国内煤气化炉技术介绍资料 共24页
- 格式:ppt
- 大小:3.03 MB
- 文档页数:24
煤气化技术介绍一、起源煤气化技术是指把经过适当处理的煤送入反应器如气化炉内,在一定煤气化技术工艺流程的温度和压力下,通过氧化剂(空气或氧气和蒸气)以一定的流动方式(移动床、硫化床或携带床)转化成气体,得到粗制水煤汽,通过后续脱硫脱碳等工艺可以得到精制一氧化碳气。
1857年,德国的Siemens兄弟最早开发出用块煤生产煤气的炉子称为德士古气化炉。
这项工艺引进中国后在二十世纪九十年代由山东省鲁南化肥厂经过广大工程技术人员的努力,发明了自主知识产权的对置式四喷嘴气化炉,目前已经在国内得到广泛推广应用,特别是兖矿集团煤化工项目在多处使用次技术,取得了显著的经济效益。
还有经过其他许多开发商的开发,到1883年应用于生产氨气。
煤气化技术是清洁利用煤炭资源的重要途径和手段。
二、原理煤干馏过程,主要经历如下变化:当煤料的温度高于100℃时,煤中的水分蒸发出;温度升高到200℃以上时,煤中结合水释出;高达350℃以上时,粘结性煤开始软化,并进一步形成粘稠的胶质体(泥煤、褐煤等不发生此现象);至400~500℃大部分煤气和焦油析出,称一次热分解产物;在450~550℃,热分解继续进行,残留物逐渐变稠并固化形成半焦;高于550℃,半焦继续分解,析出余下的挥发物(主要成分是氢气),半焦失重同时进行收缩,形成裂纹;温度高于800℃,半焦体积缩小变硬形成多孔焦炭。
当干馏在室式干馏炉内进行时,一次热分解产物与赤热焦炭及高温炉壁相接触,发生二次热分解,形成二次热分解产物(焦炉煤气和其他炼焦化学产品)。
煤干馏的产物是煤炭、煤焦油和煤气。
煤干馏产物的产率和组成取决于原料煤质、炉结构和加工条件(主要是温度和时间)。
随着干馏终温的不同,煤干馏产品也不同。
低温干馏固体产物为结构疏松的黑色半焦,煤气产率低,焦油产率高;高温干馏固体产物则为结构致密的银灰色焦炭,煤气产率高而焦油产率低。
中温干馏产物的收率,则介于低温干馏和高温干馏之间。
煤干馏过程中生成的煤气主要成分为氢气和甲烷,可作为燃料或化工原料。
3. 煤在利序进3.1 点见袋式3.2 COS 前者中硫3.2.1煤气净化技由于从造气利用前应对其进行简单介绍煤气的除尘煤气的除尘见下表。
应用式除尘器与湿脱硫煤气中通常S 、RSH 、R-S 者脱硫剂为溶硫含量可以达1 湿法脱硫按溶液的吸技术气炉内出来的其进行净化。
绍。
尘就是从煤气较多的是旋风湿法洗涤除尘常含有数量不-R’、噻吩等有溶液,可以将达到ppm 级别吸收和再生性煤气化煤气除了含有煤气的净化方气中除去固体颗风除尘器(尤尘器(可与脱硫不同的各种硫化有机化合物。
硫含量脱除至。
性质可分为湿化技术简有氢气、一氧方式主要有除颗粒物,工业尤其在高温部硫结合进行化物,硫化物。
原料气的脱至约200mg/N式氧化法、化简介2氧化碳之外还除尘、脱硫、业上实用的除部位)、电除尘)。
物主要以H 2脱硫主要有湿Nm 3;后者为化学吸收法、还含有大量的变换与脱碳除尘设备有4尘器(主要在S 的形式存在湿法脱硫和干为固体脱硫剂、物理吸收法的硫化物等杂碳等。
以下对大类,各自在最后的净化在,其次是CS 干法脱硫两大剂,精脱后的法、物理-化学杂质,对各工的特化)、S 2、大类,气体学吸收法(1)吸收脱硫液经其工与H 生泵气液的贫滤,法。
)湿式氧化法湿式氧化法收溶液获得再下面以栲胶栲胶法脱硫硫液,与需净经氧化槽被空工艺流程如下原料气体从2S 反应吸收,泵加压送到喷液一起进入再贫液流入贫液获得副产成脱硫液的溶法法是借助于吸再生。
该法主胶法为例作一硫是在碳酸钠净化粗原料气空气氧化使溶下:从脱硫塔底部,脱硫后气体喷射再生槽的再生槽,由底部液槽,循环使用成品硫。
溶液总碱度为吸收溶液中载氧主要有改良的A 一介绍。
钠(Na 2CO 3)气在填料塔内溶液再生并浮选部进入,与塔顶体由塔顶逸出喷射器,在喷部经筛板上翻用。
硫泡沫则为0.4N(低硫含氧体的催化作ADA 法,栲稀碱液中添内逆流接触脱选出单质硫,顶上喷淋下来出。
脱硫后的喷射器自吸空翻,进行栲胶则进入中间槽含量),0.8N(高作用,将吸收胶法、氨水催加偏矾酸钠脱去硫化氢(,溶液循环使来的栲胶溶液的富液由塔底空气并在喉管胶溶液的氧化槽,然后经由高硫含量);栲收的H 2S 氧化催化法、PD (NaVO 3)、H 2S )。
三种煤气化炉技术介绍一、概述煤气化技术的开发与应用大约经历了200年的发展历史。
煤气化技术按固体和气体的接触方式可分为固定床、流化床、气流床和熔融床4种,其中熔融床技术还没有实际应用开发,各种煤气化炉的模式见图1。
1.固定床。
固定床气化炉是最早开发出的气化炉,如图1(a)所示,炉子下部为炉排,用以支撑上面的煤层。
通常,煤从气化炉的顶部加入,而气化剂(氧或空气和水蒸气)则从炉子的下部供入,因而气固间是逆向流动的。
特点是单位容积的煤处理量小,大型化困难。
目前,运转中的固定床气化炉主要有鲁奇气化炉和BGC-鲁奇炉两种。
2.流化床。
流化床气化炉如图1(b)所示,在分散板上供给粉煤,在分散板下送入气化剂(氧、水蒸气),使煤在悬浮状下进行气化。
流化床气化炉不能用灰分融点低的煤,副产焦油少,碳利用率低。
3.气流床。
气流床气化炉如图1(c)所示,粉煤与气化剂(O2、水蒸气)一起从喷嘴高速吹入炉内,快速气化。
特点是不副产焦油,生成气中甲烷含量少。
气流床气化是目前煤气化技术的主流,代表着今后煤气化技术的发展方向。
气流床按照进料方式又可分为湿法进料(水煤浆)气流床和干法进料(煤粉)气流床。
前者以德士古气化炉为代表,还有国内开发的多元料浆加压气化炉、多喷嘴(四烧嘴)水煤浆加压气化炉;后者以壳牌气化炉为代表,还有GSP炉以及国内开发的航天炉、两段炉、清华炉、四喷嘴干粉煤炉。
二、三种先进的煤气化工艺我国引进并被广泛采用的三种先进煤气化工艺——鲁奇气化炉、壳牌气化炉、德士古气化炉。
1.鲁奇气化炉(结构见图2)属于固定床气化炉的一种。
鲁奇气化炉是1939年由德国鲁奇公司设计,经不断的研究改进已推出了第五代炉型,目前在各种气化炉中实绩最好。
德国SVZ Schwarze Pumpe公司已将这种炉型应用于各种废弃物气化的商业化装置。
我国在20世纪60年代就引进了捷克制造的早期鲁奇炉并在云南投产。
1987年建成投产的天脊煤化工集团公司从德国引进的4台直径3800mm 的Ⅳ型鲁奇炉,先后采用阳泉煤、晋城煤和西山官地煤等煤种进行试验,经过10多年的探索,基本掌握了鲁奇炉气化贫瘦煤生产合成氨的技术,现建成的第五台鲁奇炉已投产,形成了年产45万吨合成氨的能力。
恩德炉气化技术介绍1.恩德炉生产工艺简介技术系列化:单炉生产能力有:5000立方米/时、10000立方米/时20000立方米/时、40000立方米/时。
净化简单:煤气中不含焦油及油渣,净化系统简单、污染少;操作弹性大:气化炉生产负荷可在设计负荷40%~110%范围内调节。
开停炉方便:对于工业燃气的生产组织和调度创造了条件;运转率高:由于取消了炉篦,气化炉没有传动部分和易损件,故不需太多的维修即可获得较高连续运转率,一般可达90%以上;气化效率高:气化强度大:恩德粉煤气化炉的气化效率达76%。
投资小:设备已完全实现了国产化,恩德粉煤气化炉投资仅为引进气化炉的30%~50%。
生产成本低:气化一般原料煤的成本占煤气生产成本的40%~50%。
煤种要求低:可以使用高灰份的劣质粉煤,使煤源得到很大拓展,可适用于褐煤、长焰煤、不黏或弱黏结煤;2.控制难点保持一个较高的转化率是非常重要的,过量的富氧必然造成有效成份的消耗,过低的富氧会造成较低的煤转化率,水碳比、氧碳比控制在合理的范围内非常关键,但因煤的质量波动、负荷的波动都会对系统的平衡产生影响。
系统想要在高负荷下运行,就必须解决循环流化床所特有的高温结焦问题。
3.控制策略富氧流量及控制系统的故障检测、比对,报警与自动处理负荷、炉温多参数结合的水碳比、氧碳比控制专有循环流化床负荷与炉温协调防结焦优化控制软件包。
4.气化炉联锁控制氧量过高必须紧急停车,废锅压力高、液位低等煤斗、煤锁变压加料操作及防止误操作程控与联锁灰斗、灰锁变压加料操作及防止误操作程控与联锁恩德炉粉煤气化技术在长化的应用现状1、恩德粉煤气化技术工艺流程叙述:工艺流程主要由输煤系统;排渣系统、热量回收及气化系统、煤烘干系统、黑水处理系统等组成. 工艺流程:原料由两条皮带送入270M3的煤仓,内加N2气保护(P=0.015MP), 煤仓下部有三个螺旋输送机(325×2600mm),将原料煤从一侧进入气炉(Φ6000×31000 mm),富氧空气由外面配制(浓度70%左右),分别进入一,二次空气混合器,蒸气用本系统产生的过热蒸气(温度210℃),空气30%也分别进入一次富氧混合器和二次富氧混合器,一次风通过六个喷嘴喷射入炉, 喷嘴设在加煤机下方的气化炉锥体部位,距离入煤口1.5米左右.与气化炉体成切线方向,成一定仰角(约15~17度)和斜角(约21度),使入炉原料易流化,入炉煤中大部分较粗颗粒在炉内的下部形成密相段,原料成为沸腾状态,在此区域气、固两相发生剧烈的传质和传热及燃烧氧化反应,反应温度950~1000℃,入炉的细粉和大颗粒因受热而裂解产生的小颗粒由反应气体携带离开密相段,在气化炉的上部形成稀相区,并在此处与从炉外引进的二次风进一步发生反应(二次风从混合器出来分为24个喷嘴,从炉筒体水平方向引入气化炉内),加入二次风目的有两个作用:一是阻挡上升气体降低流速增加停留时间,以便进一步反应和分离气体中的夹带物;二是促进反应,使气体中夹带的细颗粒中的碳继续气化反应,密相段产生的甲烷和高炭化合物进一步燃烧和裂解。
煤气化技术综述一、引言二、煤气化技术概述:四、其它煤气化技术2.1 固定层制气工艺(移动床) 4.1 第三代煤气化技术2.2 流化床气化工艺 4.2 组合气化炉煤气化法2.3 气流床气化工艺五、国内外煤气化的技术现状和发展趋势2.4 其他煤气化技术 5.1 国外技术现状和发展趋势三、国内主流煤气化技术详解 5.2 国内的技术现状和发展趋势3.1 Lurgi(鲁奇)煤气化技术 5.3 国内工业化煤气化装置技术最新成果3.2 Texaco(德士古)煤气化技术3.3 Shell煤气化技术工艺3.4 GSP煤气化技术3.5 Dow煤气化工艺3.6 Texaco、Shell、GSP三种气化技术对比一、引言我国石油资源相对短缺,仅占化石能源探明储量的51.3%,开采量仅为世界开采量的21.4%,石油供需矛盾日益突出。
由于世界资源日趋减少,中东地区战乱不止,石油价格动荡不稳因此大量依赖石油进口将严重威胁我国国民经济的运行安全。
同时,我国煤炭资源丰富,探明可采储量2040亿t(2002年)。
煤炭在一次能源消费结构中占有主导地位,20世纪80年代以来一直在70%上下。
专家研究认为,在未来相当长时期内,一次能源消费结构中煤炭仍将居主导地位,到2050年将维持在50%以上。
目前国内发展煤气化合成化工产品的势头很旺特别是在产地,一批新的煤化工项目开始起步,老企业正以现代新技术改造传统落后的生产装置,以油为原料的大、中型合成氨厂开始进行煤代油的技术改造。
通过改造可以达到降低生产成本,改善环境状况之目的。
本文针对这一情况综合介绍国内煤气化技术现状,并对目前主流煤气化技术作一横向对比。
煤炭气化,即在一定温度、压力条件下利用气化剂(O2、H2O或CO2)与煤炭反应生成洁净合成气(CO、H2的混合物),是对煤炭进行化学加工的一个重要方法,是实现煤炭洁净利用的关键。
煤炭气化技术,尤其是高压、大容量气流床气化技术,显示了良好的经济和社会效益,代表着发展趋势,是现在最清洁的煤利用技术,是洁净煤技术的龙头和关键。
关于气化技术、煤质分析的建议一、关于气化技术以煤为原料采用洁净煤气化技术,生产粗合成气已商业化的主要有:1.水煤浆气化技术该技术为美国德士古公司开发后转为美国GE公司所有,它是根据油气化技术的思路开发成功的。
在煤中加入添加剂、助熔剂和水,用磨煤机磨成水煤浆,加压后和氧气一同喷入气化炉进行部分氧化燃烧反应,气化温度1300-1450℃,高温的热气体,用水激冷,除尘后送出。
气化压力4.0-8.7Mpa,液态渣激冷破碎后排出。
它的主要特点是:简单,可靠,投资低,在有备用炉的情况下,年开工率可达95-98%,有效气(CO+H2)≈80-82%,缺点是氧耗较高。
由于它的可靠性,国内大多数煤气化装置均采用此法生产合成气,特别是煤制烯烃的装置大多采用此法生产合成气取得成功的先例,如神华煤制烯烃装置。
2.荷兰壳牌(SHELL)气化技术气化炉为立式圆筒形,炉膛周围安装有沸水冷却管组成的膜式水冷壁,内壁衬有耐热涂层。
气化熔渣在水冷壁涂层上形成液膜,沿壁顺流而下进行分离采用以渣抗渣的防腐办法。
炉体内设有四组粉煤烧嘴,使用寿命一年以上。
气化温度1400-1560℃,碳转化率高达99%,CO+H2可达90%。
该气化技术是干粉和氧,蒸汽在气化炉内进行部分燃烧反应,由于采用干粉气化,氧耗较少,但干粉加压输送用高压N2气或CO2气流输送。
气化后的粗合成气,含尘量大,要用50%冷气激冷,特殊的过滤器过滤灰尘,再用水洗涤。
流程复杂,特别是开车时用特殊的开工烧嘴。
采用对流和辐射废锅回收热量产生蒸汽,因而设备特别复杂,国产化率低,生产过程比较难于掌握。
国内已建的20几台气化炉运行状况不理想,开工率低,比如大唐多伦180万吨甲醇/60万吨MTP装置,建成两年,开车极不顺利,经济效益差。
3.德国未来能源GSP气化技术该技术同SHELL气化技术一样是干粉气化,氧和蒸汽煤粉加压用载气(N2、CO2)送入炉内进行部分氧化反应。
炉体为水冷壁,内壁衬有耐热涂层,使用寿命较长。
三种煤气化炉技术介绍煤气化是一种利用化学反应将固体煤转化为可燃气体的技术过程,可以将煤转化为煤气、合成气和合成油等能源。
煤气化可以通过不同的煤气化炉技术实现,下面将介绍三种常见的煤气化炉技术。
1.固定床煤气化炉:固定床煤气化炉是最早应用的煤气化技术之一、在固定床煤气化炉中,煤炭被填充在炉膛中,煤气化反应通过从煤床底部通入的氧气或氧气与蒸汽的混合物进行。
煤床通过由炉膛底部从下而上通过的气流进行流化,从而促进反应的进行。
在固定床煤气化炉中,煤气化反应主要发生在煤床下部的炉膛区域,温度通常在900°C至1400°C之间。
固定床煤气化炉的优点是操作稳定、适应性强,但由于床层热阻较大,炉温难以控制并且煤气质量较低。
2.流化床煤气化炉:流化床煤气化炉是一种采用流化床技术进行的煤气化工艺,该技术首次在20世纪60年代得到应用。
在流化床煤气化炉中,煤炭经过细磨和干燥后与气化剂(如氧气和水蒸汽的混合物)一起输入炉膛。
煤炭在流化床内扬起并形成流化状态,反应通过高速气流中的煤颗粒与气体热交换实现。
在流化床煤气化炉中,温度通常在800°C至1000°C之间。
流化床煤气化炉具有热传递效率高、反应速度快的优点,产生的煤气质量较高,但操作复杂,需要高流速和高压力的气流。
3.级联煤气化炉:级联煤气化炉是一种将两个或多个煤气化反应装置相连接以提高反应效率和煤气品质的技术。
在级联煤气化炉中,通常使用高温煤气化反应器作为第一级反应器,将煤炭和气化剂进行气化反应;然后,将第一级反应器的产物气流引入低温煤气化反应器中进行进一步的气化和合成反应。
级联煤气化炉可通过优化不同反应器之间的温度和气体组成来实现高效率的煤气化过程。
级联煤气化炉的优点是可以提高煤气化效率和产气量,并可根据需要调整煤气的组成。
综上所述,固定床煤气化炉、流化床煤气化炉和级联煤气化炉是三种常见的煤气化炉技术。
每种技术都有其特点和适用范围,可以根据具体需求选择合适的煤气化炉技术。
碳一化学知识:航天炉(HT-L)气化工艺一、煤气化技术综述煤气化技术是煤化工项目的龙头技术。
煤气化是指在一定的温度、压力下,用气化剂对煤进行热化学加工,将煤转化为燃气的过程。
目前在国内推广的煤气化技术,包括我国自主开发技术和国外技术10多种。
煤气化技术一般是按炉型分,主要有固定床、流化床、气流床三种。
固定床气化炉是最早开发出的气化炉,炉子下部为炉排,用以支撑上面的煤层。
通常,煤从气化炉的顶部加入,而气化剂(氧或空气和水蒸汽)则从炉子的下部供入,因而气固间是逆向流动的。
特点是单位容积的煤处理量小,大型化困难。
流化床气化炉是在分散板上供给粉煤,在分散板下送入气化剂,使煤在悬浮状下进行气化。
流化床气化炉不能用灰分融点低的煤,副产焦油少,碳利用率低。
气流床气化炉是将粉煤与气化剂一起从喷嘴高速吹入炉内,快速气化。
气流床气化炉按进料形式不同,分为干煤粉进料和水煤浆进料两大类,而以气化炉内是否衬有耐火保温材料分类,又有热壁炉和水冷壁炉两种。
所谓水冷壁,就是由水管、石英砂、煤渣组成的内腔。
一直以来,水冷壁都用于粉煤气化炉,水煤浆气化炉则多用耐火砖结构的热壁炉。
目前国际上应用最广的是气流床气化工艺。
主要有Shell公司的SCGP 粉煤加压气化工艺、美国德士古公司的水煤浆加压气化工艺和德国未来能源公司的GSP粉煤加压气化工艺,航天炉气化工艺是借鉴以上三种工艺中先进技术,配置我国自行研发的盘管式水冷壁气化炉而形成的一套结构简单、有效实用的煤粉气化工艺。
该工艺煤种适用范围广、碳转化率高,技术可靠、投资少、所有设备国产化、工程实施简单等优点。
二、航天炉(HT-L)气化工艺航天炉( HT-L 粉煤加压气化技术造气炉)是由中国航天科技集团公司下属公司研制成功的,是中国首套拥有自主知识产权的新型气化装置,其主要经济技术指标已达到国际领先水平。
该技术充分吸收了当今世界先进煤气化技术的优点,采用“粉煤+水激冷”流程,利用航天多年来在煤气化以及能源化工行业关键设备研制方面的成果,重点在原料煤本地化、工艺路线的优化、减少投资、关键设备国产化方面做了深入细致的工作。