混合高斯背景建模方法运动目标检测算法的研究与实现
- 格式:ppt
- 大小:1.55 MB
- 文档页数:15
基于自适应混合高斯模型背景提取的研究[摘要]运动目标检测的主要方法有相邻帧差法与背景减法,在背景减法中,准确的提取背景是运动目标检测的核心任务之一。
背景提取的主要方法有均值法、中值法、mode算法[1]以及基于单高斯模型与混合高斯模型的背景提取方法,前四种方法的求解过程比较简单,但对于复杂多变的背景,提取的准确性较差.对此本文提出了一种基于自适应混合高斯模型的背景提取的算法,实验结果验证了算法的实用性与有效性。
[关键词]背景提取;混合高斯模型;目标检测中图分类号:tp391.41文献标识码:a文章编号:1009-914x(2013)21-0066-021.引言在视频监控技术中,运动目标的有效检测、提取已成为关键,并且是进行目标跟踪、识别等后续处理的基础[2]。
运动目标检测的方法主要有相邻帧差法与背景减法,相邻帧差法检测速度快、对光照不敏感,应对环境变化的能力较强,但不能检测静止或者运动速度慢的物体,容易产生空洞[3],背景减法相对能完整的分割出运动目标。
背景图像减法一般先获取场景一帧的参考图像,然后实时拍摄的一帧新图像与之相减,在对差图像取阈值,最后得到一副从固定背景中分割出来的二值化图像。
景图像减法中会遇到几个关键性的问题,一是如何建立背景模型和实时更新模型参数以适应背景变化;二是这些背景变化包括:场景的光照变化、场景构成的改变、如阳光强弱和方向的改变、照明灯具的开关、背景中物体的微小移动、人或其他物体进入或移除场景等等。
这些外在环境的时时改变,都会影响运动目标检测的准确性。
为解决现存在的各种问题,本文提出一种基于自适应混合高斯模型背景提取的方法。
2.单高斯分布背景模型对一个背景图像,特定像素亮度的分布满足高斯分布,即对背景图像b(x,y)点的亮度满足: b(x,y)~n(u,d),这样我们的背景模型的每个象素属性包括两个参数:平均值 u和方差d。
5.实验结果分析为了充分验证算法的效果,本文使用在校园里所拍摄的一段视频进行目标检测实验,在文章所测试的400幅图像中,绝大部分都能很好的检测出运动目标,下图为一组例子基于单高斯与自适应混合高斯模型对目标检测的效果。
下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!高斯混合模型目标检测流程目标检测是计算机视觉领域中的重要任务,它旨在从图像或视频中准确地识别和定位感兴趣的目标物体。
混合高斯模型算法原理混合高斯模型是一种经典的背景建模算法,用于背景相对稳定情况下的运动目标检测。
它由单高斯模型发展而来,对于多模态的背景有一定的鲁棒性,如:树叶晃动、水纹波动等。
在介绍混合高斯模型前,首先介绍单高斯模型。
1. 单高斯背景模型:单高斯模型将图像中每一个像素点的颜色值看成是一个随机过程,并假设该点的像素值出现的概率服从高斯分布。
该算法的基本原理就是对每一个像素位置建立一个高斯模型,模型中保存该处像素的均值和方差。
如,可设),(y x 处像素的均值为),(y x u ,方差为),(2y x σ,标准差为),(y x σ。
由于随着视频图像序列的输入,模型参数不断更新,所以不同时刻模型参数有不同的值,故可将模型参数表示为三个变量t y x ,,的函数:均值),,(t y x u 、方差),,(2t y x σ、标准差),,(t y x σ。
用单高斯模型进行运动检测的基本过程包括:模型的初始化、更新参数并检测两个步骤。
1)模型初始化模型的初始化即对每个像素位置上对应的高斯模型参数进行初始化,初始化采用如下公式完成:⎪⎩⎪⎨⎧===init std y x init std y x y x I y x u _)0,,(_)0,,()0,,()0,,(22σσ (1)其中,)0,,(y x I 表示视频图像序列中的第一张图像),(y x 位置处的像素值,init std _为一个自己设的常数,如可设20_=init std 。
2)更新参数并检测每读入一张新的图片,判断新图片中对应点像素是否在高斯模型描述的范围中,如是,则判断该点处为背景,否则,判断该点处为前景。
假设前景检测的结果图为output ,其中在t 时刻),(y x 位置处的像素值表示为),,(t y x output ,),,(t y x output 的计算公式如下:⎩⎨⎧-⨯<--=otherwise t y x t y x u t y x I t y x output ,1)1,,()1,,(),,(,0),,(σλ (2)其中,λ是自己设的一个常数,如可设5.2=λ。
试描述基于高斯混合模型背景建模的步骤背景建模是计算机视觉领域中的一个重要问题,它被广泛应用于目标检测、跟踪、视频分析等领域。
背景建模的目的是从输入的视频序列中估计出场景的背景模型,以便于检测出场景中的前景目标。
在背景建模中,高斯混合模型(Gaussian Mixture Model,GMM)是一种常见的背景建模方法。
基于高斯混合模型背景建模的步骤主要包括以下几个方面:1. 数据预处理在进行背景建模之前,需要对输入的视频数据进行预处理。
预处理的主要目的是去除图像中的噪声和不利于背景建模的影响因素,例如光照条件的变化、相机的移动等。
预处理的方法包括平滑滤波、图像增强、运动补偿等。
2. 模型初始化在建立GMM模型之前,需要对模型进行初始化。
初始化的目的是确定每个高斯分量的初始参数,包括均值、方差和权重。
通常情况下,可以使用先验知识或者简单的聚类算法来初始化模型。
3. 建立GMM模型建立GMM模型是背景建模的核心部分。
在该步骤中,需要使用EM算法来估计高斯混合模型的参数。
EM算法是一种迭代算法,它通过交替进行两个步骤来求解问题,即E步骤和M步骤。
在E步骤中,计算每个像素的后验概率,即该像素属于每个高斯分量的概率;在M步骤中,使用最大似然估计法更新高斯分量的参数。
迭代过程会一直进行,直到收敛为止。
4. 背景模型更新背景模型的更新是指随着时间的推移,背景模型需要不断地进行更新以适应场景的变化。
在模型更新的过程中,需要考虑到前景目标的影响,以避免将前景目标误判为背景。
在更新模型时,可以采用加权平均法、自适应学习率法等方法。
5. 前景检测在背景模型建立完成后,可以通过前景检测来识别场景中的前景目标。
前景检测的方法包括阈值法、基于形态学的方法、基于连通性的方法等。
通过前景检测,可以得到场景中的前景目标的位置信息和形状信息。
基于高斯混合模型的背景建模是一种常见的背景建模方法。
它通过建立高斯混合模型来估计场景的背景模型,从而实现前景目标的检测和跟踪。
改进混合高斯模型的运动目标检测算法华媛蕾;刘万军【摘要】针对传统的混合高斯模型存在无法完整检测运动目标、易将背景显露区检测为前景等问题,提出了一种基于混合高斯模型的运动目标检测的改进算法.通过将混合高斯模型与改进帧差法进行融合,快速区分出背景显露区和运动目标区,从而提取出完整的运动目标.在运动目标由静止缓慢转为运动的情况下,为背景显露区给予较大背景更新速率,消除了背景显露区对运动目标检测的影响.在兼顾混合高斯模型在复杂场景中对噪声处理效果差的基础上,利用背景模型替换的方法来提高算法的稳定性.经过反复实验,结果表明改进后的算法在自适应性、正确率、实时性、实用性等方面有了很大的改进,能够在各种复杂因素存在的情况下正确有效地对运动目标进行检测.【期刊名称】《计算机应用》【年(卷),期】2014(034)002【总页数】5页(P580-584)【关键词】混合高斯模型;运动目标检测;帧差法;背景显露区;背景更新速率【作者】华媛蕾;刘万军【作者单位】辽宁工程技术大学软件学院,辽宁葫芦岛125105;辽宁工程技术大学软件学院,辽宁葫芦岛125105【正文语种】中文【中图分类】TP391随着社会经济的发展和城市化进程的加快,日益增长的交通容量的需求已经对现有的交通能力及管理设备造成了巨大压力。
基于视频的车流量检测系统是智能交通系统的重要环节,运动目标检测与提取成为了基本的热点问题。
随着计算机技术和图像处理技术的发展,基于视频采集和监控的智能交通系统会得到更大的发展,成为未来的发展方向。
对这方面的研究也将具有更大的价值[1]。
运动目标检测是从视频序列中检测和识别出运动目标的关键技术。
目前常用的基于视频的运动目标检测方法有光流法[2]、背景差法[3-6]、帧差法[7]以及统计模型法[8-9]等。
目前,最常用的、研究最多的方法是基于统计模型的目标检测方法。
本文以混合高斯模型为基础进行研究。
混合高斯背景模型最早由文献[10]提出,很好地描述了复杂的背景,在视频监控领域发挥了很大的优势;文献[11]提出了混合高斯背景模型与三帧差法结合的运动目标检测方法,并通过面积法对检测结果进行分析;文献[12]通过在颜色和空间上对像素点进行建模,使混合高斯背景模型的自适应性有了明显的改善,降低了环境的干扰;文献[13]通过为每个像素引入参考量来提高背景模型的自适应性。
基于改进混合高斯模型的运动目标检测作者:黄会敏杨松林陈燚玲来源:《数字化用户》2013年第20期【摘要】背景建模是运动目标图像检测算法中的一项技术,本文对背景建模中的经典混合高斯算法进行了学习研究,针对混合高斯模型在复杂场景中的适应性问题,本文提出了一种改进的混合高斯背景模型。
该模型通过建立一种自适应的参数更新方法,使得混合高斯的参数更新能够随着环境的变化自适应调整,从而提高算法的适应能力。
最后,通过编程仿真,验证了算法的有效性。
【关键词】背景建模混合高斯模型更新方程【Abstract】Background modeling is a technology of the moving target image detecting algorithm,and in this paper,the authors made research to the Classical Gaussian Mixture algorithm in Background modeling. As for the adaptability of Gaussian Mixture Model in complex scene, an improved Gaussian Mixture Model is put forward in this paper. The new model makes the parameters of the Gaussian Mixture updated with change of the environment adaptively by establishing an adaptive parameter updating method, thus, improving the adaptability of the algorithm. Finally,verif the effectiveness of the algorithm through the programming simulation.【Keywords】Background Modeling; Gaussian Mixture Model; Update Equation一、引言随着科技的进步智能视频监控被越来越多的被应用到交通、高危险区域工作区、敏感水域、军事区域、工厂重点保护区和金融等领域,其中运动目标检测技术是其中一个重要研究方向。