角的比较大小 角的比较
- 格式:doc
- 大小:35.00 KB
- 文档页数:7
角的比较方法在几何学中,角是两条射线共同端点所形成的图形。
角的比较是几何学中非常重要的一部分,它涉及到角的大小、角的性质以及角的比较方法。
本文将介绍几种常见的角的比较方法,希望能够帮助读者更好地理解和掌握这一知识点。
首先,我们来谈谈角的大小比较方法。
在几何学中,我们通常使用角度的大小来比较角的大小。
角度是用来衡量角的大小的单位,通常用符号“°”表示。
当两个角的度数相同时,我们可以认为它们是相等的;当一个角的度数大于另一个角的度数时,我们可以认为前者是大于后者的;当一个角的度数小于另一个角的度数时,我们可以认为前者是小于后者的。
通过比较角的度数大小,我们可以清晰地了解角的大小关系。
其次,我们来讨论角的性质比较方法。
在几何学中,角可以根据其性质进行比较。
例如,我们可以比较两个角的对顶角、邻补角、邻角等性质。
对顶角是指两个角的顶点和边分别重合,对顶角相等;邻补角是指两个角的和为90度,邻补角互补;邻角是指共享一个公共边且顶点在同一直线上的两个角,邻角互补。
通过比较角的性质,我们可以发现角之间的关系,从而更好地理解和运用角的知识。
最后,我们来探讨角的比较方法在实际问题中的应用。
在实际问题中,我们经常需要比较不同角的大小和性质。
例如,在建筑设计中,我们需要比较不同角的大小来确定建筑物的结构和形状;在地理测量中,我们需要比较不同角的性质来确定地理位置和方向。
通过运用角的比较方法,我们可以更好地解决实际问题,提高工作效率。
综上所述,角的比较方法是几何学中非常重要的一部分。
通过比较角的大小、性质以及在实际问题中的应用,我们可以更好地理解和掌握角的知识,从而更好地应用到实际问题中。
希望本文介绍的角的比较方法能够帮助读者更好地理解和运用这一知识点。
角的比较--重难点题型【知识点1 角的比较与运算】【题型1 角的大小比较】∠COD=50°;小丽用叠合法比较,将两个角的顶点重合,边OB与OD重合,边OA 和OC置于重合边的同侧,则边OA.(填序号:①“在∠COD的内部”;②“在∠COD的外部”;③“与边OC重合”)【变式1-1】(2021春•呼和浩特期末)如图,∠AOB=∠COD,则∠AOC与∠DOB的大小关系是()A.∠AOC>∠DOBB.∠AOC<∠DOBC.∠AOC=∠DOBD.∠AOC与∠DOB无法比较大小【变式1-2】(2021秋•开封期末)如图所示,其中最大的角是,∠DOC,∠DOB,∠DOA的大小关系是.【变式1-3】(2021秋•门头沟区期末)如图所示的网格是正方形网格,点A,B,C,D,O 是网格线交点,那么∠AOB∠COD.(填“>”,“<”或“=”)【题型2 角的和差】【例2】(2021秋•安庆期末)如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOB的度数.【变式2-1】(2021秋•五常市期末)用一副三角板不能画出的角是()A.75°B.105°C.110°D.135°【变式2-2】2021秋•北碚区期末)将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕.若∠ABE=30°,则∠DBC为度.【变式2-3】(2021秋•荔湾区期末)把一副三角尺ABC与BDE按如图所示那样拼在一起,其中A、D、B三点在同一直线上,BM为∠ABC的平分线,BN为∠CBE的平分线,则∠MBN的度数是()A.30°B.45°C.55°D.60°【题型3 n等分线】【例3】(2021秋•罗湖区校级期末)如图,已知O为直线AB上一点,过点O向直线AB 上方引三条射线OC、OD、OE,且OC平分∠AOD,∠2=3∠1,∠COE=70°,求∠2的度数.【变式3-1】(2021秋•奉化区校级期末)OB是∠AOC内部一条射线,OM是∠AOB平分线,ON是∠AOC平分线,OP是∠NOA平分线,OQ是∠MOA平分线,则∠POQ:∠BOC=()A.1:2B.1:3C.2:5D.1:4【变式3-2】(2021秋•江汉区期末)如图,射线OB、OC在∠AOD内部,其中OB为∠AOC 的三等分线,OE、OF分别平分∠BOD和∠COD,若∠EOF=14°,请直接写出∠AOC 的大小.【变式3-3】(2021秋•越秀区校级月考)如图1,已知∠AOB=120°,∠COD=60°,OM在∠AOC内,ON在∠BOD内,∠AOM=13∠AOC,∠BON=13∠BOD.(本题中所有角均大于0°且小于等于180°)(1)∠COD从图1中的位置绕点O逆时针旋转到OC与OB重合时,如图2,则∠MON =°;(2)∠COD从图2中的位置绕点O逆时针旋转n°(0<n<120且n≠60),求∠MON 的度数;(3)∠COD从图2中的位置绕点O顺时针旋转n°(0<n<180且n≠60a,其中a为正整数),直接写出所有使∠MON=2∠BOC的n值.【题型4 角平分线】【例4】(2021秋•武都区期末)如图所示,点O是直线AB上一点,OE,OF分别平分∠AOC和∠BOC,若∠AOC=68°,则∠BOF和∠EOF是多少度?【变式4-1】(2021秋•南山区期末)已知三条不同的射线OA、OB、OC,有下列条件,其中能确定OC平分∠AOB的有()①∠AOC=∠BOC②∠AOB=2∠AOC③∠AOC+∠COB=∠AOB④∠BOC=12∠AOBA.1个B.2个C.3个D.4个【变式4-2】(2021秋•曲阳县期末)已知将一副三角板(直角三角板OAB和直角板OCD,∠AOB=90°,∠ABO=45°,∠CDO=90°,∠COD=30°)(1)如图1摆放,点O、A、C在一条直线上,∠BOD的度数是;(2)如图2,变化摆放位置将直角三角板COD绕点O逆时针方向转动,若要OB恰好平分∠COD,则∠AOC的度数是;(3)如图3,当三角板OCD摆放在∠AOB内部时,作射线OM平分∠AOC.射线ON 平分∠BOD,如果三角板OCD在∠AOB内绕点O任意转动,∠MON的度数是否发生变化?如果不变,求其值;如果变化,说明理由.【变式4-3】(2021秋•裕华区校级期中)如图1,∠AOB=40°,∠AOB的一边OB与射线OM重合,现将∠AOB绕着点O按顺时针方向旋转180°.在旋转过程中,当射线OA、OB或者直线MN是某一个角(小于180°)的平分线时,旋转角的度数为.【题型5 余角与补角的定义】【例5】(2021春•金山区期末)如果一个角的补角的2倍减去这个角的余角恰好等于这个角的4倍,求这个角的度数.【变式5-1】(2021•寻乌县模拟)已知∠A是锐角,∠A与∠B互补,∠A与∠C互余,则∠B﹣∠C的值等于()A.45°B.60°C.90°D.180°【变式5-2】(2020秋•麦积区期末)一个角的补角加上10°后,等于这个角的余角的3倍,求这个角以及它的余角和补角的度数.【变式5-3】(2021秋•沂水县期末)如图,已知∠AOB=130°,画∠AOB的平分线OC,画射线OD,使∠COD和∠AOC互余,并求∠BOD的度数.【题型6 利用余角或补角的性质得角相等】【例6】(2021秋•鹿邑县期末)如图,O为直线AB上一点,∠DOE=90°,OD是∠AOC 的角平分线,若∠AOC=70°.(1)求∠BOD的度数.(2)试判断OE是否平分∠BOC,并说明理由.【变式6-1】(2021秋•旌阳区期末)如图,两个直角∠AOC和∠BOD有公共顶点O,下列结论:①∠AOB=∠COD;②∠AOB+∠COD=90°;③∠AOD+∠BOC=180°;④若OB平分∠AOC,则OC平分∠BOD;⑤∠AOD的平分线与∠BOC的平分线是同一条射线,其中正确的有.(填序号)【变式6-2】(2021秋•芮城县期末)综合与实践已知直线AB 经过点O ,∠COD =90°,OE 是∠BOC 的平分线.(1)如图1,若∠AOC =30°,求∠DOE ;(2)如图1,若∠AOC =α,求∠DOE ;(用含α的式子表示)(3)将图1中的∠COD 绕顶点O 顺时针旋转到图2的位置,其它条件不变,(2)中的结论是否还成立?试说明理由;(4)将图1中的∠COD 绕顶点O 逆时针旋转到图3的位置,其它条件不变,直接用含α的式子表示∠DOE .【变式6-3】(2019秋•东西湖区期末)如图1,平面内一定点A 在直线EF 的上方,点O 为直线EF 上一动点,作射线OA 、OP 、OA ',当点O 在直线EF 上运动时,始终保持∠EOP =90°、∠AOP =∠A 'OP ,将射线OA 绕点O 顺时针旋转60°得到射线OB .(1)如图1,当点O 运动到使点A 在射线OP 的左侧,若OA '平分∠POB ,求∠BOF 的度数;(2)当点O 运动到使点A 在射线OP 的左侧,且∠AOE =3∠A 'OB 时,求∠AOF ∠AOP 的值;(3)当点O 运动到某一时刻时,∠A 'OB =130°,请直接写出∠BOP = 度.【题型7 求几何图形中互余或互补角的个数】【例7】(2021•娄星区模拟)如图,C 是直线AB 上一点,CD 是∠ACB 的平分线. ② 图中互余的角有 ;②图中互补的角有 ;③图中相等的角有 .【变式7-1】(2021秋•南开区期末)如图所示,已知O 是直线AB 上一点,∠BOE =∠FOD =90°,OB 平分∠COD .(1)图中与∠DOE 相等的角有 ;(2)图中与∠DOE 互余的角有 ;(3)图中与∠DOE 互补的角有 .【变式7-2】(2021秋•成都期中)如图,O 是直线AB 上的一点,∠AOD =120°,∠AOC =90°,OE 平分∠BOD .写出图中所有互补的角和互余的角.【变式7-3】(2021春•吴中区月考)如果∠α和∠β互补,且∠α>∠β,则下列式子中:①90°﹣∠β;②∠α﹣90°;③12(∠α+∠β);④12(∠α﹣∠β).可以表示∠β的余角的有( )A .①②B .①②③C .①②④D .①②③④【题型8 数学思想方法与角】【例8】(2021秋•河东区期末)已知∠AOB=90°,OC为一射线,OM,ON分别平分∠BOC和∠AOC,则∠MON是()A.45°B.90°C.45°或135°D.90°或135°【变式8-1】(2021秋•成华区期中)(1)如图1,射线OC、OD在∠AOB的内部,射线OM、ON分别平分∠AOD、∠BOC、且∠BON=50°,∠AOM=40°,∠COD=30°,求∠AOB的度数;(2)如图2,射线OC、OD在∠AOB的内部,射线OM、ON分别平分∠AOD、∠BOC、且∠AOB=150°,∠COD=30°,求∠MON的度数【变式8-2】(2021秋•无锡期末)如图,∠AOB=150°,∠COD=40°,OE平分∠AOC,则2∠BOE﹣∠BOD=°.【变式8-3】(2021秋•镇海区期末)新定义问题如图①,已知∠AOB,在∠AOB内部画射线OC,得到三个角,分别为∠AOC、∠BOC、∠AOB.若这三个角中有一个角是另外一个角的2倍,则称射线OC为∠AOB的“幸运线”.(本题中所研究的角都是大于0°而小于180°的角.)【阅读理解】(1)角的平分线这个角的“幸运线”;(填“是”或“不是”)【初步应用】(2)如图①,∠AOB=45°,射线OC为∠AOB的“幸运线”,则∠AOC的度数为;【解决问题】(3)如图②,已知∠AOB=60°,射线OM从OA出发,以每秒20°的速度绕O点逆时针旋转,同时,射线ON从OB出发,以每秒15°的速度绕O点逆时针旋转,设运动的时间为t秒(0<t<9).若OM、ON、OA三条射线中,一条射线恰好是以另外两条射线为边的角的“幸运线”,求出所有可能的t值.。
湘教版数学七年级上4.3.1角与角的大小比较教学设计小学的时候我们学习过角,对角有了一定的印象,在我们身边也存在很多的角,你还记得角的概念是怎么说的吗?观察图形,你能在图中找到角吗?师:你能否把刚才观测到的角画出来呢?生:师:能用自己的话对角做一下解释吗?下面让我们一起走进角的世界观察:如图,钟面上的时针与分针、圆规的两只脚之间、折扇的扇骨与扇骨之间都给我们以什么样的形象?生:这里有许多角师:谁能描述一下角?生:角是由具有公共端点的两条射线组成的图形.师:根据下图,总结一下角的定义如图师:如果旋转后成为一条直线,会是什么角呢?所以有一些特殊角,我们要记住生:我知道平角,射线OA绕点O旋转,当终止位置OB与起始位置OA成一条直线时,所成的角叫做平角.生:还有周角,射线OA绕点O旋转,当终止位置OB与起始位置OA第一次重合时,所成的角叫做周角.师:注意:1.角的始边可以绕顶点沿顺时针或逆时针方向旋转,本书只研究角的大小,不计方向. 2.如果没有特别说明,本书所讲的角只限于不大于平角的角.师:如图,如何表示这个角?角用符号“∠”来表示.生:(1)用三个大写字母:∠AOB 或∠BOA或用一个大写字母:∠O师:∠ BOC能记作∠O吗?为什么?生:用三个大写字母表示时,中间字母是顶点字母;生:用一个大写字母表示时,顶点处只能有一个角. 师:同学们说的很好,那么还能怎么表示角生:用一个数字加弧线表示:∠1生:用一个小写希腊字母加弧线表示:∠α师:能把∠ AOB记作∠ 1吗?为什么?生:这两种方法必须在图上标注后才能使用,并且只能表示单独的一个角.课件展示练习:判断下列哪些图形是角.师:请每个学习小组的同学每人任意画出两个角,比较这两个角的大小,并讨论你们的比较方法:生:可用量角器量.师:怎样使用量角器呢?生:1.对“中”——角的顶点对量角器的中心2.重合——角的一边与量角器的0°刻度线重合3.读数——读出角的另一边所对的度数课件展示:师:哪个角大呢?生:∠ABC > ∠DEF师:还有其他方法吗?生:与线段长短的比较类似,可以把它们叠合在一起比较大小.师:叠合法同线段一样,谁能告诉我下面这两个角哪个大?生:∠DCE>∠AOB师:两个角的大小可以出现以下情况,同学们填一下表格吧师:通过以上的学习,知道角的大小如何比较了吧,说一说吧生:常用的比较两个角的大小的方法有两种:度量法和叠合法师:同学们,角的大小与角的两边画出的长短有关吗?生:有关,边越长,角越大生:角的大小与角的两边画出的长短没有关系. 师:恩,角的大小由角的始边绕顶点旋转至终边位置时旋转量的大小决定.和边长无关.师:如图当∠1=∠2 时,射线OB把∠AOC分成两个相等的角,这时OB叫做∠AOC 的平分线,也可以说OB平分∠AOC.师:那么读课本,看看角平分线是如何定义的生:以一个角的顶点为端点的一条射线,如果把这个角分成两个相等的角,那么这条射线叫做这个角的平分线.师:几何语言描述一下生:因为OB平分∠AOC(已知)∠AOC所以∠AOB=∠BOC=12或∠AOC=2∠AOB=2∠BOC(角平分线的定义)课件展示练习:因为AD是∠BAC的平分线所以∠_____= ∠______因为∠ABC = 2∠ABE所以_______平分∠______答案:D2.下图中表示∠ABC的图是( )答案:C3.将图中的角用不同的方法表示出来,并填写下表答案:∠BCE,∠2,∠BAC,∠DAB,∠54.写出如图所示的符合下列条件的角(图中所有的角指小于平角的角).(1)能用一个大写字母表示的角.(2)以A为顶点的角.(3)图中所有的角(可用简便方法表示).答案:解:(1)∠B,∠C.(2)∠1或∠CAD,∠2或∠DAB,∠CAB.(3)∠C,∠1,∠2,∠CAB,∠B,∠3,∠4.拓展提高图中∠1= ∠2, 试判断∠BAD和∠EAC的大小, 并说明理由.答案:解:∠BAD=∠2+∠DAC,∠EAC=∠1+∠DAC所以∠BAD=∠EAC若∠AOB内没有射线,则图中一共有个角若∠AOB内有1条射线,则图中一共有个角若∠AOB内有2条射线,则图中一共有个角若∠AOB内有3条射线,则图中一共有个角若∠AOB内有10条射线,则图中一共有个角…………若∠AOB内有n条射线,则图中一共有个角答案:1,3,6,10,66,(n+2)(n+1)2。
角的比较方法在几何学中,角是一个非常重要的概念,它是由两条射线共同端点所形成的图形。
角的大小可以用角度来表示,而角的比较方法也是我们在几何学中经常会遇到的问题。
下面,我们将介绍几种常见的角的比较方法。
首先,我们来讨论角的比较方法之一,比较角的大小。
在比较角的大小时,我们通常会用到角的度数来进行比较。
例如,当我们要比较两个角的大小时,可以直接比较它们的度数大小,从而得出哪个角更大、更小或者它们是否相等。
其次,我们可以通过比较角的位置来进行角的比较。
在几何学中,角的位置可以分为相对位置和绝对位置两种。
相对位置是指两个角之间的大小关系,例如邻角、对顶角等;而绝对位置则是指角所在的位置,例如角所在的象限或者角所在的位置关系。
通过比较角的位置,我们可以判断出它们之间的大小关系。
此外,我们还可以通过比较角的形状来进行角的比较。
在几何学中,角可以分为锐角、直角、钝角等不同的形状。
通过比较角的形状,我们可以判断出它们之间的大小关系。
例如,直角一般比锐角大,而比钝角小。
最后,我们可以通过比较角的关系来进行角的比较。
在几何学中,角之间存在着许多不同的关系,例如互补角、补角、对顶角等。
通过比较角之间的关系,我们可以判断出它们之间的大小关系。
例如,如果两个角是互补角,则它们的度数之和为90度,我们可以通过比较它们的度数大小来判断它们之间的大小关系。
综上所述,角的比较方法有很多种,我们可以通过比较角的大小、位置、形状和关系来进行角的比较。
在几何学中,角的比较方法是非常重要的,它可以帮助我们更好地理解和运用角的概念。
希望本文可以帮助读者更好地掌握角的比较方法,从而更好地理解几何学中的知识。
角的大小比较与画相等的角与线段类似,角也可以比较大小。
比较角的大小主要有两种方法:测量法和叠合法。
我们分别来讲解以下这两种方法:一、用量角器测量角的方法量角器是测量角的大小的工具,它半圆形的,在靠近圆弧处刻有表示角大小的刻度,单位是“度”。
如下图所示:量角器的使用方法如下:(1)使量角器的中心与角的顶点重合,零刻度线与角的一边重合;(2)观察角的另一边与量角器上的哪个刻度重合,这个刻度所表示的数值就是这个角的度数(注意:当角为锐角时,读取下面的刻度;当角为钝角时,读取上面的刻度);例题1:用量角器量取下面各角的度数:二、用量角器画角的方法使用量角器不仅能够测量角的大小,还能准确地画出给定度数的角。
以画∠AOB=60°为例,学习一下利用量角器画角的具体方法:(1)画出一条射线OA;(2)让量角器的中心与射线OA的顶点O重合;(3)因为∠AOB=60°为锐角,所以以下面的刻度为准,在刻度处找到代表60°的刻度,并在该刻度所对的量角器外侧点上一点B;(4)过点B作射线OB,则所作的∠AOB即时要作的角;例题1:用量角器画出∠AOB=120°、∠DEF=∠=45°、∠HGI=135°。
(只写一个角的作图过程)三、角的大小比较(叠合法)如下图所示,我们以∠AOB与∠DEF为例,来学习一如何用叠合法比较角的大小。
叠合法法比较角的大小的步骤如下:(1)移动∠DEF,使其顶点E与∠AOB的顶点O叠合,边ED与∠AOB的边OA叠合,让另一边EF与边OB处于同一侧;(2)这时另一边EF对于∠AOB而言,有以下三种可能位置关系:图①图②图③①边EF在∠AOB的内部,此时∠DEF<∠AOB,如图①所示:②边EF与边OB重合,此时∠DEF=∠AOB,如图②所示:③边EF在∠AOB的外部,此时∠DEF>∠AOB,如图③所示:在使用叠合法比较两角大小时要注意以下问题:1)使两个角的顶点重合;2)使两个角的一条边重合;3)让两个角的另一条边落在重合边的同一侧;4)两个角的大小有大于、小于和相等三种情况,具体比较时结论只能是三种情况中的一种。
角的比较大小角的比较
教学建议
一、知识结构
二、重点、难点分析
本节教学的重点是角的大小比较,角平分线的意义,两个角的和、差、倍、分的意义.难点是空间观念,几何识图能力的培养.角的比较的相关知识是进一步学习角的度量和画法,以及进一步研究平面几何图形的基础.
1﹒角的大小的比较有两种方法:
(1)重合法:即把要比较的两个角的顶点和一条边重合,再比较另一条边的位置;
(2)度量法;即比较两个角的度数.
两种方法的比较结果是一致的.
2.利用比较角大小的上述两种方法,就可以画出角的和、差、倍、分,并进而比较角的和、差、倍、分的大小.
3.对于角平分线的概念,要注意以下两点:
(1)它是角的内部的一条射线,并且是一条特殊的射线,它把角分成了相等的两部分.
(2)要掌握角平分线的数学表达式:若OC 是的平分线,则或
4.在比较角的大小时,应注意角的大小只与开口的大小有关,而与角的边画出部分的长短无关.这是因为角的边是射线而非线段.若用射线旋转成角的定义,也可以说转得较多的角较大.
三、教法建议
1.本节教材,完全可以对照线段的比较,线段的和差倍分,以及中点的意义来进行.两者是十分相似的.
2.比较两个角的大小时,把角叠合起来,一定要使两个角的顶点及一边重合,另一边落在第一条边的同旁,否则不能进行比较.这可以通过叠合两块三角尺比较角的大小的实例来说明.这和线段大小比较十分相似.
3.由于前面学过线段的大小比较和线段的和、差、倍、分.本课教学的指导思想就是运用类比联想的思维方法,引导学生利用旧知识,解决新问题.
4.在本课的练习中,在可能的情况下,将以后经常遇到的图形,提前让学生见到,为以后的学习奠定了基础.
5.在角的和、差、倍、分的计算中,由于度、分、秒的四则运算还没有讲到,因此只进行度的加、减.
教学设计示例
一、素质教育目标
(一)知识教学点
1.理解两个角的和、差、倍、分的意义.
2.掌握角平分线的概念
3.会比较角的大小,会用量角器画一个角等于已知角.
(二)能力训练点
1.通过让学生亲自动手演示比较角的大小,画一个角等于已知角等,培养训练学生的动手操作能力.
2.通过角的和、差、倍、分的意义,角平分线的意义,进一步训练学生几何语言的表达能力及几何识图能力,培养其空间观念.
(三)德育渗透点
通过具体实物演示,对角的大小进行比较这一由感性认识上升到理性认识的过程,培养学生严谨的科学态度,对学生进行辩证唯物主义思想教育.(四)美育渗透点
通过对角的大小比较,提高学生的鉴赏力,通过学生自己作角及角平分线,使学生进一步体会几何图形的形象直观美.
二、学法引导
1.教师教法:直观演示、尝试、指导相结合.
2.学生学法:主动参与、积极思维、动手实践相结合.
三、重点·难点·疑点及解决办法
(一)重点
角的大小比较,角平分线的意义,两个角的和、差、倍、分的意义.
(二)难点
空间观念,几何识图能力的培养.
(三)疑点
角的和、差、倍、分的意义.
(四)解决办法
通过学生主动参与,在自觉与不自觉中掌握知识点,再经过练习,解决难点和疑点.
四、课时安排
1课时
五、教具学具准备
投影仪或电脑、一副三角板、自制胶片(软盘)、量角器.
六、师生互动活动设计
七、教学步骤
(一)明确目标
通过教学,使学生在角的比较中掌握方法,理解相应概念,并掌握角平分线的概念.
(二)整体感知
通过现代化教学手段与学生的画图相结合,完成本节教学任务.
(三)教学过程
创设情境,引出课题
师:请同学们拿出你的一副三角板,你能说出这几个角的大小吗?
学生基本知道一副三角板各角的度数,他们可能利用度数比较,也可能通过观察,也会有同学用叠合法.这里可以让学生讨论,说出采用的比较方法,但叙述可能不规范.教师既不给予肯定也不否定,只是再提出新问题.投影显示:两个度数相差1度以内的角,不标明度数,只凭眼观察不能确定两个角的大小.
师:对于这两个角你能说出它们哪一个大?哪一个小吗?
(学生困惑时教师点出课题.)这节课我们就学习角的比较.同学们提出的比较一副三角板各角的方法有些很好,但不规范.希望同学们认真学习本节内容,掌握角的比较等知识,为以后的学习打好基础.(板书课题)
[板书] 1.5 角的比较
【教法说明】由学生熟知的三角板各角的比较入手,把学生带入比较角的大小的意境.但问题一转,出现了不标度数,观察又不能确定大小的角,当学生束手无策时,教师提出这就是我们要学习的新内容,调动学生的积极性,吸引其注意力.
探究新知
1.角的比较
(1)叠合法
教师通过活动投影演示:两个角设计成不同颜色,三种情况:
,,,如图1所示.
图1
演示:移动,使其顶点与的顶点重合,一边和重合,出现以下三种情况,如图2所示.
图2
师:请同学们观察的另一边的位置情况,你能确定出两个角的大小关系吗?
学生活动:观察教师演示后,同桌也可以利用两副三角板演示以上过程,帮助理解比较两角的大小,回答教师提出的问题.
教师根据学生回答整理板书.
[板书]
① 与重合,等于,记作.
② 落在的内部,小于,记作.
③ 落在的外部,大于,记作.
【教法说明】通过直观的实物演示和投影(电脑)显示,既加强了角的比较的直观性,又可提高学生的兴趣.注意再次强调角的大小只与开口大小有关,与边的长短无关,以及角的符号与小于号、大于号书写时的区别.(2)测量法
师:小学我们学过用量角器测量一个角,角的大小也可以按其度数比较.度数大的角则大,度数小的则小.反之,角大度数大,角小度数小.学生活动:请同桌分别画两个角,然后交换用量角器测量其度数,比较它们
的大小.
【教法说明】测量前教师可提问使用量角器应注意的问题.即三点:对中;重合;读数.让学生动手操作,培养他们动手能力.
反馈练习:课本第32页习题1.3A组第3题,用量角器测量、、的大小,同桌交换结果看是否准确.
2.角的和、差、倍、分投影显示:如图1,、.
图1
提出问题:如图1,,把移到上,使它们的顶点重合,一边重合,会有几种情况?请同学们在练习本上画出.你如何把移到上,才能保证的大小不变呢?
学生活动:讨论如何移到上,移动后有几种情况,在练习本上画出图形.(有小学测量的基础,学生不会感到困难,可放手让学生自己动手操作.)教师根据学生回答小结:量角器可起移角的作用,先测量的度数,然后以的顶点为顶点,其中一边为作作一个角等于,出现两种情况.如图2及图3所示:(1)在内部时,如图2,是与的差,记作:.
(2)在外部时,如图3,是与的和,记作:.
【教法说明】在以上教学过程中,一定要注意训练学生的看图能力和几何语句表达能力,如与的和差所得到的两个图形中,还可让学生观察得到图2中是与的差,记作:,或与的和等于,记作:,图3中是与的差,记作:等进行看图能力的训练.
图2 图3
反馈练习:学生在练习本上完成画图.
已知如图4,,画,使.
师:两个的和是,那么是的2倍,记作,或是的,记作:.同样,有角的3倍和等等.角的和、差、倍、分的度数等于它们的度数的和、差、倍、分.
图4
3.角平分线
学生观察以上反馈练习中的图形,,也就是把分成了两个相等的角,这
条射线叫的平分线.
[板书]定义:一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线.
几何语言表示:是的平分线,(或).
说明:若,则是的平分线,同样有两条三等分线,三条四等分线,等等.变式训练,培养能力
投影显示:
1.如图1填空:
图1
①
②
2.是的平分线,那么,
①
②
图2
3.如图2:是的平分线,是的平分线
①若,则
② ,,则度
【教法说明】练习中的第1、2题可口答,第3题在教师引导下写出过程,初步渗透推理过程,培养学生的逻辑推理能力,推理过程由已知入手,联想得出结论.
(四)总结、扩展
找学生回答:今天学习了哪些内容?教师归纳得出以下知识结构:
八、布置作业
课本第33页B组第1、2题.
作业答案
1.解:,若,那么,
2.解:∵ 是的平分线,∴ .
又∵ 是的平分线,∴ .
又∵ ,∴ .
说明:学生作业或回答问题,尽量要求用“∵ ∴”的形式,为以后解证明题打好基础.
九、板书设计
同七、(四)的格式.。