高层建筑抗震结构设计
- 格式:doc
- 大小:26.50 KB
- 文档页数:7
高层建筑的抗震设计与结构分析高层建筑作为现代城市的标志性建筑,承载着人们的居住、工作和娱乐等活动。
然而,地震作为一种自然灾害,对高层建筑的稳定性和安全性提出了严峻的挑战。
因此,高层建筑的抗震设计与结构分析显得尤为重要。
一、高层建筑抗震设计的原则在进行高层建筑的抗震设计时,需满足以下原则:1.地震荷载计算:首先,需要根据建筑所处地区的地震烈度、地质条件以及建筑材料的特性来确定地震荷载的大小。
通过合理计算地震荷载,可以为建筑的结构稳定性提供参考依据。
2.结构形式选择:不同的结构形式具有不同的抗震能力。
常见的高层建筑结构形式包括框架结构、筒体结构、剪力墙结构等。
根据具体情况选择适合的结构形式,能够提高建筑的抗震性能。
3.材料选择:高层建筑中,混凝土、钢材等作为主要结构材料。
在抗震设计中,需要选择具有良好抗震性能的材料,如高强度混凝土和钢材等。
合理的材料选择对于提高建筑的抗震性能至关重要。
4.结构设防:通过采取一些特殊的结构措施,如加强柱底节点、设置耗能器等,可以增加建筑的抗震能力。
结构设防是抗震设计中的重要环节,对于确保建筑的安全性有着不可忽视的作用。
二、高层建筑结构分析的方法在高层建筑的结构分析中,常用的方法有:1.静力分析:静力分析是指根据结构受力平衡的原理,通过静力学的知识计算结构的内力和变形。
通过静力分析,可以获得结构在静力荷载下的响应,为结构的合理设计提供参考。
2.动力分析:动力分析是指通过模拟结构在地震作用下的动态响应,对结构的抗震性能进行评估。
常见的动力分析方法包括模态分析、时程分析等。
动力分析结果能够反映结构在地震加载下的位移、加速度和剪力等参数,对高层建筑的设计与改进提供指导。
3.数值模拟:数值模拟是通过计算机仿真手段对建筑结构进行分析。
利用有限元方法等数值方法,可以模拟结构在地震荷载下的响应,分析结构的强度、刚度等性能,并对结构进行优化设计。
三、高层建筑抗震设计的案例以某高层办公楼的抗震设计为例,该建筑采用的是钢筋混凝土框架结构。
高层建筑钢结构的抗震设计与抗震措施高层建筑的抗震设计与抗震措施高层建筑的抗震设计与抗震措施是保证建筑在地震发生时能够承受地震力并保持稳定的重要考虑因素。
随着现代建筑技术的发展和城市化进程的加快,高层建筑在城市中扮演着重要的角色。
因此,高层建筑的抗震设计对于保障人民生命财产的安全至关重要。
首先,高层建筑钢结构的抗震设计需要满足地震作用下的结构稳定。
抗震设计的目标是在保证建筑结构安全的前提下,尽可能减小地震对建筑造成的破坏。
此外,还需要考虑地震烈度、建筑所处的地震带、地基情况以及建筑的重要性等因素。
其次,高层建筑的抗震设计需要根据建筑结构的特点选择合适的抗震措施。
钢结构具有重量轻、刚度大、延性好等特点,使其成为高层建筑常用的结构材料。
在抗震设计中,可以采用以下措施:1. 设计合理的结构形式:高层建筑的结构形式应选择适合地震作用下的构造形式,如框架结构、剪力墙结构等。
这样能有效分散和吸收地震力,提高结构的抗震性能。
2. 控制建筑质量和刚度:合适的质量和刚度控制有助于提高建筑的整体稳定性。
在高层建筑的设计中,应根据抗震要求合理配置结构材料和加固措施,确保建筑具有足够的抗震能力。
3. 筒体设计:筒体是高层建筑的重要组成部分,其设计应考虑到地震作用下的变形和稳定性。
通过合理布置筒体内的横向抵抗构件和纵向加固措施,可以增强建筑的整体抗震能力。
4. 考虑地基条件:高层建筑的地基条件对其抗震性能有着重要影响。
建筑应根据地基承载力、地震波传递性能等因素进行综合考虑,采取相应的地基加固措施。
准确分析高层建筑的抗震需求,采取适当的抗震措施是确保建筑在地震中安全的关键。
国内外针对高层建筑抗震设计与抗震措施已经建立了一系列的规范和标准,如我国《抗震设计规范》等。
建筑师和工程师需要充分了解这些规范和标准,结合实际情况进行设计与工程实施。
此外,高层建筑抗震措施的有效性还需要在建筑的整个生命周期中得到保证。
定期检查和维护是确保高层建筑持久抗震能力的重要环节。
高层建筑结构抗震设计存在的问题及解决对策【摘要】高层建筑在抗震设计中存在诸多问题,如设计标准滞后、结构设计不合理、施工工艺不当、监理不严格等。
为提高抗震性能,需加强设计标准修订、优化结构设计、控制施工质量、严格监理、协调抗震与节能设计。
通过这些对策,能有效提升高层建筑的抗震能力,确保建筑安全稳定。
【关键词】高层建筑、结构、抗震设计、设计标准、抗震性能、施工工艺、材料选择、监理、质量控制、节能设计、对策、修订、更新、优化、施工质量、监理力度、协调、双赢。
1. 引言1.1 高层建筑结构抗震设计存在的问题及解决对策高层建筑作为城市的地标性建筑,其结构抗震设计至关重要。
在实际工程实践中,高层建筑结构抗震设计存在着诸多问题,需要采取相应的对策进行解决。
设计标准滞后,无法满足实际需求。
当前的抗震设计标准与高层建筑结构的复杂性和变化性不相适应,需要加强标准的修订和更新。
结构设计不合理,抗震性能不足。
一些高层建筑的结构设计存在缺陷,导致其在地震等自然灾害中易受损,需要优化结构设计,提高抗震性能。
施工工艺和材料选择不当也会影响结构抗震性能。
在施工过程中,需严格控制施工工艺和材料质量,确保符合抗震要求。
监理不到位、质量控制不严格也是问题之一,需要加强监理力度,确保施工质量。
抗震设计与节能设计之间存在矛盾,需要协调抗震设计与节能设计,实现双赢。
为了提高高层建筑结构的抗震性能,需要全面思考这些问题,并采取相应的对策,以确保高层建筑结构在面对各种自然灾害时能够安全稳固地屹立不倒。
2. 正文2.1 问题一:设计标准滞后,无法满足实际需求设计标准滞后是高层建筑结构抗震设计面临的主要问题之一。
由于抗震设计标准的滞后,很多高层建筑的结构设计并不能满足当前社会的实际需求,造成了抗震性能不足的情况。
设计标准的滞后意味着设计中所采用的抗震参数和计算方法可能已经过时,无法充分考虑到地震对建筑结构的影响。
随着地震工程领域的不断发展和新技术的涌现,原有的设计标准已经难以满足当前的抗震需求。
高层建筑的建筑物结构安全与抗震设计在对高层建筑的建筑物结构安全与抗震设计进行探讨之前,我们首先要了解高层建筑的定义。
根据国际标准,高层建筑是指地面高度超过35米,或者有超过9层的建筑物。
由于高层建筑所面临的风险较大,如火灾、地震等,因此其结构安全和抗震设计成为关键的工程要素。
1. 高层建筑的结构安全设计高层建筑的结构安全设计是保障建筑物在使用寿命内无脱层、无倾斜、无垮塌的基本前提。
安全设计主要包括以下几个方面:1.1 框架结构设计高层建筑常使用钢结构、钢筋混凝土结构或者混合结构,这些结构形式能够提供较好的抗震性能。
在设计时,需要考虑建筑物的受力分析、材料的强度和刚度等因素,确保结构的稳定性和安全性。
1.2 基础设计高层建筑的基础设计是承受建筑物自身重量以及外部荷载并将其传递到地基的重要环节。
基础应根据地质调查结果合理设计,采用深基础或者承台式基础,以确保建筑物的稳定性和安全性。
1.3 防火设计高层建筑所面临的火灾风险较大,因此防火设计在结构安全中起着重要作用。
需要采取各种措施,如设置消防门、消防通道和灭火系统等,以防止或延缓火灾的蔓延,保护建筑物结构的完整性。
2. 抗震设计在地震活跃区,高层建筑的抗震设计尤为重要。
抗震设计的目标是保障建筑物在地震作用下不发生局部或整体倾覆、倒塌的情况。
主要包括以下几个方面:2.1 地震设计参数在抗震设计中,需要根据地震地区的地质特点和历史地震数据,确定适当的地震设计参数。
这些参数包括地震烈度、设计地震加速度、地震波谱等,是进行结构抗震分析和设计的基础。
2.2 结构抗震设计高层建筑的结构抗震设计应满足抗震强度、刚度、稳定性和层间位移等要求。
采用合适的抗震措施,如使用剪力墙、加设防震支撑、增加结构刚性等,以提高建筑物的抗震能力。
2.3 防震设备在高层建筑中,可以安装防震设备,如减震器、阻尼器等,用于降低地震对建筑物的影响。
这些设备能够减少结构受力、减小位移,并提供更安全、舒适的使用环境。
高层建筑抗震设计原则在现代城市的天际线中,高层建筑如同一座座挺拔的巨人。
然而,这些巨人在面对地震这一自然力量时,需要具备强大的“韧性”和“抵抗力”。
高层建筑抗震设计至关重要,它关系到人们的生命财产安全,也关系到城市的可持续发展。
接下来,让我们一起探讨一下高层建筑抗震设计的原则。
一、场地选择场地选择是高层建筑抗震设计的首要环节。
一个合适的场地能够在很大程度上减轻地震对建筑物的影响。
首先,应避开地震活动断层、滑坡、崩塌、泥石流等地质灾害易发区。
这些区域在地震发生时,往往会加剧地面的震动和破坏程度。
其次,选择地势较为平坦、坚硬的场地。
这样的场地能够减少地震波的放大效应,使建筑物所受到的地震作用相对较小。
此外,还要考虑场地的土类型和覆盖层厚度。
松软的土层会放大地震波,增加建筑物的振动,而坚硬的土层则能起到一定的减震作用。
二、结构体系合理的结构体系是高层建筑抗震的核心。
常见的结构体系包括框架结构、剪力墙结构、框架剪力墙结构、筒体结构等。
在选择结构体系时,需要综合考虑建筑物的高度、使用功能、抗震要求和经济因素等。
框架结构具有布置灵活的优点,但抗震性能相对较弱,一般适用于较低的建筑。
剪力墙结构能够提供较大的抗侧刚度,适用于较高的建筑。
框架剪力墙结构则结合了框架和剪力墙的优点,具有较好的抗震性能。
筒体结构,如框筒、筒中筒等,适用于超高层建筑,能够有效地抵抗水平荷载。
在设计结构体系时,要确保结构的整体性和连续性。
构件之间的连接应牢固可靠,避免出现薄弱环节。
同时,要合理布置结构的抗侧力构件,使其能够共同工作,有效地抵抗地震作用。
例如,在剪力墙结构中,剪力墙应均匀布置,避免出现局部集中或缺失的情况。
三、抗震计算准确的抗震计算是高层建筑抗震设计的重要依据。
目前,常用的抗震计算方法包括反应谱法、时程分析法等。
反应谱法是一种基于统计分析的方法,能够较为简便地计算出结构在地震作用下的响应。
时程分析法则通过输入地震波,对结构进行动态模拟,能够更准确地反映结构在地震作用下的实际受力情况。
高层建筑抗震结构设计随着城市化进程的加速,高层建筑在城市中如雨后春笋般涌现。
然而,地震等自然灾害的威胁始终存在,这就使得高层建筑的抗震结构设计成为了至关重要的环节。
高层建筑由于其高度大、重量大、结构复杂等特点,在地震作用下更容易受到破坏。
因此,在设计过程中,必须充分考虑地震的影响,采取有效的抗震措施,以确保建筑物在地震中的安全性。
首先,合理的建筑选址是高层建筑抗震设计的基础。
应尽量避免在地震活动频繁、地质条件不稳定的区域建设高层建筑。
同时,要对建设场地进行详细的地质勘察,了解地层结构、岩土性质等,为后续的设计提供可靠的依据。
在结构体系的选择上,常见的有框架结构、剪力墙结构、框架剪力墙结构等。
框架结构具有布置灵活的优点,但抗震性能相对较弱;剪力墙结构的抗侧力能力强,但空间布置受到一定限制;框架剪力墙结构则结合了两者的优点,在高层建筑中应用较为广泛。
设计时需要根据建筑的功能要求、高度、地震烈度等因素综合考虑,选择最合适的结构体系。
抗震计算分析是设计过程中的关键环节。
通过建立结构的数学模型,输入地震波等参数,计算结构在地震作用下的内力和变形。
目前常用的计算方法有底部剪力法、振型分解反应谱法和时程分析法等。
底部剪力法适用于高度不太高、以剪切变形为主的结构;振型分解反应谱法能够考虑多振型的影响,适用于大多数高层建筑;时程分析法则可以更准确地模拟地震作用的全过程,但计算量较大,一般用于重要的或复杂的高层建筑。
在构件设计方面,要保证梁、柱、墙等主要构件具有足够的强度和延性。
强度是指构件抵抗外力的能力,延性则是指构件在破坏前能够产生较大变形而不丧失承载能力的性能。
为了提高构件的延性,可以采取增加箍筋、控制纵筋配筋率、采用高强度混凝土等措施。
此外,节点设计也是不容忽视的部分。
节点是结构中各构件的连接部位,其受力复杂,容易在地震中发生破坏。
因此,要保证节点的强度不低于构件的强度,同时要采取合理的构造措施,增强节点的抗震性能。
高层建筑结构抗震措施要求一、引言高层建筑在地震作用下的安全性是至关重要的。
为确保高层建筑的抗震性能,中国的高层建筑抗震设计规范(高规)对结构体系、结构布置、构造措施、减震隔震以及地震监测等方面提出了明确的要求。
以下是对这些要求的简述。
二、结构体系高规要求高层建筑的结构体系应具有明确的计算简图和合理的地震作用传递路径,并能有效防止结构发生连续性倒塌。
此外,应特别关注结构体系在地震作用下的整体稳定性和承载能力。
三、结构布置结构的平面和竖向布置应规则、均匀、对称,并应遵循以下原则:1.平面布置:应使结构的刚度中心和质量中心尽量重合,以减小地震作用下的扭转效应。
2.竖向布置:竖向抗侧力构件的截面尺寸和材料强度宜自下而上逐渐减小,避免抗侧力结构的侧向刚度和承载力在楼层中发生突变。
四、构造措施高规对高层建筑的构造措施提出以下要求:1.构件的承载力和延性应满足抗震要求,以保证结构在地震作用下的稳定性。
2.关键部位和重要构件的连接应采取加强措施,以提高其抗震能力。
3.结构应设置多道抗震防线,以降低地震对结构造成的损害。
五、减震隔震高规提倡采用减震和隔震技术,通过设置减震器和隔震支座等装置,减小地震对高层建筑的影响。
这些技术可以有效降低结构的地震反应,提高结构的抗震性能。
六、地震监测高层建筑应设置地震监测系统,实时监测地震动参数和结构的反应,为抗震分析和采取相应的减震措施提供依据。
同时,地震监测数据也可以用于评估和改进结构的抗震性能。
七、结论综上所述,高规对高层建筑结构的抗震措施提出了多方面的要求,包括结构体系、结构布置、构造措施、减震隔震和地震监测等方面。
这些要求的目的是提高高层建筑的抗震性能,确保其在地震作用下的安全性。
在实际的工程设计中,应严格遵守高规的要求,采取有效的抗震措施,为人们的生命财产安全提供保障。
高层建筑的抗震设计原理与技术随着城市化进程的加快,高层建筑在现代城市中得到广泛应用。
然而,高层建筑由于其高度和体量的特殊性,地震对其安全性构成了较大的威胁。
因此,高层建筑的抗震设计成为了至关重要的一环。
本文将介绍高层建筑的抗震设计原理和常用的抗震技术,以期为相关领域的人员提供参考。
一、抗震设计原理1.结构强度与刚度:高层建筑的结构必须具备足够的强度和刚度,以承受地震力引起的振动。
在设计过程中,需要根据建筑的高度和使用功能来确定结构的强度和刚度要求。
2.地基条件评估:地基是高层建筑抗震设计的基础,其稳定性和承载力直接影响建筑的抗震性能。
在设计中,需要进行详细的地质勘探和地震灾害评估,以确定地基的条件和选择合适的抗震措施。
3.减震措施:为了降低地震对高层建筑的影响,减震措施被广泛应用。
常见的减震措施包括负摆控制、摩擦阻尼器、液体阻尼器等。
这些措施能够有效地吸收和分散地震能量,减少建筑结构的震动反应。
二、常用抗震技术1.钢结构:钢结构是一种常见的高层建筑抗震技术。
相比传统的混凝土结构,钢结构具有较高的强度和韧性,能够更好地抵抗地震力的作用。
此外,钢结构可以采用更轻的构件,减少建筑的自重,从而降低地震荷载。
2.混凝土剪力墙: 剪力墙是一种传统的高层建筑抗震技术。
通过在建筑的主体结构中设置混凝土墙体,起到增加结构刚度和强度的作用,从而提高抗震性能。
在设计中,需要根据建筑的布置和使用功能来确定剪力墙的位置和尺寸。
3.基础隔震技术:基础隔震技术将建筑与地面分离,通过设置隔震层来减少地震荷载传递到建筑上。
常见的基础隔震技术包括弹簧隔震、橡胶隔震和液体隔震等。
4.消能装置:消能装置通过吸收地震震动的能量,减少地震对建筑的影响。
常用的消能装置有液体阻尼器、摩擦阻尼器和形状记忆合金等。
5.桥梁技术应用于高层建筑:将桥梁技术应用于高层建筑抗震设计中是一种有效的方式。
桥梁结构具有较强的抗震性能,可以借鉴其设计原理和技术,提高高层建筑的抗震能力。
高层建筑抗震结构设计随着城市的发展和人口的增长,高层建筑如雨后春笋般拔地而起。
然而,地震作为一种不可预测的自然灾害,对高层建筑的安全构成了严重威胁。
因此,高层建筑的抗震结构设计至关重要,它关系到人们的生命财产安全以及城市的可持续发展。
抗震结构设计的重要性不言而喻。
地震发生时,地面会产生强烈的震动,如果高层建筑的结构设计不合理,就可能出现倒塌、倾斜等严重后果,给人们带来巨大的灾难。
所以,在进行高层建筑设计时,必须充分考虑地震的影响,确保建筑在地震作用下能够保持稳定,保障居住者的生命安全。
在进行高层建筑抗震结构设计之前,需要对地震的特性有深入的了解。
地震波主要包括纵波、横波和面波,它们具有不同的传播速度和振动特点。
地震的强度通常用震级和烈度来表示,震级反映地震释放的能量大小,而烈度则表示地震对地面及建筑物的破坏程度。
此外,地震的发生还具有不确定性和随机性,这给抗震设计带来了很大的挑战。
高层建筑的抗震结构设计需要遵循一定的原则。
首先是整体性原则,即建筑结构应作为一个整体来抵抗地震作用,各个部分之间要协调工作,共同承受地震力。
其次是规则性原则,建筑的平面和立面布置应尽量规则、对称,避免出现过大的凹凸和不规则形状,以减少地震作用下的扭转效应。
再者是多道防线原则,通过设置多重抗震防线,如框架剪力墙结构中的框架和剪力墙,当第一道防线破坏后,后续防线仍能发挥作用,保证结构的安全。
在具体的设计中,结构选型是关键的一步。
常见的高层建筑结构形式包括框架结构、剪力墙结构、框架剪力墙结构、筒体结构等。
框架结构具有布置灵活的优点,但抗震性能相对较弱;剪力墙结构的抗侧刚度大,抗震性能较好,但空间布置不够灵活;框架剪力墙结构则结合了两者的优点,既能提供较大的空间,又具有较好的抗震性能;筒体结构适用于更高的建筑,其整体性和抗侧力性能都非常出色。
设计师需要根据建筑的高度、使用功能、场地条件等因素,综合考虑选择合适的结构形式。
除了结构选型,构件的设计也是抗震结构设计的重要内容。
多高层建筑钢结构抗震设计在当今的建筑领域,多高层建筑的钢结构设计中,抗震性能是至关重要的考量因素。
地震作为一种不可预测且具有巨大破坏力的自然灾害,对建筑物的安全构成了严重威胁。
因此,为了保障人们的生命财产安全,确保多高层建筑在地震作用下能够保持结构的稳定性和完整性,合理的抗震设计显得尤为关键。
钢结构具有强度高、重量轻、施工速度快等优点,使其在多高层建筑中得到了广泛的应用。
然而,在地震作用下,钢结构也面临着一系列的挑战。
例如,钢结构的柔性较大,容易产生较大的变形;节点连接的可靠性对结构的整体性能影响显著;以及钢材在反复荷载作用下的疲劳问题等。
在进行多高层建筑钢结构抗震设计时,首先要明确设计的基本要求和目标。
其核心目标是“小震不坏,中震可修,大震不倒”。
也就是说,在较小的地震作用下,建筑物应基本保持完好,不影响正常使用;在中等强度的地震作用下,建筑物可能会出现一定程度的损坏,但经过修复后仍可继续使用;在强烈地震作用下,建筑物虽然会遭受严重破坏,但不应发生整体倒塌,以保障人员的生命安全。
为了实现这些目标,需要对地震作用进行准确的分析和计算。
目前,常用的地震分析方法包括反应谱法、时程分析法等。
反应谱法是一种基于大量地震记录统计分析得到的设计方法,具有计算简单、结果较为可靠的优点,适用于大多数常规结构的设计。
时程分析法则通过直接输入地震波,对结构在地震过程中的动力响应进行模拟,可以更准确地反映结构的非线性行为,但计算量较大,通常用于复杂结构或重要建筑的设计。
结构体系的选择对于抗震性能有着决定性的影响。
常见的多高层建筑钢结构体系包括框架结构、框架支撑结构、筒体结构等。
框架结构具有布置灵活、空间利用率高的优点,但抗侧刚度相对较小,适用于层数较低、地震烈度较小的地区。
框架支撑结构通过在框架中设置支撑,有效地提高了结构的抗侧刚度,适用于中高层建筑。
筒体结构则具有极好的抗侧性能,适用于超高层建筑。
在构件设计方面,要确保钢材的强度和延性满足要求。
高层建筑抗震结构设计浅析
摘要:本文作者分析了我国钢筋混凝土高层建筑抗震设计存在的主要问题,并提出了相应的设计对策。
关键词:高层建筑;抗震;结构设计;浅析
中图分类号:tu9文献标识码:a文章编号:2095-2104(2012)结构工程师按抗震设计要求进行结构分析与设计,其目标是希望使所设计的结构在强度、刚度、延性及耗能能力等方面达到最佳,从而经济地实现“小震不坏,中震可修,大震不倒”的目的。
但是,由于地震作用是一种随机性很强的循环、往复荷载,建筑物的地震破坏机理又十分复杂,存在着许多模糊和不确定因素,在结构内力分析方面,由于未能充分考虑结构的空间作用、非弹性性质、材料时效、阻尼变化等多种因素,计算方法还很不完善,单靠微观的数学力学计算还很难使建筑结构在遭遇地震时真正确保具有良好
的抗震能力。
钢筋混凝土高层建筑结构的抗震设计方法和技术是不断变化和进步的,我们在设计时要选用适合的抗震结构,注重建筑结构材料的选择,减小地震的作用力,增强地震的抵抗力,从而达到高层建筑抗震的目的。
1 钢筋混凝土高层建筑抗震设计存在的问题
1.1 工程地质勘查资料不全
在设计初期,设计人员应该及时掌握施工场地的地质情况,但是往往在设计过程中,却没有建筑场地岩土工程的勘察资料,就不
能很好的进行地基设计,给建筑物的结构带来安全隐患。
1.2 建筑材料不满足要求
对于材料而言,我们要明确这样一个道理:地震对结构作用的大小几乎与结构的质量成正比。
一般说在相同条件下,质量大,地震作用就大,震害程度就大,质量小,地震作用就小,震害就小。
所以,在建筑物的楼板、墙体、框架、隔断、围护墙以及屋面构件中,广泛采用多孔砖、硅酸盐砌块、陶粒混凝土、加气混凝土板、空心塑料板材等轻质材料,将能显著改善建筑物的抗震性能。
1.3 建筑物本身的建筑结构设计
建筑物如果平面布置复杂,致使质心与刚心不重合,在地震作用下产生扭转效应,加剧了地震的破坏作用,海城地震和唐山地震中有不少类似震害实例。
台湾 9.21 地震中,一栋钢筋混凝土结构由于结构平面不规则,在水平地震作用下,结构产生严重扭转效应而破坏倒塌,同时撞坏相邻建筑上部的阳台。
1.4 平面布局的刚度不均
抗震设计要求建筑的平、立面布置宜规正、对称,建筑的质量分布和刚度变化宜均匀,否则应考虑其不利影响。
但有的平面设计存在严重的不对称:一边进深大,一边进深小;一边设计大开间,一边为小房间;一边墙落地承重,一边又为柱承重。
平面形状采用 l、π形不规则平面等,造成了纵向刚度不均,而底层作为汽车库的住宅,一侧为进出车需要,取消全部外纵墙,另一侧不需进出车辆,因而墙直接落地,造成横向刚度不均。
这些都对抗震极
为不利。
1.5 防震缝设置不规范
对于高层建筑存在下列三种情况时,宜设防震缝:平面各项尺寸超过《钢筋混凝土高层建筑结构设计与施工规程》(jgj3-91)中表 2.2.3 的限值而无加强措施;房屋有较大错层;各部分结构的刚度或荷载相差悬殊而又未采取有效措施;但有的竟未采取任何抗震措施又未设防震缝。
1.6 结构抗震等级掌握不准
结构抗震等级有的提高了,而有的又降低了,主要是对场地土类型、结构类型、建筑高度、设防烈度等因素综合评定不准造成。
上述这些问题的存在,倘若不能得到改正,势必对建筑物的安全带来隐患。
上述这些问题的原因是多方面的,这就需要设计人员从设计的角度避免这些问题的出现,防止将这种问题带入施工中,应该高层建筑的抗震性能。
2 高层建筑抗震设计对策
2.1 结构规则性
建筑物尤其是高层建筑物设计应符合抗震概念设计要求,对建筑进行合理的布置,大量地震灾害表明,平立面简单且对称的结构类型建筑物在地震时具有较好的抗震性能,因为该种结构建筑容易估计出其地震反映,易于采取相应的抗震构造措施并且进行细部处理。
建筑结构的规则性是指建筑物在平立面外形尺寸、抗侧力构件布置、承载力分布等多方面因素要求。
要求建筑物平面对称均匀,
体型简单,结构刚度,质量沿建筑物竖向变化均匀,同时应保证建筑物有足够的扭转刚度以减小结构的扭转影响,并应尽量满足建筑物在竖向上重力荷载受力均匀,以尽量减小结构内应力和竖向构件间差异变形对建筑结构产生的不利影响。
2.2 层间位移限制
高层建筑都具有较大的高宽比,其在风力和地震作用下往往能够产生较大的层间位移,甚至会超过结构的位移限值。
而国内普遍认为该位移限值大小与结构材料、结构体系甚至装修标准以及侧向荷载等诸多因素有关,其中钢筋混凝土结构的位移限值(一般在1/400-1/700 范围内)则比钢结构(1/200-1/500 范围内)要求严格,风荷载作用下的限值比地震作用下的要求严格。
因此在进行高层建筑结构设计时应根据建筑物的实际情况以及所处的地理位置进行设计,既要满足其具有足够的刚度又要避免结构在水平荷载的作用下产生过大的位移而影响结构的承载力、稳定性以及正常使用功能等。
2.3 控制地震扭转效应
大量事实表明,当建筑结构的平面布置等不规则、不对称导致建筑层间水平荷载合力中心与建筑结构刚度中心不重合,在地震发生时建筑结构除发生水平位移外还易发生扭转性破坏甚至会导致结构整体倒塌,因此在结构设计中应充分重视扭转的影响。
由于建筑物在扭转作用下各片抗侧力结构的层间变形不同,其中距刚心较远的结构边缘的抗侧力单元的层间侧移最大;同时在上下刚度不均
匀变化的结构中,各层的刚度中心未能在同一轴线上,甚至会产生较大差距,以上情况都会使各层结构的偏心距和扭矩发生改变,因此,在设计过程中应对各层的扭转修正系数分别计算。
计算时应主要控制周期比、位移比两个重要指标,即当两个控制参数的计算结果不能满足要求时则必须对其进行调整。
当周期比不满足要求时可采用加大抗侧力构件截面或增加抗侧力构件数量的方法,并应将抗侧力构件尽可能的均匀布置在建筑四周,以减小刚度中心与质量中心的相对偏心,若调整构件刚度不能满足效果时则应调整抗侧力构件布置,以增大结构抗扭刚度。
2.4 减小地震能量输入
具有良好抗震性能的高层建筑结构要求结构的变形能力满足在预期的地震作用下的变形要求,因此在设计过程中除了控制构件的承载力外还应控制结构在地震作用下的层间位移极限值或位移延性比,然后根据构件变形与结构位移的关系来确定构件的变形值,同时根据截面达到的应变大小及分布来确定构件的构造要求,选择坚硬的场地土来建造高层建筑等方法来减小地震能量的输入。
2.5 减轻结构自重
对于同样的地基条件下进行建筑结构设计若减轻结构自重则可相应增加层数或减少地基处理造价,尤其是在软土基础上进行结构设计这一作用更为明显,同时由于地震效应
与建筑质量成正比,而高层建筑由于其高度大重心高等特点,在地震作用时其倾覆力矩也随之增加,因此,为了尽量减小其倾覆
力矩应对高层建筑物的填充墙及隔墙尽量采用轻质材料以减轻结构自重。
2.6 选择合理结构类型
高层建筑的竖向荷载主要使结构产生轴向力,水平荷载主要产生弯矩。
其竖向荷载方向不变,但随着建筑高度增加而增加,水平荷载则来自任何方向,因此竖向荷载引起建筑物的侧移量非常小,而水平荷载产生的侧移则与高度成四次方变化,即在高层结构中水平荷载的影响远远大于竖向荷载的影响,因此水平荷载应为设计的主要控制因素,在设计过程中应需在满足建筑功能及抗震性能的前提下选择切实可行的结构类型,使其具有良好的结构性能。
2.7 尽可能设置多道抗震防线
当发生强烈地震之后往往伴随多次余震,如只有一道防线,则在第一次破坏后再遭余震,将会因损伤积累导致倒塌。
抗震结构体系应有最大可能数量的内部、外部冗余度,有意识地建立一系列分布的屈服区,主要耗能构件应有较高的延性和适当刚度,以使结构能吸收和耗散大量的地震能量,提高结构抗震性能,避免大震时倒塌。
3 结束语
随着我国经济的快速发展,高层建筑也越来越多,在这种情况下必须做好抗震设计。
设计人员在高层建筑抗震设计中,都是按照抗震结构设计规范进行的,他们希望设计的结构能够达到强度、刚度、延性及耗能能力等方面达到最佳,为此从结构总体方案设计一
开始,就运用人们对建筑结构抗震己有的正确知识去处理好结构设计中遇到的诸如房屋体型、结构体系、刚度分布,构件延性等问题,从宏观原则上进行评价、鉴别、选择等处理,再辅以必要的计算和构造措施,从而消除建筑物抗震的薄弱环节,以达到合理抗震设计的目的。
参考文献:
[1]王海翠.我国高层建筑抗震结构设计初探[j].科技传
播,2011,9.
[2]郭霞飞.高层建筑结构抗震设计思想与工程实例分析 [j].四川建材,2010,3.。