图解使用数字万用表测量三极管
- 格式:doc
- 大小:12.50 KB
- 文档页数:1
如何用数字万用表测量三极管的B C E
如何用数字万用表测量三极管的B E C三个脚!万用表带HFE还有PNP和NPN,如果不带!怎么测量!
1,:找基极(B):将万用表调至电阻挡的R×1k挡,先用红表笔放在三极管的一只脚上,用黑表笔去碰三极管的另两只脚,如果两次全通,则红表笔所放的脚就是三极管的基极(B)。
如果一次没找到,则红表笔换到三极管的另一个脚,再测两次;如还没找到,则红表笔再换一下,再测两次。
如果还没找到,则改用黑表笔放在三极管的一个脚上,用红表笔去测两次看是否全通,若一次没成功再换。
这样最多测量12次,总可以找到基极。
三极管只有两种类型,即PNP型和NPN型。
判别时只要知道基极是P型材料还N型材料即可。
当用万用表R×1k挡时,黑表笔代表电源正极,如果黑表笔接基极时导通,则说明三极管的基极为P 型材料,三极管即为NPN型。
如果红表笔接基极导通,则说明三极管基极为N 型材料,三极管即为PNP型。
2确定E:然后用电阻档测其余两个引脚对基极的阻值,阻值稍微大一点的是E极,剩下的那个就是C。
此方法只适用于普通三极管,对于带阻尼、复合管、比较异类的管子就要慎用此法。
电阻色环对照表。
使用数字万用表判断三极管管脚教程使用数字万用表判断三极管管脚(图解教程)现在数字式的万用表已经是很普及的电工、电子测量工具了,它的使用方便和准确性受到得维修人员和电子爱好者的喜爱。
但有朋友会说在测量某些无件时,它不如指针式的万用表,如测三极管。
我倒认为数字万用表在测量三极管时更加的方便。
以下就是我自己的一些使用经验,我是通常是这样去判断小型的三极管器件的。
大家不妨试试看是否好用或是否正确,如有意见或问题可以发信给我。
手头上有一些BC337的三极管,假设不知它是PNP管还是NPN管。
图1三极管我们知道三极管的内部就像二个二极管组合而成的。
其形式就像下图。
中间的是基极(B极)。
图2三极管的内部形式首先我们要先找到基极并判断是PNP还是NPN管。
看上图可知,对于PNP管的基极是二个负极的共同点,NPN管的基极是二个正极的共同点。
这时我们可以用数字万用表的二极管档去测基极,看图3。
对于PNP 管,当黑表笔(连表内电池负极)在基极上,红表笔去测另两个极时一般为相差不大的较小读数(一般0.5-0.8),如表笔反过来接则为一个较大的读数(一般为1)。
对于NPN表来说则是红表笔(连表内电池正极)连在基极上。
从图4,图5可以得知,手头上的BC337为NPN管,中间的管脚为基极。
图3万用表的二极管测量档图4判断BC337的B极和管型(1)图4判断BC337的B极和管型(2)找到基极和知道是什么类型的管子后,就可以来判断发射极和集电极了。
如果使用指针式万用表到了这个步可能就要用到两只手了,甚至有朋友会用到嘴舌,可以说是蛮麻烦的。
而利用数字表的三伋管hFE档(hFE 测量三极管直流放大倍数)去测就方便多了,当然你也可以省去上面的步骤直接用hFE去测出三极管的管脚极性,我自己则认为还是加上上面的步骤方便准确一些。
把万用表打到hFE档上,BC337卑下到NPN的小孔上,B极对上面的B字母。
读数,再把它的另二脚反转,再读数。
数字万用表是如何判断三极管管脚的?
使用数字万用表判断三极管的管脚还是比较简单的,因为有hFE 档位可以用,判断起来很直观,下面我们来看一下怎么使用数字万用表来判断三极管的脚位。
数字万用表判断三极管脚位方法
众所周知,三极管有三个脚位,分别是基极b,集电极c,还有发射极e。
在实际的检测中,我们只要先找到三极管的基极,判断三极管属于NPN型管还是PNP型管,就可以很方便的利用hFE档位来判断另外两脚的极性。
一,首先找出基极。
使用数字万用表的二极管档位,红表笔随便接一个脚位,黑表笔分别接另外两脚,读取显示数值,如果两个数值正常显示且差不多大小,则红表笔所接为基极;如果显示读数都为1,表示内部PN结未导通,然后使用黑表笔随便接一个脚位,红表笔依次接另外两脚,读取显示数值,如果两次读数正常且差不多大小,则黑表笔所接管脚为基极。
如上图和下图中,红表笔接的就是基极
二,然后判断管型。
根据上面判断,红表笔所接的基极为NPN型,黑表笔所接的基极为PNP型。
如上图中红表笔接基极,正常显示读数,管型就为NPN型。
三,最后使用hFE档位显示集电极和发射极。
如上图,将万用表拨至hFE档位,根据刚才判断的管型和基极将三极管插入孔中,基极
对应b孔,正反插两次读数,读数大的为正确的三极管β值,此时根据另外两脚对应的字母就可以知道集电极和发射极了,字母e对应发射极,字母c对应集电极。
总结:上面方法说起来很复杂,其实做起来很简单,总结起来就是三颠倒,找基极,红笔接基极为NPN,黑笔接基极为PNP,然后插入hFE孔中发射极和集电极一目了然。
数字万用表测量三极管和二级管
一、测量二极管
1.将数字万用表拨至二极管测试档位。
2.将红表笔接二极管正极,黑表笔接二极管负极。
3.读取万用表显示的数值,如果显示正向导通电压值,则二极管为正向导通状态;如果显示无穷大或反相击穿电压值,则二极管为反向截止状态。
二、测量三极管
1.将数字万用表拨至三极管测试档位。
2.将红表笔接三极管基极,黑表笔分别接集电极和发射极。
3.读取万用表显示的数值,如果显示正向导通电压值,则三极管为正常工作状态;如果显示无穷大或反相击穿电压值,则三极管可能存在故障。
万用表测三极管管脚(简单版)3推荐首先将万用表(数字,本人已经好久没用指针式万用表了)打到测试二极管端,用万用表的红表笔接触三极管的其中一个管脚,而用万用表另外的那支表笔去测试其余的管脚,直到测试出如下结果:1、如果三极管的黑表笔接其中一个管脚,而用红表笔测其它两个管脚都导通有电压显示,那么此三极管为PNP三极管,且黑表笔所接的脚为三极管的基极B,用上述方法测试时其中万用表的红表笔接其中一个脚的电压稍高,那么此脚为三极管的发射极E,剩下的电压偏低的那个管脚为集电极C。
2、如果三极管的红表笔接其中一个管脚,而用黑表笔测其它两个管脚都导通有电压显示,那么此三极管为NPN三极管,且红表笔所接的脚为三极管的基极B,用上述方法测试时其中万用表的黑表笔接其中一个脚的电压稍高,那么此脚为三极管的发射极E,剩下的电压偏低的那个管脚为集电极C。
使用数字万用表判断三极管管脚(图解教程)现在数字式的万用表已经是很普及的电工、电子测量工具了,它的使用方便和准确性受到得维修人员和电子爱好者的喜爱。
但有朋友会说在测量某些无件时,它不如指针式的万用表,如测三极管。
我倒认为数字万用表在测量三极管时更加的方便。
以下就是我自己的一些使用经验,我是通常是这样去判断小型的三极管器件的。
大家不妨试试看是否好用或是否正确,如有意见或问题可以发信给我。
手头上有一些BC337的三极管,假设不知它是PNP管还是NPN管。
图1 三极管我们知道三极管的内部就像二个二极管组合而成的。
其形式就像下图。
中间的是基极(B极)。
图2 三极管的内部形式首先我们要先找到基极并判断是PNP还是NPN管。
看上图可知,对于PNP管的基极是二个负极的共同点,NPN管的基极是二个正极的共同点。
这时我们可以用数字万用表的二极管档去测基极,看图3。
对于PNP管,当黑表笔(连表内电池负极)在基极上,红表笔去测另两个极时一般为相差不大的较小读数(一般0.5-0.8),如表笔反过来接则为一个较大的读数(一般为1)。
如何使用数字万用表判断三极管的管脚极性以S9013的三极管,假设不知它是PNP管还是NPN管。
图1三极管我们知道三极管的内部就像二个二极管组合而成的。
其形式就像下图。
中间的是基极(B 极)。
图2三极管的内部形式首先我们要先找到基极并判断是PNP还是NPN管。
看上图可知,对于PNP管的基极是二个负极的共同点,NPN管的基极是二个正极的共同点。
这时我们可以用数字万用表的二极管档去测基极,看图3。
对于PNP管,当黑表笔(连表内电池负极)在基极上,红表笔去测另两个极时一般为相差不大的较小读数(一般0.5-0.8),如表笔反过来接则为一个较大的读数(一般为1)。
对于NPN管,当红表笔(连表内电池正极)连在基极上。
从图4可以得知,手头上的S9013为NPN管,中间的管脚为基极。
图3万用表的二极管测量档图4判断S9013的B极和管型找到基极和知道是什么类型的管子后,就可以来判断发射极和集电极了。
如果使用指针式万用表到了这个步可能就要用到两只手了,甚至有朋友会用到嘴舌,可以说是蛮麻烦的。
而利用数字表的三极管hFE档(hFE 测量三极管直流放大倍数)去测就方便多了,当然你也可以省去上面的步骤直接用hFE去测出三极管的管脚极性,我自己则认为还是加上上面的步骤方便准确一些。
表打到hFE档上,S9013插到NPN的小孔上,B极对上面的B字母。
读数,再把它的另二脚反转,再读数。
读数较大的那次极性就对上表上所标的字母,这时就对着字母去认S9013的C,E极。
学会了,其它的三极管也就一样这样做了,方便快速。
图5万用表上的hFE档图6判断C,E极图7判断C,E极常用三极管类型9012是PNP型三极管,9013是NPN型三极管。
9013不能代替9012使用的。
但是可用9015代替9012。
在一般情况下也可以用8550代替9012。
9011:NPN9012:PNP9013:NPN9014:NPN9015:PNP8550:PNP8050:NPN如需严格的参数资料,请查半导体手册。
用数字万用表判断晶体管的E、B、C极三个管脚的方法与指针式万用表用电阻档去测量是不一样的。
要用测量二极管的档位才能判断出晶体管E、B、C极的三个管脚。
以UT6OE为例介绍具体的测量办法:把数字万用表拨在二极管测量档。
图1:数字万用表与三极管连接的情况1)先找晶体管基极:用红表笔分三次接被测晶体管的①、②、③脚,黑表笔分别接另外两根引线(见图1),得出表的测试结果。
表1:找基极时的测试数据从表1中可以看出当黑表笔接③红表笔分别接①、②时,显示两次正向电压值,所以可以找出③脚是基极,且为PNP型晶体管。
2)找集电极和发射极:如上例找出PNP型晶体管的③脚为基极后,用数字万用表二极管档黑表笔接㈢脚,红表笔分别接①和②脚(如果是测NPN型管表笔与上述相反),结果测得③脚与①脚的电压为0·699V,而③脚与②脚之间的电压为0·680V,因此可以得知示值为0·699V时,红表笔接的是发射极①脚;示值为0·680V的一次,红表笔接的是集电极②脚。
三极管的检测方法1、中、小功率三极管的检测A、已知型号和管脚排列的三极管,可按下述方法来判断其性能好坏(a)、测量极间电阻。
将万用表置于R×100或R×1k挡,按照红、黑表笔的六种不同接法进行测试。
其中,发射结和集电结的正向电阻值比较低,其他四种接法测得的电阻值都很高,约为几百千欧至无穷大。
但不管是低阻还是高阻,硅材料三极管的极间电阻要比锗材料三极管的极间电阻大得多。
(b)、三极管的穿透电流ICEO的数值近似等于管子的倍数β和集电结的反向电流ICBO的乘积。
ICBO随着环境温度的升高而增长很快,ICBO的增加必然造成ICEO的增大。
而ICEO的增大将直接影响管子工作的稳定性,所以在使用中应尽量选用ICEO小的管子。
通过用万用表电阻直接测量三极管e-c极之间的电阻方法,可间接估计ICEO的大小,具体方法如下:万用表电阻的量程一般选用R×100或R×1k挡,对于PNP管,黑表管接e极,红表笔接c极,对于NPN型三极管,黑表笔接c极,红表笔接e极。
自设计数字万用表测量三极管静态工作点参数随着大规模集成电路的发展,传统指针式电表已逐渐被数字式电表所取代。
数字万用表具有高精确度、高分辨率、高测量速率、抗过载能力强等诸多优点,HLD-WYB-Ⅲ型数字万用表设计性试验仪能提供测量与显示所需要的独立模块,可将独立的电路模块进行有机结合构成各种使用的数字万用表测量电路。
【实验目的】1、了解万用表的特性、组成和工作原则2、掌握分压原理、计算与连接3、了解共集放大电路三极管静态工作点设置的重要性及参数计算【实验仪器】1、HLD-WYB-Ⅲ一台2、三位半数字万用表一台3、导线若干【仪器介绍】仪器面板如下图所示:面板说明:1、电源开关2、200mV 量程31/2位直流数字电压表头3、电压表头的小数点移动开关(小数点位置根据需要自行设置,但不影响表头的实际量程)4、0-20V 直流电压源5、0-20V 交流电压源6、三极管放大倍数测量电路7、待测元件组8、电阻测量电路9、实用分压器 10、使用分流器 11、多量程分压器 12、多量程式分流器 13、交流-直流转换电路【实验原理】无论何种数字表计电路通常由A/D 转化电路、时钟电路、驱动电路、显示电路等组成,本试验仪中使用的电压表头是有7107构成,它是一个量程为0-199.9mV 的直流电压表。
日常使用过程中我们通常测量的量不单单是直流电压,还有电流、电阻、交流电压等参数,需借助于其他的转化电路将这些非电压量或非直流量转化为直流电压量来测量,因此,懂得了电压测量原理有助于对其他参量的检测。
直流电压测量电路分析:为了扩大电压表的测量量程,需在数字电压表头前面加一级分压电路(分压器)。
如图1所示,U 0为电压表头的量程(如200mv ),r 为其内阻(如10M Ω),r 1、r 2为分压电阻,U i0为扩展后的量程。
00i U - 1r 2r 00U - r由于r 》r 2,所以分压比为: 21200r r r U U i += 扩展后的量程为:02210U r r r U i += 多量程分压器原理电路见图2,5档量程的分压比分布为1、0.1、0.01、0.001和0.0001,对应的量程分布为2000V 、200V 、20V 、2V 和200mV 。
图解使用数字万用表测量三极管
万用表打到二极管档(蜂鸣档)对三极管测量时……首先我们要确定哪只脚是b极。
于是用红表笔接触其中任意一只脚不动。
用黑表笔去接触另外两只脚。
如果能够测得两组相近且小于1的数字。
说明此时红笔接触的就是b极。
如果测得两组数字不相近……那说明此时红笔接触的不是b极……应把红笔换一只脚……黑笔去测另外两只脚……直到找到b极为止……假设我们知道哪只脚是b极……怎样去判断另外两只脚c极和e极呐!如下图:
寻修网提示:图中红笔为b极。
黑笔在另外两脚分别没得两组相近的数据……其中有一组数据会稍微大一点……此脚即为e极。
小的那脚则为c极……。
并且我们知道此管为NPN 型三极管。
因为红笔在b 极!
而对于PNP型三极管的测量方法也一样……只不过是黑表笔在b极……红笔接触另外两脚能测得两组相近的数据。
,如下图:。