高中物理--电磁感应
- 格式:ppt
- 大小:894.00 KB
- 文档页数:54
高中物理学–电磁感应1. 电磁感应的基本概念和原理1.1 电磁感应的定义和现象电磁感应是指当一个导体在磁场中运动或磁场的强度发生变化时,会在导体中产生感应电动势,从而引起电流的现象。
电磁感应的典型现象包括电磁感应生电、电磁感应产生磁力、电磁感应感应电磁波等。
1.2 法拉第电磁感应定律法拉第电磁感应定律是描述电磁感应现象的基本规律。
根据法拉第电磁感应定律,当一个导体穿过磁场或磁场的强度发生变化时,导体两端会产生感应电动势,其大小与磁场变化的速率成正比。
该定律可以用以下公式表示:ε = -dΦ/dt其中,ε表示感应电动势,Φ表示磁通量,t表示时间,dΦ/dt表示磁通量变化的速率。
1.3 楞次定律楞次定律是描述电磁感应现象中的产生电流的方向的规律。
根据楞次定律,当一个导体穿过磁场或磁场的强度发生变化时,所产生的感应电流的方向是这样的,使得这个电流所产生的磁场的方向与原磁场的方向相反,从而抵消原磁场的变化。
楞次定律可以用以下公式表示:ε = -dΦ/dt = Blv sinθ其中,ε表示感应电动势,Φ表示磁通量,t表示时间,B表示磁场的强度,l表示导体在磁场中的长度,v表示导体相对于磁场的运动速度,θ表示导体与磁场的夹角。
2. 电磁感应的应用2.1 发电机的工作原理发电机是利用电磁感应现象生成电能的设备。
发电机通过转动导线圈在磁场中产生感应电动势,通过感应电流的流动从而产生电能。
发电机的基本原理是根据法拉第电磁感应定律和楞次定律。
其中,转子上的导线圈通过旋转在磁场中切割磁力线,产生感应电动势,进而产生电流。
变压器是利用电磁感应现象改变交流电电压的设备。
变压器通过在一个线圈中通过变化的电流产生变化的磁场,从而在另一个线圈中感应出不同的电压。
基本上,变压器由两个线圈组成:一组用作输入线圈,另一组用作输出线圈。
输入线圈中的交流电产生变化的磁场,使得输出线圈中产生感应电动势,从而改变电压和电流。
电动机是将电能转化为机械能的装置,也是基于电磁感应原理的。
高中物理电磁感应全解析在高中物理的学习中,电磁感应这一板块是相当重要且具有一定难度的。
它不仅是高考的重点考点,更是我们理解现代科技中众多电磁现象的基础。
首先,咱们来聊聊电磁感应现象到底是什么。
简单来说,电磁感应就是当通过闭合回路的磁通量发生变化时,回路中就会产生感应电动势,如果回路是闭合的,还会产生感应电流。
这就好比是一个神奇的魔法,磁场的变化竟然能“催生”出电流来!那磁通量又是什么呢?磁通量可以理解为穿过某个面的磁感线条数。
磁通量的计算公式是Φ = BS(其中 B 是磁感应强度,S 是垂直于磁场方向的面积)。
当 B 发生变化、S 发生变化或者 B 和 S 的夹角发生变化时,磁通量就会改变,从而可能引发电磁感应。
接下来,咱们看看电磁感应的产生条件。
闭合回路中磁通量发生变化是产生电磁感应现象的必要条件。
这种变化可以由多种方式引起,比如磁场强弱的改变、闭合回路面积的改变、闭合回路在磁场中的位置或角度的改变等等。
再说说楞次定律。
楞次定律是判断感应电流方向的重要依据。
它指出:感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。
这听起来有点绕口,但其实可以这样理解:如果磁通量增加,感应电流产生的磁场就会“反抗”这种增加;如果磁通量减少,感应电流产生的磁场就会“弥补”这种减少。
就像是有一股神秘的力量在努力维持着某种平衡。
法拉第电磁感应定律则定量地描述了感应电动势的大小。
感应电动势的大小与磁通量的变化率成正比,即 E =nΔΦ/Δt(其中 n 是线圈匝数)。
这一定律让我们能够更精确地计算出感应电动势的数值。
电磁感应在实际生活中的应用那可是非常广泛的。
比如发电机,它就是利用电磁感应原理将机械能转化为电能。
当导体在磁场中做切割磁感线运动时,就会产生感应电动势,从而形成电流。
还有变压器,通过改变线圈的匝数来改变电压,也是基于电磁感应的原理。
在解题时,我们需要根据具体的情况选择合适的方法。
如果是判断感应电流的方向,那就首先考虑楞次定律;如果要计算感应电动势的大小,那就用法拉第电磁感应定律。
高中物理电磁感应导言:在高中物理学习中,电磁感应是一个重要的概念,它是描述电流、磁场和电磁波之间关系的基础知识。
本文将介绍电磁感应的概念、原理和应用,以及与之相关的实验和实际应用。
通过深入了解电磁感应,我们将更好地理解电磁现象在我们日常生活中的作用。
一、电磁感应概述电磁感应是指当导体在磁场中运动或者磁场发生变化时,产生的感应电动势和感应电流。
根据法拉第电磁感应定律,感应电动势的大小与导体的速度、磁场的强度和导体与磁场的相对运动有关。
二、电磁感应原理电磁感应的原理可以通过法拉第电磁感应定律和楞次定律来解释。
法拉第电磁感应定律指出,感应电动势的大小与闭合电路中导体所受到的磁通量变化率成正比。
楞次定律则说明,感应电流的方向总是使产生它的磁场的变化量减小。
三、电磁感应实验为了验证电磁感应原理,我们可以进行一些简单的实验。
例如,当将一个导体线圈放置在变化的磁场中时,通过插入或移出导体线圈的磁通量可以观察到感应电流的产生。
此外,我们还可以利用霍尔效应实验来测量电磁场的强度和方向,以及检测磁场中的电荷。
四、电磁感应应用电磁感应在日常生活中有许多实际应用。
例如,发电机利用电磁感应的原理将机械能转化为电能。
变压器利用电磁感应将电能从一个线圈传递到另一个线圈。
感应炉利用电磁感应的原理进行加热。
在交通工具中,感应制动器和感应速度计都是利用电磁感应来实现的。
五、电磁感应在技术领域的应用除了在日常生活中的应用,电磁感应还在许多技术领域中得到广泛应用。
例如,磁共振成像(MRI)利用电磁感应原理来观察人体内部结构。
无线电通信利用电磁感应技术来传输信息。
感应加热和感应焊接则利用电磁感应来进行加热和焊接工艺。
六、电磁感应的局限性和发展虽然电磁感应具有广泛的应用范围,但它也存在一些局限性。
例如,电磁感应的效果受限于磁场的强度和导体的运动速度。
此外,电磁感应还可能产生一些不利的副作用,如感应电磁场对电子设备的干扰。
随着技术的发展,人们对电磁感应的理解和应用也在不断深入和拓展。
高中物理——电磁感应一、电磁感应的基本概念1. 电磁感应的定义2. 法拉第电磁感应定律3. 电磁感应的应用练习题:1. 一根长20cm 的导线在磁感应强度为0.1T 的磁场中以60° 角度匀速转动,求导线在6s 内转过的角度。
答案:72°2. 一个长度为10cm,电阻为2Ω 的导线,以速率为3m/s 进入磁感应强度为0.5T 的磁场中,求产生的感应电动势。
答案:1.5V二、电磁感应定律的应用1. 变压器原理2. 感应电流和感应电动势3. 洛伦兹力和感应电动势练习题:1. 一个高压线圈和低压线圈的匝数比为4:1,高压线圈输入电压为200V,求低压线圈的输出电压。
答案:50V2. 一个直径为0.05m,线圈匝数为1000,转动速率为300转/min 的圆形电发生器,求其在磁感应强度为0.1T 的磁场中产生的感应电动势。
答案:47.1V3. 在磁感应强度为0.2T 的磁场中,有一根长度为0.3m,电阻为5Ω 的导线以速率为2m/s 进入磁场中,求导线所受的洛伦兹力和感应电动势。
答案:洛伦兹力为0.6N,感应电动势为1V三、动生电和静生电1. 动生电和动生电的原理2. 静生电和静生电的原理3. 静电感应和静电感应的原理练习题:1. 一根长30cm 的导线在磁感应强度为0.2T 的磁场中以90° 角度匀速转动,导线两端的电压为多少?答案:1.8V2. 在磁场中有一根长度为0.5m,电阻为10Ω 的导线,导线以速率为3m/s 进入磁场,求导线端的电压。
答案:3V3. 一块金属板放置于与水平面成30° 角度的非均匀电场中,电场强度为 3.0×10⁴N/C,板的长度为10cm,宽度为5cm,板两端的电势差为多少?答案:2.6V总结:电磁感应是高中物理中的重要知识点,涉及到电磁感应定律、变压器原理、感应电流和感应电动势、洛伦兹力和感应电动势、动生电和静生电、静电感应等多个方面。
高中物理电磁感应知识点总结
电磁感应现象:当一个变化的电流通过一个导体时,会在周围产生一个磁场,而当磁场发生变化时,又会在导体中产生电流,这种现象称为电磁感应。
简单来说,就是“电生磁,磁生电”。
产生电磁感应的条件:产生电磁感应的条件是“闭合电路的一部分导体在磁场中做切割磁感线运动”或者“穿过闭合电路的磁通量发生变化”。
换句话说,只要有闭合电路和磁通量的变化,就会产生感应电流。
楞次定律:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
这个定律描述了感应电流和原磁场之间的关系,是理解电磁感应现象的关键。
感应电动势和感应电流:在电磁感应现象中产生的电动势称为感应电动势,产生感应电动势的那部分导体相当于电源。
如果把这个导体闭合成一回路,感应电动势会驱使电子流动,形成感应电流。
电磁感应的应用:电磁感应原理被广泛应用于各种设备,如电动机、发电机、变压器、电磁铁、电磁炉、电磁阀等。
这些设备的工作原理都是基于电磁感应现象。
电磁感应的特性:电磁感应具有高灵敏度、低噪声、低漂移、低抗拒力等特性,这使得它在许多领域都有重要的应用。
总的来说,电磁感应是高中物理中的一个重要概念,它揭示了电和磁之间的相互关系,为我们的生活带来了许多便利。
理解和掌握电磁感应的原理和应用,对于学习物理和应对物理考试都非常重要。
电磁感应高二知识点归纳总结电磁感应是高中物理学中的重要内容之一,它是电与磁相互作用的基础原理。
在电磁感应这一领域里,我们需要了解许多关键知识点,下面我将对其进行归纳总结。
1. 法拉第电磁感应定律法拉第电磁感应定律是描述电磁感应现象的基本定律。
它的核心思想是当导线中的磁通量发生变化时,会在导线中产生感应电动势。
该定律可以用以下公式表示:ε = -ΔΦ/Δt其中,ε代表感应电动势,ΔΦ代表磁通量的变化量,Δt代表时间的变化量。
该定律告诉我们,当磁通量发生变化时,感应电动势的大小与变化率成正比。
2. 洛伦兹力洛伦兹力是在电磁感应中产生的一种力。
它的作用是使导体中的自由电荷沿着特定的方向运动,从而产生电流。
洛伦兹力可以用以下公式表示:F = qvBsinθ其中,F代表洛伦兹力的大小,q代表电荷的大小,v代表电荷的速度,B代表磁感应强度,θ代表磁场与速度之间的夹角。
洛伦兹力告诉我们,当电荷在磁场中运动时,会受到一个与速度和磁场方向相关的力。
3. 感应电动势的计算感应电动势的计算可以通过以下几种方式进行:a. 导体切割磁感线时产生感应电动势。
当导体以速度v切割磁感线时,感应电动势的大小可以通过以下公式计算:ε = Blv其中,B代表磁感应强度,l代表磁感线与导体切割的长度,v 代表切割速度。
b. 导体在均匀磁场中运动时产生感应电动势。
当导体以速度v 垂直于均匀磁场B运动时,感应电动势的大小可以通过以下公式计算:ε = Blv其中,B代表磁感应强度,l代表导体在磁场中移动的长度,v 代表导体运动的速度。
c. 导体在非均匀磁场中运动时产生感应电动势。
当导体在非均匀磁场中运动时,我们可以通过积分的方法计算感应电动势。
4. 麦克斯韦-安培定律麦克斯韦-安培定律是描述磁场产生的定律。
该定律指出,电流在导线周围产生的磁场的强度与电流大小成正比,并与导线周围形成的闭合环路上的电流总和成正比。
麦克斯韦-安培定律可以通过以下公式表示:∮B·dl = μ0I其中,∮B·dl代表磁场强度B沿闭合环路的环路积分,μ0代表真空中的磁导率,I代表通过闭合环路的电流。
高中物理电磁感应知识点电磁感应是物理学中的一个重要概念,它揭示了电流和磁场之间的相互作用关系。
在高中物理学习中,电磁感应是一个基础而又关键的知识点。
本文将全面介绍高中物理电磁感应的相关内容,包括法拉第电磁感应定律、电磁感应中的现象和应用。
一、法拉第电磁感应定律法拉第电磁感应定律是电磁感应的核心定律。
它由英国物理学家迈克尔·法拉第于1831年提出,描述了磁场变化引起感应电动势的现象。
法拉第电磁感应定律可以用公式表示为:ε = - N dΦ/dt其中,ε表示感应电动势,N表示线圈匝数,Φ表示穿过线圈的磁通量,t表示时间,dΦ/dt表示磁通量的变化率。
根据法拉第电磁感应定律,当磁通量发生变化时,在线圈两端会产生感应电动势。
二、电磁感应中的现象电磁感应不仅仅是一个理论概念,它还对我们的日常生活中的很多现象具有重要的解释作用。
下面我们将介绍几个与电磁感应相关的现象:1. 电磁感应产生的感应电动势可以驱动电流。
当一个导体处于磁场中,并且磁场的磁感应强度发生变化时,导体两端将产生感应电动势,从而驱动电流的产生。
2. 线圈中的电流会产生磁场。
根据安培环路定理,电流在线圈中会产生一个与磁感应方向相关的磁场,这种现象称为电磁感应的互感现象。
3. 动生电动势和恒定磁场的运动。
当一个导体在磁场中做匀速直线运动时,如果导体与磁场垂直且运动方向与磁力线平行,导体两端将产生动生电动势。
三、电磁感应的应用电磁感应不仅仅是物理学的一个理论概念,它还具有重要的实际应用价值。
下面我们将介绍一些电磁感应的应用:1. 发电机。
发电机是利用电磁感应原理将机械能转化为电能的设备。
通过机械转子与磁场之间的相对运动,产生感应电动势,从而在外部电路中产生电流。
2. 电能转换。
电磁感应定律还可以用于电能转换。
例如,变压器利用电磁感应原理将交流电的电压调高或调低。
3. 感应电磁炉。
感应电磁炉也是一种利用电磁感应原理的家用电器。
它通过感应线圈产生一个交变磁场,从而将电能转化为热能,使食物迅速加热。
第11讲 电磁感应 命题规律 1.命题角度:(1)楞次定律与法拉第电磁感应定律的应用;(2)电磁感应中的图象问题;(3)电磁感应中的动力学与能量问题.2.常用方法:排除法、函数法.3.常考题型:选择题、计算题.考点一 楞次定律与法拉第电磁感应定律的应用1.感应电流方向的判断(1)楞次定律:线圈面积不变,磁感应强度发生变化的情形,往往用楞次定律.(2)右手定则:导体棒切割磁感线的情形往往用右手定则.2.楞次定律中“阻碍”的主要表现形式(1)阻碍原磁通量的变化——“增反减同”;(2)阻碍物体间的相对运动——“来拒去留”;(3)使线圈面积有扩大或缩小的趋势——一般情况下为“增缩减扩”;(4)阻碍原电流的变化(自感现象)——一般情况下为“增反减同”.3.求感应电动势的方法(1)法拉第电磁感应定律:E =n ΔΦΔt ⎩⎨⎧ S 不变时,E =nS ΔB Δt B 不变时,E =nB ΔS Δt(2)导体棒垂直切割磁感线:E =Bl v .(3)导体棒以一端为圆心在垂直匀强磁场的平面内匀速转动:E =12Bl 2ω. (4)线圈绕与磁场垂直的轴匀速转动(从线圈位于中性面开始计时):e =nBSωsin ωt .4.通过回路截面的电荷量q =I Δt =n ΔΦR 总Δt Δt =n ΔΦR 总.q 仅与n 、ΔΦ和回路总电阻R 总有关,与时间长短无关,与Φ是否均匀变化无关.例1 (多选)(2022·广东卷·10)如图所示,水平地面(Oxy 平面)下有一根平行于y 轴且通有恒定电流I 的长直导线.P 、M 和N 为地面上的三点,P 点位于导线正上方,MN 平行于y 轴,PN 平行于x 轴.一闭合的圆形金属线圈,圆心在P 点,可沿不同方向以相同的速率做匀速直线运动,运动过程中线圈平面始终与地面平行.下列说法正确的有( )A .N 点与M 点的磁感应强度大小相等,方向相同B .线圈沿PN 方向运动时,穿过线圈的磁通量不变C .线圈从P 点开始竖直向上运动时,线圈中无感应电流D .线圈从P 到M 过程的感应电动势与从P 到N 过程的感应电动势相等答案 AC解析 依题意,M 、N 两点连线与长直导线平行,两点与长直导线的距离相等,根据右手螺旋定则可知,通电长直导线在M 、N 两点产生的磁感应强度大小相等、方向相同,故A 正确;根据右手螺旋定则,线圈在P 点时,穿进线圈中的磁感线与穿出线圈中的磁感线相等,磁通量为零,在向N 点平移过程中,穿进线圈中的磁感线与穿出线圈中的磁感线不再相等,穿过线圈的磁通量发生变化,故B 错误;根据右手螺旋定则,线圈从P 点竖直向上运动过程中,穿进线圈中的磁感线与穿出线圈中的磁感线始终相等,穿过线圈的磁通量始终为零,没有发生变化,线圈中无感应电流,故C 正确;线圈从P 点到M 点与从P 点到N 点,穿过线圈的磁通量变化量相同,依题意从P 点到M 点所用时间较从P 点到N 点的时间长,根据法拉第电磁感应定律,可知两次的感应电动势不相等,故D 错误.例2 (多选)(2021·辽宁卷·9)如图(a)所示,两根间距为L 、足够长的光滑平行金属导轨竖直放置并固定,顶端接有阻值为R 的电阻,垂直导轨平面存在变化规律如图(b)所示的匀强磁场,t =0时磁场方向垂直纸面向里.在t =0到t =2t 0的时间内,金属棒水平固定在距导轨顶端L 处;t =2t 0时,释放金属棒.整个过程中金属棒与导轨接触良好,导轨与金属棒的电阻不计,则( )A .在t =t 02时,金属棒受到安培力的大小为B 02L 3t 0RB .在t =t 0时,金属棒中电流的大小为B 0L 2t 0RC .在t =3t 02时,金属棒受到安培力的方向竖直向上 D .在t =3t 0时,金属棒中电流的方向向右答案 BC解析 由题图(b)可知在0~t 0时间段内闭合回路产生的感应电动势为E =ΔΦΔt =B 0L 2t 0,根据闭合电路欧姆定律有,此时间段内的电流为I =E R =B 0L 2Rt 0,在t 02时磁感应强度大小为B 02,此时安培力大小为F =B 02IL =B 02L 32Rt 0,故A 错误,B 正确;由题图(b)可知,在t =3t 02时,磁场方向垂直纸面向外并逐渐增大,根据楞次定律可知产生顺时针方向的电流,再由左手定则可知金属棒受到的安培力方向竖直向上,故C 正确;由题图(b)可知,在t =3t 0时,磁场方向垂直纸面向外,金属棒向下掉的过程中穿过回路的磁通量增加,根据楞次定律可知金属棒中的感应电流方向向左,故D 错误.考点二 电磁感应中的图象问题1.电磁感应中常见的图象常见的有磁感应强度、磁通量、感应电动势、感应电流、速度、安培力等随时间或位移的变化图象.2.解答此类问题的两个常用方法(1)排除法:定性分析电磁感应过程中某个物理量的变化情况,把握三个关注,快速排除错误的选项.这种方法能快速解决问题,但不一定对所有问题都适用.(2)函数关系法:根据题目所给的条件写出物理量之间的函数关系,再对图象作出判断,这种方法得到的结果准确、详细,但不够简捷.例3 (多选)(2022·河北卷·8)如图,两光滑导轨水平放置在竖直向下的匀强磁场中,一根导轨位于x 轴上,另一根由ab 、bc 、cd 三段直导轨组成,其中bc 段与x 轴平行,导轨左端接入一电阻R .导轨上一金属棒MN 沿x 轴正向以速度v 0保持匀速运动,t =0时刻通过坐标原点O ,金属棒始终与x 轴垂直.设运动过程中通过电阻的电流强度为i ,金属棒受到安培力的大小为F ,金属棒克服安培力做功的功率为P ,电阻两端的电压为U ,导轨与金属棒接触良好,忽略导轨与金属棒的电阻.下列图象可能正确的是( )答案 AC解析 在0~L v 0时间内,在某时刻金属棒切割磁感线的长度L =l 0+v 0t tan θ(θ为ab 与ad 的夹角),则根据E =BL v 0,可得I =BL v 0R =B v 0R(l 0+v 0t tan θ),可知回路电流均匀增加;安培力F =B 2L 2v 0R =B 2v 0R (l 0+v 0t tan θ)2,则F -t 关系为二次函数关系,但是不过原点;安培力做功的功率P =F v 0=B 2L 2v 02R =B 2v 02R (l 0+v 0t tan θ)2,则P -t 关系为二次函数关系,但是不过原点;电阻两端的电压等于金属棒产生的感应电动势,即U =E =BL v 0=B v 0(l 0+v 0t tan θ),即U -t 图象是不过原点的直线;根据以上分析,可排除B 、D 选项;在L v 0~2L v 0时间内,金属棒切割磁感线的长度不变,感应电动势E 不变,感应电流I 不变,安培力F 大小不变,安培力的功率P 不变,电阻两端电压U 保持不变;同理可判断,在2L v 0~3L v 0时间内,金属棒切割磁感线长度逐渐减小,金属棒切割磁感线的感应电动势E 均匀减小,感应电流I 均匀减小,安培力F 大小按照二次函数关系减小,但是不能减小到零,与0~L v 0内是对称的关系,安培力的功率P 按照二次函数关系减小,但是不能减小到零,与0~L v 0内是对称的关系,电阻两端电压U 按线性均匀减小,综上所述选项A 、C 可能正确,B 、D 错误.例4 (多选)(2022·安徽省六校第二次联考)如图所示,水平面内有一足够长平行金属导轨,导轨光滑且电阻不计.匀强磁场与导轨平面垂直.阻值为R的导体棒垂直于导轨静止放置,且与导轨接触良好.开关S由1掷到2时开始计时,q、i、v和a分别表示电容器所带的电荷量、棒中的电流、棒的速度和加速度.下列图象可能正确的是()答案ACD解析开关S由1掷到2,电容器放电后会在电路中产生电流且此刻电流最大,导体棒通有电流后会受到安培力的作用产生加速度而加速运动,导体棒切割磁感线产生感应电动势,导体棒速度增大,则感应电动势E=Bl v增大,则实际电流减小,安培力F=BIL减小,加速度a=Fm即减小,因导轨光滑,所以在有电流通过棒的过程中,棒是一直做加速度减小的加速运动(变加速),故a-t图象即选项D是正确的;导体棒运动产生感应电动势会给电容器充电,当充电和放电达到一种平衡时,导体棒做匀速运动,因此最终电容器两端的电压能稳定在某个不为0的数值,即电容器的电荷量应稳定在某个不为0的数值(不会减少到0),电路中无电流,故B错误,A、C正确.考点三电磁感应中的动力学与能量问题1.电磁感应综合问题的解题思路2.求解焦耳热Q的三种方法(1)焦耳定律:Q=I2Rt,适用于电流恒定的情况;(2)功能关系:Q=W克安(W克安为克服安培力做的功);(3)能量转化:Q =ΔE (其他能的减少量).例5 (多选)(2022·全国甲卷·20)如图,两根相互平行的光滑长直金属导轨固定在水平绝缘桌面上,在导轨的左端接入电容为C 的电容器和阻值为R 的电阻.质量为m 、阻值也为R 的导体棒MN 静止于导轨上,与导轨垂直,且接触良好,导轨电阻忽略不计,整个系统处于方向竖直向下的匀强磁场中.开始时,电容器所带的电荷量为Q ,合上开关S 后( )A .通过导体棒MN 电流的最大值为Q RCB .导体棒MN 向右先加速、后匀速运动C .导体棒MN 速度最大时所受的安培力也最大D .电阻R 上产生的焦耳热大于导体棒MN 上产生的焦耳热答案 AD解析 开始时电容器两极板间的电压U =Q C ,合上开关瞬间,通过导体棒的电流I =U R =Q CR ,随着电容器放电,通过电阻、导体棒的电流不断减小,所以在开关闭合瞬间,导体棒所受安培力最大,此时速度为零,A 项正确,C 项错误;由于回路中有电阻与导体棒,最终电能完全转化为焦耳热,故导体棒最终必定静止,B 项错误;由于导体棒切割磁感线,产生感应电动势,所以通过导体棒的电流始终小于通过电阻的电流,由焦耳定律可知,电阻R 上产生的焦耳热大于导体棒MN 上产生的焦耳热,D 项正确.例6 (2022·山东济南市一模)如图所示,在水平虚线下方存在方向垂直纸面向外的匀强磁场,磁感应强度大小为B .磁场上方某高度处有一个正方形金属线框,线框质量为m ,电阻为R ,边长为L .某时刻将线框以初速度v 0水平抛出,线框进入磁场过程中速度不变,运动过程中线框始终竖直且底边保持水平.磁场区域足够大,忽略空气阻力,重力加速度为g ,求:(1)线框进入磁场时的速度v ;(2)线框进入磁场过程中产生的热量Q .答案 (1)v 02+m 2g 2R 2B 4L 4,速度方向与水平方向夹角的正切值为mgRB 2L 2v 0(2)mgL 解析 (1)当线框下边界刚进入磁场时,由于线框速度不变,对线框进行受力分析有BIL=mg由欧姆定律可得I=ER线框切割磁感线,由法拉第电磁感应定律可得E=BL v y由速度的合成与分解可得v=v02+v y2联立求解可得v=v02+m2g2R2B4L4设此时速度方向与水平面的夹角为θ,则tan θ=v yv0=mgR B2L2v0即此时速度方向与水平方向夹角的正切值为mgRB2L2v0.(2)线框进入磁场过程中速度不变,则从进入磁场开始到完全进入磁场,由能量守恒定律得Q=mgL.例7(2022·河南洛阳市模拟)如图甲所示,金属导轨MN和PQ平行,间距L=1 m,与水平面之间的夹角α=37°,匀强磁场磁感应强度大小B=2.0 T,方向垂直于导轨平面向上,MP 间接有阻值R=1.5 Ω的电阻,质量m=0.5 kg,接入电路中电阻r=0.5 Ω的金属杆ab垂直导轨放置,金属杆与导轨间的动摩擦因数为μ=0.2.现用恒力F沿导轨平面向上拉金属杆ab,使其由静止开始运动,当金属杆上滑的位移x=3.8 m时达到稳定状态,金属杆始终与导轨接触良好,对应过程的v-t图象如图乙所示.取g=10 m/s2,sin 37°=0.6,cos 37°=0.8,导轨足够长且电阻不计.求:(1)恒力F的大小及金属杆的速度为0.4 m/s时的加速度大小;(2)从金属杆开始运动到刚达到稳定状态,通过电阻R的电荷量;(3)从金属杆开始运动到刚达到稳定状态,金属杆上产生的焦耳热.答案(1)5.8 N 2.4 m/s2(2)3.8 C(3)1.837 5 J解析(1)当金属杆匀速运动时,由平衡条件得F=μmg cos 37°+mg sin 37°+F安由题图乙知v =1 m/s ,则F 安=BIL =B 2L 2v R +r =2 N 解得F =5.8 N当金属杆的速度为0.4 m/s 时F 安1=BI 1L =B 2L 2v 1R +r=0.8 N 由牛顿第二定律有F -μmg cos 37°-mg sin 37°-F 安1=ma解得a =2.4 m/s 2.(2)由q =I ·ΔtI =E R +rE =ΔΦΔt 得q =ΔΦR +r =BLx R +r=3.8 C. (3)从金属杆开始运动到刚到达稳定状态,由动能定理得(F -μmg cos 37°-mg sin 37°)x +W 安=12m v 2-0 又Q =|W 安|=7.35 J ,所以解得Q r =r R +rQ =1.837 5 J.1.(多选)(2022·河南郑州市二模)在甲、乙、丙图中,MN 、PQ 是固定在同一水平面内足够长的平行金属导轨.导体棒ab 垂直放在导轨上,导轨都处于垂直水平面向下的匀强磁场中,导体棒和导轨间的摩擦不计,导体棒、导轨和直流电源的电阻均可忽略,甲图中的电容器C 原来不带电.现给导体棒ab 一个向右的初速度v 0,对甲、乙、丙图中导体棒ab 在磁场中的运动状态描述正确的是( )A .甲图中,棒ab 最终做匀速运动B .乙图中,棒ab 做匀减速运动直到最终静止C .丙图中,棒ab 最终做匀速运动D .甲、乙、丙中,棒ab 最终都静止答案 AC解析 题图甲中,导体棒向右运动切割磁感线产生感应电流而使电容器充电,当电容器C 极板间电压与导体棒产生的感应电动势相等时,电路中没有电流,此时ab 棒不受安培力作用,向右做匀速运动,故A 正确;题图乙中,导体棒向右运动切割磁感线产生感应电流,通过电阻R 转化为内能,ab 棒速度减小,当ab 棒的动能全部转化为内能时,ab 棒静止,又由I =BL v R,F =BIL ,由于速度减小,则产生的感应电流减小,导体棒所受安培力减小,根据牛顿第二定律可知导体棒的加速度减小,所以题图乙中,棒ab 做加速度减小的减速运动直到最终静止,故B 错误;题图丙中,导体棒先受到向左的安培力作用向右做减速运动,速度减为零后在安培力作用下向左做加速运动,当导体棒产生的感应电动势与电源的电动势相等时,电路中没有电流,此时ab 棒向左做匀速运动,故C 正确;由以上分析可知,甲、乙、丙中,只有题图乙中棒ab 最终静止,故D 错误.2.(2022·山东泰安市高三期末)如图所示,间距为L 的平行光滑足够长的金属导轨固定倾斜放置,倾角θ=30°,虚线ab 、cd 垂直于导轨,在ab 、cd 间有垂直于导轨平面向上、磁感应强度大小为B 的匀强磁场.质量均为m 、阻值均为R 的金属棒PQ 、MN 并靠在一起垂直导轨放在导轨上.释放金属棒PQ ,当PQ 到达ab 瞬间,再释放金属棒MN ;PQ 进入磁场后做匀速运动,当PQ 到达cd 时,MN 刚好到达ab .不计导轨电阻,两金属棒与导轨始终接触良好,重力加速度为g .则MN 通过磁场过程中,PQ 上产生的焦耳热为( )A.2m 3g 2R 2B 4L4 B.m 3g 2R 2B 4L 4 C.m 3g 2R 24B 4L4 D.m 3g 2R 22B 4L4 答案 D解析 由题意知PQ 进入磁场后做匀速运动,则由平衡条件得安培力为F =mg sin θ,又因为F =BIL =B 2L 2v 2R ,解得金属棒速度为v =mgR B 2L 2,电流为I =mg 2BL ,因为金属棒从释放到刚进入磁场时做匀加速直线运动,由牛顿第二定律知mg sin θ=ma,所以加速时间为t=va,由题意知当PQ到达cd时,MN刚好到达ab,即金属棒穿过磁场的时间等于进入磁场前的加速时间,且MN在磁场中的运动情况和PQ一致,故MN通过磁场过程中,PQ上产生的焦耳热为Q焦耳=I2Rt,解得Q焦耳=m3g2R22B4L4,故选D.专题强化练[保分基础练]1.(2022·上海市二模)如图,某教室墙上有一朝南的钢窗,将钢窗右侧向外打开,以推窗人的视角来看,窗框中产生()A.顺时针电流,且有收缩趋势B.顺时针电流,且有扩张趋势C.逆时针电流,且有收缩趋势D.逆时针电流,且有扩张趋势答案 D解析磁场方向由南指向北,将钢窗右侧向外打开,则向北穿过窗户的磁通量减少,根据楞次定律,以推窗人的视角来看,感应电流为逆时针电流,同时根据“增缩减扩”可知,窗框有扩张趋势,故选D.2.(2022·广东肇庆市二模)如图所示,开口极小的金属环P、Q用不计电阻的导线相连组成闭合回路,金属环P内存在垂直圆环平面向里的匀强磁场,匀强磁场的磁感应强度随时间的变化率为k,若使金属环Q中产生逆时针方向逐渐增大的感应电流,则()A.k>0且k值保持恒定B.k>0且k值逐渐增大C.k<0且k值逐渐增大D.k<0且k值逐渐减小答案 B解析若使金属环Q中产生逆时针方向逐渐增大的感应电流,则金属环P中也有逆时针方向逐渐增大的感应电流,根据楞次定律和安培定则可知,金属环P中向里的磁感应强度增加,且增加得越来越快,即k>0且k值逐渐增大,故选B.3.(2022·陕西宝鸡市模拟)如图所示,两根电阻不计的平行光滑长直金属导轨水平放置,导体棒a和b垂直跨在导轨上且与导轨接触良好,导体棒a的电阻大于b的电阻,匀强磁场方向竖直向下.当导体棒b在大小为F2的水平拉力作用下匀速向右运动时,导体棒a在大小为F1的水平拉力作用下保持静止状态.若U1、U2分别表示导体棒a和b与导轨两个接触点间的电压,那么它们的大小关系为()A.F1=F2,U1> U2B.F1< F2,U1< U2C.F1 > F2,U1< U2D.F1=F2,U1=U2答案 D解析导体棒a、b与导轨构成了闭合回路,流过a、b的电流是相等的;a静止不动,b匀速运动,都处于平衡状态,即拉力等于安培力,所以F1=F2=BIL,导体棒b相当于电源,导体棒a相当于用电器,由于电路是闭合的,所以导体棒a两端的电压U1=IR a,导体棒b切割磁感线产生的电动势E=BL v b=I(R a+R b),所以其输出的路端电压U2=E-IR b=IR a=U1,故选D.4.(2022·广东省模拟)如图所示,水平面内光滑的平行长直金属导轨间距为L,左端接电阻R,导轨上静止放有一导体棒.正方形虚线框内有方向竖直向下、磁感应强度大小为B的匀强磁场,该磁场正以速度v匀速向右移动,则()A.电阻R两端的电压恒为BL vB .电阻R 中有从a 到b 的电流C .导体棒以速度v 向左运动D .导体棒也向右运动,只是速度比v 小 答案 D解析 根据楞次定律,磁场正以速度v 匀速向右移动,磁通量减小,则导体棒也向右运动,阻碍磁通量的减小,但由于要产生感应电流,棒的速度比v 小,C 错误,D 正确;由此可认为磁场不动,棒向左切割,感应电流方向从b 到a 流过R ,B 错误;产生感应电动势的大小看棒与磁场的相对速度,故电阻R 两端的电压不恒定且小于或等于BL v ,A 错误. 5.(2022·全国甲卷·16)三个用同样的细导线做成的刚性闭合线框,正方形线框的边长与圆线框的直径相等,圆线框的半径与正六边形线框的边长相等,如图所示.把它们放入磁感应强度随时间线性变化的同一匀强磁场中,线框所在平面均与磁场方向垂直,正方形、圆形和正六边形线框中感应电流的大小分别为I 1、I 2和I 3.则( )A .I 1<I 3<I 2B .I 1>I 3>I 2C .I 1=I 2>I 3D .I 1=I 2=I 3答案 C解析 设圆线框的半径为r ,则由题意可知正方形线框的边长为2r ,正六边形线框的边长为r ;所以圆线框的周长为C 2=2πr ,面积为S 2=πr 2,同理可知正方形线框的周长和面积分别为C 1=8r ,S 1=4r 2,正六边形线框的周长和面积分别为C 3=6r ,S 3=33r 22,三个线框材料粗细相同,根据电阻定律R =ρL S 横截面,可知三个线框电阻之比为R 1∶R 2∶R 3=C 1∶C 2∶C 3=8∶2π∶6,根据法拉第电磁感应定律有I =E R =ΔB Δt ·SR ,可得电流之比为I 1∶I 2∶I 3=2∶2∶3,即I 1=I 2>I 3,故选C.6.(2022·黑龙江哈师大附中高三期末)如图,一线圈匝数为n ,横截面积为S ,总电阻为r ,处于一个均匀增强的磁场中,磁感应强度随时间的变化率为k (k >0且为常量),磁场方向水平向右且与线圈平面垂直,电容器的电容为C ,两个电阻的阻值分别为r 和2r .下列说法正确的是( )A .电容器下极板带正电B .此线圈的热功率为(nkS )2rC .电容器所带电荷量为3nSkC5D .电容器所带电荷量为nSkC2答案 D解析 根据楞次定律可以判断通过电阻r 的电流方向为从左往右,所以电容器上极板带正电,故A 错误;根据法拉第电磁感应定律可得线圈产生的感应电动势为E =n ΔΦΔt =nS ΔBΔt =nkS ,根据焦耳定律可得此线圈的热功率为P =(E 2r )2r =(nkS )24r ,故B 错误;电容器两端电压等于r两端电压,电容器所带电荷量为Q =CU =C ·rE 2r =nSkC2,故C 错误,D 正确.7.(2022·江苏盐城市二模)如图所示,三条平行虚线L 1、L 2、L 3之间有宽度为L 的两个匀强磁场区域Ⅰ、Ⅱ,两区域内的磁感应强度大小相等、方向相反,正方形金属线框MNPQ 的质量为m 、边长为L ,开始时MN 边与边界L 1重合,对线框施加拉力F 使其以加速度a 匀加速通过磁场区,以顺时针方向电流为正方向,下列关于感应电流i 和拉力F 随时间变化的图象可能正确的是( )答案 B解析 当MN 边向右运动0~L 的过程中,用时t 1=2L a ,则E 1=BLat ,电流I 1=E 1R =BLa Rt ,方向为正方向;拉力F 1=ma +F 安1=ma +B 2L 2aR t ;当MN 边向右运动L ~2L 的过程中,用时t 2=4L a-2La=(2-1)2L a =(2-1)t 1,E 2=2BLat ,电流I 2=E 2R =2BLa Rt ,方向为负方向,拉力F 2=ma +F 安2=ma +4B 2L 2aR t ;当MN 边向右运动2L ~3L 的过程中,用时t 3=6La-4La=(3-2)2L a =(3-2)t 1,E 3=BLat ,电流I 3=E 3R =BLa Rt ,方向为正方向,拉力F 3=ma +F 安3=ma +B 2L 2aRt ,对比四个选项可知,只有B 正确.[争分提能练]8.(多选)(2021·广东卷·10)如图所示,水平放置足够长光滑金属导轨abc 和de ,ab 与de 平行,bc 是以O 为圆心的圆弧导轨,圆弧be 左侧和扇形Obc 内有方向如图的匀强磁场,金属杆OP 的O 端与e 点用导线相接,P 端与圆弧bc 接触良好,初始时,可滑动的金属杆MN 静止在平行导轨上,若杆OP 绕O 点在匀强磁场区内从b 到c 匀速转动时,回路中始终有电流,则此过程中,下列说法正确的有( )A .杆OP 产生的感应电动势恒定B .杆OP 受到的安培力不变C .杆MN 做匀加速直线运动D .杆MN 中的电流逐渐减小 答案 AD解析 杆OP 匀速转动切割磁感线产生的感应电动势为E =12Br 2ω,因为OP 匀速转动,所以杆OP 产生的感应电动势恒定,故A 正确;杆OP 转动过程中产生的感应电流由M 到N 通过杆MN ,由左手定则可知,杆MN 会向左运动,杆MN 运动会切割磁感线,产生电动势,感应电流方向与原来电流方向相反,使回路电流减小,杆MN 所受合力为安培力,电流减小,安培力会减小,加速度减小,故D 正确,B 、C 错误.9.(多选)(2021·全国甲卷·21)由相同材料的导线绕成边长相同的甲、乙两个正方形闭合线圈,两线圈的质量相等,但所用导线的横截面积不同,甲线圈的匝数是乙的2倍.现两线圈在竖直平面内从同一高度同时由静止开始下落,一段时间后进入一方向垂直于纸面的匀强磁场区域,磁场的上边界水平,如图所示.不计空气阻力,已知下落过程中线圈始终平行于纸面,上、下边保持水平.在线圈下边进入磁场后且上边进入磁场前,可能出现的是( )A .甲和乙都加速运动B .甲和乙都减速运动C .甲加速运动,乙减速运动D .甲减速运动,乙加速运动 答案 AB解析 设线圈下边到磁场上边界的高度为h ,线圈的边长为l ,则线圈下边刚进入磁场时,有v =2gh ,感应电动势为E =nBl v ,两线圈材料相同(设密度为ρ0),质量相等(设为m ), 则m =ρ0·4nl ·S ,设材料的电阻率为ρ,则线圈电阻 R =ρ4nl S =16n 2l 2ρρ0m感应电流为I =E R =mB v 16nlρρ0所受安培力为F =nBIl =mB 2v16ρρ0由牛顿第二定律有mg -F =ma 联立解得a =g -Fm =g -B 2v 16ρρ0加速度与线圈的匝数、横截面积无关,则甲和乙进入磁场时,具有相同的加速度. 当g >B 2v16ρρ0时,甲和乙都加速运动,当g <B 2v 16ρρ0时,甲和乙都减速运动,当g =B 2v16ρρ0时,甲和乙都匀速运动,故选A 、B.10.(2022·山东省第二次模拟)如图所示,“凹”字形硬质金属线框质量为m ,相邻各边互相垂直,且处于同一平面内,ab 、bc 边长均为2l ,gf 边长为l .匀强磁场区域的上下边界均水平,磁场方向垂直于线框所在平面.开始时,bc 边离磁场上边界的距离为l ,线框由静止释放,从bc 边进入磁场直到gf 边进入磁场前,线框做匀速运动.在gf 边离开磁场后,ah 、ed 边离开磁场之前,线框又做匀速运动.线框在下落过程中始终处于竖直平面内,且bc 、gf 边保持水平,重力加速度为g .(1)线框ah 、ed 边将要离开磁场时做匀速运动的速度大小是bc 边刚进入磁场时的几倍? (2)若磁场上下边界间的距离为H ,则线框完全穿过磁场过程中产生的热量为多少? 答案 (1)4 (2)mg (H -13l )解析 (1)设bc 边刚入磁场时速度为v 1,bc 边刚进入时, 有E 1=2Bl v 1,I 1=E 1R ,F 1=2BI 1l线框匀速运动,有F 1=mg 联立可得v 1=mgR4B 2l2设ah 、ed 边将离开磁场时速度为v 2,ah 、ed 边将离开磁场时,有E 2=Bl v 2,I 2=E 2R ,F 2=BI 2l ,线框匀速运动,有F 2=mg 联立可得v 2=mgRB 2l 2,综上所述v 2v 1=4即线框ah 、ed 边将要离开磁场时做匀速运动的速度大小是bc 边刚进入磁场时的4倍. (2)bc 边进入磁场前,根据动能定理, 有mgl =12m v 12穿过磁场过程中能量守恒,。
高中物理电磁感应公式总结高中物理电磁感应公式总结一、磁场、磁感应强度和磁感线1、磁场:磁体周围存在着一种看不见、摸不着的物质,称为磁场。
2、磁感应强度:描述磁场强弱的物理量,符号B,单位T(特)。
3、磁感线:用一根带箭头的曲线,描述磁场的分布,磁感线互相不交叉,内部从N极到S极,外部从S极到N极。
二、电磁感应现象和感应电流1、电磁感应现象:当导体在磁场中运动时,会在导体中产生感应电流的现象。
2、感应电流:由于电磁感应而在电路中产生的电流。
三、法拉第电磁感应定律1、法拉第电磁感应定律:电路中感应电动势的大小与穿过这一电路的磁通量的变化率成正比。
2、电动势:描述电源将其他形式的能量转化为电能的物理量,符号E,单位V。
四、电磁感应公式1、右手定则:右手平展,使大拇指与四指垂直,掌心朝向磁场方向,四指方向与导体运动方向一致,大拇指所指方向为导体中感应电流的方向。
2、楞次定律:在电磁感应现象中,感应电流的方向总是使得感应电流所产生的磁场与引起感应的磁场方向相反,以阻碍原磁场的变化。
3、动生电动势:因导体运动而产生的电动势称为动生电动势。
公式为e=BLv,其中B为磁感应强度,L为导体长度,v为导体运动速度。
4、感生电动势:因磁场变化而产生的电动势称为感生电动势。
公式为e=nΔΦ/Δt,其中n为导体每匝线圈数,ΔΦ为磁通量的变化量,Δt为时间变化量。
五、电磁感应的实际应用1、变压器:利用电磁感应原理将低压电源转化为高压电源,或反之。
2、发电机:利用电磁感应原理将机械能转化为电能。
3、电动机:利用电磁感应原理将电能转化为机械能。
总之,电磁感应是物理学中的一个重要概念,掌握相关公式及其应用对于理解和掌握物理学知识具有重要意义。