①得:x=2,把x=2,y=1代入3x+4y=10,故答案为:1014.(3分)若不等式(a﹣3)x≤3﹣a的解集在数轴上表示如图所示,则a的取值范围是a<3.【解答】解:由题意得a﹣3<0,解得:a<3,故答案为:a<3.15.(3分)己知多项式A=ay﹣1,B=3ay﹣5y﹣1,且多项式2A+B中不含字母y,则a的值为1.【解答】解:2A+B=2(ay﹣1)+(3ay﹣5y﹣1)=2ay﹣2+3ay﹣5y﹣1=5ay﹣5y﹣3=5y(a﹣1)﹣3∴a﹣1=0,∴a=1故答案为:116.(3分)把面值20元的纸币换成1元和5元的两种纸币,则共有3种换法.【解答】解:设1元和5元的纸币各x张、y张,根据题意得:x+5y=20,整理得:x=20﹣5y,当x=1,y=15;x=2,y=10;x=3,y=5,则共有3种换法,故答案为:317.(3分)如图,将一张长方形的纸片沿折痕翻折,使点C、D分别落在点M、N的位置,且∠BFM=∠EFM,则∠BFM=36度.【解答】解:由折叠的性质可得:∠MFE=∠EFC,∵∠BFM=∠EFM,可设∠BFM=x°,则∠MFE=∠EFC=2x°,∵∠MFB+∠MFE+∠EFC=180°,∴x+2x+2x=180,解得:x=36°,∴∠BFM=36°.故答案为:36.18.(3分)如图,某点从数轴上的A点出发,第1次向右移动1个单位长度至B点,第2次从B点向左移动2个单位长度至C点,第3次从C点向右移动3个单位长度至D点,第4次从D点向左移动4个单位长度至E点,…,依此类推,经过4035或4036次移动后该点到原点的距离为2018个单位长度.【解答】解:由图可得:第1次点A向右移动1个单位长度至点B,则B表示的数为0+1=1;第2次从点B向左移动2个单位长度至点C,则C表示的数为1﹣2=﹣1;第3次从点C向右移动3个单位长度至点D,则D表示的数为﹣1+3=2;第4次从点D向左移动4个单位长度至点E,则点E表示的数为2﹣4=﹣2;第5次从点E向右移动5个单位长度至点F,则F表示的数为﹣2+5=3;…;由以上数据可知,当移动次数为奇数时,点在数轴上所表示的数满足:(n+1),当移动次数为偶数时,点在数轴上所表示的数满足:﹣n,当移动次数为奇数时,若(n+1)=2018,则n=4035,当移动次数为偶数时,若﹣n=﹣2018,则n=4036.故答案为:4035或4036.三、解答题(本大题共10小题,共76分,应写出必要的计算过程、推理步骤或文字说明)19.(8分)计算:(1);(2)(﹣1)2018÷(﹣5)2×+|0.8﹣1|【解答】解:(1)原式=18﹣30﹣8=﹣20;(2)原式=1××+0.2=+=.20.(8分)解方程:(1)7x﹣9=9x﹣7(2)【解答】解:(1)7x﹣9=9x﹣77x﹣9x=﹣7+9﹣2x=2x=﹣1;(2)5(x﹣1)=20﹣2(x+2)5x﹣5=20﹣2x﹣45x+2x=20﹣4+57x=21x=3.21.(6分)解不等式,并把它的解集在数轴上表示出来.【解答】解:去分母,得:2(2x﹣1)+15≥3(3x+1),去括号,得:4x+13≥9x+3,移项,得:4x﹣9x≥3﹣13,合并同类项,得:﹣5x≥﹣10,系数化为1,得:x≤2,将解集表示在数轴上如下:.22.(5分)先化简,后求值:,其中|x﹣2|+(y+2)2=0.【解答】解:∵|x﹣2|+(y+2)2=0,∴x=2,y=﹣2,=x﹣x+y2﹣x+y2=﹣x+y2,当x=2,y=﹣2时,原式=﹣2+4=2.23.(6分)己知关于x,y的方程组的解满足x+2y=2.(1)求m的值;(2)若a≥m,化简:|a+1|﹣|2﹣a|.【解答】解:(1)∵∴①﹣②得:2(x+2y)=m+1∵x+2y=2,∴m+1=4,∴m=3,(2)∵a≥m,即a≥3,∴a+1>0,2﹣a<0,∴原式=a+1﹣(a﹣2)=324.(6分)在如图所示的5×5的方格纸中,每个小正方形的边长为1,点A、B、C均为格点(格点是指每个小正方形的顶点).(1)按下列要求画图:①标出格点D,使CD∥AB,并画出直线CD;②标出格点E,使CE⊥AB,并画出直线CE.(2)计算△ABC的面积.【解答】解:(1)如图所示:(2).25.(7分)把边长为1厘米的6个相同正方体摆成如图的形式.(1)画出该几何体的主视图、左视图、俯视图;(2)直接写出该几何体的表面积为24cm2;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加2小正方体.【解答】解:(1)如图所示:(2)几何体表面积:2×(5+4+3)=24(平方厘米),故答案为:24;(3)最多可以再添加2个小正方体.故答案为:2.26.(9分)如图,直线AB与CD相交于O.OF是∠BOD的平分线,OE⊥OF.(1)若∠BOE比∠DOF大38°,求∠DOF和∠AOC的度数;(2)试问∠COE与∠BOE之间有怎样的大小关系?请说明理由.(3)∠BOE的余角是∠BOF和∠DOF,∠BOE的补角是∠AOE和∠DOE.【解答】解:(1)设∠BOF=α,∵OF是∠BOD的平分线,∴∠DOF=∠BOF=α,∵∠BOE比∠DOF大38°,∴∠BOE=38°+∠DOF=38°+α,∵OE⊥OF,∴∠EOF=90°,∴38°+α+α+α=90°,解得:α=26°,∴∠DOF=26°,∠AOC=∠BOD=∠DOF+∠BOF=26°+26°=52°;(2)∠COE=∠BOE,理由是:∵∠COE=180°﹣∠DOE=180°﹣(90°+∠DOF)=90°﹣∠DOF,∵OF是∠BOD的平分线,∴∠DOF=∠BOF,∴∠COE=90°﹣∠BOF,∵OE⊥OF,∴∠EOF=90°,∴∠BOE=90°﹣∠BOF,∴∠COE=∠BOE;(3)∠BOE的余角是∠BOF和∠DOF,∠BOE的补角是∠AOE和∠DOE,故答案为:∠BOF和∠DOF,∠AOE和∠DOE.27.(10分)某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如表:请解答下列问题:(1)第一天,该经营户批发西红柿和西兰花两种蔬菜共300kg,用去了1520元钱,这两种蔬菜当天全部售完一共能赚多少元钱?(2)第二天,该经营户用1520元钱仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发西红柿多少kg?【解答】解:(1)设批发西红柿xkg,西兰花ykg,由题意得,解得:,故批发西红柿200kg,西兰花100kg,则这两种蔬菜当天全部售完一共能赚:200×1.8+100×6=960(元),答:这两种蔬菜当天全部售完一共能赚960元;(2)设批发西红柿akg,由题意得,(5.4﹣3.6)a+(14﹣8)×≥1050,解得:a≤100.答:该经营户最多能批发西红柿100kg.28.(11分)如图,动点M、N同时从原点出发沿数轴做匀速运动,己知动点M、N的运动速度比是1:2(速度单位:1个单位长度/秒),设运动时间为t秒.(1)若动点M向数轴负方向运动,动点N向数轴正方向运动,当t=2秒时,动点M运动到A点,动点N运动到B点,且AB=12(单位长度).①在直线l上画出A、B两点的位置,并回答:点A运动的速度是2(单位长度/秒);点B运动的速度是4(单位长度/秒).②若点P为数轴上一点,且PA﹣PB=OP,求的值;(2)由(1)中A、B两点的位置开始,若M、N同时再次开始按原速运动,且在数轴上的运动方向不限,再经过几秒,MN=4(单位长度)?【解答】解:(1)①画出数轴,如图所示:可得点M运动的速度是2(单位长度/秒);点N运动的速度是4(单位长度/秒);故答案为:2,4;②设点P在数轴上对应的数为x,∵PA﹣PB=OP≥0,∴x≥2,当2≤x≤8时,PA﹣PB=(x+4)﹣(8﹣x)=x+4﹣8+x,即2x﹣4=x,此时x=4;当x>8时,PA﹣PB=(x+4)﹣(x﹣8)=12,此时x=12,则=2或=4;(2)设再经过m秒,可得MN=4(单位长度),若M、N运动的方向相同,要使得MN=4,必为N追击M,∴|(8﹣4m)﹣(﹣4﹣2m)|=4,即|12﹣2m|=4,解得:m=4或m=8;若M、N运动方向相反,要使得MN=4,必为M、N相向而行,∴|(8﹣4m)﹣(﹣4+2m)|=4,即|12﹣6m|=4,解得:m=或m=,综上,m=4或m=8或m=或m=.。
2017-2018学年江苏省苏州市工业园区七年级(下)期中数学试卷一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)一个银原子的直径约为0.003 μm,用科学记数法可表示为()A.3×104μm B.3×10﹣4μm C.3×10﹣3μm D.0.3×10﹣3μm 2.(2分)下列运算正确的是()A.a4+a5=a9B.a3•a3•a3=3a3C.2a4•3a5=6a9D.(﹣a3)4=a73.(2分)下列各式从左边到右边的变形是因式分解的是()A.(a+1)(a﹣1)=a2﹣1B.a2﹣6a+9=(a﹣3)2C.x2+2x+1=x(x+2x)+1D.﹣18x4y3=﹣6x2y2•3x2y4.(2分)如果一个三角形的两边长分别为3和7,则第三边长可能是()A.3B.4C.8D.105.(2分)若a=0.32,b=﹣3﹣2,c=(﹣3)0,那么a、b、c三数的大小为()A.a>c>b B.c>a>b C.a>b>c D.c>b>a6.(2分)如图所示,下列判断正确的是()A.若∠1=∠2,则AD∥BCB.若∠1=∠2,则AB∥CDC.若∠A=∠3,则AD∥BCD.若∠3+∠ADC=180°,则AB∥CD7.(2分)如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是()A.右转80°B.左转80°C.右转100°D.左转100°8.(2分)在△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.形状不确定9.(2分)把多项式x2+ax+b分解因式,得(x﹣1)(x﹣3),则a,b的值分别是()A.a=4,b=3B.a=﹣4,b=﹣3C.a=﹣4,b=3D.a=4,b=﹣3 10.(2分)如图,A、B、C分别是线段A1B、B1C、C1A的中点,若△A1B l C1的面积是14,那么△ABC的面积是()A.2B.C.3D.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)如果等腰三角形的两边长分别是4、8,那么它的周长是.12.(3分)如图,AB∥CD,EG⊥AB于G,∠1=60°,则∠E=13.(3分)若x2+(m﹣2)x+9是一个完全平方式,则m的值是.14.(3分)如果(x+1)(x2﹣ax+a)的乘积中不含x2项,则a为15.(3分)一个凸多边形每一个内角都是135°,则这个多边形是边形.16.(3分)已知3n=a,3m=b,则3m+n+1=17.(3分)如图,∠A+∠ABC+∠C+∠D+∠E+∠F=度.18.(3分)如图,∠ABC=∠ACB,AD,BD,CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③BD平分∠ADC;④∠ADC=90°﹣∠ABD;⑤∠BDC=∠BAC其中正确的结论是.三、解答题(本大题共9题,共56分)19.(6分)计算:(1)|﹣1|+(3﹣π)0+(﹣2)3﹣()﹣2(2)(3x3)2•(﹣2y2)3÷(﹣6xy4)20.(6分)分解因式:(1)a﹣4ab2(2)(y﹣1)2+6(1﹣y)+921.(6分)如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′;(2)再在图中画出△A′B′C′的高C′D′,并求出四边形A′AC C′的面积.22.(5分)如图,AD∥BC,∠EAD=∠C,∠FEC=∠BAE,∠EFC=50°(1)求证:AE∥CD;(2)求∠B的度数.23.(5分)先化简,再求值:2(x+1)2﹣3(x﹣3)(3+x)+(x+5)(x﹣2),其中x=﹣.24.(5分)已知以a m=1,a n=3.(1)a m+n=;(2)若a3m﹣2n+k=3,求a k的值.25.(7分)动手操作:如图①是一个长为2a,宽为2b的长方形,沿图中的虚线剪开分成四个大小相等的长方形,然后按照图②所示拼成一个正方形.提出问题:(1)观察图②,请用两种不同的方法表示阴影部分的积:,;(2)请写出三个代数式(a+b)2,(a﹣b)2,ab之间的一个等量关系:;问题解决:根据上述(2)中得到的等量关系,解决下列问题:已知x+y=8,xy=7,求x﹣y的值.26.(8分)若∠C=α,∠EAC+∠FBC=β(1)如图①,AM是∠EAC的平分线,BN是∠FBC的平分线,若AM∥BN,则α与β有何关系?并说明理由.(2)如图②,若∠EAC的平分线所在直线与∠FBC平分线所在直线交于P,试探究∠APB与α、β的关系是.(用α、β表示)(3)如图③,若α≥β,∠EAC与∠FBC的平分线相交于P1,∠EAP1与∠FBP1的平分线交于P2;依此类推,则∠P5=.(用α、β表示)27.(8分)如图,已知AM∥BN,∠A=60°,点P是射线AM上一动点(与点A 不重合),BC,BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)求∠CBD的度数;(2)当点P运动时,∠APB:∠ADB的比值是否随之变化?若不变,请求出这个比值;若变化,请找出变化规律;(3)当点P运动到某处时,∠ACB=∠ABD,求此时∠ABC的度数.2017-2018学年江苏省苏州市工业园区七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)一个银原子的直径约为0.003 μm,用科学记数法可表示为()A.3×104μm B.3×10﹣4μm C.3×10﹣3μm D.0.3×10﹣3μm 【解答】解:0.003=3×10﹣3.故选:C.2.(2分)下列运算正确的是()A.a4+a5=a9B.a3•a3•a3=3a3C.2a4•3a5=6a9D.(﹣a3)4=a7【解答】解:A、a4+a5=a4+a5,不是同类项不能相加;B、a3•a3•a3=a9,底数不变,指数相加;C、正确;D、(﹣a3)4=a12.底数取正值,指数相乘.故选:C.3.(2分)下列各式从左边到右边的变形是因式分解的是()A.(a+1)(a﹣1)=a2﹣1B.a2﹣6a+9=(a﹣3)2C.x2+2x+1=x(x+2x)+1D.﹣18x4y3=﹣6x2y2•3x2y【解答】解:A、是多项式乘法,不是因式分解,错误;B、是因式分解,正确.C、右边不是积的形式,错误;D、左边是单项式,不是因式分解,错误.故选:B.4.(2分)如果一个三角形的两边长分别为3和7,则第三边长可能是()A.3B.4C.8D.10【解答】解:设第三边为x,则4<x<10,所以符合条件的整数为8,故选:C.5.(2分)若a=0.32,b=﹣3﹣2,c=(﹣3)0,那么a、b、c三数的大小为()A.a>c>b B.c>a>b C.a>b>c D.c>b>a【解答】解:a=0.32=0.09,b=﹣3﹣2=﹣,c=(﹣3)0=1,∴c>a>b,故选:B.6.(2分)如图所示,下列判断正确的是()A.若∠1=∠2,则AD∥BCB.若∠1=∠2,则AB∥CDC.若∠A=∠3,则AD∥BCD.若∠3+∠ADC=180°,则AB∥CD【解答】解:A、∵∠1=∠2,∵AB∥CD,故本选项错误;B、∵∠1=∠2,∵AB∥CD,故本选项正确;C、∠A=∠3,无法判定平行线,故本选项错误;D、∠3+∠ADC=180°,无法判定平行线,故本选项错误.故选:B.7.(2分)如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是()A.右转80°B.左转80°C.右转100°D.左转100°【解答】解:60°+20°=80°.由北偏西20°转向北偏东60°,需要向右转.故选:A.8.(2分)在△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.形状不确定【解答】解:∵在△ABC中,若∠A:∠B:∠C=1:2:3,∴设∠A=x,则∠B=2x,∠C=3x,∴x+2x+3x=180°,解得x=30°,∴∠C=3x=90°,∴此三角形是直角三角形.故选:B.9.(2分)把多项式x2+ax+b分解因式,得(x﹣1)(x﹣3),则a,b的值分别是()A.a=4,b=3B.a=﹣4,b=﹣3C.a=﹣4,b=3D.a=4,b=﹣3【解答】解:x2+ax+b=(x﹣1)(x﹣3)=x2﹣4x+3,故a=﹣4,b=3,故选:C.10.(2分)如图,A、B、C分别是线段A1B、B1C、C1A的中点,若△A1B l C1的面积是14,那么△ABC的面积是()A.2B.C.3D.【解答】解:如图,连接AB1,BC1,CA1,∵A、B分别是线段A1B,B1C的中点,∴S=S△ABC,△ABB1S△A1AB1=S△ABB1=S△ABC,=S△A1AB1+S△ABB1=2S△ABC,∴S△A1BB1=2S△ABC,S△A1AC1=2S△ABC,同理:S△B1CC1∴△A1B1C1的面积=S△A1BB1+S△B1CC1+S△A1AC1+S△ABC=7S△ABC=14.=2,∴S△ABC故选:A.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)如果等腰三角形的两边长分别是4、8,那么它的周长是20.【解答】解:∵等腰三角形有两边分别分别是4和8,∴此题有两种情况:①4为底边,那么8就是腰,则等腰三角形的周长为4+8+8=20,②8底边,那么4是腰,4+4=8,所以不能围成三角形应舍去.∴该等腰三角形的周长为20,故答案为:2012.(3分)如图,AB∥CD,EG⊥AB于G,∠1=60°,则∠E=30°【解答】解:∵AB∥CD,∴∠AHG=∠1=60°,∴∠EHG=∠AHC=60°,∵EG⊥AB,∴∠EGH=90°,∴∠E=90°﹣∠EHG=30°.故答案为:30°.13.(3分)若x2+(m﹣2)x+9是一个完全平方式,则m的值是8或﹣4.【解答】解:∵x2+(m﹣2)x+9是一个完全平方式,∴x2+(m﹣2)x+9=(x±3)2,而(x±3)2═x2±6x+9,∴m﹣2=±6,∴m=8或m=﹣4.故答案为8或﹣4.14.(3分)如果(x+1)(x2﹣ax+a)的乘积中不含x2项,则a为1【解答】解:(x+1)(x2﹣ax+a)=x3﹣ax2+ax+x2﹣ax+a=x3+(﹣a+1)x2+a,∵(x+1)(x2﹣ax+a)的乘积中不含x2项,∴﹣a+1=0,∴a=1,故答案为:1.15.(3分)一个凸多边形每一个内角都是135°,则这个多边形是八边形.【解答】解:多边形的边数是:n=360°÷(180°﹣135°)=8.故这个多边形是八边形.故答案为:八.16.(3分)已知3n=a,3m=b,则3m+n+1=3ab【解答】解:∵3n=a,3m=b,∴3m+n+1=3n×3m×3=3ab.故答案为:3ab.17.(3分)如图,∠A+∠ABC+∠C+∠D+∠E+∠F=360度.【解答】解:在四边形BEFG中,∵∠EBG=∠C+∠D,∠BGF=∠A+∠ABC,∴∠A+∠ABC+∠C+∠D+∠E+∠F=∠EBG+∠BGF+∠E+∠F=360°.故答案为:360.18.(3分)如图,∠ABC=∠ACB,AD,BD,CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③BD平分∠ADC;④∠ADC=90°﹣∠ABD;⑤∠BDC=∠BAC其中正确的结论是①②④⑤.【解答】解:∵AD平分∠EAC,∴∠EAC=2∠EAD,∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,∴①正确;∵AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∠ABC=∠ACB,∴∠ABC=∠ACB=2∠DBC,∴∠ACB=2∠ADB,∴②正确;∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠ADB=∠DBC,∠ADC=90°﹣∠ABC,∴∠ADB不等于∠CDB,∴③错误;∵AD平分∠EAC,CD平分∠ACF,∴∠DAC=∠EAC,∠DCA=∠ACF,∵∠EAC=∠ACB+∠ACB,∠ACF=∠ABC+∠BAC,∠ABC+∠ACB+∠BAC=180°,∴∠ADC=180°﹣(∠DAC+∠ACD)=180°﹣(∠EAC+∠ACF)=180°﹣(∠ABC+∠ACB+∠ABC+∠BAC)=180°﹣(180°﹣∠ABC)=90°﹣∠ABC,∴④正确;∠BDC=∠DCF﹣∠DBF=∠ACF﹣∠ABC=∠BAC,∴⑤正确,故答案为:①②④⑤.三、解答题(本大题共9题,共56分)19.(6分)计算:(1)|﹣1|+(3﹣π)0+(﹣2)3﹣()﹣2(2)(3x3)2•(﹣2y2)3÷(﹣6xy4)【解答】解:(1)原式=1+1﹣8﹣9=﹣15;(2)原式=9x6•(﹣8y6)÷(﹣6xy4)=﹣72x6y6÷(﹣6xy4)=12x5y2.20.(6分)分解因式:(1)a﹣4ab2(2)(y﹣1)2+6(1﹣y)+9【解答】解:(1)原式=a(1﹣4b2)=a(1+2b)(1﹣2b);(2)原式=(y﹣1﹣3)2=(y﹣4)2.21.(6分)如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′;(2)再在图中画出△A′B′C′的高C′D′,并求出四边形A′AC C′的面积.【解答】解:(1)如图所示,△A′B′C′即为所求;(2)如图所示,C′D′即为所求,四边形A′AC C′的面积=8×8﹣×4×6×2﹣×2×4×2=32.22.(5分)如图,AD∥BC,∠EAD=∠C,∠FEC=∠BAE,∠EFC=50°(1)求证:AE∥CD;(2)求∠B的度数.【解答】(1)证明:∵AD∥BC,∴∠D+∠C=180°,∵∠EAD=∠C,∴∠EAD+∠D=180°,∴AE∥CD;(2)∵AE∥CD,∴∠AEB=∠C,∵∠FEC=∠BAE,∴∠B=∠EFC=50°.23.(5分)先化简,再求值:2(x+1)2﹣3(x﹣3)(3+x)+(x+5)(x﹣2),其中x=﹣.【解答】解:原式=2(x2+2x+1)﹣3(x2﹣9)+x2﹣2x+5x﹣10=2x2+4x+2﹣3x2+27+x2﹣2x+5x﹣10=7x+19,当x=﹣时,原式=7×(﹣)+19=﹣+=.24.(5分)已知以a m=1,a n=3.(1)a m+n=3;(2)若a3m﹣2n+k=3,求a k的值.【解答】解:(1)∵a m=1,a n=3,∴a m+n=1×3=3;(2)∵a3m﹣2n+k=3,∴(a m)3÷(a n)2×a k=3,则1÷9×a k=3,∴a k=27.故答案为:3 27.25.(7分)动手操作:如图①是一个长为2a,宽为2b的长方形,沿图中的虚线剪开分成四个大小相等的长方形,然后按照图②所示拼成一个正方形.提出问题:(1)观察图②,请用两种不同的方法表示阴影部分的积:(a﹣b)2,(a+b)2﹣4ab;(2)请写出三个代数式(a+b)2,(a﹣b)2,ab之间的一个等量关系:(a+b)2﹣4ab=(a﹣b)2;问题解决:根据上述(2)中得到的等量关系,解决下列问题:已知x+y=8,xy=7,求x﹣y的值.【解答】解:(1)(a+b)2﹣4ab或(a﹣b)2(2)(a+b)2﹣4ab=(a﹣b)2问题解决:(x﹣y)2=(x+y)2﹣4xy∵x+y=8,xy=7.∴(x﹣y)2=64﹣28=36.∴x﹣y=±6故答案为:(1)(a﹣b)2;(a+b)2﹣4ab;(2)(a﹣b)2=(a+b)2﹣4ab.26.(8分)若∠C=α,∠EAC+∠FBC=β(1)如图①,AM是∠EAC的平分线,BN是∠FBC的平分线,若AM∥BN,则α与β有何关系?并说明理由.(2)如图②,若∠EAC的平分线所在直线与∠FBC平分线所在直线交于P,试探究∠APB与α、β的关系是α=∠APB+β或α+∠APB=β.(用α、β表示)(3)如图③,若α≥β,∠EAC与∠FBC的平分线相交于P1,∠EAP1与∠FBP1的平分线交于P2;依此类推,则∠P5=α﹣β.(用α、β表示)【解答】解:(1)∵AM是∠EAC的平分线,BN是∠FBC的平分线,∴∠MAC+∠NCB=∠EAC+∠FBC=β,∵AM∥BN,∴∠C=∠MAC+∠NCB,即α=β;(2)∵∠EAC的平分线与∠FBC平分线相交于P,∴∠PAC+∠PBC=∠EAC+∠FBC=β,若点P在点C的下方,则∠C=∠APB+(∠PAC+∠PBC),即α=∠APB+β,若点P在点C的上方,则∠C+∠APB=∠PAC+∠PBC,即α+∠APB=β;综上所述,α=∠APB+β或α+∠APB=β;(3)由(2)得,∠P1=∠C﹣(∠PAC+∠PBC)=α﹣β,∠P2=∠P1﹣(∠P2AP1+∠P2BP1),=α﹣β﹣β=α﹣β,∠P3=α﹣β﹣β=α﹣β,∠P4=α﹣β﹣β=α﹣β,∠P5=α﹣β﹣β=α﹣β.故答案为:(2)α=∠APB+β或α+∠APB=β;(3)α﹣β.27.(8分)如图,已知AM∥BN,∠A=60°,点P是射线AM上一动点(与点A 不重合),BC,BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)求∠CBD的度数;(2)当点P运动时,∠APB:∠ADB的比值是否随之变化?若不变,请求出这个比值;若变化,请找出变化规律;(3)当点P运动到某处时,∠ACB=∠ABD,求此时∠ABC的度数.【解答】解:(1)∵AM∥BN,∴∠ABN=180°﹣∠A=120°,又∵BC,BD分别平分∠ABP和∠PBN,∴∠CBD=∠CBP+∠DBP=(∠ABP+∠PBN)=∠ABN=60°.(2)不变.理由如下:∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,又∵BD平分∠PBN,∴∠ADB=∠DBN=∠PBN=∠APB,即∠APB:∠ADB=2:1.(3)∵AM∥BN,∴∠ACB=∠CBN,又∵∠ACB=∠ABD,∴∠CBN=∠ABD,∴∠ABC=∠ABD﹣∠CBD=∠CBN﹣∠CBD=∠DBN,∴∠ABC=∠CBP=∠DBP=∠DBN,∴∠ABC=∠ABN=30°.。
2017-2018学年江苏省苏州市市区学校七年级(下)期末数学试卷 、选择题(每题 2分,共16分)1. ( 2分)若三角形的两条边的长度是4cm 和10cm,则第三条边的长度可能是( ) A . 4 cm B. 5 cm C. 9 cmD. 14 cm 2. ( 2分)下列计算正确的是() A. a+2a 2=3a 3 B, a 8+a 2= a 4 C, a 3?a 2= a 6 D. ( a 3)2= a 6 3. ( 2分)下列等式由左边至右边的变形中,属于因式分解的是() A. x 2+5x-1=x (x+5) - 12B. x - 4+3x= ( x+2) ( x- 2) +3xC. x2-9= (x+3) (x-3)D. ( x+2) (x — 2) = x 2- 44. (2分)已知" t 是二元一次方程2x+my=1的一个解,则 m 的值为() I 产TA. 3 B, - 5 C, - 3 D. 5 5. (2分)如图,在^ ABC 和4DEF 中,AB=DE, /B = /DEF,补充下哪一条件后,能应用“ SAS' 判定△ABC^^DEF ( )AB//CD, /B=50° , / C=40° ,则/ E 等于( 7.(2分)下列命题:①同旁内角互补;②若同=|b|,则a=b;③同角的余角相等;④三角形的一个外角等于两个内角的和.其中是真命题的个数是( ) A.4个 B.3个 C.2个 D.1个n8. (2分)在数学中,为了书写简便,18世纪数学家欧拉就引进了求和符号.如记£ k= 1+2+3+…k=l + (n-1) +n, 工(x+k ) = ( x+3) + (x+4) +,,, + (x+n );已知 工 [(x+k ) (x - k+1) ] =2x2+2 x+m, k-3 k=2B. BE=CFC. / A=/ DD. / ACB=Z DFE A. 70°B. 80°C. 90° D, 100° A. AC= DF6. ( 2分)如图,直线则m的值是()A. - 40B.- 8C. 24D.8二、填空题:(每题2题,共16分)9.(3分)一种花瓣的花粉颗粒直径约为0.0000065米,将数据0.0000065用科学记数法表示为 .10.(3 分)若x n=4, y n=9,则(xy)n=.11.(3分)若关于x的多项式x2+ax+9是完全平方式,则a =.12.(3分)内角和等于外角和2倍的多边形是边形.13.(3 分)若a+b=7, ab = 12,贝U a2 - 3ab+b2=.14.(3分)如图,在^ ABC中,/A=50。
2017-2018学年江苏省苏州市市区学校七年级(下)期末数学试卷一、选择题(每题2分,共16分)1.(2分)若三角形的两条边的长度是4cm和10cm,则第三条边的长度可能是()A.4 cm B.5 cm C.9 cm D.14 cm2.(2分)下列计算正确的是()A.a+2a2=3a3B.a8÷a2=a4C.a3•a2=a6D.(a3)2=a63.(2分)下列等式由左边至右边的变形中,属于因式分解的是()A.x2+5x﹣1=x(x+5)﹣1B.x2﹣4+3x=(x+2)(x﹣2)+3xC.x2﹣9=(x+3)(x﹣3)D.(x+2)(x﹣2)=x2﹣44.(2分)已知是二元一次方程2x+my=1的一个解,则m的值为()A.3B.﹣5C.﹣3D.55.(2分)如图,在△ABC和△DEF中,AB=DE,∠B=∠DEF,补充下哪一条件后,能应用“SAS”判定△ABC≌△DEF()A.AC=DF B.BE=CF C.∠A=∠D D.∠ACB=∠DFE6.(2分)如图,直线AB∥CD,∠B=50°,∠C=40°,则∠E等于()A.70°B.80°C.90°D.100°7.(2分)下列命题:①同旁内角互补;②若|a|=|b|,则a=b;③同角的余角相等;④三角形的一个外角等于两个内角的和.其中是真命题的个数是()A.4个B.3个C.2个D.1个8.(2分)在数学中,为了书写简便,18世纪数学家欧拉就引进了求和符号“”.如记=1+2+3+…+(n﹣1)+n,(x+k)=(x+3)+(x+4)+…+(x+n);已知[(x+k)(x﹣k+1)]=2x2+2x+m,则m的值是()A.﹣40B.﹣8C.24D.8二、填空题:(每题2题,共16分)9.(3分)一种花瓣的花粉颗粒直径约为0.0000065米,将数据0.0000065用科学记数法表示为.10.(3分)若x n=4,y n=9,则(xy)n=.11.(3分)若关于x的多项式x2+ax+9是完全平方式,则a=.12.(3分)内角和等于外角和2倍的多边形是边形.13.(3分)若a+b=7,ab=12,则a2﹣3ab+b2=.14.(3分)如图,在△ABC中,∠A=50°,若剪去∠A得到四边形BCDE,则∠1+∠2=.15.(3分)如图,△ABC的中线AD,BE相交于点F.若△ABF的面积是4,则四边形CEFD的面积是.16.(3分)如图,在长方形ABCD中,AD=BC=8,BD=10,点E从点D出发,以每秒2个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒1个单位的速度沿CB向点B作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,当t=时,△DEG和△BFG全等.三、解答题:17.(6分)计算:(1)﹣12017+(π﹣3)0+()﹣1(2)(﹣a)3•a2+(2a4)2÷a318.(9分)将下列各式分解因式:(1)6x2﹣9xy+3x(2)18a2﹣50(3)(a2+1)2﹣4a219.(3分)解二元一次方程组:20.(5分)先化简,再求值:(x+3)2+(x+2)(x﹣2)﹣2x2,其中x=﹣1.21.(8分)在图中,利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)记网格的边长为1,则在平移的过程中线段BC扫过区域的面积为.22.(7分)若关于x,y的二元一次方程组,(1)若x+y=1,求a的值为.(2)若﹣3≤x﹣y≤3,求a的取值范围.(3)在(2)的条件下化简|a|+|a﹣2|.23.(6分)已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DEA;②DF⊥BC.24.(6分)如图,Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACB交AB于E,EF⊥AB交CB于F.(1)求证:CD∥EF;(2)若∠A=70°,求∠FEC的度数.25.(8分)为了参加学校举办的“校长杯”足球联赛,某中学八(1)班学生去商场购买了A品牌足球1个、B品牌足球2个,共花费210元,八(2)班学生购买了品牌A足球3个、B品牌足球1个,共花费230元.(1)求购买一个A种品牌、一个B种品牌的足球各需多少元?(2)为响应习总书记“足球进校园”的号召,学校使用专项经费1500元全部购买A、B两种品牌的足球供学生使用,那么学校有多少种购买足球的方案?请你帮助学校分别设计出来.26.(10分)已知:Rt△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,点P是BC边上的一个动点,(1)如图①,若点P与点D重合,连接AP,则AP与BC的位置关系是;(2)如图②,若点P在线段BD上,过点B作BE⊥AP于点E,过点C作CF⊥AP于点F,则CF,BE和EF这三条线段之间的数量关系是;(3)如图③,在(2)的条件下若BE的延长线交直线AD于点M,找出图中与CP相等的线段,并加以证明.(4)如图④,已知BC=4,AD=2,若点P从点B出发沿着BC向点C运动,过点B作BE⊥AP于点E,过点C作CF⊥AP于点F,设线段BE的长度为d1,线段CF的长度为d2,试求出点P在运动的过程中d1+d2的最大值.2017-2018学年江苏省苏州市市区学校七年级(下)期末数学试卷参考答案与试题解析一、选择题(每题2分,共16分)1.(2分)若三角形的两条边的长度是4cm和10cm,则第三条边的长度可能是()A.4 cm B.5 cm C.9 cm D.14 cm【分析】据三角形三边关系定理,设第三边长为xcm,则10﹣4<x<10+4,即6<x<14,由此选择符合条件的线段.【解答】解:设第三边长为xcm,由三角形三边关系定理可知,6<x<14,∴x=9cm符合题意.故选:C.【点评】本题考查了三角形三边关系的运用.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.2.(2分)下列计算正确的是()A.a+2a2=3a3B.a8÷a2=a4C.a3•a2=a6D.(a3)2=a6【分析】A、经过分析发现,a与2a2不是同类项,不能合并,本选项错误;B、利用同底数幂的除法法则,底数不变,指数相减,即可计算出结果;C、根据同底数幂的乘法法则,底数不变,指数相加,即可计算出结果;D、根据积的乘方法则,底数不变,指数相乘,即可计算出结果.【解答】解:A、因为a与2a2不是同类项,所以不能合并,故本选项错误;B、a8÷a2=a6,故本选项错误;C、a3•a2=a5,故本选项错误;D、(a3)2=a6,故本选项正确.故选:D.【点评】此题考查了同底数幂的乘法、除法法则,以及积的乘方法则的运用,是一道基础题.3.(2分)下列等式由左边至右边的变形中,属于因式分解的是()A.x2+5x﹣1=x(x+5)﹣1B.x2﹣4+3x=(x+2)(x﹣2)+3xC.x2﹣9=(x+3)(x﹣3)D.(x+2)(x﹣2)=x2﹣4【分析】根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,判断求解.【解答】解:A、右边不是积的形式,故A错误;B、右边不是积的形式,故B错误;C、x2﹣9=(x+3)(x﹣3),故C正确.D、是整式的乘法,不是因式分解.故选:C.【点评】此题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.4.(2分)已知是二元一次方程2x+my=1的一个解,则m的值为()A.3B.﹣5C.﹣3D.5【分析】将代入2x+my=1,即可转化为关于m的一元一次方程,解答即可.【解答】解:将代入2x+my=1,得4﹣m=1,解得m=3.故选:A.【点评】此题考查了二元一次方程的解,对方程解的理解,直接代入方程求值即可.5.(2分)如图,在△ABC和△DEF中,AB=DE,∠B=∠DEF,补充下哪一条件后,能应用“SAS”判定△ABC≌△DEF()A.AC=DF B.BE=CF C.∠A=∠D D.∠ACB=∠DFE【分析】应用(SAS)从∠B的两边是AB、BC,∠E的两边是DE、EF分析,找到需要相等的两边.【解答】解:两边和它们的夹角对应相等的两个三角形全等(SAS).∠B的两边是AB、BC,∠E的两边是DE、EF,而BC=BE+EC、EF=EC+CF,要使BC=EF,则BE=CF.故选:B.【点评】本题考查了三角形全等的条件,判定三角形全等一定要结合图形上的位置关系,从而选择方法.6.(2分)如图,直线AB∥CD,∠B=50°,∠C=40°,则∠E等于()A.70°B.80°C.90°D.100°【分析】根据平行线的性质得到∠1=∠B=50°,由三角形的内角和即可得到结论.【解答】解:∵AB∥CD,∴∠1=∠B=50°,∵∠C=40°,∴∠E=180°﹣∠B﹣∠1=90°,故选:C.【点评】本题考查了三角形内角和定理,平行线的性质的应用,注意:两直线平行,同旁内角互补,题目比较好,难度适中.7.(2分)下列命题:①同旁内角互补;②若|a|=|b|,则a=b;③同角的余角相等;④三角形的一个外角等于两个内角的和.其中是真命题的个数是()A.4个B.3个C.2个D.1个【分析】根据平行线的性质,绝对值、余角、三角形外角的性质判断即可.【解答】解:①两直线平行,同旁内角互补,是假命题;②若|a|=|b|,则a=b或a=﹣b,是假命题;③同角的余角相等,是真命题;④三角形的一个外角等于与它不相邻的两个内角的和,是假命题;故选:D.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.(2分)在数学中,为了书写简便,18世纪数学家欧拉就引进了求和符号“”.如记=1+2+3+…+(n﹣1)+n,(x+k)=(x+3)+(x+4)+…+(x+n);已知[(x+k)(x﹣k+1)]=2x2+2x+m,则m的值是()A.﹣40B.﹣8C.24D.8【分析】利用题中的新定义化简已知等式左边,确定出m的值即可.【解答】解:根据题意得:(x+2)(x﹣1)+(x+3)(x﹣2)=2x2+2x﹣8=2x2+2x+m,则m=﹣8,故选:B.【点评】此题考查了整式的加减,弄清题中的新定义是解本题的关键.二、填空题:(每题2题,共16分)9.(3分)一种花瓣的花粉颗粒直径约为0.0000065米,将数据0.0000065用科学记数法表示为 6.5×10﹣6.【分析】根据科学记数法和负整数指数的意义求解.【解答】解:0.0000065=6.5×10﹣6.故答案为:6.5×10﹣6.【点评】本题考查了科学记数法﹣表示较小的数,关键是用a×10n(1≤a<10,n为负整数)表示较小的数.10.(3分)若x n=4,y n=9,则(xy)n=36.【分析】先根据积的乘方变形,再根据幂的乘方变形,最后代入求出即可.【解答】解:∵x n=4,y n=9,∴(xy)n=x n•y n=4×9=36.故答案为:36.【点评】本题考查了幂的乘方和积的乘方的应用,用了整体代入思想.11.(3分)若关于x的多项式x2+ax+9是完全平方式,则a=±6.【分析】利用完全平方公式的结构特征判断即可确定出a的值.【解答】解:∵关于x的多项式x2+ax+9是完全平方式,∴a=±6,故答案为:±6【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.12.(3分)内角和等于外角和2倍的多边形是六边形.【分析】设多边形有n条边,则内角和为180°(n﹣2),再根据内角和等于外角和2倍可得方程180(n﹣2)=360×2,再解方程即可.【解答】解:设多边形有n条边,由题意得:180(n﹣2)=360×2,解得:n=6,故答案为:六.【点评】此题主要考查了多边形的内角和和外角和,关键是掌握内角和为180°(n﹣2).13.(3分)若a+b=7,ab=12,则a2﹣3ab+b2=﹣11.【分析】直接利用完全平方公式将原式变形进而计算得出答案.【解答】解:∵a+b=7,ab=12,∴(a+b)2=49,则a2+2ab+b2=49,故a2+b2=49﹣2×12=25,则a2﹣3ab+b2=25﹣3×12=﹣11.故答案为:﹣11.【点评】此题主要考查了完全平方公式,正确记忆完全平方公式:(a±b)2=a2±2ab+b2是解题关键.14.(3分)如图,在△ABC中,∠A=50°,若剪去∠A得到四边形BCDE,则∠1+∠2=230°.【分析】根据三角形内角和为180度可得∠B+∠C的度数,然后再根据四边形内角和为360°可得∠1+∠2的度数.【解答】解:∵△ABC中,∠A=50°,∴∠B+∠C=180°﹣50°=130°,∵∠B+∠C+∠1+∠2=360°,∴∠1+∠2=360°﹣130°=230°.故答案为:230°.【点评】此题主要考查了三角形内角和,关键是掌握三角形内角和为180°.15.(3分)如图,△ABC的中线AD,BE相交于点F.若△ABF的面积是4,则四边形CEFD的面积是4.【分析】根据三角形的重心的性质得到BF=2FE,AF=2FD,根据三角形的面积公式计算即可.【解答】解:∵△ABC的中线AD,BE相交于点F,∴点F是△ABC的重心,∴BF=2FE,AF=2FD,∵△ABF的面积是4,∴△AEF的面积是2,△DBF的面积是2,∴△ABD的面积是6,∴△ABC的面积是12,∴四边形CEFD的面积=12﹣4﹣2﹣2=4,故答案为:4.【点评】本题考查的是重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.16.(3分)如图,在长方形ABCD中,AD=BC=8,BD=10,点E从点D出发,以每秒2个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒1个单位的速度沿CB向点B作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,当t=或2s时,△DEG和△BFG全等.【分析】分两种情形分别求解即可解决问题;【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠ADB=∠DBC,有两种情形:①DE=BF,BG=DG,∴2t=8﹣t,t=.②当DE=BG,DG=BF时,设DG=y,则有,解得t=2,∴满足条件的t的值为或2s.故答案为或2s.【点评】本题考查矩形的性质、全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.三、解答题:17.(6分)计算:(1)﹣12017+(π﹣3)0+()﹣1(2)(﹣a)3•a2+(2a4)2÷a3【分析】(1)原式利用乘方的意义,以及零指数幂、负整数指数幂法则计算即可求出值;(2)原式利用幂的乘方与积的乘方,单项式乘除单项式法则计算即可求出值.【解答】解:(1)原式=﹣1+1+2=2;(2)原式=﹣a5+4a5=3a5.【点评】此题考查了整式的除法,以及实数的运算,熟练掌握运算法则是解本题的关键.18.(9分)将下列各式分解因式:(1)6x2﹣9xy+3x(2)18a2﹣50(3)(a2+1)2﹣4a2【分析】(1)通过提取公因式3x进行因式分解;(2)先提公因式2,然后利用平方差公式进行因式分解;(3)利用平方差公式进行因式分解.【解答】解:(1)原式=3x(2x﹣3y+1);(2)原式=2(3a+5)(3a﹣5);(3)原式=(a+1)2(a﹣1)2.【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.19.(3分)解二元一次方程组:【分析】解此题运用的是代入消元法.【解答】解:由方程②得x=4﹣2y,代入到方程①中得:2(4﹣2y)﹣3y=1,解得y=1,x=2,所以方程组的解为.【点评】此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.20.(5分)先化简,再求值:(x+3)2+(x+2)(x﹣2)﹣2x2,其中x=﹣1.【分析】原式利用完全平方公式,平方差公式化简,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=x2+6x+9+x2﹣4﹣2x2=6x+5,当x=﹣1时,原式=﹣1×6+5=﹣1.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.21.(8分)在图中,利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)记网格的边长为1,则在平移的过程中线段BC扫过区域的面积为28.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用中线的定义得出答案;(3)直接利用钝角三角形高线的作法得出答案;(4)利用平移的性质结合平行四边形的面积求法得出答案.【解答】解:(1)如图所示:△A′B′C′,即为所求;(2)如图所示:线段CD即为所求;(3)如图所示:高线AE即为所求;(4)在平移的过程中线段BC扫过区域的面积为:4×7=28.故答案为:28.【点评】此题主要考查了平移变换以及基本作图,正确得出对应点位置是解题关键.22.(7分)若关于x,y的二元一次方程组,(1)若x+y=1,求a的值为.(2)若﹣3≤x﹣y≤3,求a的取值范围.(3)在(2)的条件下化简|a|+|a﹣2|.【分析】(1)两方程相加、再除以3可得x+y=a+,由x+y=1可得关于a的方程,解之可得;(2)两方程相减可得x﹣y=3a﹣3,根据﹣3≤x﹣y≤3可得关于a的不等式组,解之可得;(3)根据绝对值性质去绝对值符号、合并同类项即可得.【解答】解:(1),①+②,得:3x+3y=3a+1,则x+y=a+,∵x+y=1,∴a+=1,解得:a=,故答案为:;(2)①﹣②,得:x﹣y=3a﹣3,∵﹣3≤x﹣y≤3,∴﹣3≤3a﹣3≤3,解得:0≤a≤2;(3)∵0≤a≤2,∴a﹣2≤0,则原式=a+2﹣a=2.【点评】本题主要考查解二元一次方程组和一元一次不等式组的能力,根据题意得出关于a的不等式是解题的关键.23.(6分)已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DEA;②DF⊥BC.【分析】(1)根据已知利用HL即可判定△BEC≌△DEA;(2)根据第一问的结论,利用全等三角形的对应角相等可得到∠B=∠D,从而不难求得DF⊥BC.【解答】证明:(1)∵BE⊥CD,∴∠BEC=∠DEA=90°,又∵BE=DE,BC=DA,∴△BEC≌△DEA(HL);(2)∵△BEC≌△DEA,∴∠B=∠D.∵∠D+∠DAE=90°,∠DAE=∠BAF,∴∠BAF+∠B=90°.即DF⊥BC.【点评】此题主要考查学生对全等三角形的判定及性质的理解及运用,做题时要注意思考,认真寻找全等三角形全等的条件是解决本题的关键.24.(6分)如图,Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACB交AB于E,EF⊥AB交CB于F.(1)求证:CD∥EF;(2)若∠A=70°,求∠FEC的度数.【分析】(1)根据垂直于同一条直线的两直线平行证明;(2)根据直角三角形的性质求出∠ACD,根据角平分线的定义求出∠ACE,结合图形求出∠DCE,根据平行线的性质解答即可.【解答】(1)证明:∵CD⊥AB,EF⊥AB,∴CD∥EF;(2)解:∵CD⊥AB,∴∠ACD=90°﹣70°=20°,∵∠ACB=90°,CE平分∠ACB,∴∠ACE=45°,∴∠DCE=45°﹣20°=25°,∵CD∥EF,∴∠FEC=∠DCE=25°.【点评】本题考查的是平行线的判定和性质、直角三角形的性质,掌握两直线平行、内错角相等、直角三角形的两锐角互余是解题的关键.25.(8分)为了参加学校举办的“校长杯”足球联赛,某中学八(1)班学生去商场购买了A品牌足球1个、B品牌足球2个,共花费210元,八(2)班学生购买了品牌A足球3个、B品牌足球1个,共花费230元.(1)求购买一个A种品牌、一个B种品牌的足球各需多少元?(2)为响应习总书记“足球进校园”的号召,学校使用专项经费1500元全部购买A、B两种品牌的足球供学生使用,那么学校有多少种购买足球的方案?请你帮助学校分别设计出来.【分析】(1)设购买一个A品牌足球需要x元,一个B品牌足球需要y元,根据“购买A品牌足球1个、B品牌足球2个,共花费210元;购买品牌A足球3个、B品牌足球1个,共花费230元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购买A品牌足球m个,购买B品牌足球n个,根据总价=单价×数量,即可得出关于m、n 的二元一次方程,再结合m、n均为非负整数,即可得出各购买方案.【解答】解:(1)设购买一个A品牌足球需要x元,一个B品牌足球需要y元,根据题意得:,解得:.答:购买一个A品牌足球需要50元,一个B品牌足球需要80元.(2)设购买A品牌足球m个,购买B品牌足球n个,根据题意得:50m+80n=1500,∵m、n均为非负整数,∴,,,.答:学校有4种购买足球的方案,方案一:购买A品牌足球30个、B品牌足球0个;方案二:购买A 品牌足球22个、B品牌足球5个;方案三:购买A品牌足球14个、B品牌足球10个;方案四:购买A品牌足球6个、B品牌足球15个.【点评】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程.26.(10分)已知:Rt△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,点P是BC边上的一个动点,(1)如图①,若点P与点D重合,连接AP,则AP与BC的位置关系是AP⊥BC;(2)如图②,若点P在线段BD上,过点B作BE⊥AP于点E,过点C作CF⊥AP于点F,则CF,BE和EF这三条线段之间的数量关系是CF=BE+EF;(3)如图③,在(2)的条件下若BE的延长线交直线AD于点M,找出图中与CP相等的线段,并加以证明.(4)如图④,已知BC=4,AD=2,若点P从点B出发沿着BC向点C运动,过点B作BE⊥AP于点E,过点C作CF⊥AP于点F,设线段BE的长度为d1,线段CF的长度为d2,试求出点P在运动的过程中d1+d2的最大值.【分析】(1)根据等腰三角形的三线合一解答;(2)证明△ABE≌△CAF,根据全等三角形的性质得到BE=AF,AE=CF,结合图形证明;(3)证明△CFP≌△AEM,根据全等三角形的性质证明;(4)根据S △ABC =S △APB +S △APC 得到d 1+d 2=,根据垂线段最短计算即可.【解答】解:(1)AP 与BC 的位置关系是AP ⊥BC , 理由如下:∵AB =AC ,点D 是BC 的中点, ∴AD ⊥BC ,当点P 与点D 重合时,AP ⊥BC , 故答案为:AP ⊥BC ; (2)CF =BE +EF ,理由如下:∵BE ⊥AP ,CF ⊥AP ,∴∠BAE +∠CAP =90°,∠ACF +∠CAP =90°, ∴∠BAE =∠ACF , 在△ABE 和△CAF 中,,∴△ABE ≌△CAF , ∴BE =AF ,AE =CF , ∴CF =AE +AF +EF =BE +EF , 故答案为:CF =BE +EF ; (3)CP =AM ,证明:∵∠BAE =∠ACF , ∴∠EAM =∠FCP , 在△CFP 和△AEM 中,,∴△CFP ≌△AEM , ∴CP =AM ;(4)S △ABC =×BC ×AD =4,由图形可知,S △ABC =S △APB +S △APC =×AP ×BE +×AP ×CF =×AP ×(d 1+d 2),∴d 1+d 2=,当AP ⊥BC 时,AP 最小,此时AP =2,∴d1+d2的最大值为=4.【点评】本题考查的是全等三角形的判定和性质、等腰三角形的性质,掌握全等三角形的判定定理和性质定理、等腰三角形的三线合一是解题的关键.。
2017-2018学年第二学期期末调研试卷初一数学 2018.06本试卷由选择题、填空题和解答题三大题组成.共28小题,满分100分.考试时间100分钟. 一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一个选项是正确的,请将正确选项前的字母填在答题卡相应位置上. 1.若a b >,则下列判断中错误的是A. 22a b +>+B. 22a b ->-C. 22a b >D. 22a b ->- 2.某种细菌的直径大约是0.000 005 m .这个数用科学记数法可以表示为A. 50X 10-7 B. 5X 10-6 C. 5X 10-5 D. 0.5X 10-5 3.下列运算正确的是A. 33a a a ⋅= B. 632a a a ÷=C. 22(2)4a a -=- D. 2(3)(2)6a a a a -+=-- 4.如图,能判定//AB CE 的条件是A. A ACE ∠=∠ B . A ECD ∠=∠ C. B ACB ∠=∠ D. B ACE ∠=∠5.如图,已知ADB ADC ∠=∠.添加条件后,可得ABD ACD ∆≅∆,则在下列条件中,不能添加的是A. BAD CAD ∠=∠B. B C ∠=∠C. BD CD =D. AB AC = 6.若311393m⨯=,则m 的值为A. 2B. 3C. 4D. 5 7.若2216x mx ++是一个完全平方式,则m 的值为A.±4B. ±2C. 4D.-4 8.若一个多边形的内角和等于外角和的2倍,则这个多边形的边数为A. 8B. 6C. 5D. 4 9.某车工计划在15天内至少加工零件408个,前3天每天加工零件24个.该车工若在规定的时间内完成任务,此后平均每天需要加工零件A.最少28个B.最少29个C.最多28个D.最多29个 10.把15 cm 长的小木棒截成长度均为整数的三段后搭成三角形,截法共有A. 5种B. 6种C. 7种D. 8种 二、填空题:本大题共8小题,每小题2分,共16分.请将答案填在答题卡相应位置上. 11.命题“全等三角形的对应边都相等”的逆命题是 命题.(填“真”或“假”)12.若21x y =⎧⎨=⎩是方程230x y k -+=的解,则k = .13.已知235x y +=.若用含x 的代数式表示y ,则y = .14.已知方程组2425m n m n +=⎧⎨+=⎩,则m n -= .15.若20x y +-=,则代数式224x y y +-的值等于 .16.如图,//a b ,将三角尺的直角顶点落在直线a 上.若160∠=︒, 250∠=︒,则3∠= .17.如图,,AD CE 分别是,ABC ACD ∆∆,的中线.若1ACE S ∆=,则ABC S ∆= . 18.对于有理数,a b ,定义}{min ,a b 的含义为:当a b ≥时,}{min ,a b b =;当a b ≤时, }{min ,a b a =.若}{22min 13,6413m n m n---=,则nm的值等于 .三、解答题:本大题共10小题,共64分.请将解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19.(满分5分)计算: 2018011(1)( 3.14)()3π--+--.20.(本题满分5分)分解因式: 4221x x -+.21.(本题满分5分)解不等式组: 426113x x x x ≥-⎧⎪+⎨>-⎪⎩,并求出它的所有整数解的和.22.(本题满分5分)己知:如图,D 是AC 上一点,,//,AB DA DE AB B DAE =∠=∠. 求证: BC AE =.23.(本题满分6分)求代数式2()()()(23)a b a b a b a a b +-+---的值,其中1,22a b =-=.24.(本题满分6分)把如图所示的由12个小正方形组成的长方形,用三种不同的方法沿网格线分割成两个全等的图形(三种方法得到的图形相互间不全等).25.(本题满分6分)观察下列等式:①1X 3+1=4; ②3X 5+1=16; ③5X 7+1=36; … 根据上述式子的规律,解答下列问题: (1)第④个等式为 ; (2)写出第n 个等式,并验证其正确性.26.(本题满分8分)如图,已知//AB CD ,点E 在AC 的右侧,,BAE DCE ∠∠的平分线相交于点F .探索AEC ∠与AFC ∠之间的等量关系,并证明你的结论.27.(本题满分8分)越来越多的人在用微信付款、转账.把微信账户里的钱转到银行卡叫做提现.自2016年3月1日起,每个微信账户终身享有1 000元的免费提现额度,当累计提现金额超过1 000元时,累计提现金额超出1 000元的部分需支付0.1%的手续费,以后每次提现支付的手续费为提现金额的0.1%.(1)小明在今天第1次进行了提现,金额为1 800元,他需支付手续费元;(2)小亮自2016年3月1日至今,用自己的微信账户共提现3次,3次提现金额和手续费分别如下:问:小明3次提现金额共计多少元?28.(本题满分10分) 【提出问题】我们已经知道了三角形全等的判定方法(SAS , ASA , AAS , SSS )和直角三角形全等的判定方法(HL ),请你继续对“两边分别相等且其中一组等边的对角相等的两个三角形(SSA )”的情形进行探究. 【探索研究】已知:在ABC ∆和DEF ∆中,,,AB DE AC DF B E ==∠=∠.(1)如图①,当90B E ∠=∠=︒时,根据 ,可知Rt ABC Rt DEF ∆≅∆(2)如图②,当90B E ∠=∠<︒时,请用直尺和圆规作作出DEF ∆,通过作图,可知ABC ∆ 与DEF ∆ 全等.(填“一定”或“不一定”)(3)如图③,当90B E ∠=∠>︒时,ABC ∆与DEF ∆是否全等?若全等,请加以证明:若不全等,请举出反例.【归纳总结】(4)如果两个三角形的两边分别相等且其中一组等边的对角相等,那么当这组对角是时,这两个三角形一定全等.(填序号)①锐角;②直角;③钝角.。
第1页(共18页) 2017-2018学年江苏省苏州市工业园区七年级(上)期末数学试卷
一、选择题(本大题10小题,每小题2分,共20分) 1.(2分)﹣2的相反数是( ) A.2 B.﹣2 C. D.﹣ 2.(2分)若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是( ) A.+0.8
B.﹣3.5 C.﹣0.7 D.+2.1 3.(2分)下列关于单项式的说法中,正确的是( ) A.系数是2,次数是2 B.系数是﹣2,次数是3 C.系数是,次数是2 D.系数是,次数是3 4.(2分)下列计算正确的是( ) A.3a+2b=5ab B.7a+a=7a2 C.5ab﹣ab=5 D.7a2b﹣3ba2=4a2b 5.(2分)已知a>b,则在下列结论中,正确的是( ) 第2页(共18页)
A.a﹣2<b﹣2 B.﹣2a<﹣2b C.|a|>|b| D.a2>b2 6.(2分)如图,下列条件中不能确定的是OC是∠AOB的平分线的是( )
A.∠AOC=∠BOC B.∠AOB=2∠AOC C.∠AOC+∠BOC=∠AOB D. 7.(2分)如图,用剪刀沿直线将一片平整的树叶剪掉一部分,则剩下的树叶周长小于原树叶的周长,能解释这一现象的数学道理是( )
A.垂线段最短 B.两点之间线段最短 C.两点确定一条直线 D.经过一点有无数条直线 8.(2分)如图,物体从A点出发,按照A→B(第一步)→C(第二步)→D→A→E→F→G→A→B……的顺序循环运动,则第2018步到达( )
A.A点 B.C点 C.E点 D.F点 9.(2分)某制衣厂计划若干天完成一批服装的订货任务,如果每天生产服装20套,那么就比订货任务少生产100套,如果每天生产服装23套,那么就可超过顶货任务20套,设这批服装的订货任务是x套,根据题意,可列方程( ) A.20x﹣100=23x+20 B.20x+100=23x﹣20 C. D. 10.(2分)如图,“●、■、▲”分别表示三种不同的物体,已知前两架天平保持 第3页(共18页)
平衡,要使第三架也保持平衡,如果在?处只放“■”那么应放“■”( ) A.5个 B.4个 C.3个 D.2个 二、填空题(本大题共8小题,每小题2分,共16分) 11.(2分)请写出一个无理数 . 12.(2分)比较大小:﹣ ﹣. 13.(2分)2017年阳澄湖大闸蟹年产量约为1200000kg,该数据用科学记数法可表 kg. 14.(2分)已知方程4x﹣3m+2=0的解是x=1,则m= . 15.(2分)若∠α=38o42',则∠α的补角等于 . 16.(2分)若x﹣2y+3=0,则代数式1﹣2x+4y的值等于 . 17.(2分)已知点A、B、C在同一条直线上,AB=10cm,BC=4cm.若点M、N分别是AB、BC的点,则MN= cm. 18.(2分)一个无盖的长方形包装盒展开后如图所示(单位:cm),则其容积为 cm3.
三、解答题(本大题共10小题,共64分) 19.(5分)计算:(﹣2)2+4÷(﹣2)×(3﹣5). 20.(5分)解方程:=x+1.
21.(5分),并求出它的所有整数解的和. 22.(5分)已知a=2,b=﹣,求代数式8a2b+2(a2b﹣3ab2)﹣3(4a2b﹣ab2) 第4页(共18页)
的值. 23.(6分)用5个棱长为1的正方体组成如图所示的几何体.
(1)该几何体的体积是 立方单位,表面积是 平方单位(包括底面积); (2)请在方格纸中用实线画出它的三个视图. 24.(6分)下面是数值转换机的示意图.
(1)若输出x的值是7,则输出y的值等于 ; (2)若输出y的值是7,则输出x的值等于 . 25.(6分)如图,方格纸中每个小正方形都是1,点P、A、B、C、D、E、F是方格纸中的格点(即小正方形的顶点).
(1)在图①中,过点P画出AB的平行线和垂线; (2)在图②中,以线段AB、CD、EF的长为边长的三角形的面积等于 . 26.(8分)某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.甲、乙两种树苗的成活率分别为85%,90%. (1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株? (2)若要使这批树苗的总成活率不低于88%,则甲种树苗的数量应满足怎样的条件? 27.(8分)如图,直线AB、CD、EF相交于点O,OG⊥CD. (1)已知∠BOD=36°,求∠AOG的度数; 第5页(共18页)
(2)如果OC是∠AOE的平分线,那么OG是∠AOF的平分线吗?说明理由. 28.(10分)【新知理解】 如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”. (1)线段的中点 这条线段的“巧点”;(填“是”或“不是”). (2)若AB=12cm,点C是线段AB的巧点,则AC= cm; 【解决问题】 (3)如图②,已知AB=12cm.动点P从点A出发,以2cm/s的速度沿AB向点B匀速移动:点Q从点B出发,以1cm/s的速度沿BA向点A匀速移动,点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s).当t为何值时,A、P、Q三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由 第6页(共18页)
2017-2018学年江苏省苏州市工业园区七年级(上)期末数学试卷 参考答案与试题解析
一、选择题(本大题10小题,每小题2分,共20分) 1.(2分)﹣2的相反数是( ) A.2 B.﹣2 C. D.﹣ 【解答】解:根据相反数的定义,﹣2的相反数是2. 故选:A.
2.(2分)若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是( ) A.+0.8
B.﹣3.5 C.﹣0.7 D.+2.1 【解答】解:∵|+0.8|=0.8,|﹣3.5|=3.5,|﹣0.7|=0.7,|+2.1|=2.1, 0.7<0.8<2.1<3.5, ∴从轻重的角度看,最接近标准的是﹣0.7. 故选:C. 第7页(共18页)
3.(2分)下列关于单项式的说法中,正确的是( ) A.系数是2,次数是2 B.系数是﹣2,次数是3 C.系数是,次数是2 D.系数是,次数是3
【解答】解:单项式的系数是,次数是3. 故选:D.
4.(2分)下列计算正确的是( ) A.3a+2b=5ab B.7a+a=7a2 C.5ab﹣ab=5 D.7a2b﹣3ba2=4a2b 【解答】解:A、3a和2b不是同类项,不能合并,故原题计算错误; B、7a+a=8a,故原题计算错误; C、5ab﹣ab=4ab,故原题计算错误; D、7a2b﹣3ba2=4a2b,故原题计算正确; 故选:D.
5.(2分)已知a>b,则在下列结论中,正确的是( ) A.a﹣2<b﹣2 B.﹣2a<﹣2b C.|a|>|b| D.a2>b2 【解答】解:A、∵a>b,∴a﹣2>b﹣2,故此选项错误; B、∵a>b,∴﹣2a<﹣2b,故此选项正确; C、∵a>b,∴|a|与|b|无法确定大小关系,故此选项错误; D、∵a>b,∴a2与b2无法确定大小关系,故此选项错误; 故选:B.
6.(2分)如图,下列条件中不能确定的是OC是∠AOB的平分线的是( ) 第8页(共18页)
A.∠AOC=∠BOC B.∠AOB=2∠AOC C.∠AOC+∠BOC=∠AOB D. 【解答】解:A、∠AOC=∠BOC能确定OC平分∠AOB,故此选项不合题意; B、∠AOB=2∠AOC能确定OC平分∠AOB,故此选项不合题意; C、∠AOC+∠COB=∠AOB不能确定OC平分∠AOB,故此选项符合题意; D、∠BOC=∠AOB,能确定OC平分∠AOB,故此选项不合题意. 故选:C.
7.(2分)如图,用剪刀沿直线将一片平整的树叶剪掉一部分,则剩下的树叶周长小于原树叶的周长,能解释这一现象的数学道理是( )
A.垂线段最短 B.两点之间线段最短 C.两点确定一条直线 D.经过一点有无数条直线 【解答】解:用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小, 能正确解释这一现象的数学知识是两点之间,线段最短, 故选:B.
8.(2分)如图,物体从A点出发,按照A→B(第一步)→C(第二步)→D→A→E→F→G→A→B……的顺序循环运动,则第2018步到达( )
A.A点 B.C点 C.E点 D.F点 【解答】解:∵如图物体从点A出发,按照A→B(第1步)→C(第2步) 第9页(共18页)
→D→A→E→F→G→A→B→…的顺序循环运动,此时一个循环为8步, ∴2018÷8=252…2. ∴当物体走到第252圈后再走2步正好到达C点. 故选:B.
9.(2分)某制衣厂计划若干天完成一批服装的订货任务,如果每天生产服装20套,那么就比订货任务少生产100套,如果每天生产服装23套,那么就可超过顶货任务20套,设这批服装的订货任务是x套,根据题意,可列方程( ) A.20x﹣100=23x+20 B.20x+100=23x﹣20 C. D. 【解答】解:设这批服装的订货任务是x套,根据题意,可列方程: =, 故选:C.
10.(2分)如图,“●、■、▲”分别表示三种不同的物体,已知前两架天平保持平衡,要使第三架也保持平衡,如果在?处只放“■”那么应放“■”( )
A.5个 B.4个 C.3个 D.2个 【解答】解:根据图示可得, 2×○=△+□①, ○+□=△②, 由①、②可得, ○=2□,△=3□, ∴○+△=2□+3□=5□, 故选:A.
二、填空题(本大题共8小题,每小题2分,共16分)