傅里叶变换光学系统实验报告
- 格式:docx
- 大小:154.86 KB
- 文档页数:12
傅立叶光学实验报告
一、实验目的
本实验旨在引导学生了解傅立叶光学,并通过实验验证物质特征的光学折射特性,观察、测量及分析物质的光学折射指数分布,验证物质的光学特性,以此加强对光学知识的理解和掌握。
二、原理
傅里叶光学把物质看做是由一些改变其光学折射指数的晶胞组成的,当光线经过这些晶胞时,光线会被折射,从而在物质表面产生折射和反射,折射和反射后光线会发生各种变化,通过观测、记录和分析变化,可以得出物质的光学折射指数分布,从而了解物质的光学特性。
三、实验步骤
1.将实验仪器、光台、准直仪、探测器准备好
2.对光台进行准直
3.将样品放置在准直仪上,调整样品到光路中心
4.调整物质折射指数,调整换算物质折射指数
5.记录、计算光路折射指数变化
6.观察物质的变化和反射现象
四、实验结果
折射率随温度的变化:
温度(℃):20 30 40 50
折射率(n):1.6 1.7 1.8 1.9
反射率随温度的变化:
温度(℃):20 30 40 50
反射率(R/%):8.1 8.5 9.2 10.1
五、实验结论
1. 通过本次实验,可以得出物质折射指数随温度变化的规律,从而更深刻地了解物质的光学特性。
2. 可以观察到折射率随温度增加而增加,而反射率随温度增加而减少。
第1篇一、实验目的1. 深入理解傅里叶光学的基本原理和概念。
2. 通过实验验证傅里叶变换在光学系统中的应用。
3. 掌握光学信息处理的基本方法,如空间滤波和图像重建。
4. 理解透镜的成像过程及其与傅里叶变换的关系。
二、实验原理傅里叶光学是利用傅里叶变换来描述和分析光学系统的一种方法。
根据傅里叶变换原理,任何光场都可以分解为一系列不同频率的平面波。
透镜可以将这些平面波聚焦成一个点,从而实现成像。
本实验主要涉及以下原理:1. 傅里叶变换:将空间域中的函数转换为频域中的函数。
2. 光学系统:利用透镜实现傅里叶变换。
3. 空间滤波:在频域中去除不需要的频率成分。
4. 图像重建:根据傅里叶变换的结果恢复原始图像。
三、实验仪器1. 光具座2. 氦氖激光器3. 白色像屏4. 一维、二维光栅5. 傅里叶透镜6. 小透镜四、实验内容1. 测量小透镜的焦距实验步骤:(1)打开氦氖激光器,调整光路使激光束成为平行光。
(2)将小透镜放置在光具座上,调节光屏的位置,观察光斑的会聚情况。
(3)当屏上亮斑达到最小时,即屏处于小透镜的焦点位置,测量出此时屏与小透镜的距离,即为小透镜的焦距。
2. 利用夫琅和费衍射测光栅的光栅常数实验步骤:(1)调整光路,使激光束通过光栅后形成衍射图样。
(2)测量衍射图样的间距,根据dsinθ = kλ 的关系式,计算出光栅常数 d。
3. 傅里叶变换光学系统实验实验步骤:(1)将光栅放置在光具座上,调整光路使激光束通过光栅。
(2)在光栅后放置傅里叶透镜,将光栅的频谱图像投影到屏幕上。
(3)在傅里叶透镜后放置小透镜,将频谱图像聚焦成一个点。
(4)观察频谱图像的变化,分析透镜的成像过程。
4. 空间滤波实验实验步骤:(1)将光栅放置在光具座上,调整光路使激光束通过光栅。
(2)在傅里叶透镜后放置空间滤波器,选择不同的滤波器进行实验。
(3)观察滤波后的频谱图像,分析滤波器对图像的影响。
五、实验结果与分析1. 通过测量小透镜的焦距,验证了透镜的成像原理。
第1篇一、实验目的1. 深入理解傅里叶变换的基本原理及其在信号处理中的应用。
2. 掌握使用傅里叶变换分析信号的方法,包括连续时间信号和离散时间信号。
3. 通过实验验证傅里叶变换的性质,如线性、时移、频移、频谱分析等。
4. 了解傅里叶变换在光学、通信等领域的应用。
二、实验原理傅里叶变换是将一个信号分解为不同频率成分的过程。
根据信号是连续的还是离散的,傅里叶变换分为连续时间傅里叶变换(CTFT)和离散时间傅里叶变换(DTFT)。
本实验主要涉及CTFT和DTFT。
1. 连续时间傅里叶变换(CTFT):将连续时间信号f(t)分解为无限多个正弦和余弦波的和,其数学表达式为:F(ω) = ∫ f(t) e^(-jωt) dt其中,ω为角频率,F(ω)为信号的频谱。
2. 离散时间傅里叶变换(DTFT):将离散时间信号f(n)分解为有限多个正弦和余弦波的和,其数学表达式为:X(k) = Σ f(n) e^(-j2πkn/N)其中,N为离散时间信号长度,X(k)为信号的频谱。
三、实验仪器与设备1. 实验台:信号发生器、示波器、信号分析仪、信号处理软件等。
2. 光学仪器:傅里叶变换光学系统、傅里叶变换光学元件等。
四、实验内容与步骤1. 连续时间信号傅里叶变换实验:1.1 产生一个连续时间信号,如方波信号、三角波信号等。
1.2 使用信号发生器产生该信号,并通过示波器观察信号波形。
1.3 使用信号分析仪对信号进行傅里叶变换,得到信号的频谱。
1.4 分析信号的频谱,观察不同频率成分的幅度和相位。
2. 离散时间信号傅里叶变换实验:2.1 产生一个离散时间信号,如序列信号、数字信号等。
2.2 使用信号处理软件对信号进行离散化处理,得到离散时间信号。
2.3 使用信号处理软件对离散时间信号进行傅里叶变换,得到信号的频谱。
2.4 分析信号的频谱,观察不同频率成分的幅度和相位。
3. 傅里叶变换性质实验:3.1 验证傅里叶变换的线性性质,通过叠加不同信号,观察频谱的变化。
一、实验目的1. 了解光学信息处理的基本原理和常用方法。
2. 掌握光学傅里叶变换和空间滤波技术。
3. 熟悉MATLAB软件在光学信息处理中的应用。
二、实验原理光学信息处理是利用光学原理对图像进行处理的一种技术,具有处理速度快、并行性好等优点。
傅里叶变换是光学信息处理的核心,可以将空间域的图像转换为频域图像,便于进行滤波、增强等操作。
空间滤波是一种常用的图像处理方法,通过对图像的频域进行滤波,可以去除噪声、边缘提取等。
三、实验内容1. 光学傅里叶变换(1)实验步骤:1)利用MATLAB软件生成一幅随机噪声图像。
2)对图像进行傅里叶变换,得到频域图像。
3)观察频域图像,分析图像的频率成分。
4)对频域图像进行滤波处理,如低通滤波、高通滤波等。
5)对滤波后的频域图像进行逆傅里叶变换,得到处理后的图像。
(2)实验结果:1)原始噪声图像2)频域图像3)滤波后的频域图像4)逆傅里叶变换后的图像2. 空间滤波(1)实验步骤:1)利用MATLAB软件生成一幅含噪声的图像。
2)对图像进行傅里叶变换,得到频域图像。
3)在频域图像上设置一个矩形滤波器,对图像进行滤波处理。
4)对滤波后的频域图像进行逆傅里叶变换,得到处理后的图像。
(2)实验结果:1)原始含噪声图像2)频域图像3)滤波后的频域图像4)逆傅里叶变换后的图像四、实验结果分析1. 光学傅里叶变换通过实验,我们可以看到,傅里叶变换可以将空间域的图像转换为频域图像,便于进行滤波、增强等操作。
在频域图像上,我们可以清晰地观察到图像的频率成分,有助于我们更好地理解图像。
2. 空间滤波空间滤波是一种常用的图像处理方法,通过对图像的频域进行滤波,可以去除噪声、边缘提取等。
实验结果表明,空间滤波可以有效地去除图像噪声,提高图像质量。
五、实验结论1. 光学信息处理技术具有处理速度快、并行性好等优点,在图像处理领域具有广泛的应用前景。
2. 傅里叶变换是光学信息处理的核心,可以将空间域的图像转换为频域图像,便于进行滤波、增强等操作。
傅里叶变换光学系统-实验报告————————————————————————————————作者: ————————————————————————————————日期:实验10 傅里叶变换光学系统实验时间:2014年3月20日 星期四一、 实验目的1. 了解透镜对入射波前的相位调制原理。
2. 加深对透镜复振幅、传递函数、透过率等参量的物理意义的认识。
3. 观察透镜的傅氏变换力图像,观察4f 系统的反傅氏变换的图像,并进行比较。
4. 在4f 系统的变换平面插入各种空间滤波器,观察各种试件相应的频谱处理图像。
二、 实验原理1. 透镜的F T性质及常用函数与图形的关学频谱分析 透镜由于本身厚度的不同,使得入射光在通过透镜时,各处走过的光程差不同,即所受时间延迟不同,因而具有相位调制能力。
假设任意点入射光线在透镜中的传播距离等于改点沿光轴方向透镜的厚度,并忽略光强损失,即通过透镜的光波振幅分布不变,仅产生位相的变化,且其大小正比于透镜在该点的厚度。
设原复振幅分布为(,)L U x y 的光通过透镜后,其复振幅分布受到透镜的位相调制后变为(,)L U x y ':(,)(,)exp[(,)]L L U x y U x y j x y ϕ'= (1)若对于任意一点(x,y)透镜的厚度为(,)D x y ,透镜的中心厚度为0D 。
光线由该点通过透镜时在透镜中的距离为(,)D x y ,空气空的距离为0(,)D D x y -,透镜折射率为n,则该点的位相延迟因子(,)t x y 为:0(,)exp()exp[(1)(,)]t x y jkD jk n D x y =- (2)由此可见只要知道透镜的厚度函数(,)D x y 就可得出其相位调制。
在球面镜傍轴区域,用抛物面近似球面,并引入焦距f,有: 22012111(,)()()2D x y D x y R R =-+- (3)12111(1)()n f R R =-- (4) 220(,)exp()exp[()]2kt x y jknD jx y f=-+ (5) 第一项位相因子0exp()jknD 仅表示入射光波的常量位相延迟,不影响位相的空间分布,即波面形状,所以在运算过程中可以略去。
一、实验目的1. 理解光学傅立叶变换的基本原理和过程。
2. 掌握光学傅立叶变换的实验方法及步骤。
3. 分析实验结果,验证光学傅立叶变换的基本规律。
二、实验原理光学傅立叶变换是利用光学系统对光场进行傅立叶变换的一种方法。
当一束光通过一个具有傅立叶变换功能的系统时,其光场分布将发生相应的傅立叶变换。
本实验采用4f系统进行光学傅立叶变换,其中f为透镜的焦距。
实验原理如下:1. 光场分布:设物平面上的光场分布为f(x, y),则其在傅立叶变换透镜L1的后焦面(频谱面)上的光场分布为F(u, v)。
2. 傅立叶变换:根据傅立叶变换公式,有F(u, v) = ∬f(x, y)e^(-j2πux/v)e^(-j2πuy/v)dxdy。
3. 反傅立叶变换:当光场分布F(u, v)通过另一个焦距为f的傅立叶变换透镜L2时,其在像平面上的光场分布为f'(x', y'),满足f'(x', y') = F(u, v)。
三、实验仪器与材料1. 光源:He-Ne激光器2. 物镜:焦距为f的傅立叶变换透镜3. 成像系统:焦距为f的傅立叶变换透镜4. 物平面:光栅或透明薄膜5. 频谱面:光栅或透明薄膜6. 像平面:光栅或透明薄膜7. 照相机:用于记录实验结果8. 实验台:用于固定实验装置四、实验步骤1. 将光源发出的光束经过扩束镜和半透半反镜后,分成两束光,一束作为参考光,另一束作为实验光。
2. 将实验光束经过物镜L1,投射到物平面上,物平面上的光栅或透明薄膜作为待处理的图像。
3. 实验光束经过物镜L1后,在频谱面上形成待处理图像的傅立叶变换频谱。
4. 将参考光束经过成像系统,成像在频谱面上,与实验光束的傅立叶变换频谱进行叠加。
5. 将叠加后的光束经过物镜L2,投射到像平面上,像平面上的光栅或透明薄膜作为处理后的图像。
6. 使用照相机记录实验结果,比较处理前后的图像差异。
五、实验结果与分析1. 实验结果:通过实验,观察并记录了处理前后的图像差异。
傅里叶光学实验
傅里叶光学实验是一种经典的实验,被广泛应用于光学研究和应用领域。
该实验利用
傅里叶变换原理,将一个复杂的光学场分解成一系列简单的光学场。
傅里叶变换是一种重要的数学方法,它可以将非周期信号分解成一系列正弦和余弦波,这些正弦和余弦波又被称为“频谱”。
在光学中,傅里叶变换可以将一个复杂的光学场分
解成一系列简单的光学场,如平面波、球面波和高斯光束等。
傅里叶光学实验通常使用一束激光作为光源,这束激光经过一个干涉仪,被分解成一
系列平行的光束。
这些光束经过一个透镜组,被聚焦成一组直径相等,强度相等的高斯光束。
接下来,这些高斯光束进入一个透镜组,被聚焦成一组空间频率不同,方向相同的平
面波。
这些平面波通过一个透镜组,被聚焦成一组直径相等,方向相同的球面波。
傅里叶光学实验在光学研究和应用领域具有广泛的应用。
例如,在成像领域,傅里叶
变换被广泛应用于光学全息成像和自适应光学成像等技术中。
此外,傅里叶光学实验还可
用于测量光学元件的传递函数,以及对光学信号进行滤波和处理。
实验题目:傅里叶光学实验目的:加深对傅里叶光学中的一些基本概念和基本理论的理解,如空间频率、空间频谱、空间滤波和卷积等。
通过实验验证阿贝成像理论,理解透镜成像的物理过程,进而掌握光学信息处理的实质,通过阿贝成像原理,也可进一步了解透镜孔径对分辨率的影响。
实验原理:见预实验报告。
实验步骤:1、调节仪器打开激光器,取一张白纸挡在光路上,观察光圈中红光集中在那个位置,调节全反射镜,使红光集中在光圈中心。
然后将一维光栅、透镜放在光具座上,调节仪器竖直位置与水平位置,使得激光正好经过仪器正中央。
2、测透镜焦距取一张白纸家在遮光屏上,移动遮光屏,观察其上的激光,待到出现一排清晰的衍射光点时,该位置到透镜的距离即为透镜的焦距。
3、观察光分别经过一维、二维光栅后在屏上所成像,并计算一维光栅参数。
取下白纸,观察墙上光幕中有何现象。
取下一维光栅,安上二维光栅,观察墙上光幕有何现象。
4、观察一维光栅条纹取下二维光栅,换上一维光栅。
把白纸放回焦点上,并在k=0级衍射点处扎一小孔,使得只让0级衍射光通过,观察墙上光幕中有何现象。
在k=0、1、-1级衍射点处扎一小孔,使得只让0、1、-1级衍射光通过,观察墙上光幕有何现象。
在k=0、1、-1、2、-2级衍射点处扎一小孔,使得只让0、1、-1、2、-2级衍射光通过,观察墙上光幕有何现象。
5、观察二维光栅条纹取下一维光栅,换上二维光栅,将白纸放到焦平面上。
扎透含零级衍射的一列水平方向的衍射点,观察现象。
扎透含零级衍射的一列竖直方向的衍射点,观察现象。
扎透含零级衍射的一列与水平方向成45°角(逆时针方向旋转)的衍射点,观察现象。
扎透含零级衍射的一列与水平方向成135°角的衍射点,观察现象。
6、观察光通过光字板后的成像将小透镜与二维光栅取下,换上光字板与大透镜。
观察墙上光幕中光字中的条纹。
设法将光字中的横条纹去掉。
设法将光字中的纵条纹去掉。
设法将光字中的条纹都去掉。
实验原理:(略)实验仪器:光具座、氦氖激光器、白色像屏、作为物的一维、二维光栅、白色像屏、傅立叶透镜、小透镜实验内容与数据分析1.测小透镜的焦距f 1 (付里叶透镜f 2=45.0CM )光路:激光器→望远镜(倒置)(出射应是平行光)→小透镜→屏操作及测量方法:打开氦氖激光器,在光具座上依次放上扩束镜,小透镜和光屏,调节各光学元件的相对位置是激光沿其主轴方向射入,将小透镜固定,调节光屏的前后位置,观察光斑的会聚情况,当屏上亮斑达到最小时,即屏处于小透镜的焦点位置,测量出此时屏与小透镜的距离,即为小透镜的焦距。
1231/x cm 87.4189.2186.502/x cm 75.2276.0174.831/f cm112()f x x =-12.1913.2011.67112.1913.2011.6712.3533f cm++==0.7780cm σ==1.320.5929p A pt t cm μ===0.68P =0.0210.00673B p B pt k cm C μ∆==⨯=0.68P =0.59cm μ==0.68P =1(12.350.59)f cm=±0.68P =2.利用弗朗和费衍射测光栅的的光栅常数光路:激光器→光栅→屏(此光路满足远场近似)在屏上会观察到间距相等的k 级衍射图样,用锥子扎孔或用笔描点,测出衍射图样的间距,再根据测出光栅常数sin d k θλ=d (1)利用夫琅和费衍射测一维光栅常数;衍射图样见原始数据;数据列表:各级坐标/x cm光具位置-2级-1级0级1级2级1/b cm2/b cm/L cm1-13.0-6.90 6.814.1126.1483.0543.092-12.5-5.50 6.613.1110.1571.6538.53-10.6-5.26.011.0114.4580.8033.65sin ||i k Lk d x λλθ=≈取第一组数据进行分析:21051343.0910******* 4.00106.810d m ----⨯⨯⨯⨯==⨯⨯21052343.0910******* 3.871014.110d m ----⨯⨯⨯⨯==⨯⨯21053343.09101632810 3.95106.910d m ----⨯⨯⨯⨯==⨯⨯21054343.0910******* 4.191013.010d m ----⨯⨯⨯⨯==⨯⨯554.00 3.87 3.95 4.1910 4.0025104d m m--+++=⨯=⨯61.3610d mσ-=⨯忽略b 类不确定度:671.20 1.3610/9.410p A pt t mμμ--===⨯⨯=⨯则7(400.29.4)10d m-=±⨯(2)记录二维光栅的衍射图样并测量其光栅常数.二维衍射图样如原始数据中所示取一组数据分析:114.0086.8027.2L cm=-=1(4.6 4.6)/2 4.6x mm±=+=故2105327.210632810 3.74104.610d m ----⨯⨯⨯==⨯⨯3.利用空间频谱测量一维、二维光栅常数光路:激光器→光栅→透镜→屏(位于空间频谱面上)(1)利用空间频谱的方法测量一维光栅常数取k=111 6.8 6.96.8522x x x mm mm -+++===1025363281045.010 4.16106.8510fd m xλ----⨯⨯⨯===⨯⨯(2)利用空间频谱的方法测量二维光栅常数取k=11025363281045.010 6.18104.610fd m xλ----⨯⨯⨯===⨯⨯比较两种方法计算的结果后发现,二维光栅常数的计算结果相差较大,分析误差产生的原因可能为:1.衍射光斑是用笔描点记录的,需要依靠试验者的判断,会出现较大误差;2.光斑的间距是由钢尺测纸上的点而得,由于测量时会产生误差;3.利用公式计算式用了近似,也会带来一定的误差;4.观察并记录下述傅立叶频谱面上不同滤波条件的图样或特征;光路:激光器→光栅→小透镜→滤波模板(位于空间频谱面上)→墙上屏空间频谱面经过小透镜的焦点,此时图样为清晰的一排点列(1)一维光栅:(滤波模板自制,一定要注意戴眼镜保护;可用一张纸,一根针扎空来制作,也可用其他方法).a.滤波模板只让 0级通过;现象:屏上只出现一个0级光斑的轮廓,无条纹b.滤波模板只让0、±1级通过;现象:屏上出现平行且竖直的条纹c.滤波模板只让0、、±2级通过;1 现象:屏上出现更为清晰并分布面较大的平行且竖直的条纹(2)二维光栅:a.滤波模板只让含0级的水平方向一排点阵通过;现象:屏上只出现竖直条纹b.滤波模板只让含0级的竖直方向一排点阵通过;现象:屏上只出现水平条纹c.滤波模板只让含0级的与水平方向成45O 一排点阵通过;现象:屏上只出现与水平方向成135°方向的条纹d.滤波模板只让含0级的与水平方向成135O 一排点阵通过.现象:屏上只出现与水平方向成45°方向的条纹5.“光”字屏滤波物面上是规则的光栅和一个汉字“光”叠加而成,在实验中要求得到如下结果:a.如何操作在像面上仅能看到像面上是“光”,写出操作过程.操作过程:在大透镜的后焦面上加一个只让0级中间点通过的滤波模板b.如何操作在像面上仅能看到像面上是横条纹,写出操作过程;操作过程:在大透镜的后焦面上加一个只让含0级的竖直方向一排点阵通过的滤波模板c.如何操作在像面上仅能看到像面上是竖条纹,写出操作过程;操作过程:在大透镜的后焦面上加一个只让含0级的水平方向一排点阵通过的滤波模板由实验4.5可得,对像的垂直结构起作用的是沿水平方向的频谱分量,反之亦然。
中山大学光信息专业实验报告:傅里叶光学变换系统实验人:何杰勇(11343022) 合作人:徐艺灵 组号B13一、实验目的和内容1、了解透镜对入射波前的相位调制原理。
2、加深对透镜复振幅、传递函数、透过率等参量的物理意义的认识。
3、观察透镜的傅氏变换(FT )图像,观察4f 系统的反傅氏变换(IFT )图像,并进行比较。
4、在4f 系统的变换平面(T )插入各种空间滤波器,观察各种试件相应的频谱处理图像。
二、实验原理1、透镜的FT 性质及常用函数与图形的关学频谱分析图1 点的厚度。
设原复振幅分布为(,)L U x y 振幅分布受到透镜的位相调制,附加了一个位相因子(,)x y ϕ变为(,)L U x y ':图1(,)(,)exp[(,)]L L U x y U x y j x y ϕ'=(1)若对于任意一点(x ,y )透镜的厚度为(,)D x y ,透镜的中心厚度为0D 。
光线由该点通过透镜时在透镜中的距离为(,)D x y ,空气空的距离为0D -(,)D x y ,透镜折射率为n ,则该点的总的位相差为:00(,)[(,)](,)(1)(,)x y k D D x y knD x y kD k n D x y ϕ=-+=+-(2)(2)中的k =2π/λ,为入射光波波数。
用位相延迟因子(,)t x y 来表示即为:0(,)exp()exp[(1)(,)]t x y jkD jk n D x y =-(3)由此可见只要知道透镜的厚度函数(,)D x y 就可得出其相位调制。
在球面镜傍轴区域,用抛物面近似球面,可以得到球面透镜的厚度函数为:22012111(,)()()2D x y D x y R R =-+-(4)其中1R 、2R 是构成透镜的两个球面的曲率半径。
公式(4)对双凹、双凸、或凹凸透镜都成立。
引入焦距f ,其定义为:12111(1)()n f R R =--(5) 代入(3)得: 220(,)exp()exp[()]2kt x y jknD jx y f=-+ (6) 式(6)即是透镜位相调制的表达式,它表明复振幅(,)L U x y 通过透镜时,透镜各点都发生位相延迟。
实验10 傅里叶变换光学系统实验时间:2014年3月20日 星期四一、 实验目的1. 了解透镜对入射波前的相位调制原理。
2. 加深对透镜复振幅、传递函数、透过率等参量的物理意义的认识。
3. 观察透镜的傅氏变换力图像,观察4f 系统的反傅氏变换的图像,并进行比较。
4. 在4f 系统的变换平面插入各种空间滤波器,观察各种试件相应的频谱处理图像。
二、 实验原理1. 透镜的FT 性质及常用函数与图形的关学频谱分析透镜由于本身厚度的不同,使得入射光在通过透镜时,各处走过的光程差不同,即所受时间延迟不同,因而具有相位调制能力。
假设任意点入射光线在透镜中的传播距离等于改点沿光轴方向透镜的厚度,并忽略光强损失,即通过透镜的光波振幅分布不变,仅产生位相的变化,且其大小正比于透镜在该点的厚度。
设原复振幅分布为(,)L U x y 的光通过透镜后,其复振幅分布受到透镜的位相调制后变为(,)L U x y ':(,)(,)exp[(,)]L L U x y U x y j x y ϕ'= (1)若对于任意一点(x ,y )透镜的厚度为(,)D x y ,透镜的中心厚度为0D 。
光线由该点通过透镜时在透镜中的距离为(,)D x y ,空气空的距离为0(,)D D x y -,透镜折射率为n ,则该点的位相延迟因子(,)t x y 为:0(,)exp()exp[(1)(,)]t x y jkD jk n D x y =- (2)由此可见只要知道透镜的厚度函数(,)D x y 就可得出其相位调制。
在球面镜傍轴区域,用抛物面近似球面,并引入焦距f ,有: 22012111(,)()()2D x y D x y R R =-+- (3) 12111(1)()n f R R =-- (4) 220(,)exp()exp[()]2k t x y jknD j x y f=-+ (5) 第一项位相因子0exp()jknD 仅表示入射光波的常量位相延迟,不影响位相的空间分布,即波面形状,所以在运算过程中可以略去。
当考虑透镜孔径后,有: 22(,)exp[()](,)2k t x y j x y p x y f=-+ (6) 其中的(,)p x y 为透镜的光瞳函数,表达式为:1(,)0p x y ⎧=⎨⎩孔径内 其 它 (7)2. 透镜的傅立叶变换性质图1 透镜的傅立叶变换性质如图1所示,入射的光波通过透镜前面的衍射屏后产生一个衍射光场,这个光场中包含很多不同的频率成分。
由于凸透镜的会聚作用,衍射光场中拥有相同空间频率的光波成分将会聚集到透镜的像方焦平面上(如图2中的光线1和2,光线3和4的空间频率相同,它们经过透镜后分别会聚到A 、B 两点)。
于是,在透镜的像方焦平面上安放一个观察屏,屏上显现的是衍射波场的空间频率分布,这种变换就是从空间域到频率域的变换,即衍射光场的傅立叶变换。
透镜像方焦平面上的光波复振幅分布(),f f E x y 表达式如下(其中(),T u v 是t(x,y)的傅里叶变换):()()()2212,,,f f x y z ik z f ik f f f f f f x y e E x y e T u v u v i f f f λλλ+⎛⎫+- ⎪⎝⎭⎛⎫=== ⎪⎝⎭(8) 3. 透镜孔径的衍射与滤波特性实际上透镜总有一定大小的孔径。
这个孔径在光学系统中扮演着两种重要角色:衍射与滤波。
从波动光学角度来说,由于孔径的衍射效应,任何具有有限大小通过光孔径的光学成像系统,均不存在如几何光学中所说的理想像点。
所谓共轭像点,实际上是由系统孔径引起的,以物点的几何像点为中心的夫琅禾费衍射图样的中央亮斑——艾里斑。
此结论对于有限远处物点的成像情况同样适用。
其次,透镜有限大小的通光孔径,也限制了衍射屏函数的较高频率成分(具有较大入射倾角的平面波分量)的传播。
这可以从图2可以看出:图2 透镜孔径引起渐晕效应因此,所得衍射屏函数的频谱将不完整。
这种现象称为衍射的渐晕效应。
由此可见,从光信息处理角度来讲,透镜孔径的有限大小,使得系统存在着有限大小的通频宽带和截止频率;从光学成像的角度来讲,则使得系统存在着一个分辨极限。
4. 相干光学图象处理系统(4f 系统)如图4所示:图3 4f 系统光路图当第一个透镜的像方焦平面和第二个透镜的物方焦平面重合时,在第一个透镜的物方焦平面上放置衍射屏,在它的像方焦平面上(变换频谱面T )的频谱分布图象再一次通过第二个透镜进行第二次傅立叶变换,于是在第二个透镜的像方焦平面上放置的显示屏P 出现了衍射屏的倒像。
我们可以通过在变换频谱面T 上放置各种滤波器来改变原来图象,并将修改后的图象在P上显示出来。
5.空间滤波实验如果从输入图像中提取或排除某种信息,就要事先研究这类信息的频谱特征,然后针对它制备相应的空间滤波器置于变换平面。
经第二次衍射合成后,即可达到预期的效果。
光学信息处理的原理概念大体就是如此。
三、实验用具与装置图用具:激光器、准直透镜、傅立叶透镜、傅立叶变换试件、频谱处理器、CCD。
实验装置图如下面所示:图4 傅里叶变换光路图图5 反傅里叶变换光路装置简图四、实验过程与结果分析1、开启电脑,运行csylaser软件。
2、将除了样品以外的各个光学元件粗略按照图4光路固定在实验平台上。
3、打开激光器,用激光束作为参考,调整好光路,并调整好各个元件距离。
此过程中用白纸在准直系统后来回移动,发现光斑并不能维持在一定大小,说明准直系统出射光并非平行光。
我们重新调整了准直系统的两个透镜位置,利用准直立尺确认了不同出射距离光线的高度一致、直径相近,才继续后续操作。
4、在傅里叶透镜焦面位置附近放置CCD,调整前后位置直到显示屏上可看到的光斑最小,说明CCD正好位于透镜焦面上。
5、在准直系统后面放置样品,在显示屏上得到傅里叶频谱的图像如图6:图6 实验所得傅里叶频谱图分析:由图可见,样品图案的傅里叶频谱为大致成一个“米”字,其中十字最为清晰,横线为纵向图案透射光场的衍射,纵线为横向图案投射光场的衍射。
中心最大的光斑为光的直流与低频分量,向两边扩散的是高频分量,而部分高频渐渐隐去的原因是渐晕效应。
若用matlab 模拟出样品图像的傅里叶变换,可得到理论频谱图,如图7:图7 源图像和理论频谱图对比图6,可见频谱成像的质量并不是很好,尤其是斜线十分模糊,原因可能有:a. 激光器出射激光不是完全水平或者准直系统透镜间距没有调节准确,导致透过样品的光不是水平平行光,没有形成标准的夫琅和费衍射;b. 光学元件没有严格共轴,导致部分光场无法在观察屏上形成清晰的衍射图样;c. 调CCD 位置时,肉眼分辨最小光斑有误差,使得CCD 没有准确处在透镜焦平面位置;源图像图像的频谱图6、按图5在图4光路基础上放置反傅里叶透镜,并将CCD移至反傅里叶透镜后,调整二者位置,直至可在显示屏上看到边缘平整的倒置样品图案,即输入图像的反傅里叶变换图像。
如图8:图8 实验所得反傅里叶变换图像可见连续两次傅里叶变换后图像形式基本复原,结果与理论相符。
图像略有黑斑,可能原因有:a.衍射频谱图的缺陷传递给了反傅里叶变换图像,如渐晕效应和米字不完整使得反变换后部分像损失;b.反傅里叶透镜与傅里叶透镜没有准确相距2f或入射傅里叶透镜的光束不平行,影响了成像效果。
7、用白纸在两个透镜间来回移动,找到光斑最小的位置,即为4f系统的频谱面。
在该处插入频谱处理器,可得到一系列相应反傅里叶变换输出图如下表第二列。
高通滤波器为一组不透光的细线,低通滤波器为一组透光的细缝。
第三四列为matlab模拟的频谱处理后的输出图与频谱图。
分析:由表中图可知,高通滤波器滤去纵向的低频光,输出横向轮廓部分亮而中间和纵向轮廓部分暗的图像,线越宽滤去低频成分越多,横向轮廓越锐利;低通滤波器通过纵向低频光,输出横向边缘模糊而内部明亮纵向边缘清晰的图像,缝越窄滤去高频成分越多,横向轮廓越模糊。
事实上由于两种滤波器分别滤去了傅里叶频谱的高频部分和低频部分,因此大致可将两组滤波器看做是三对互补衍射屏。
对比实验图与理论图,可以说结果总体比较理想,基本做出了不同程度高低通滤波的效果。
但仍有一些光场分布与理论存在差距,尤其以窄缝低通滤波的成像为例,本该通过而显示出明亮的纵向低频部分也被滤去了许多。
这些不足可以总结为以下原因:a. 用白纸寻找共焦面较为粗略,频谱处理器很难准确放置在两个透镜的共焦面上,所以可能没有很好地达到目的的滤波效果;b. 两个透镜间距不是2f 或入射傅里叶透镜的光束不平行的情况下没有找到最佳元件放置点;c. 滤波器上的缝或线没有很好地处在频谱的中心,导致实际选频偏离目的选频。
总结:通过本实验,我们加深了对透镜相位调制原理和透镜性质及相关参量的理解,在老师指导下和自主尝试中感性认识了光场的傅里叶变换和反变换,以及滤波器在信息处理中的作用,掌握了傅里叶变换光学系统中的光路调节方法和准直系统的调节方法。
【思考题】1、透镜相位调试表达式的物理含义答:相位调制因子(,)L x y 的表达式可以单从几何光学简单推出来:00(,)[(,)](,)(1)(,)L x y k D D x y knD x y kD k n D x y ϕ=-+=+- (9)其中k 是某频率光波的波矢量,n 是透镜折射率,0D 是透镜中心厚度,(,)D x y 是透镜上各个点的厚度。
上式有很明显的物理含义,由于透镜的厚度是位置(x,y )的函数,使得通过透镜平面不同点的光经过的光程是不同的。
我们计算光线通过以0D 为厚度的圆柱体时通过的光程,这个光程分为两个部分:一部分是在透镜玻璃中的光程,即上式中的(,)nD x y ;另一部分则是光线在空气中的光程,即上式中的0(,)D D x y -(设空气折射率为1)。
这两个光程之和乘以波矢k 就是透镜各个点造成光波的相位延迟。
2、光信息处理的大概原理是什么为何用白光做光源却能得到彩色图像如何实验物像的反衬度反转答:阿贝在研究显微镜成像问题时,提出了一种不同于几何光学的新观点,他将物看成是不同空间频率信息的集合,相干成像过程分两步完成,第一步是入射光场经物平面发生夫琅禾费衍射,在透镜后焦面上形成一系列衍射斑;第二步是各衍射斑作为新的次波源发出球面次波,在波面上互相叠加,形成物体的像.将显微镜成像过看成上述两步成像过程,这称为阿贝成像原理。
它不仅用傅里叶变换阐述了显微镜成像的机理,更重要的是首次引入频谱的概念,启发人们用改造频谱的手段来改造信息。
根据阿贝成像原理,我们要对一个物体进行光信息处理,首先是要得到它的空间频谱图。
这一步可以利用透镜的傅立叶变换性质,构造一个或者多个透镜系统,然后在第一个透镜的物方焦平面上放置衍射屏(要处理的图像),在它的像方焦平面上会得到源图像频谱分布图。