抽水蓄能机组
- 格式:wps
- 大小:87.00 KB
- 文档页数:6
抽水蓄能电站原理
抽水蓄能电站是一种利用水资源进行能量储存和转换的重要设施,它在电力系
统中具有重要的作用。
它可以在低峰时段将电力系统的多余电能利用水泵将水从下池抽到上池,而在高峰时段则可以通过水轮机将水从上池放到下池并发电。
这种方式不仅可以平衡电网负荷,还可以提高电力系统的可靠性和稳定性。
下面将详细介绍抽水蓄能电站的原理。
首先,抽水蓄能电站需要两个水库,一个是上池,一个是下池。
当电力系统负
荷较低时,电力系统可以利用多余的电力将上池的水抽到下池中,这样就将电能转化为潜在能量存储起来。
而当电力系统负荷增加时,可以通过水轮机将下池的水放到上池,并将潜在能量转化为电能供电系统使用。
其次,抽水蓄能电站的水泵和水轮机是核心设备。
水泵的作用是将水从下池抽
到上池,这需要消耗一定的电能。
而水轮机的作用则是将水从上池放到下池,并通过水轮机驱动发电机产生电能。
这两个设备的运行需要精确的控制和调度,以确保电力系统的稳定运行。
此外,抽水蓄能电站还需要配套的电力设备和控制系统。
电力设备包括变压器、开关设备等,用于将抽水蓄能电站产生的电能接入到电力系统中。
控制系统则是对抽水蓄能电站的水泵和水轮机进行精确的控制和调度,以满足电力系统的需求,保证电力系统的安全和稳定运行。
总的来说,抽水蓄能电站利用水资源进行能量储存和转换,通过将多余的电能
转化为潜在能量储存起来,再将其转化为电能供电系统使用,实现了电能的平衡和调峰。
它不仅可以提高电力系统的可靠性和稳定性,还可以提高电力系统的经济性和环保性。
因此,抽水蓄能电站在电力系统中具有重要的地位和作用。
抽水蓄能电站机组继电保护配置及功能分析发布时间:2023-02-17T03:31:46.009Z 来源:《中国建设信息化》2022年10月19期作者:倪康傅强[导读] 抽水蓄能机组具有快速启停的能力,在电网中承担着调峰、调频、调相、事故备用等任务,对电网安全稳定运行起着重要作用。
倪康傅强国网新源黑龙江牡丹江抽水蓄能有限公司黑龙江牡丹江 157000摘要:抽水蓄能机组具有快速启停的能力,在电网中承担着调峰、调频、调相、事故备用等任务,对电网安全稳定运行起着重要作用。
同时抽水蓄能机组设计复杂,运行工况较多,转换频繁,因此与传统机组相比保护配置和保护闭锁逻辑要复杂得多,必须根据不同运行工况对抽水蓄能机组进行保护配置,以确保设备的可靠运行。
本文主要研究抽水蓄能电站继电保护系统的配置和功能,鉴于我国抽水蓄能机组运行方式的频繁变化,阐明了相关的特殊功能要求,论述了抽水和背靠背运行条件下设备继电保护的作用,并提出了一些防误动措施。
关键词:抽水蓄能电站;发电机;继电保护配置;功能随着碳达峰和碳中和技术被纳入生态文化和基于新能源的新能源系统的总体框架,抽水蓄能电站在能源系统中的重要性正在增加。
与传统水电站相比,抽水蓄能电站配置有双向可逆式机组,因此除了传统水电站配置的继电保护功能之外,还必须配置其他适当的保护。
如电压相序、低功率、低频、低功率保护等,如果它们处于电制动和抽水启动的中间阶段,一些保护措施可能会失去原有的功能,甚至导致误动。
一、保护装置的要求1.电压相序保护:抽水蓄能电站机组与出口开关、换向刀闸、输变电设备等连接,通过换向刀闸来切换机组运行方向。
如需运行在发电方向,则闭合发电方向换向刀闸,发电机的相序与电网的相序相同,当机组的转速、电压、相位满足并列条件时合上出口开关实现并网,此时发电机的能量被传输到电网,在这个启动过程中保护装置必须确定换向刀闸处于发电还是抽水位置,以确定抽水蓄能机组的运行方向。
因此,在抽水蓄能机组启动期间,电压相位保护被用作换相开关误动保护。
抽水蓄能电站介绍1.水库:水库是抽水蓄能电站的主要储能设施。
水库的选址通常位于地势相对较高的地方,能够通过引入外部水源或者自然降水将水储存在库区中。
水库的大小取决于电站的装机容量和电网的需求。
2.抽水机组:抽水机组包括水泵、电动机和控制系统。
在低电负荷时段,抽水机组启动,通过电动机驱动水泵将水从下游抽到上游的高位水库中。
抽水过程中,输入的电能转化为水势能储存,实现了储能的目的。
3.水轮机组:水轮机组是抽水蓄能电站的核心部件。
在高电负荷时段或者需要储能释放时,水库中储存的水被放流,通过水轮机产生旋转动力,再由发电机将机械能转化为电能输出到电网中。
4.发电机组:发电机组由水轮机、发电机和变压器等部分组成。
水轮机通过水流的旋转运动驱动发电机,发电机则将机械能转化为电能,通过变压器将电能送入电网,供电给人们的生活和生产。
抽水蓄能电站的工作原理比较简单,其实现了电力的存储和调峰功能。
在低谷时段,通过抽水机组将水库中的水抽到高位水库中,将电能转化为水势能储存起来。
而在电力需求高峰时段,通过释放水库中的水,将水能转化为机械能,再由发电机组将机械能转化为电能供电,实现了电力的发电和供应。
抽水蓄能电站具备一些优势。
首先,该电站能够灵活调节电力供应,能够在低负荷时段储存电能,在高负荷时段释放电能,帮助电力系统进行峰谷填补,提高电网稳定性。
其次,抽水蓄能电站可以作为备用电源,发电过程稳定可靠。
此外,该电站可以调整电力负荷曲线,优化电力使用效率,并提高电网对可再生能源接入的能力。
最后,抽水蓄能电站减少了短期电力价格波动对市场的影响,对电力市场平稳运行起到积极作用。
抽水蓄能电站也存在一些挑战。
首先,电站的建设成本较高,特别是在选址困难的地区。
其次,抽水蓄能电站的效率不高,能量转化过程中有一定的损耗。
此外,抽水蓄能电站对水资源的需求较大,需要有充足的水源供给。
最后,抽水蓄能电站可能对生态环境造成一定的影响,特别是对周边地区的水资源和生物多样性。
抽水蓄能电站的工作原理抽水蓄能电站(Pumped Storage Hydroelectricity,简称PSH)是一种广泛应用于能源储备与调峰的电力发电方式。
它利用电网在低峰时段所产生的多余电能,将其转化为水能,并通过泵抽水并储存于高位水库中,待高峰时段或能源需求增加时,再将储存的水能释放,通过水力发电机组产生电能。
抽水蓄能电站具有高效、环保、可调度性强等优点,是一种重要的可再生能源发电方式。
一、工作原理概述抽水蓄能电站的工作原理基于水循环的能量转换过程。
电站主要由上、下两个水库、泵抽水机组和水力发电机组等主要设备组成。
在低峰时段,泵抽水机组启动,将下游水库的水抽到高位水库中。
储存水能的高位水库通过一条引水隧道与下游水库相连。
在高峰时段或能源需求增加时,水能被释放,通过引水隧道将水流回下游水库,并通过水力发电机组转化为电能,最终供应给电网。
二、抽水工况抽水蓄能电站的抽水工况是其工作的核心环节。
在低峰时段,电站开始抽水操作。
首先,泵抽水机组启动,通过电动机驱动水泵工作,将下游水库的水抽出。
水被抽到高位水库后,通过引水隧道储存。
最终,当高峰时段来临或能源需求增加时,抽水工况结束。
三、发电工况抽水蓄能电站的发电工况是其关键环节之一。
当高峰时段或能源需求增加时,电站开始发电操作。
此时,通过水力发电机组将储存于高位水库中的水能转化为电能。
水力发电机组启动后,水从高位水库开始流动,通过引水隧道、水轮机和发电机等设备完成能量转换。
最终,通过电能转换和输送将电能供应到电网中。
四、能量转换和储存抽水蓄能电站的工作过程中,能量的转换和储存是关键环节。
在抽水阶段,电能通过泵抽水机组将电网的多余电能转化为水的势能,储存于高位水库中。
而在发电阶段,储存的水能通过水力发电机组被释放,再次转化为电能。
这种能量的转换和储存能够满足不同时段的能源需求,实现能源的储存与调度。
五、优势和应用前景抽水蓄能电站作为一种可再生能源发电方式,具有许多优势和应用前景。
抽水蓄能机组范文
根据抽水功率和蓄水量的不同,抽水蓄能机组可以分为三种:小功率、中功率和大功率。
小功率的抽水蓄能机组的抽水功率为20kW,蓄水量约
为20m³/h,最大轴功率可达200kW。
中功率的抽水蓄能机组的抽水功率为50kW,蓄水量约为50m³/h,最大轴功率可达500kW,大功率抽水蓄能机组
的抽水功率为250kW,蓄水量约为250m³/h,最大轴功率可达5000kW。
抽水蓄能机组的工作原理是,当上游水位变化时,抽出由水泵提供的水,抽出的水流下游,在下游入口处形成一个涡流,这个涡流把下游舱的
水送上游,补充上游的流量,当水位变化结束,抽水蓄能机组将抽取的水
返回至下游,形成一种自动闭环的作用。
抽水蓄能机组的结构主要由引水和抽出水泵、水泵变速器、输出轴、
轴封、汽轮机、锅炉、控制室等组成。
运行时,抽出水泵将上游水吸入机组,并在机组内循环,由水泵变速器控制抽出水流量,汽轮机通过带动输
出轴输出功率,最后由控制室去控制机组的运行。
抽水蓄能机组的调相步骤:1、发电调相的启动发电调相的启动相对来说比较简单,按照发电的流程,先将机组启动,并上电网,然后将机组有功设置为0,球阀、调速器、励磁都进入调相模式运行,执行关导叶,关球阀,调相压水气系统往转轮室注入高压气体,把转轮室水位压低到并保持在调相水位,同时给转轮上下迷宫和主轴密封注入冷却水,以防止干磨擦,损坏密封,等到了预设的稳态后即是发电调相工况了。
2、发电转发电调相发电转发电调相和发电调相启动的区别在于:发电调相启动是从发电启动到并网,但还没有到发电稳态就开始转发电调相,而发电转发电调相是从发电稳稳转发电调相。
3、抽水调相的启动目前广泛应用的抽水调相启动方式以SFC变频启动为主,辅以背靠背启动。
(1)SFC变频启动:利用SFC变频启动装置,将主变低压侧电源转变为从零到额定值的变频电源,同步地将机组拖动起来。
(2)背靠背启动:让两台机组通过电气联系在一起,其中一台作发电机启动,称拖动机;另一台作抽水调相启动,称被拖动机。
两台机组都加上励磁,同时启动,即利用拖动机将被拖动机组同步地拖动起来。
等被拖动机并网后,拖动机要立刻断开与被拖动机的电气联系,然后可以转为发电、发电调相运行,或者转为停机。
为了减小启动时的阻力,一般在转速升高到10%-20%,监控发令给调相压水气系统,开始往转轮室注入高压气,在第一次将转轮室水位压到调相水位后,调相压水气系统通过其控制系统和水位信号反馈,自动调节补气和停止补气,在整个调相过程中维持转轮室水位在调相水位。
4、抽水调相转抽水抽水转抽水调相是从抽水稳态开始,调速器、球阀、励磁进入调相模式,关闭球阀、导叶,调相压水投入运行,转轮上下迷宫和主轴密封冷却水投入,等到了稳态即可。
5、结束调相运行在发电调相转发电,抽水调相转抽水的时候,都要先排尽转轮室的空气,蜗壳建压,再打开导叶、球阀,待机组的出力或入力达到额定,就达到相应的发电或抽水工况了。
发电调相停机和抽水调相停机都是先将机组从电网解列,然后走相应的停机流程,调相压水气系统先将进气阀关上,再将排气阀打开,经过一段时间(这段时间应充分考虑转轮室内的气体已排完),在到达停机转换前关上即可。
抽水蓄能电站的工作原理抽水蓄能电站是一种利用地势高低差和流体动能进行能量转换的电力发电方式。
它将低水位时的多余电力转化为储能,然后在用电高峰期将储存的能量转化为电能供应给电网。
本文将详细介绍抽水蓄能电站的工作原理及其具体的运行流程。
一、工作原理抽水蓄能电站主要由水库、上游和下游水道、电力负荷和涡轮机组等组成。
其工作原理可以简单概括为以下三个步骤:1. 低峰期储能:在用电低峰期,当电网供电能力充裕时,电力公司会通过电网将多余的电力用来抽水,将水从下游抽送到上游的水库中。
这样就可以将电能转化为势能,达到储能效果。
同时,水库的水位随着抽水的进行而逐渐提高。
2. 峰期出力:在用电高峰期或紧急情况下,当电网需要额外的电力供应时,电力公司会停止抽水,将储存在水库中的水释放至下游,通过涡轮机组来产生电力,以满足电网需求。
在这一过程中,水流经过涡轮机组时,水的动能会转化为机械能,再通过发电机转化为电能,供应给电网。
3. 电力平衡:当电网供电能力再次充裕时,电力公司会重新启动抽水过程,将水从下游抽送到水库中,以便再次储存电能。
这样,抽水蓄能电站便可以根据电网的需求动态地进行电能的储存和释放,实现了对电力供应的平衡调控。
二、运行流程下面将详细介绍抽水蓄能电站的运行流程,以更好地理解其工作原理。
1. 抽水过程在用电低峰期,电网供电能力充裕时,电力公司通过电网将多余的电力输送到位于下游的涡轮机组。
涡轮机组将电能转化为机械能,带动抽水泵将水从下游抽送至位于上游的水库中。
这一过程中,电能转化为了储存于水库中的势能。
2. 储能过程随着抽水的进行,水库的水位逐渐提高,将水的势能存储起来。
当水位达到一定高度时,抽水过程停止,此时抽水蓄能电站便完成了储能的目标。
3. 发电过程在用电高峰期或紧急情况下,当电网需要额外的电力供应时,抽水蓄能电站会启动发电过程。
即停止抽水,将水释放至下游,水流经过涡轮机组,带动涡轮机组旋转。
涡轮机组将水的动能转化为机械能,同时通过发电机将机械能转化为电能,供应给电网。
抽水蓄能电站的工作原理抽水蓄能电站(Pumped Storage Hydropower Plant,简称PSH)是一种主要用于调峰调频的电力供应系统。
它通过利用低电价时段的电能,将水从下池抽升到上池,待电力需求高峰时,再将水从上池释放下来,驱动涡轮发电机组发电,从而实现能量的高效转换和保存。
本文将从工作原理、系统组成和优势三个方面进行论述。
一、工作原理抽水蓄能电站的工作原理可以概括为以下四个步骤:1. 电能转化为储能:在低电价时段,电网向电站供应电能,电能通过水泵抽水机组将水从下池抽升到上池,此时电能被转化为水位能和压力能。
2. 水位能和压力能的保存:上池和下池之间通过通道连接,上池和下池的水面高度差称为“有效水头”,上池的水位比下池高。
上池作为储能池,保存着水位能和压力能。
3. 高峰时段释放水能:当电力需求高峰时,控制系统打开上池闸门,释放上池的水流经下泄水道加速下泄,进入涡轮发电机组。
4. 发电转化为电能:水流通过涡轮发电机组驱动涡轮旋转,涡轮将水的动能转化为机械能,再被发电机转化为电能,最终输出到电网供应给用户。
二、系统组成抽水蓄能电站由以下主要组成部分构成:1. 上池和下池:上池通常位于高地,下池通常位于地势较低的地方,两者之间有足够高度差,以便保存水能。
2. 整流水泵抽水机组:位于下池,负责将电能转化为水位能和压力能,将水从下池抽升至上池。
3. 涡轮发电机组:位于上池,负责将水能转化为电能。
涡轮通过水流转动,驱动发电机发电。
4. 调度控制系统:负责监控和控制整个电站的运行,根据电力需求和电网负荷情况,合理地调度抽水和发电的过程。
三、优势抽水蓄能电站相比传统火力发电和风力发电等形式具有以下优势:1. 调峰调频能力强:可根据电力需求的变化快速进行抽水和发电过程,对平衡电网负荷具有重要意义。
2. 储能效率高:抽水和发电两个过程之间的能量转化效率高,水能和电能之间的转换损失较小。
3. 可再生能源利用率提高:抽水蓄能电站常与风力发电、太阳能发电等可再生能源电站相结合,通过储能技术,解决了可再生能源的间歇性发电问题。
抽水蓄能电站发电机组安装施工流程
在抽水蓄能电站建设中,发电机组的安装是一个至关重要的环节。
本文将介绍抽水蓄能电站发电机组安装的施工流程,以帮助读者更好地了解这一过程。
施工准备阶段
在进行发电机组安装前,需要做好充分的准备工作:
场地准备
确保安装场地平整、稳固,符合发电机组的安装要求。
材料准备
准备好所需的安装材料、工具和设备,确保施工顺利进行。
发电机组安装过程
1.基础安装
首先进行发电机组基础的安装,包括基础座的浇筑和固定。
2.主体安装
将发电机组主体部分进行吊装并安装到基础座上,确保安装牢固。
3.接线安装
进行发电机组的电气接线安装,确保电气连接正常并符合安全标准。
4.调试与测试
完成安装后,进行发电机组的调试与测试工作,确保设备正常运行。
安全防护措施
在整个安装过程中,必须严格遵守安全规定,采取相应的安全防护措施:
确保作业人员穿戴好安全装备,如安全帽、安全鞋等。
设立安全警示标识,提醒施工人员注意安全。
定期进行安全检查,及时发现并排除安全隐患。
抽水蓄能电站发电机组的安装是一个复杂而重要的工程环节,需要严格按照流程进行,确保施工质量和安全。
只有在严格遵守安全规定和施工流程的情况下,才能顺利完成发电机组的安装工作,为抽水蓄能电站的正常运行提供保障。
安全第一,质量至上!。
抽水蓄能机组
配置原则
抽水蓄能机组与常规机组的主要区别是前者运行方式多和工况转换频繁,同时在一次设备上要增加抽水启动装置、换相开关和启动母线等,这些都给继电保护功能的实现带来了困难。
要确保抽水蓄能机组保护的正确、可靠运行,必须合理处理好以下几个关键环节:
Ø 机组运行工况的判别;
Ø 换相和倒极对保护的影响;
Ø 水泵工况启动过程对保护的影响;
Ø 换相和倒极开入异常时保护的闭锁逻辑。
抽水蓄能机组的不同运行工况对应不同的保护配置。
发电和水泵工况均投入的保护有纵差动保护、过流保护、失磁保护、基波零序电压定子接地保护、过电压保护、转子一点接地保护等;只在发电工况投入的保护是逆功率保护;水泵工况下应投入的保护:次同步过流保护,低功率保护,溅水功率保护、低频保护、低电压保护等。
RCS-985发电机变压器成套保护装置满足规程要求和抽水蓄能机组各种运行工况的保护要求,具有抽水蓄能机组需要的所有保护配置。
2推荐方案
GB/T 14285-2006《继电保护和安全自动装置技术规程》中4.2.21明确规定,对于100MW 及以上容量的发电机变压器组装设数字式保护时,除非电量保护外,应双重化配置。
针对大中型抽水蓄能机组的常用主接线方式,推荐如图2‑1所示的保护配置方案。
图2‑1 抽水蓄能机组RCS-985GW/TW发变组保护配置方案
配置两套RCS-985 GW型装置,实现发电机、励磁变所有电量保护的双重化。
配置两套RCS-985TW型装置,实现主变、厂变所有电量保护的双重化。
配置非电量保护,根据主变、厂变非电量保护配置需求确定非电量保护装置的型号和数量。
非电量保护的出口回路独立于电量保护的回路,完全符合《防止电力生产重大事故的二十五项重点要求》继电保护实施细则中6.3节第2)条的要求。
配置断路器操作箱,提供断路器手合、手跳及保护跳闸输入回路,并实现断路器跳、合闸线圈监视功能。
GB/T 14285-2006《继电保护和安全自动装置技术规程》中4.1.12.1明确规定,对仅配置一套主保护的设备,应采用主保护与后备保护相互独立的装置。
对于100MW以下的抽水蓄能机组,保护按单套配置,且采用主后分开的独立的装置,推荐如图2‑2所示的保护配置方案。
图2‑2 小容量抽水蓄能机组保护配置方案
配置一套RCS-985RS/SS型装置,将发电机主保护、后备保护、异常运行保护合理分配到两个装置中,共同提供一台发电机的全部电量保护。
RCS-985RS完成如下保护功能:发电电动机差动保护、转子接地保护、定子过负荷保护、负序过负荷保护、轴电流保护、励磁变过流保护以及非电量保护等。
RCS-985SS完成如下保护功能:横差保护、纵向零序电压匝间保护、工频变化量负序方向匝间保护、复压过流保护、失磁保护、定子接地保护、逆功率保护、低功率保护、频率异常保护、电压异常保护等。
RCS-985SS装置还提供一个操作回路(单跳圈或双跳圈)。
配置两套RCS-985TS型装置,分别实现主变差动保护、主变后备保护以及厂变所有电量保护。
配置一套非电量保护,实现主变、厂变的所有非电量保护。
非电量保护的出口回路独立于电量保护的回路,完全符合《防止电力生产重大事故的二十五项重点要求》继电保护实施细则中6.3节第2)条的要求。
配置断路器操作箱,提供断路器手合、手跳及保护跳闸输入回路,并实现断路器跳、合闸线圈监视功能。
对于其它主接线方式以及现场保护功能的特殊需求,配置方案有所不同,请咨询我公司研发和设计人员。
3实现方案
大中型抽水蓄能机组保护组屏设计方案如图3‑1~图3‑3所示:
图3‑1大中型抽水蓄能机组发电机、励磁变保护组屏设计方案
图3‑2大中型抽水蓄能机组主变、厂变保护组屏设计方案小容量抽水蓄能机组保护组屏设计方案如下图所示:
图3‑3小容量抽水蓄能机组保护组屏设计方案
法律声明|公司邮箱|联系我们。