连铸板坯缺陷特征和图谱(梁健)
- 格式:ppt
- 大小:1.67 MB
- 文档页数:16
缺陷名称纵裂 Longitudinal Crack照片缺陷形貌及特征:缺陷形貌及特征纵裂纹是距钢板边部有一定距离的沿轧制方向裂开的小裂口或有一定宽度的线状裂纹。
板厚大于20mm的钢板出现纵裂纹的机率较大。
缺陷成因:1. 板坯凝固过程中坯壳断裂,出结晶器后进一步扩展形成板坯纵向裂纹,在轧制过程中沿轧制方向扩展并开裂;2. 板坯存在横裂,在横向轧制过程中扩展和开裂形成。
预防:防止纵列纹产生的有效措施是使板坯坯壳厚度均匀,稳定冶炼,连铸工艺是减少纵裂纹产生的关键推荐处理措施:1. 深度较浅的纵裂可采用修磨去除。
2. 修磨后剩余厚度不满足合同要求的钢板可采用火切切除、改规的方法,由于纵裂有一定长度,一般不采用焊补的方法挽救;3. 纵裂面积较大时钢板可直接判次或判废可能混淆的缺陷1. 边部折叠2. 边部线状缺陷缺陷名称横裂 Transverse Crack缺陷形貌及特征:缺陷形貌及特征:裂纹与钢板轧制方向呈30°~90°夹角,呈不规则的条状或线状等形态,有可能呈M或Z型,横向裂纹通常有一定的深度。
缺陷成因:板坯在凝固过程中,局部产生超出材料迁都极限的拉伸应力导致板坯横裂,在轧制过程中扩展和开裂形成。
有可能是板坯振痕过深,造成钢坯横向微裂纹;钢坯中铝,氮含量较高,促使AIN沿奥氏体晶界析出,也可能诱发横裂纹;二次冷却强度过高也会造成板坯上的横裂预防:1. 减少板坯振痕;2. 控制板坯表面温度均匀并尽量减少板坯表面和边部的温度差;3. 根据港中不同合力选用保护渣;4. 合理控制钢中的铝、氮含量。
推荐处理措施:1. 深度较浅的横裂可用修磨的方法去除;2. 修磨后剩余厚度不满足合同要求的钢板可采用厚度改规或切除缺陷后改尺的方法;3. 缺陷面积较大时钢板可直接判次或判废;可能混淆的缺陷1. 夹渣2. 折叠3. 星型裂纹缺陷名称边裂 Edge Crack缺陷形貌及特征:边部裂纹是钢板边部表面开口的月牙型,半圆型裂口,通常位于钢板单侧或两侧100mm 范围内,一般沿钢板边部密集分布。
连铸坯缺陷已轧成的钢材质量多数情况由最初的铸坯质量决定。
本文研究了连铸坯一系列缺陷的形式、影响缺陷形成和发展的因素,以及它们在热轧过程中的转化。
铸坯断面的畸变或它周边个别区段几何形状的变化(图1)可能是铸坯受裂纹损伤的间接标志。
除此之外,铸坯断面的畸变,即使它们不伴有裂纹,也会在后续加工中造成一系列困难。
图1 连铸坯形状的畸变缺陷缺陷名称缺陷形式定量估计导致缺陷形成和发展的因素菱 变100)(5.0100)(2121⨯+⨯⨯+AaD D D D结晶器工作空间不适当的形状;不适当的二次冷却; 金属流向结晶器的偏心浇注; 在结晶器中不均匀润滑。
椭圆度)(5.0100)(2121D D D D +⨯-铸坯边的凸度(凹度)100⨯Lb结晶器工作空间不适当形状;不适当的二次冷却; 支承系统损坏。
弯曲 (新月形)100⨯LC拉校机不适当校正;铸坯不适当的第三次冷却;扭 曲Lα铸坯不适当的第三次冷却菱变是坯壳渐增扭曲的结果,它起源于结晶器内且在离弯月面100~150mm 已显现。
与结晶器壁未接触的钝角区中的坯壳比在已接触的锐角区中的以更低的速度凝固。
这种情况在坯壳处于结晶器内的所有时间过程中都保持着。
所以在其他条件相同情况下,结晶器越长,铸坯菱变越大。
菱变在铸坯处于二冷区的头几分钟内显著增大。
此后,当坯壳厚度沿横断面均匀之后,菱变扩大趋势被终止了。
在弱二冷下,坯壳从结晶器出来之后,菱变扩大被减缓了。
这样一来,在连铸坯中菱变的形成乃是在熔融金属液面附近形成的坯壳不均匀厚度自动催化扩大的过程。
横截面形状的畸变是在浇注过程中由于在某一棱角区中形成坯壳的接触中断而使结晶器内散热中断情况下发生的。
其起因可能是:不均匀的润滑,或由于结晶器工作空间不适当的形状导致坯壳和结晶器接触中断或由于坯壳扭曲(不均匀二次冷却、装备工艺轴线的偏移)引发的变形。
在近代连铸装置中,防止菱变发展的有效方法——在结晶器下安装支承辊(足辊),这些支承辊牢固地支撑结晶器机架。
第二篇连铸板坯缺陷(AA)第二篇连铸板坯缺陷(AA) (1)2.1表面纵向裂纹(AA01) (4)2.2表面横裂纹(AA02) (6)2.3星状裂纹(AA03) (7)2.4角部横裂纹(AA04) (8)2.5角部纵裂纹(AA05) (10)2.6气孔(AA06) (11)2.7结疤(AA07) (12)2.8表面夹渣(AA08) (13)2.9划伤(AA09) (14)2.10接痕(AA13) (15)2.11鼓肚(AA11) (16)2.12脱方(AA10) (17)2.13弯曲(AA12) (18)2.14凹陷(AA14) (19)2.15镰刀弯(AA15) (20)2.16锥形(AA16) (21)2.17中心线裂纹(AA17) (22)2.18中心疏松(AA18) (23)2.19三角区裂纹(AA19) (25)2.20中心偏析(AA20) (27)2.21中间裂纹(AA21) (28)2.1表面纵向裂纹(AA01)图2-1-11、缺陷特征表面纵向裂纹沿浇注方向分布在连铸板坯上下表面,裂纹深度一般为2mm~15mm,裂纹部位伴有轻微凹陷。
在连铸浇注过程中,当连铸板坯坯壳在结晶器内所受到的应力超过了坯壳所能承受的抗拉强度时,即产生表面纵向裂纹。
表面纵向裂纹缺陷在结晶器内产生,出结晶器后若二次冷却不良,裂纹将进一步加剧。
2、产生原因及危害产生原因:①钢中碳含量处于裂纹敏感区内;②结晶器钢水液面异常波动。
当结晶器钢水液面波动超过10mm时,表面纵向裂纹缺陷易于产生;③结晶器保护渣性能不良。
保护渣液渣层过厚、过薄或渣膜厚薄不均,使连铸板坯凝固壳局部过薄而产生表面纵向裂纹;④中间包浸入式水口与结晶器对中不良,钢水产生偏流冲刷连铸板坯凝固壳,而产生表面纵向裂纹。
危害:轻微的表面纵裂纹经火焰清理后均能消除;表面纵向裂纹严重时可能会造成漏钢;表面纵向裂纹若送热轧进行轧制可能导致热轧产品出现分层、开裂缺陷。
连铸板坯轧制中板的表面缺陷
连铸板坯轧制中板的表面缺陷包括:1.毛刺:在轧制过程中,板坯表面可能会出现毛刺,这是由于轧辊表面不光滑或轧制压力不均匀造成的。
2.滚痕:滚痕是指板坯表面出现的长条状凹陷,通常是由于轧辊表面不平整或轧制压力不均匀造成的。
3.气泡:气泡是指板坯表面出现的圆形或椭圆形凸起,通常是由于板坯内部存在气体或轧制过程中气体被挤压到表面造成的。
4.裂纹:裂纹是指板坯表面出现的线状或网状裂缝,通常是由于板坯内部存在缺陷或轧制过程中应力过大造成的。
5.毛洞:毛洞是指板坯表面出现的小孔,通常是由于板坯内部存在气体或轧制过程中气体被挤压到表面造成的。
6.氧化皮:氧化皮是指板坯表面出现的氧化物层,通常是由于板坯表面暴露在空气中长时间造成的。
第二篇连铸板坯缺陷(AA)第二篇连铸板坯缺陷(AA) (1)2.1表面纵向裂纹(AA01) (4)2.2表面横裂纹(AA02) (6)2.3星状裂纹(AA03) (7)2.4角部横裂纹(AA04) (8)2.5角部纵裂纹(AA05) (10)2.6气孔(AA06) (11)2.7结疤(AA07) (12)2.8表面夹渣(AA08) (13)2.9划伤(AA09) (14)2.10接痕(AA13) (15)2.11鼓肚(AA11) (16)2.12脱方(AA10) (17)2.13弯曲(AA12) (18)2.14凹陷(AA14) (19)2.15镰刀弯(AA15) (20)2.16锥形(AA16) (21)2.17中心线裂纹(AA17) (22)2.18中心疏松(AA18) (23)2.19三角区裂纹(AA19) (25)2.20中心偏析(AA20) (27)2.21中间裂纹(AA21) (28)2.1表面纵向裂纹(AA01)图2-1-11、缺陷特征表面纵向裂纹沿浇注方向分布在连铸板坯上下表面,裂纹深度一般为2mm~15mm,裂纹部位伴有轻微凹陷。
在连铸浇注过程中,当连铸板坯坯壳在结晶器内所受到的应力超过了坯壳所能承受的抗拉强度时,即产生表面纵向裂纹。
表面纵向裂纹缺陷在结晶器内产生,出结晶器后若二次冷却不良,裂纹将进一步加剧。
2、产生原因及危害产生原因:①钢中碳含量处于裂纹敏感区内;②结晶器钢水液面异常波动。
当结晶器钢水液面波动超过10mm时,表面纵向裂纹缺陷易于产生;③结晶器保护渣性能不良。
保护渣液渣层过厚、过薄或渣膜厚薄不均,使连铸板坯凝固壳局部过薄而产生表面纵向裂纹;④中间包浸入式水口与结晶器对中不良,钢水产生偏流冲刷连铸板坯凝固壳,而产生表面纵向裂纹。
危害:轻微的表面纵裂纹经火焰清理后均能消除;表面纵向裂纹严重时可能会造成漏钢;表面纵向裂纹若送热轧进行轧制可能导致热轧产品出现分层、开裂缺陷。
精心整理连铸方坯缺陷图谱1.表面纵裂纹定义与外观沿拉坯方向,铸坯表面中心位置附近产生的裂纹,裂纹长10~1500mm,宽0.1~3.5mm,深<5mm。
成因及危害在结晶器弯月面区(钢液面下170mm)左右,钢液凝固在固相线以下发生δ→γ转变,导致凝固厚度生产的不均匀性,由于热收缩使坯壳产生应力梯度,在薄弱处产生应力集中,坯壳在表面形成纵向凹陷,从而形成纵向裂纹。
简言之,结晶器弯月面区凝固壳厚度不均匀性是产生表面纵裂纹的根本原因,在二冷区铸坯裂纹进一步扩展。
导致表面包晶反应钢(3)面波动≥56)结(1(2(3150μ(4(5(6(72.5mm。
成因及危害成因:(1)与形成表面纵裂的原因基本相同。
(2)钢流对角部冲击过强。
(3)沿结晶器高度水缝厚度不均匀,造成结晶器角部冷却不良。
(4)结晶器圆角半径太小。
预防及消除方法(1)与形成表面纵裂的预防及消除方法基本相同。
(2)保证浸入式水口对中良好,减少钢流对角部的过强冲击。
(3)装配结晶器时,保证冷却水缝厚度一致,使之冷却均匀。
(4)合适的圆角半径。
裂纹严重时会造成漏钢和钢坯废品。
检查与处置用肉眼检查;进行火焰清理,缺陷严重部位切除判废。
3.表面横裂纹定义与外观生成于铸坯面部的横向裂纹,简称为表面横裂纹。
与振痕共生,深度2~7mm,长度较短,一般在5~50mm之间,裂纹处常常被FeO覆盖。
成因及危害产生于结晶器初生坯壳形成振痕的波谷处,振痕越深,则横裂纹越严重,由于:◆冷却速度降低,晶粒粗大;◆4)(1(2(3(4(5(6(745~20mm(1(2)结晶器表面划伤。
(3)结晶器出口与零段对弧不准。
(4)铸坯角部冷却太强,矫直时表面温度小于900℃。
(5)当铸坯角部有星状裂纹时,受到矫直力的作用,就会以这些星状裂纹为缺口,形成角部横裂纹。
(6)振痕太深。
裂纹严重时会造成钢坯废品。
预防及消除方法(1)合适的结晶器锥度。
(2)处理事故、送引定或放入冷料等操作时避免结晶器表面损伤或划伤。
连铸板坯缺陷特征和缺陷图谱首钢京唐板坯质检编制2010年8月8日一.连铸坯质量特征综述1.1连铸坯质量定义和特征所谓连铸坯质量是指的到合格产品所允许的铸坯缺陷的严重程度。
对铸坯质量要求而言,主要有四项指标,即连铸坯几何形状、表面质量、内部组织致密性和钢的洁净性;而这些质量要求与连铸机本身设计,采取的工艺以及凝固特点密切相关。
1.2铸坯的检查和清理的意义提高钢的质量,降低成本,加强产品市场的竞争力是企业追求的目标,生产无缺陷连铸坯以保证高附加值产品优良的性能是永恒的主题,连铸坯的裂纹和夹杂物所产生的缺陷可以说是影响产品质量的两大障碍,生产无缺陷或缺陷不足以影响产品质量的连铸坯,这是要努力达到的目标,而连铸坯裂纹和夹杂物所产生的缺陷是受设备、工艺、管理等多种因素制约的。
因此设备、工艺和管理的现代化加上人的质量意识是提高产品质量的关键。
,但是在连铸生产中,铸坯的各种缺陷总是无法避免的,铸坯清理对钢厂保障铸坯质量、降低废品比例具有重要意义。
(1)火焰铸坯清理的注意事项1)一般对表面质量要求较高的钢种,铸坯清理的目的以检查铸坯表面和皮下质量为主,包括夹杂物、气泡、裂纹等分布情况,在清理检查的基础上提供铸坯的进一步处理(清除缺陷、决定铸坯表面质量级别、是否送机器去皮、决定钢种是否达到热送条件等)的意见。
2)微合金钢如Nb、V微合金钢和包晶钢等容易产生角部横裂纹,往往位于铸坯振痕谷底,也需要用火焰清理才能发现。
这方面也应引起足够重视。
3)对于包晶钢、中碳钢等钢种,则以人工清理肉眼可见缺陷为主,包括铸坯常见的表面缺陷,如纵裂、角横裂、重接、凹陷、夹渣、毛刺等,以便尽量降低铸坯判废损失。
(2)不良的火焰清理的危害虽然火焰清理是检查和去除连铸坯表面缺陷的一个极好的方法。
但是,这项操作的确需要掌握一定的技巧,一旦能够正确地操作可确保最终产品不产生额外的表面缺陷。
连铸坯表面上的深槽、凸脊和界面必须平滑以确保清理操作本身不造成额外表面缺陷。
连铸坯主要表面缺陷类型
连铸坯主要表面缺陷有:深振痕、凹陷、裂纹等。
1、深振痕
连铸坯的振痕有凹陷形振痕、钩形振痕两种类型。
连铸坯振痕较浅时,一般不会对最终成品产生影响;振痕较深时,在振痕波谷处,由于受到的冷却强度较弱,铸坯皮下晶粒粗大,就可能成为连铸坯横向裂纹的根源。
影响振痕深度的因素主要有润滑方式、钢种成分、保护渣性能、结晶器振动模式等。
减小结晶器内钢液初始凝固坯壳的弯曲变形程度可以降低连铸坯的振痕深度。
2、表面凹陷缺陷
连铸坯的表面凹陷有横向凹陷和纵向凹陷两种类型。
横向凹陷的形成与结晶器内液位上升有关,当液位波动峰值超过渣圈时,带动渣圈下移,此时形成横向凹陷。
纵向凹陷是结晶器上部锥度太小和刚性的角部转动,使小偏离角凹陷形成,由于结晶器下部锥度太大,结晶器压向坯壳使凹陷增加,从而在宽面出现偏离角凹陷。
降低结晶器冷却强度,提高结晶器内凝固坯壳所受冷却强度的周向均匀性,防止结晶器液位波动过大,可以消除铸坯的表面凹陷缺陷。
3、表面裂纹缺陷
表面裂纹主要有横向裂纹、纵向裂纹、星型裂纹等。
结晶器内初始凝固坯壳厚度不均匀,在坯壳薄弱处产生应力集中,会产生纵向裂纹。
表面横裂纹一般出现在振痕波谷处。
星型裂纹一般在铸坯表面去除氧化铁皮或渣膜后才会发现,与铸坯表面吸收了结晶器的Cu,同时铸坯表面Fe的选择性氧化,使残存元素(Cu、Sn 等)残留,沿晶界渗透形成星型裂纹。
保证结晶器内初始凝固坯壳厚度的均匀性是控制纵向裂纹的关键。
控制横向裂纹的关键是降低铸坯振痕深度,避免铸坯在低温脆性区弯曲或矫直。
控制星型裂纹的关键是结晶器内壁状态是否良好,铸坯温度控制是否合理。
第一篇连铸钢坯外观缺陷目次1.1 方坯 (2)1.1.1脱方 (2)1.1.2鼓肚 (3)1.1.3弯曲 (4)1.1.4端面剪切变形 (5)1.1.5表面横裂 (6)1.1.6角部横裂 (7)1.1.7结疤或夹渣 (8)1.1.8划痕 (9)1.1.9气孔 (9)1.1.10凹陷 (10)1.1.11扭曲 (10)1.1.12缩孔 (10)1.1.13接痕 (11)1.2 板坯 (12)1.2.1鼓肚 (12)1.2.2弯曲 (13)1.2.3表面纵裂 (14)1.2.4表面横裂 (16)1.2.5角部纵裂 (17)1.2.6角部横裂 (18)1.2.7振痕 (20)1.2.8气孔 (21)1.2.9凹陷 (21)1.2.10接痕 (23)1.2.11中间裂纹 (25)1.2.12中心线裂纹 (26)1.2.13三角区裂纹 (27)1.2.14端面切斜 (28)1.2.15豁口、立沟、错牙 (29)1.2.16弧形 (30)1.2.17掰断 (30)1.2.18毛刺和熔渣 (31)1.2.19镰刀弯 (33)1.2.20划痕 (33)1.1 方坯1.1.1脱方英:Off square【定义与特征】脱方是方坯横截面上两个对角线不相等。
【原因分析】方坯结晶器内各边冷却不均匀,造成凝固壳厚度不均。
结晶器铜板水缝不均匀,铜板磨损不均匀,下口锥度过大,水口不对中。
【鉴别与判定】用量具测量铸坯横截面两个对角线的长度,如两对角线之差超出标准要求,做判废或改尺处理。
1.1.2鼓肚英:Protuberance【定义与特征】铸坯表面凝固壳受到钢水静压力的作用导致一个或几个表面鼓胀成凸面。
【原因分析】二冷喷嘴阻塞,水压不足或偏离;钢水过热度过高;拉速过快,冷却强度不足。
【鉴别与判定】用量具测量鼓肚量,如超出标准要求,做判废或改尺处理。
1.1.3弯曲英:Bending【定义与特征】弯曲是长度或宽度方向不平直。
【原因分析】在冷床上冷却不均匀;摆放不当。
连铸坯质量缺陷连铸坯的质量缺陷及控制摘要连铸坯质量决定着最终产品的质量。
从⼴义来说所谓连铸坯质量是得到合格产品所允许的连铸坯缺陷的严重程度,连铸坯存在的缺陷在允许范围以内,叫合格产品。
连铸坯质量是从以下⼏个⽅⾯进⾏评价的:(1)连铸坯的纯净度:指钢中夹杂物的含量,形态和分布。
(2)连铸坯的表⾯质量:主要是指连铸坯表⾯是否存在裂纹、夹渣及⽪下⽓泡等缺陷。
连铸坯这些表⾯缺陷主要是钢液在结晶器内坯壳形成⽣长过程中产⽣的,与浇注温度、拉坯速度、保护渣性能、浸⼊式⽔⼝的设计,结晶式的内腔形状、⽔缝均匀情况,结晶器振动以及结晶器液⾯的稳定因素有关。
(3)连铸坯的内部质量:是指连铸坯是否具有正确的凝固结构,以及裂纹、偏析、疏松等缺陷程度。
⼆冷区冷却⽔的合理分配、⽀撑系统的严格对中是保证铸坯质量的关键。
(4)连铸坯的外观形状:是指连铸坯的⼏何尺⼨是否符合规定的要求。
与结晶器内腔尺⼨和表⾯状态及冷却的均匀程度有关。
下⾯从以上四个⽅⾯对实际⽣产中连铸坯的质量控制采取的措施进⾏说明。
关键词:连铸坯;质量;控制1 纯净度与质量的关系纯净度是指钢中⾮⾦属夹杂物的数量、形态和分布。
夹杂物的存在破坏了钢基体的连续性和致密性。
夹杂物的⼤⼩、形态和分布对钢质量的影响也不同,如果夹杂物细⼩,呈球形,弥散分布,对钢质量的影响⽐集中存在要⼩些;当夹杂物⼤,呈偶然性分布,数量虽少对钢质量的危害也较⼤。
此外,夹杂物的尺⼨和数量对钢质量的影响还与铸坯的⽐表⾯积有关。
⼀般板坯和⽅坯单位长度的表⾯积(S)与体积(V)之⽐在0.2~0.8。
随着薄板与薄带技术的发展,S/V 可达10~50,若在钢中的夹杂物含量相同情况下,对薄板薄带钢⽽⾔,就意味着夹杂物更接近铸坯表⾯,对⽣产薄板材质量的危害也越⼤。
所以降低钢中夹杂物就更为重要了。
提⾼钢的纯净度就应在钢液进⼊结晶器之前,从各⼯序着⼿尽量减少对钢液的污染,并最⼤限度促使夹杂物从钢液中排除。
为此应采取以下措施:表⾯缺陷 1—横向⾓裂;2—纵向边裂;3—横向裂纹;4—纵向裂纹;5—⽹状和蜘蛛状裂纹;6—结晶器往复运动的振痕;7—⽓泡;8—保护渣型夹杂物⑴⽆渣出钢。