有理数的四则运算总结归纳
- 格式:docx
- 大小:36.64 KB
- 文档页数:4
有理数的知识点总结一、有理数的定义及基本性质:有理数是指所有可以表示为两个整数的比值的数,包括整数、分数和零。
有理数可以用一组整数的比值表示成两种形式:分数形式(也称作比例效应)和小数形式(也称作数列形式)。
有理数的集合通常记作Q。
有理数具有以下基本性质:1. 有理数的加法、减法、乘法和除法仍然是有理数,也就是说,有理数集合对于这四种运算是封闭的。
2. 有理数满足交换律和结合律,在加法和乘法运算中,a+b =b+a,(a+b)+c = a+(b+c);在乘法运算中,a×b = b×a,(a×b)×c= a×(b×c)。
3. 有理数乘法和除法具有倒数性质,即对于任意非零有理数a,存在一个有理数b使得a×b = 1。
4. 有理数乘法符合分配律,即对于任意有理数a、b和 c,a×(b+c) = a×b + a×c。
5. 有理数具有唯一分解性质,即任何一个非零有理数都可以唯一表示为两个整数的比值,而且这个比值对于最简分数形式是唯一的。
二、有理数的四则运算:1. 有理数的加法和减法:对于两个有理数a/b和 c/d,它们的加法定义为(a/b) + (c/d) = (ad+bc)/bd,减法定义为(a/b) - (c/d) = (ad-bc)/bd。
在进行加法和减法运算时,通常需要化简结果为最简分数形式。
2. 有理数的乘法和除法:对于两个有理数 a/b和 c/d,它们的乘法定义为(a/b) × (c/d) =ac/bd,除法定义为(a/b) ÷ (c/d) = ad/bc(其中c/d≠0)。
在进行乘法和除法运算时,同样需要化简结果为最简分数形式。
三、有理数的大小比较:在有理数集合中,任何两个有理数都可以通过大小比较运算来确定它们的相对大小。
有理数的大小比较有以下几个基本原则:1. 相同符号的有理数比较大小,绝对值越大的数为更大的数;2. 不同符号的有理数比较大小,正数大于零,零大于负数;3. 相同符号的两个有理数的绝对值比较,绝对值较小的数较小。
有理数知识点梳理有理数是指可以表示为两个整数的比值的数,包括整数、分数、小数等。
在数学中,了解和掌握有理数的概念和性质是非常重要的。
本文将对有理数的知识点进行梳理,帮助读者更好地理解和应用有理数。
一、有理数的定义和表示有理数是指可以表示为两个整数的比值的数。
有理数包括整数、分数和小数。
1. 整数:整数是没有小数部分的数,可以是正数、负数或零,如-3、0、5等。
2. 分数:分数是整数与整数之间的比值,它由分子和分母两部分组成,分子表示被分成的份数,分母表示整体被分成的总份数。
分数可以是正数、负数或零,如2/3、-1/4、0等。
3. 小数:小数是不能化为整数比值的有理数,小数有有限小数和无限循环小数两种形式。
有限小数是指小数部分有限位数的数,如0.5、-3.14等;无限循环小数是指小数部分有无限多位数并且有规律地重复的数,如1/3=0.333...、2/7=0.285714285714...等。
二、有理数的四则运算掌握有理数的四则运算是深入理解和应用有理数的基础。
1. 加法:有理数的加法是指两个有理数相加的运算。
对于同号的有理数,将它们的绝对值相加,并保持它们的符号不变;对于异号的有理数,将它们的绝对值相减,并取绝对值大的数的符号。
2. 减法:有理数的减法是指两个有理数相减的运算。
减去一个有理数等于加上这个有理数的相反数。
3. 乘法:有理数的乘法是指两个有理数相乘的运算。
两个有理数相乘,乘积的符号由这两个有理数的符号决定,绝对值相乘。
4. 除法:有理数的除法是指两个有理数相除的运算。
除数不为零时,两个有理数相除,商的符号由这两个有理数的符号决定,绝对值相除。
三、有理数的比较和大小关系了解不同有理数之间的大小关系,可以帮助我们进行正确的数值比较和排序。
1. 相等:两个有理数相等意味着它们的值相同。
两个有理数相等的充分必要条件是它们的分子、分母比值相等。
2. 大于和小于:对于两个正数,分子较大的数大于分子较小的数;对于两个负数,分子绝对值较小的数大于分子绝对值较大的数。
初三数学知识点考点归纳总结一. 代数运算1.1 有理数有理数的四则运算,分数的加减乘除运算,化简分数、约分、分数转小数与百分数。
1.2 代数式代数式的基本概念、同类项合并、分配律、消元、整除关系、基本恒等式。
1.3 方程式一元一次方程式的解及其应用,一元二次方程式的解及其应用,二元一次方程式的解及其应用。
1.4 比例比例的概念、性质,比例的计算及应用,重复比例,反比例定理及其应用。
二. 几何与图形2.1 三角形角的概念、角度和弧度的转换,三角形的分类及性质,三角形的内角和定理,三角形的外角和定理。
2.2 直线与角平行直线和平行线特征及其性质,垂直直线和直角的特征及其性质,角的大小以及相邻角、对顶角等相关概念。
2.3 圆和圆的性质圆的基本性质,弧、弦、切线、割线等相关概念及其性质,圆内接四边形和正多边形。
2.4 空间几何与立体图形线面体的概念,正方体、长方体、棱柱、棱锥、圆柱、圆锥的性质和计算。
三. 概率与统计3.1 随机事件和概率事件的概念和性质,基本事件概率、加法规则,条件概率和乘法规则,概率分布和直方图的绘制。
3.2 常见概率问题求样本空间、容斥原理,贝叶斯定理,计算机模拟实验,概率统计中的应用问题。
四. 函数4.1 一些常见函数幂函数、指数函数、对数函数、三角函数、反三角函数的基本概念和性质。
4.2 函数的运算函数的加、减、乘、除的运算,函数的复合运算,导数的概念,导数的基本应用:切线问题和极值点问题。
以上是初三数学知识点考点的归纳总结。
需要注意的是,以上知识点只是初三数学所要学习的知识点的一个大致的方向,可能还存在某些细节问题需要重点学习。
同时,不管学习的什么知识点,都需要掌握好其基本概念和方法,这样才能在应用中灵活运用,解决问题,取得相应的成绩。
自学资料一、有理数的加法【知识探索】1.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.【注意】先定符号,再算绝对值.2.有理数的加法中,两个数相加,交换加数的位置,和不变.加法交换律:.3.有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.加法结合律:.【错题精练】例1.下列计算中,错误的是()第1页共13页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训A. (+37)+(−67)=−37;B. (−37)+(+67)=−97;C. (−37)+(−67)=−97;D. (+37)+(−37)=0.例2.绝对值不大于3的整数的和是.例3.定义一种运算☆,其规则为a☆b=1a +1b,根据这个规则,计算2☆3的值是()A. 56; B. 15;C. 5;D. 6.例4.已知10箱苹果,以每箱15千克为标准,超过15千克的数记为正数,不足15千克的数记为负数,称重记录如下:+0.2,-0.2,+0.7,-0.3,-0.4,+0.6,0,-0.1,+0.3,-0.2.(1)求10箱苹果的总重量;(2)若每箱苹果的重量标准为10±0.5(千克),则这10箱有几箱不合乎标准的?例5.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2012个格子中的数为()A. 3;B. 2;C. 0;D. -1.例6.已知|x|=3,|y|=2,且x>y,则x+y的值为()A. 5B. ﹣1C. ﹣5或﹣1D. 5或1【举一反三】1.在探究“有理数加法法则”的过程中,我们只要通过对几类算式的运算进行归纳总结,就可以得出该第2页共13页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训第3页共13页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训【错题精练】例1.用简便方法计算:例2.把(-9)-(-2)+(-7)-(+5)-(-4)写成省略括号的形式为__________例3.(-18.25)-4+(+18)+(-4.4)第4页共13页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训例4.已知∣a-b∣=a-b,且∣a∣=2013,∣b∣=2014,求a-b的值例5.计算:(-1)+(-2)-3+4-5+...+(-2009)+2010-2011+2012-2013+2014=__________例6.若b<0,a>0,则=__________【举一反三】1.2.某水利勘察队,第一天向上游走了km,第二天向上游第5页共13页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训走了km,第三天向下游走了km,第四天向下游走了km,问:四天后勘察队在出发点的哪个位置,与出发点相距多少?三、有理数的加减混合运算【错题精练】例1.出租车司机老姚某天上午营运全是在东西走向的解放路上进行.如果规定向东为正,向西为负,第6页共13页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训他这天上午行车里程(单位:km)如下:+8,+6,−10,−3,+6,−5,−2,−7,+4,+8,−9,−12.(1)将第几名乘客送到目的地时,老姚刚好回到上午出发点?(2)将最后一名乘客送到目的地时,老姚距上午出发点多远?在出发点的东面还是西面?(3)若汽车耗油量为0.075L/km,这天上午老姚的出租车耗油多少L?例2.出租车司机小张某天上午营运全是在东西走向的政府大道上进行的,如果规定向东为正,向西为负,他这天上午的行程是(单位:千米)+15,-3,+16,-11,+10,-12,+4,-15,16,-18.(1)将最后一名乘客送达目的地时,小张距上午出发点的距离是多少千米?在出发点的什么方向?(2)若汽车耗油量为0.6升/千米,出车时,邮箱有油72.2升,若小张将最后一名乘客送达目的地,再返回出发地,问小张今天下午是否需要加油?若要加油至少需要加多少才能返回出发地?若不用加油,请说明理由.【举一反三】1.出租车司机老王某天上午运营全是在东西走向的凌公塘路上进行,如果规定向东为正,向西为负,他这天上午行车里程(单位:km)如下:+8,+4,-10,-3,+6,-5,-2,-7.(1)将第几名乘客送到目的地时,老王刚好回到上午出发点?(2)将最后一名乘客送到目的地时,老王距上午出发地多远?(3)若汽车耗油量为0.4L/km,这天上午老王耗油多少升?四、有理数的乘法【知识探索】1.负数乘负数,积为正数,乘积的绝对值等于各乘数绝对值的积.一般地,我们有有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数与0相乘,都得0.2.一般地,有理数乘法中,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.分配律:.【说明】运算律在运算中有重要作用,它是解决许多数学问题的基础.3.一般地,有理数乘法中,三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.乘法结合律:.4.一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等.乘法交换律:.第7页共13页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训第8页共13页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训1.两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.(这是有理数除法法则的另一种说法)【说明】分数可以理解为分子除以分母.2.除以一个不等于0的数,等于乘这个数的倒数.这个法则也可以表示成:().【错题精练】例1.⑴()÷4⑵(-24)÷(-2)÷()⑶(-0.75)÷()÷(-0.3)例2.如果a÷b(b≠0)的商是负数,那么()A. a,b异号B. a,b同为正数C. a,b同为负数D. a,b同号例3.__________例4.若|a+5|+|b–2|+|c+4|=0,则abc–=【举一反三】1.已知有理数a、b、c,满足求的值。
七年级数学知识点归纳总结有理数:有理数的定义:可以表示为两个整数的商的数。
有理数的性质:包括加法、减法、乘法和除法的法则。
例如,同号两数相加,取相同的符号,并把绝对值相加;两数相乘,同号得正,异号得负,并把绝对值相乘等。
有理数的四则运算:加、减、乘、除的运算规则及运算顺序。
绝对值:数轴上表示数a的点与原点的距离叫做数a的绝对值。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
代数式:代数式的定义:用代数运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子。
代数式的性质:包括合并同类项、去括号等运算规则。
代数式的运算:包括整式的加减、乘法和除法。
方程与不等式:方程的定义:含有未知数的等式。
不等式的定义:用不等号(<、>、≤、≥、≠)连接的式子。
方程的解法:通过移项、合并同类项、化系数为1等步骤解方程。
不等式的解法:通过移项、合并同类项等方法解不等式。
函数:函数的定义:对于给定的x值,有唯一确定的y值与之对应的关系。
函数的表示方法:列表法、解析式法和图像法。
函数的性质:包括函数的增减性、奇偶性等。
图形与几何:平面图形的认识:包括点、线、面、角、三角形、四边形等基本图形的性质和判定。
立体图形的认识:包括长方体、正方体、球等基本立体图形的性质和判定。
图形与坐标:通过坐标系表示点的位置,计算图形的面积和周长等。
以上是对七年级数学知识点的大致归纳总结,具体内容可能因教材版本和地区差异而有所不同。
在学习过程中,建议结合教材和课堂讲解逐步掌握这些知识点,为进一步的学习打下坚实的基础。
七年级有理数的运算技巧在七年级数学学习中,有理数的运算技巧是一个非常重要的内容。
有理数包括整数和分数,掌握有理数的运算技巧不仅可以帮助我们解决实际问题,还可以在后续的数学学习中打下坚实的基础。
本文将介绍七年级有理数的四则运算技巧以及有理数的约分与化简技巧。
一、有理数的加法和减法运算技巧在进行有理数的加法和减法运算时,首先需要判断两个数的符号,然后按照符号的不同进行相应的运算。
1. 同号数相加(减):将两个数的绝对值相加(减),并保持符号不变。
例如:计算-3 + (-5)的结果,首先将绝对值3和5相加,得到8,然后保持符号为负,最终结果为-8。
2. 异号数相加(减):将两个数的绝对值相减,然后保持绝对值较大的数的符号。
例如:计算-4 + 7的结果,首先将绝对值7减去4,得到3,然后保持绝对值较大的数7的符号,最终结果为3。
二、有理数的乘法和除法运算技巧有理数的乘法和除法运算相对于加法和减法而言,稍微复杂一些。
下面将介绍有理数的乘法和除法运算技巧。
1. 有理数的乘法:将两个数的绝对值相乘,然后根据乘积的符号确定最终结果的符号。
例如:计算-2 × (-3)的结果,首先将绝对值2和3相乘,得到6,然后根据乘积的符号确定结果的符号为正,最终结果为6。
2. 有理数的除法:将除数和被除数的绝对值相除,然后根据除法的规律确定最终结果的符号。
例如:计算-8 ÷ 4的结果,首先将绝对值8和4相除,得到2,然后根据除法的规律确定结果的符号为负,最终结果为-2。
三、有理数的约分与化简技巧约分是指将分数的分子和分母同时除以它们的公约数,使得分数的值保持不变但表达更简洁。
例如:将分数8/12约分为最简形式。
首先找出8和12的公约数,可以得到公约数4,然后将8和12同时除以4,得到分数2/3,即为所求的最简形式。
化简是指将一个复杂的数式经过一系列计算得出一个更简单且与原数式等价的结果。
例如:将数式(3+5)×2/4化简。
有理数四则混合运算法则哎呀,今天咱们聊聊有理数的四则混合运算法则,听起来是不是有点高大上?别怕,咱们用简单的语言来掰扯掰扯,让你明明白白地理解这些数字之间的关系。
有理数就是那些可以写成分数的数,比如说 1/2、3、0.75 这些,既包括正数也包括负数,哦,还有那零,不是瞎说,是个好东西,啥都能让它搞定。
先说加法。
加法其实就像咱们生活中团团围坐在一起,越多越热闹。
比如你口袋里有五块钱,朋友给你三块,那不就得意洋洋地变成八块了嘛。
不过有理数有个小特点,正数和负数在一起,就像夏天的西瓜和冬天的火锅,有些尴尬。
比如你有个负五块,结果你还想加个正三块,那就是五块的欠账,再加上三块,最后你还有个负二块,听着是不是有点心塞?再说减法,减法就有点像喝饮料了,喝多了就觉得撑。
你有十块钱,想买个八块的饮料,结果你花了八块,心里是不是美滋滋?但如果你口袋里只有五块,那不就得先借钱,再买东西,心里可就七上八下了。
所以说,减法其实就是找出你的“欠账”,有些负数来凑,算起来要仔细点,不然就容易出错了,嘿嘿。
接下来是乘法,乘法就像把事情搞得越来越大。
比如说,你每周存钱,存十块,一年52周,那你不就有520块了嘛?这简直是“数”的艺术,简直是“乘”风破浪,越乘越多。
不过如果你一边存一边花,花了个负五,那这520块的劲头可就减弱了,最后的结果不就变得复杂了?再来说说除法。
除法嘛,跟借钱有点关系。
假设你有十块钱,想请朋友喝饮料,每人分五块,这样一来,两个人不就各有五块了嘛。
可要是你只有八块,那怎么分呢?这就是一个大问题了。
负数的除法也是这样的,想象一下,你有负十块,想分给两个朋友,这样一来,每个人都得欠你五块,这可真是让人哭笑不得。
咱得聊聊运算顺序。
哎呀,这可是有理数运算中的“王者之道”哦。
你得记得先算括号里的,先进行加减,再进行乘除。
就像打麻将,先要理清牌,再一气呵成,否则会搞得一团糟。
比方说,(3 + 5) × 2,这个运算可不能先乘后加,那样结果就错得离谱了。
有理数的四则运算及应用一、有理数的概念•定义:有理数是可以表示为两个整数比值的数,其中分母不为零。
•分类:正有理数、负有理数和零。
二、有理数的加法•定义:两个有理数相加,就是它们的比值相加。
•法则:同号相加,取相同符号,并把绝对值相加;异号相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
三、有理数的减法•定义:减去一个有理数,相当于加上它的相反数。
•法则:同号相减,取相同符号,并把绝对值相减;异号相减,先取绝对值较大的符号,再用较大的绝对值减去较小的绝对值。
四、有理数的乘法•定义:两个有理数相乘,就是它们的比值相乘。
•法则:同号得正,异号得负,并把绝对值相乘。
五、有理数的除法•定义:除以一个有理数,相当于乘以它的倒数。
•法则:除以一个不等于零的有理数,等于乘以这个有理数的倒数。
六、混合运算•定义:含有加、减、乘、除四种运算的算式。
•法则:按照从左到右的顺序进行计算,先算乘除,再算加减。
•定义:运用有理数的四则运算解决实际问题。
•举例:计算购物时的找零、计算物体的高度、计算速度和时间等。
八、注意事项•定义:在进行有理数运算时需要注意的问题。
•举例:避免出现分母为零的情况,注意运算符号的运用等。
•总结:有理数的四则运算及应用是数学中的基本内容,掌握好这部分知识,对于解决实际问题和进一步学习数学都有很大的帮助。
习题及方法:1.习题:计算2/3 + 5/6方法:将两个分数的分母通分,得到4/6 + 5/6 = 9/6,化简得到答案为1 3/6,即1 1/2。
2.习题:计算-4/5 + 3/4方法:将两个分数的分母通分,得到-16/20 + 15/20 = -1/20。
3.习题:计算8/9 - 1/3方法:将两个分数的分母通分,得到8/9 - 3/9 = 5/9。
4.习题:计算-2/5 * 3/4方法:将两个分数相乘,得到-6/20,化简得到答案为-3/10。
5.习题:计算5/6 * 2/7方法:将两个分数相乘,得到10/42,化简得到答案为5/21。
第三讲有理数的加、减、乘、除(一)一.知识梳理1.有理数加法的运算法则2.有理数加法的运算定律3.有理数加法的运算法则4.有理数的加减法混合运算二.课堂例题精讲与随堂演练知识一:有理数加法的运算法则(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
(3)互为相反数的两个数相加得0。
(4)一个数同0相加,仍得这个数。
例1:(1)(-8)+(-5)(2)(-8)+(+5)(3)(+8)+(-5)例2 填下列表格加数加数和的组成和(结果)符号绝对值-12 3 -9 16 -9 -5 -16 16 -15 0例3 今年我省元月份某一天的天气预报中,延安市最低温度为-6℃,西安市最低温度为2℃,这一天延安市最低温度比西安市低 ( )A.8℃B.-8℃C.6℃D.2℃随堂演练: A 级 1.填空:(1)(-5)+(-6)=-( + )= (2)(-25)+9=-( - )= (3)(-0.4)+3.6=3.6 0.4= B 级2.两数相加,如果和为负数,则这两个数 ( )A.都是负数B.都是正数C.一个正数,一个负数D.至少有一个为负数知识二:有理数加法的运算律:加法交换律:两个数相加,交换加数的位置,和不变。
a b += b+a 加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
a b c ++=()a b c ++=()a b c ++注:多个有理数相加,可任意交换加数的位置,也可先把其中几个数相加,使计算简化。
灵活运用加法的运算律:互为相反数的两个数,可以先相加。
如:2(5)5+-+=2[(5)5]+-+=202+=符号相同的数可以先相加。
如:(1)3(3)[(1)(3)]3(4)31-++-=-+-+=-+=- 分母相同的数可以先相加。
如:121121117()[()]2552552510++-=++-=+= 几个数相加能得到整数的可以先相加。
有理数的四则运算总结归纳
有理数是整数和分数的统称,它们可以进行四则运算,即加法、减法、乘法和除法。
下面是有理数四则运算的总结和归纳:
加法(n)
两个有理数的加法可以通过以下步骤进行:
1.如果两个有理数的符号相同,将它们的绝对值相加,并保留
原来的符号作为结果的符号。
例如:(-3) + (-5) = -(3 + 5) = -8
2.如果两个有理数的符号不同,将它们的绝对值相减,并取绝
对值大的数的符号作为结果的符号。
例如:(-3) + 5 = 5 - 3 = 2
减法(n)
两个有理数的减法可以通过以下步骤进行:1.将减数取负,然后将减法转化为加法。
例如:5 - (-3) = 5 + 3 = 8
2.根据加法的规则进行计算。
例如:(-5) - 3 = (-5) + (-3) = -(5 + 3) = -8
乘法(___)
两个有理数的乘法可以通过以下步骤进行:1.将两个有理数的绝对值相乘。
例如:(-2) × 3 = 2 × 3 = 6
2.根据两个有理数的符号确定结果的符号。
例如:(-2) × (-3) = 2 × 3 = 6
2) × 3 = -(2 × 3) = -6
除法(n)
两个有理数的除法可以通过以下步骤进行:1.将除数的倒数乘以被除数。
例如:(-6) ÷ 2 = (-6) × (1/2) = -3
2.根据两个有理数的符号确定结果的符号。
例如:(-6) ÷ (-2) = 3
6) ÷ 2 = -3
总结归纳
对于有理数的四则运算,加法和乘法的规则比较简单,只需按照绝对值相加或相乘的规则,并根据符号确定结果的符号。
减法可以转化为加法运算,而除法可以转化为乘法运算。
在进行除法运算时,需要注意被除数和除数的符号来确定结果的符号。
了解有理数的四则运算规则,可以帮助我们在进行数学计算时更加准确和方便。