主变差动保护不平衡电流产生及措施
- 格式:docx
- 大小:39.32 KB
- 文档页数:3
不平衡电流产生的原因1励磁涌流的影响变压器在正常运行时,它的励磁电流只流过变压器的电源测,因此,通过电流互感器反映到差动回路中就不能被平衡。
在正常情况下,变压器励磁电流不过为变压器额定电流的2% ~3%;在外部故障时,由于电压降低,励磁电流也相应减少,其影响就更小。
在实际整定时可以不必考虑。
但是,在变压器空载投入和外部故障切除后电压恢复时,则可能产生数值很大的励磁涌流,其数值可达变压器额定电流的6~8倍。
励磁涌流中含有大量的非周期分量和高次谐波分量。
励磁涌流的大小与合闸瞬间外加电压的相位,铁芯中剩磁的大小和方向以及铁芯的特性有关。
若正好在电压最大值时合闸,则不会出现励磁涌流,而只有正常时的电流。
但对于三相变压器而言,由于三相电压相位不同,无论在任何瞬间合闸,至少有两相要出现程度不同的励磁涌流。
励磁涌流可分解成各次谐波,以二次谐波为主,同时在励磁涌流波形中还会出现间断角。
励磁涌流的波形如图2。
2绕组连接方式不同的影响变压器各侧绕组的连接方式不同,如双绕组变压器采用Y,d接线,三绕组变压器采用Y,y,d 接线时,各侧电流相位就不同。
这时,即使变压器各侧电流互感器二次电流大小能相互匹配,但不调整,相位差也会在差动回路中产生很大的不平衡电流。
3实际变比与计算变比不同的影响由于电流互感器选用的是定型产品,其变比都是标准化的,很难与通过计算得出的变比相吻合,这样就会在主变差动回路中产生不平衡电流。
4改变调压档位引起的不平衡电流及克服措施电力系统中带负荷调整变压器分接头是调节系统电压的重要手段。
改变调压档位实际上就是改变变压器的变比。
而差动保护已按照某一变比调整好,当分接头改换时,就会产生一个新的不平衡电流流入差动回路。
此时不可能再用重新选择平衡线圈匝数的方法来消除这个不平衡电流,这是因为变压器的分接头是经常在改变,而差动保护的电流回路在带电时是不可能进行操作的。
因此,对由此产生的不平衡电流,通常是根据具体情况提高保护动作的整定值加以克服。
浅议主变差动保护误动的成因及解决办法摘要:介绍了主变差动保护原理,从新建变电站、运行中变电站、改造变电站三个方面进行说明分析了主变差动保护误动的成因,并提出了相应的解决办法。
关键词:差动保护主变压器成因对策由于各种类型的差动继电器结构简单、动作可靠,所以广泛地应用在变压器差动保护上,但由于某些原因将会导致差动保护在外部故障时误动,在内部故障时拒动或灵敏度降低,给电力系统安全运行造成威胁。
分析主变差动保护误动成因,探讨解决措施,是保障电力系统安全运行的有力措施。
1.主变差动保护原理简介主变差动保护一般包括:差动速断保护、比率差动保护、二次谐波制动的比率差动保护,不管哪种保护功能的差动保护,其差动电流都是通过主变各侧电流的矢量和得到。
1.1比率差动的原理及动作特性(见图1)。
比率差动动作特性方程:式中:Iqd为差动电流起动定值;Id为差动电流动作值,I1、I2的矢量和;Izd为制动电流、K为比率制动系数;Ie为变压器的额定电流。
即:当IzdIe时,比率差动有较大的制动作用。
1.2差动速断的作用差动速断是在较严重的区内故障情况下,快速跳开变压器各侧断路器,切除故障点。
2.主变差动保护误动作原因分析下面按新建变电站、运行中变电站、改造变电站三个方面进行说明,这种分类方法并不是绝对相互区别,只是为了便于同行在分析问题时优先考虑现实问题。
2.1新建变电站主变差动误动作原因分析新建变电站的主变差动保护误动在主变差动保护误动中占了较大的比例,但这种情况的误动作绝大多数在主变投运带负荷试运行的72小时就会被发现。
根据现场经验大概可以总结为以下几个方面。
2.1.1定值的不合理造成主变差动保护误动作,具体包括以下几个方面。
(1)定值选择不正确造成误动作差动速断是取变压器的励磁涌流和最大运行方式下穿越性故障引起的不平衡电流两者中的较大者。
定值计算部门往往根据运行经验将差动速断定值取为5~6Ie。
这样,就会造成主变在空载合闸时出现误跳闸。
主变差动保护误动原因及对策作者:董春林来源:《数字化用户》2013年第26期【摘要】通过从设备选型、安装、调试、整定等方面对主变差动保护误动的原因进行分析,并提出了防止主变差动误动的对策。
【关键词】主变差动保护误动原因分析对策一、主变差动保护简述主变差动保护一般包括:差动速断保护、比率差动保护、二次(五次)谐波制动的比率差动保护。
不管哪种保护功能的差动保护,基本原理是反应被保护变压器各端流入和流出电流的差,在保护区内故障,差动回路中的电流值大于整定值,差动保护瞬时动作,而在保护区外故障,主变差动保护则不应动作。
(一)比率差动保护比率差动保护在变压器轻微故障时,例如匝间短路的圈数很少时,不带制动量,使保护在变压器轻微故障时具有较高的灵敏度。
而在较严重的区外故障时,有较大的制动量,提高保护的可靠性。
二次谐波制动主要区别是故障电流还是励磁涌流,因为主变空载投运时会产生比较大的励磁涌流,并伴随有二次谐波分量,为了使主变不误动,采用谐波制动原理。
通过判断二次谐波分量,是否达到设定值来确定是主变故障还是主变空载投运,从而决定比率差动保护是否动作。
二次谐波制动比一般取0.12~0.18。
对于有些大型的变压器,为了增加保护的可靠性,也有采用五次谐波的制动原理。
(二)差动速断保护差动速断是在较严重的区内故障情况下,快速跳开变压器各侧断路器,切除故障点。
差动速断的定值是按躲过变压器的励磁涌流,和最大运行方式下穿越性故障引起的不平衡电流,两者中的较大者。
定值一般取(4~14)Ie。
二、主变差动保护误动作的原因和分析主变差动保护误动作的原因,主要是因为设备选型、安装、调试、整定等不符合变压器实际运行需求造成的,下面就逐一列举、分析:(一)设备选型不合理造成主变差动保护误动作1.保护装置选型不满足运行需求。
保护原理落后,性能较差。
如大型变压器应采用谐波制动原理的而未采用,在变压器空载投入和故障恢复时励磁电流引起比率差动误动作。
变压器差动保护一、引言:电力变压器对电力系统的安全稳定运行至关重要。
一旦发生故障遭到损坏,将会造成很大的经济损失,因此,对继电保护的要求很高,差动保护是变压器主保护之一,动作迅速、灵敏而且可靠。
该保护也是我们继电保护调试人员在工作中经常接触到的设备。
下面将介绍一些有关于差动保护方面的一些知识。
二、差动保护的作用:差动保护是防止变压器内部故障的主保护,在35KV及以上变电站中普遍采用,主要用于保护双绕组或三绕组变压器绕组内部及其引出线上发生的各种相间短路故障,同时也可以用来保护变压器单相匝间短路故障。
差动保护的范围是构成变压器差动保护的电流互感器之间的电气设备以及连接这些设备的导线。
简单地讲,就是输入的两端TA之间的设备。
由于差动保护对保护区外故障不会动作,因此差动保护不需要与区外相邻元件保护在动作值和动作时限上相互配合,发生区内故障时,可以整定为瞬时动作。
差动保护原理简单、使用电气量单纯、保护范围明确、动作不需延时,所以用于变压器主保护。
三、差动保护的原理:差动保护是利用基尔霍夫电流定律中“在任意时刻,对电路中的任一节点,流经该节点的电流代数和恒为零”的原理工作的。
差动保护把被保护的变压器看成是一个节点,在变压器的各侧均装设电流互感器,把变压器各侧电流互感器副边按差接线法接线,即各侧电流互感器的同极性端都朝向母线侧,将同极性端子相连,并联接入差动继电器。
在继电器线圈中流过的电流是各侧电流互感器的副边电流之差,也就是说差动继电器是接在差动回路的,从理论上讲,正常情况下或外部故障时,流入变压器的电流和流出的电流(折算后的电流)相等,差回路中的电流为零。
当变压器正常运行或区外故障(流过穿越性电流)时,各侧电流互感器的副边电流流入保护装置,通过微机保护程序运行,各侧电流存在的相位差由软件自动进行校正,自动计算出各侧电流IH-(IM-IL)接近为零(IH为高压侧电流,IM为中压侧电流,IL为低压侧电流)则保护不动作。
主变差动保护动作处理步骤一、引言主变差动保护是电力系统中重要的保护之一,能够对电力系统中的故障进行快速定位和处理,保证电力系统的稳定运行。
在主变差动保护动作处理过程中,需要遵循一定的步骤和流程,以确保处理结果准确可靠。
本文将详细介绍主变差动保护动作处理步骤。
二、主变差动保护概述主变差动保护是指通过对主变压器两侧电流和电压进行比较,检测电力系统中发生故障时产生的不平衡信号,并对故障进行快速定位和处理。
主变差动保护通常由微机型数字式继电器实现,具有高精度、高可靠性等优点。
三、主变差动保护动作原因分析当电力系统中发生故障时,主变差动保护会产生相应的不平衡信号,并通过检测这些信号来判断故障类型和位置。
常见的导致主变差动保护动作的原因包括:1. 主变压器内部故障:例如短路、接地等;2. 主变压器两侧线路故障:例如短路、接地等;3. 主变压器两侧线路负载不平衡;4. 主变差动保护本身故障。
四、主变差动保护动作处理步骤当主变差动保护发生动作时,需要进行相应的处理步骤,以确保电力系统的稳定运行。
主要的处理步骤包括:1. 确认主变差动保护是否存在故障:首先需要确认主变差动保护是否存在故障,例如继电器本身损坏等情况。
可以通过检查继电器状态和参数设置等方式来判断。
2. 确认故障类型和位置:根据主变差动保护发出的报警信号,可以初步判断故障类型和位置。
例如,如果是主变压器内部故障,则可能是短路或接地等;如果是线路故障,则可能是短路或接地等。
3. 验证故障信息:在确定了故障类型和位置后,需要进一步验证故障信息。
可以通过现场检查、测试仪器等方式来确认。
4. 切除故障部分:根据验证结果,需要对发生故障的部分进行切除。
例如,在发生线路短路时,需要切除故障部分,以避免对电力系统造成更大的影响。
5. 恢复电力系统:在切除故障部分后,需要恢复电力系统的正常运行。
例如,可以通过切换备用线路、更换设备等方式来实现。
五、主变差动保护动作处理注意事项在进行主变差动保护动作处理时,需要注意以下几点:1. 确认故障类型和位置:在进行处理前,一定要准确确认故障类型和位置。
变压器纵差动保护不平衡电流产生的原因
变压器纵差动保护是一种重要的保护装置,用于检测和保护变压器主绕组的不平衡电流。
不平衡电流产生的原因有以下几个方面:
1. 负载不平衡:当变压器的负载不均匀分布在各相上时,会导致不平衡电流的产生。
例如,当负载过于集中在一相上,而其他相的负载较轻时,就会出现不平衡电流。
2. 接地故障:当变压器的绝缘系统存在接地故障时,会导致绕组发生短路,从而产生不平衡电流。
3. 相间短路:当变压器的两个相之间发生短路时,会导致电流在相间流动,引起不平衡电流的产生。
4. 绕组接触不良:变压器的绕组接触不良或电气连接故障,如接线头松动、腐蚀等,会导致不平衡电流的产生。
5. 电源故障:当供电系统出现相间电压偏差、频率偏差等问题时,也会导致变压器的不平衡电流。
为了防止不平衡电流引发变压器损坏或事故,我们使用变压器纵差动保护系统来监测和保护变压器的运行。
该保护系统通过检测主绕组上的电流差异来判断是否有不平衡电流产生,并在必要时切断电流。
总之,变压器纵差动保护不平衡电流产生的原因主要包括负载不平衡、接地故障、相间短路、绕组接触不良和电源故障等。
变压器差动保护问题分析及措施【摘要】在电力系统中电力变压器是十分重要和必不可少的设备。
它的故障将会给系统的正常供电和安全运行带来严重的后果,因此,变压器主保护:差动保护的正确动作至关重要。
为提高差动保护正确动作率,我们还要在工作中总结问题,分析问题,并提出改进措施,提高电网的安全运行。
【关键词】变压器;差动保护按差动原理构成的继电保护装置具有动作速度快,灵敏度高,不受外部短路影响,不受系统振荡影响等优点。
因而差动原理在构成继电保护装置上得到了广泛的应用。
当差动原理用于保护变压器时,需要解决在构成其他设备差动保护时,也会遇到一些特殊的问题,本文分析了一些问题及改进措施。
1.变压器纵差保护问题分析与措施变压器的高、低压侧是通过电磁联系的,故仅在电源的一侧存在励磁电流,它通过电流互感器构成差回路中不平衡电流的一部分。
在正常运行情况下,其值很小,小于变压器额定电流的3%。
当发生外部短路故障时,由于电源侧母线电压降低,励磁电流更小,因此,在这些情况下的不平衡电流对差动保护的影响一般可以不必考虑。
但在变压器空载投入电源或外部故障切除后电压恢复过程中,则会出现励磁涌流。
特别是在电压过零时刻合闸时,变压器铁芯中的磁通急剧增大,使铁芯瞬间饱和,这时出现数值很大的冲击励磁电流(可达5~10倍的额定电流),通常称为励磁涌流。
图1为一500kV变压器合闸时励磁涌流的电流波形图(由RCS-978所录,也就是说从电流互感器二次所见到的波形)。
由图可见,励磁涌流IE中含有大量的非周期分量与高次谐波,因此励磁涌流已不是正弦波,且可能在最初瞬间完全偏于时间轴的一侧。
励磁涌流的大小和衰减速度,与合闸瞬间外加电压的相位、铁芯中剩磁的大小和方向、电源容量、变压器的容量及铁芯材料等因素有关。
对于单相的双绕组变压器,在其它条件相同的情况下,当电压瞬时值过零时合闸,励磁电流最大;如果在电压瞬间值最大时合闸,则不会出现励磁涌流,而只有正常的励磁电流。
浅析变压器差动保护在运行过程中出现的不平衡电流摘要:变压器是电力系统的重要组成部分。
随着电力工业的迅速发展,对供电系统的稳定性有了更高的要求,因此,变压器的稳定运行也越来越重要,也对变压器的保护提出了更高的要求。
本文从变压器的保护入手,主要分析了变压器继电保护中的差动保护,并对运行中存在的不平衡电流进行了简要的分析。
关键词:变压器;继电保护;差动保护;不平衡电流引言:近几年,为适应国家在城乡电网改造的需求,发展了一批新型、优质的配电变压器,使配电网络的变压器装备更趋先进,供电更可靠,农村用电更趋低价。
近年发展的配电变压器的损耗值在不断下降,尤其空载损耗值下降更多,这主要归功于磁性材料导磁性能的改进,其次是导磁结构铁心型式的多样化。
如较薄高导磁硅钢片或非晶合金的应用,阶梯接缝全斜结构铁心、卷铁心(平面型、立体型)、退火工艺的应用等。
在降低损耗的同时也注意噪声水平的降低。
在干式配电变压器方面又将局部放电试验列为例行试验,用户又对局部放电量有要求,作为干式配电变压器运行可靠性的一项考核指标,这比国际电工委员会规定的现行要求要严格。
因此,在现有基础上预测我国各类配电变压器的发展趋势,推动配电变压器进一步发展应是一件比较重要工作。
变压器的继电保护是利用当变压器内外发生故障时,由于电流、电压、油温等随之发生变化,通过这些突然变化来发现、判断变压器故障性质和范围,继而作出相应的反应和处理。
若发现是差动保护动作,需对动作原因进行判断。
要准确判断出是变压器套管等原因造成的,还是变压器内部故障的原因。
继电保护动作断路器跳闸后,不要随即将掉牌信号复归,而应检查保护动作情况,并查明原因,在消除故障恢复送电前,方可将所有的掉牌信号全部复归。
1.1 差动保护差动保护是利用基尔霍夫电流定理工作的,当变压器正常工作或区外故障时,将其看作理想变压器,则流入变压器的电流和流出电流(折算后的电流)相等,差动继电器不动作。
当变压器内部故障时,两侧(或三侧)向故障点提供短路电流,差动保护感受到的二次电流和的正比于故障点电流,差动继电器动作。
主变压器差动保护动作原因分析及解决作者:赵军来源:《山东工业技术》2018年第05期摘要:变压器作为电力系统中的重要元件,在电网中的地位非常重要,因此需要给变压器安装可靠的保护装置,随着微机保护的不断应用,数字变压器保护在电力系统中的应用日益广泛,许多电厂将保护改在为微机综保,在保护器的改造过程中由于设计及施工厂家的失误造成变压器保护误动作的事故频繁发生。
由变压器差动保护引起的保护误动频频出现。
当变压器发生区外短路故障时,穿越性故障电流比正常运行时要大的多,尤其短路电流中含有较大的非周期分量,如果有一侧TA严重饱和或两侧TA饱和程度不一样,就可能产生较大的不平衡电流,容易引起差动保护误动[1]。
关键词:主变;差动保护;误动作DOI:10.16640/ki.37-1222/t.2018.05.1371 系统结构及事故概况某电厂变压器差动保护动作后主要概况。
7月25日16:40分电气车间主控室事故报警器报警,#1主变差动保护动作,#1发电机出口001开关、灭磁开关跳闸,#1发电机所有表计到零,厂用段后台机全部黑屏,紧接着#2发电机有功负荷到零,这时厂用系统已经全部失电,正在运行的#1、#2汽轮发电机停机,#1、#3锅炉灭火。
值长立即安排电气值班员检查厂用段6KV备用电源603开关状态,发现603开关没有自投,即刻抢合603成功,厂用段全部带电并恢复运行系统用电。
送电后,锅炉车间值班干部安排操作工启动#1锅炉风机,并逐步投入煤粉升压,同时组织#3锅炉点火。
17:30分,#1锅炉主汽压力升至3.0兆帕,17:40分#3锅炉并入蒸汽系统。
为确保蒸汽系统快速恢复,#1、#2汽轮机没有启动,在初步原因查明问题集中在#1主变,21:01分#2汽轮机开机并入系统发电。
2 事故原因分析热电厂全厂失电后,在与上级供电公司联系中得知,在#1主变发生差动保护动作的同时,电网与电炼线同一条母线电百线零序动作(A向瓷瓶击穿,保护动作,一次重合闸成功),电网出现大的波动。
目录前言 (2)第一章变压器差动保护原理及不平衡电流分析 (5)1.1变压器差动保护的基本原理 (5)1.2差动保护不平衡电流分析 (8)1.3差动保护不平衡电流的克服方法 (9)第二章励磁涌流分析及识别方法的研究 (12)2.1单相变压器励磁涌流分析 (12)2.2三相变压器励磁涌流分析 (14)2.3励磁涌流对变压器差动保护的影响 (16)2.4励磁涌流识别方法的分析与评价 (17)2.5本章小结 (23)第三章小波分析及其在电力系统中的应用 (23)3.1小波分析的基本概念 (24)3.2多分辨率分析 (26)3.3小波分析用于信号奇异性检测原理 (30)3.4小波分析在电力系统中的应用 (34)3.5本章小结 (37)结论 (38)参考文献 (39)致谢 (42)前言1.课题研究的背景变压器利用电磁感应原理把一种电压的交流电能转变成频率相同的另一种电压的交流电能,在电力系统中,需要用变压器将电压升级进行远距离传输,以降低线路损耗,当电能到达用户区后,再采用不同等级的变压器将电能降压使用,因此,变压器的正常运行对保持系统的稳定与安全有着特殊的意义。
变压器的损坏轻者意味着与之相连的输电线路无法正常工作,造成区域性停电;重者有可能使整个变电站断电,影响系统功率平衡,引起大面积停电。
基于变压器的重要性,必须为其装设性能良好,工作可靠的继电保护装置。
因此,变压器保护在继电保护领域中占有重要地位。
长期以来,变压器保护作为主设备保护,其正确动作率与线路保护相比较一直偏低,以2004年全国220KV及以上变压器保护的运行情况为例[1],其正确动作率仅为79.05%,而同期全国电网交流系统全部继电保护装置正确动作率为99.88%,220kV及以上系统继电保护装置平均正确动作率为99.21%,远远高于变压器保护的动作正确率。
文献[1][2]给出了近年来220KV及以上变压器保护运行情况。
变压器保护正确动作率偏低的原因是多方面的,如现场运行人员将TA极性接反,保护的整定有误,TA的Y/△接法不正确,运行维护不良等等,但另一方面,对变压器保护的原理了解不够,尤其对变压器保护中励磁涌流鉴别方法的认识不清,未充分理解各种涌流制动方法的优缺点,导致原理上的缺陷也是一个重要因素。
500kV变压器差动保护原理及不平衡电流产生原因浅析【摘要】变压器是电力系统中的关键核心设备。
其中500kV变压器发生故障时更是会对供电可靠性和系统安全运行带来严重影响,而变压器差动保护作为设备主保护,其能准确有效动作是保证电力变压器能够安全稳定运行的有效条件,而差动保护就是靠监测变压器内不平衡电流的具体情况来确认是否动作的,所以本文从实际实际运行经验出发,对500kV变压器的差动保护原理及不平衡电流产生的原因进行分析,为运行及保护人员在对500kV变压器进行运行维护中提供了理论依据。
【关键词】500kV变压器;差动保护;不平衡电流1、引言变压器是电力系统中重要的电气设备,其不仅具有电压、电流变换的功能,而且阻抗变换、隔离、稳压效果较为突出,有效地满足了电力供配电工作开展需要。
现阶段,除发电厂、变电站外,变压器在换流站及、城乡配电柱等场所具有广发应用。
变压器差动保护是在基尔霍夫电流原理上构建,在变压器的各侧安装电流互感器,比较各侧电流相位和数值大小,完成差动保护功能。
以500kV变压器为例,在正常运行时发生区外故障,两侧电流互感器二次电流其方向相同,大小相等,差动电流其数值为不平衡电流,当变压器内部发生故障时,两侧电流互感器二次电流其方向相反,差动电流很大,差动保护必须动作。
由此可见内部故障时容易实现变压器差动保护的可靠动作,而区外故障时,不平衡电流的大小则严重影响着变压差动保护的可靠性。
2、500kV变压器差动保护2.1 原理介绍变压器的差动保护是变压器的主保护,是按循环电流原理装设的。
主要用来保护双绕组或三绕组变压器绕组内部及其引出线上发生的各种相间短路故障,同时也可以用来保护变压器单相匝间短路故障。
在绕组变压器的两侧均装设电流互感器,其二次侧按循环电流法接线,即如果两侧电流互感器的同级性端都朝向母线侧,则将同级性端子相连,并在两接线之间串联接入电流继电器。
在继电器线圈中流过的电流是两侧电流互感器的二次电流差,也就是说差动继电器是接在差动回路的。
主变压器差动保护动作的原因及处理Modified by JACK on the afternoon of December 26, 2020主变压器差动保护动作的原因及处理一、变压器差动保护范围:变压器差动保护的保护范围,是变压器各侧的电流互感器之间的一次连接部分,主要反应以下故障:1、变压器引出线及内部绕组线圈的相间短路。
2、变压器绕组严重的匝间短路故障。
3、大电流接地系统中,线圈及引出线的接地故障。
4、变压器CT故障。
二、差动保护动作跳闸原因:1、主变压器及其套管引出线发生短路故障。
2、保护二次线发生故障。
3、电流互感器短路或开路。
4、主变压器内部故障。
5、保护装置误动三、主变压器差动保护动作跳闸处理的原则有以下几点:1、检查主变压器外部套管及引线有无故障痕迹和异常现象。
2、如经过第1项检查,未发现异常,但曾有直流不稳定接地隐患或带直流接地运行,则考虑是否有直流两点接地故障。
如果有,则应及时消除短路点,然后对变压器重新送电。
差动保护和瓦斯保护共同组成变压器的主保护。
差动保护作为变压器内部以及套管引出线相间短路的保护以及中性点直接接地系统侧的单相接地短路保护,同时对变压器内部绕组的匝间短路也能反应。
瓦斯保护能反应变压器内部的绕组相间短路、中性点直接地系统侧的单相接地短路、绕组匝间短路、铁芯或其它部件过热或漏油等各种故障。
差动保护对变压器内部铁芯过热或因绕组接触不良造成的过热无法反应,且当绕组匝间短路时短路匝数很少时,也可能反应不出。
而瓦斯保护虽然能反应变压器油箱内部的各种故障,但对于套管引出线的故障无法反应,因此,通过瓦斯保护与差动保护共同组成变压器的主保护。
四、变压器差动保护动作检查项目:1、记录保护动作情况、打印故障录波报告。
2、检查变压器套管有无损伤、有无闪络放电痕迹变压器本体有无因内部故障引起的其它异常现象。
3、差动保护范围内所有一次设备瓷质部分是否完好,有无闪络放电痕迹变压器及各侧刀闸、避雷器、瓷瓶有无接地短路现象,有无异物落在设备上。
主变差动保护不平衡电流产生及措施
主变的差动保护是主变的主保护之一。它的可靠性对主变安全运行和系统供电可靠性
起 着极为重要的作用。变压器的差动保护与其它差动保护一样,都是利用比较被保护原件各
端 电流的幅值和相位的原理构成。它在正常情况下,归算到同等级电压的电流差值极小,
保护 不动作,而被保护范围内发生故障时,差值很大,即能灵敏地动作。但由于变压器空
载合闸 时有很大的励磁涌流出现;变压器各侧绕组接线方式不同,各侧电流相应也不同;且
在电 源一侧有励磁电流存在等原因,因此,变压器的差动保护回路中,就会产生许多非故
障性质 的不平衡电流,直接影响该保护的动作性能。
1不平衡电流产生的原因及防范措施
1.1励磁涌流的影响及防范措施
变压器在正常运行时,它的励磁电流只流过变压器的电源测,因此,通过电流互感器
反 映到差动回路中就不能被平衡。在正常情况下,变压器励磁电流不过为变压器额定电流
的2%~3%;在外部故障时,由于电压降低,励磁电流也相应减少,其影响就更小。在实
际整定 时可以不必考虑。
但是,在变压器空载投入和外部故障切除后电压恢复时,则可能产生数值很大的励磁涌
流,其数值可达变压器额定电流的6~8倍。励磁涌流中含有大量的非周期分量和高次谐波
分量。励磁涌流的大小与合闸瞬间外加电压的相位,铁芯中剩磁的大小和方向以及铁芯的特
性 有关。若正好在电压最大值时合闸,则不会出现励磁涌流,而只有正常时的电流。但对
于三 相变压器而言,由于三相电压相位不同,无论在任何瞬间合闸,至少有两相要出现程
度不同 的励磁涌流。励磁涌流可分解成各次谐波,以二次谐波为主,同时在励磁涌流波形
中还会出 现间断角。励磁涌流的波形如图2。
为了防止变压器励磁涌流的影响,目前,在变压器差动保护回路中,通常采用下列措施:
1)采用速饱和的差动继电器;
2)涌电流是否具有间断角;
3)采用二次谐波制动。
1.2绕组连接方式不同的影响及纠正措施
变压器各侧绕组的连接方式不同,如双绕组变压器采用Y,d接线,三绕组变压器采用
Y,y,d接线时,各侧电流相位就不同。这时,即使变压器各侧电流互感器二次电流大小能相互
匹配,但 不调整,相位差也会在差动回路中产生很大的不平衡电流。
为了消除差动保护回路中各侧电流的相位差,通常采用相位补偿的方法。即将变压器
星 形接线侧电流互感器的二次绕组接成三角形,而将变压器三角形接线侧电流互感器的二
次绕 组接成星形,使电流互感器二次电流相位得到校正。
采用了相位补偿接线后,还应同时调整电流互感器的变比。在电流互整器二次绕线接 成
三角形时,流入差动回路的电流,是电流互感器二次绕组接成星形时电流的3倍。为了保
证 主变正常工作及外部故障时,差动回路中没有电流,就要求在变压器星形接线侧的电流
互整 器的变比增加倍。
1.3实际变比与计算变比不同的影响及消除措施
由于电流互感器选用的是定型产品,其变比都是标准化的,很难与通过计算得出的变
比 相吻合,这样就会在主变差动回路中产生不平衡电流。
以一台接线为y,d 11,额定容量为3 150 kVA,电压为115/10.5 kV的变压器为例
来说明。其计算结果如附表1所示。
从表1可以看出,由于电流互感器实际变比与计算变比不完全相同,在正常情况下,
满负荷 时差动回路中存在0.23 A的不平衡电流。当外部故障时,这种由于变比不吻合引起
的不 平衡电流会更大。
为了消除这种不平衡电流,通常采用速饱和铁芯的差动继电器,利用它的平衡线圈,通
过 磁势平衡的原理实现。具体的原理分析这里就不讲述了。
1.4改变调压档位引起的不平衡电流及克服措施
电力系统中带负荷调整变压器分接头是调节系统电压的重要手段。改变调压档位实
际 上就是改变变压器的变比。而差动保护已按照某一变比调整好,当分接头改换时,就会
产生 一个新的不平衡电流流入差动回路。此时不可能再用重新选择平衡线圈匝数的方法来
消除这 个不平衡电流,这是因为变压器的分接头是经常在改变,而差动保护的电流回路在
带电时是 不可能进行操作的。因此,对由此产生的不平衡电流,通常是根据具体情况提高
保护动作的 整定值加以克服。
1.5型号不同产生的不平衡电流及应对措施
由于变压器各侧电流互感器的型号不同,它们的饱和特性和励磁电流(归算到同一侧 )
就不相同,因此,在差动回路中所产生的不平衡电流也就较大。
为了削减这种不平衡电流,保证差动保护的正确工作,一方面应按10%误差曲线的要
求 选择各侧电流互感器,以保证在外部故障的情况,其二次电流的误差不超过10%,角度
误差 不大于7°;另一方面,在整定差动保护的动作电流时,引入一个同型系数Ktx ,以反 映
电流互感器型号的影响。当变压器各侧电流互感器同型号时,取Ktx=0.5,当变压 器各侧电
流互感器型号不同时,则取Ktx=1。这样,当变压器各侧电流互感器型号不 同时,实际上
是采用较大Ktx值来提高差动保护的动作电流,以躲开不平衡电流的影 响。
2结束语
综上所述,在主变差动保护中存在不平衡电流是不可避免的。只能根据不平衡电流产
生 原因采取相应的措施来尽量减少不平衡电流,同时通过差动保护动作电流的科学整定,
使变 压器差动保护既能躲开不平衡电流的影响,又保证其有足够的可靠性和灵敏性。