显微镜与望远镜放大本领的测定(精)
- 格式:ppt
- 大小:1.10 MB
- 文档页数:13
放大测量的方法及举例说明
放大测量是指利用仪器或设备将某个物理量扩大或放大,以便更好地观察和测量。
以下是几种常见的放大测量方法及其举例说明:
1. 放大镜:通过透镜的光学性质,放大物体的图像。
例如,在生物学实验中,放大镜被用来放大显微镜的样本图像,便于观察微生物。
2. 望远镜:使用多组透镜或反射镜系统,放大遥远物体的图像。
例如,天文学家使用望远镜来观测星体和行星。
3. 显微镜:利用透镜系统将微小物体的图像放大至可见范围。
例如,考古学家使用显微镜来观察化石和古代艺术品上的微小细节。
4. 放大声音设备:使用扬声器和放大器将音频信号放大,以便更好地听到声音。
例如,音响设备用于放大音乐会或演讲的声音。
5. 放大电压或电流的放大器:通过电子设备将输入电压或电流放大到更高的值。
例如,电子设备中的放大器可以将弱信号放大,以便更好地分析和测量。
需要注意的是,在实施放大测量时,应根据需求选择合适的放大倍数,并确保所使用的仪器和设备能够提供所需的精确度和准确度。
光学实验实验名称:显微镜的组装及放大率的测定实验人员及其具体分工:马凯凯、王杰:实验设计黄立顺、白江伟:实验操作段海瑞、朱江龙:实验数据处理及实验报告系别:物理与电子科学系班级:2010级物理学本科班指导老师:包剑惠完成时间:2012年5月22日显微镜的组装及放大率的测定一、实验目的1、在光学平台上组装简单的显微镜,熟悉其构造及其放大原理。
2、学会显微镜放大倍数的测量。
二、实验仪器及用具光学平台 两个凸透镜 光源 箭孔屏 平面镜 毫米标尺 二维平移底座 半透半反镜 毛玻璃三、实验原理显微镜是一个由目镜和物镜组成的共轴光学系统,它通常是由四片以上透镜组成的系统,可以简化成两个凸透镜组成的放大光路。
被观察的物体放在物镜0l 的物方焦点0f 的外侧附近,先经0l 成放大实像与目镜物方焦点e f 内测附近,再经目镜e l 成放大虚像与明视距离以外。
被观察的物1y处在物镜前面靠近焦点0f 处,它经物镜在目镜的焦平面上成一放大的倒立实象2y ,通过目镜后成一倒立的虚象3y 于明视距离以外。
显微镜的视角放大率为:0''0eM f f s -∆⋅=⋅s = -25cm 为正常人眼的明视距离,△为光学间隔'f —物镜焦距,'ef —目镜焦距当物镜和目镜的焦距已知后,只要测出光学间隔△,就能计算视角放大率M .四、实验内容 一、自组显微镜的装置1、自组显微镜放大率的测定测定显微镜放大率最简便的方法如下图所示,设长为0l 的目的物PQ 直接置于观察者的明视距离处,其视角为e α,从显微镜中最后看到的虚像P’’Q’’亦在明视距离处,设其长度为-l ,视角为-0α ,于是00tan tan ElM lαα==因此,如用一刻度尺作目的物,取其一段分度长为0l ,把观察到的尺的像投影到尺面上,设备投影后像在刻度尺上的长度是l ,则可以求得显微镜的放大率。
将测得的显微镜的视角放大率与理论值0''0eM f f s -∆⋅=⋅ 比较1、用自准直法测量透镜的焦距2、自组显微镜放大率的测定(1)按照实验装置图布置各器件,按显微镜组成要求调节物镜、目镜的位置,并调仪器共轴。
望远镜与显微镜望远镜和显微镜都是用途极为广泛的助视光学仪器,显微镜主要用来帮助人们观察近处的微小物体,而望远镜则主要是帮助人们观察远处的目标,它们常被组合在其他光学仪器中。
为适应不同用途和性能的要求,望远镜和显微镜的种类很多,构造也各有差异,但是它们的基本光学系统都由一个物镜和一个目镜组成。
望远镜和显微镜在天文学、电子学、生物学和医学等领域中都起着十分重要的作用。
[实验目的]1. 学会用物像放大法测透镜的焦距。
2. 熟悉望远镜和显微镜的构造及其放大原理。
3. 掌握光学系统的共轴调节方法。
4.学会望远镜、显微镜放大率的测量。
[实验原理]1.物像放大法测透镜的焦距测量透镜焦距的方法虽然有许多种,但是在某些情况下,由于透镜的光心位置无法精确 测定,甚至物屏、像屏的位置也艰定准确.所以会给测量带来一定困难。
用物像放大法测透 镜或透镜组的焦距就能完全克服这一困难。
图1如图1所示,将微尺分化板作为物置于导轨上,被测透镜也置于导轨上,其间距要大于被测透镜焦距,固定微标尺和待测透镜,并记录下它们的位置,由此可得到物距,移动测微目镜并在其中看到清晰的微尺放大像,并与测微目镜分划板无视差。
测出其横向放大率为β。
由横向放大率公式:s s '-=β 可求出像距,最终由成像公式:f s s '='+111 计算出焦距。
2.望远镜的构造及其放大原理。
望远镜通常是由两个共轴光学系统组成,我们把它简化为两个凸透镜,其中长焦距的凸透镜作为物镜,短焦距的凸透镜作为目镜。
物镜的作用是将远处物体发出的光经会聚后在目镜物方焦平面上生成一倒立的实像,而目镜起一放大镜作用,把其物方焦平面上的倒立实像再放大成一虚像,供人眼观察。
图2所示为开普勒望远镜的光路示意图,图中L 0为物镜,Le 为目镜。
用望远镜观察不同位置的物体时,只需调节物镜和目镜的相对位置,使物镜成的实像落在目镜物方焦平面上,这就是望远镜的“调焦”。
图2显微镜和望远镜的视角放大率M 定义为:通过目视仪器观看物体时,其物体像对人眼张角的正切(一般取像距为明视距离)与人眼直接观看物体时物体对人眼张角的正切之比。
实验三望远镜和显微镜的组装及部分参数的测定一、实验目的1.熟悉显微镜和望远镜的构造及基本原理;2.掌握显微镜、望远镜的调节,正确使用的方法;3.掌握测定显微镜和望远镜放大率的方法;二、实验原理最简单的望远镜是由一片长焦距的凸透镜作为物镜,用一短焦距的凸透镜作为目镜组合而成。
远处的物经过物镜在其后焦面附近成一缩小的倒立实像,物镜的像方焦平面与目镜的物方焦平面重合。
而目镜起一放大镜的作用,把这个倒立的实像再放大成一个正立的像。
显微镜通过放大物所成的像,来帮助人们观察近处的微小物体,近处的实物经物镜成倒立实像在目镜的物方焦点的内侧,再经目镜成放大的虚像于人眼的明视距离处或无穷远处.望远镜:1、实验仪器(1)带有毛玻璃的白炽灯光源S(2)毫米尺F L=7mm(3)物镜Lo: f=225mmo(4)测微目镜Le:(去掉其物镜头的读数显微镜)(5)读数显微镜架 : SZ-38(6)二维调整架: SZ-07(7)滑座: TH70(8)白屏: SZ-13测微目镜:由目镜、分划板、读数鼓轮与连接装置等组成.目镜把叉丝和被观测的像同时放大,其放大倍数不影响测量数据大小,但可以提高测量准确程度。
测微目镜的基本结构剖视图如图1所示。
目镜镜头通过调焦螺纹固定在目镜外壳中部。
外壳内有一块刻有十字丝的透明叉丝板,外壳右侧装有测距螺旋(即千分尺)系统,转动测距手轮,其螺杆将带动叉丝板移动.叉丝板的移动量可通过手轮上的千分尺测出.透明十字叉丝板后面是一个固定的玻璃标尺,标尺上刻有毫米尺,每格1mm,量程为6mm(上:1~6mm;下:左3~0mm,右0~3mm)。
旋转读数鼓轮,刻有十字叉丝的可动分划板就可以左右动.读数鼓轮每旋转一周,叉丝移动1mm,鼓轮上有100个分格,故每一格对应的读数为0.01mm,再估读一位.其读数方法和螺旋测微器差不多.在测量过程中,要始终沿着一个方向移动叉丝,不得回旋。
测微目镜通常用来测金属丝、干涉条纹等的宽度.测量时,使双线与待测物质边缘平行,叉丝交点与待测物的边缘重合,开始计数.在测量过程中,要始终沿着一个方向移动叉丝,不得回旋.图1测微目镜的基本结构图2. 仪器实物图及原理图图2 仪器实物图及原理图3、实验步骤(1) 把全部器件按图2的顺序摆放在导轨上,靠拢后目测调至共轴。
实验7.1自组显微镜和望远镜一.目的1.测量实验室提供透镜的焦距,选出适合组成显微镜和望远镜的透镜组2.设计出自组显微镜的光学系统,画出光路图。
说明其结构和简单原理。
并用选择的透镜组成显微镜3.设计出自组望远镜的光学系统,画出光路图。
说明其结构和简单原理。
并用选择的透镜组成望远镜4.测量自组显微镜的视觉放大率,画出其测量光路。
5.估测出自组望远镜的视觉放大率。
二.仪器GsZ-Ⅱ光学平台、带有毛玻璃的白炽灯光源、薄透镜、分束镜(1:1)、可调支架、分划板(0.1mm、0.2mm和1mm)、白色像屏等。
三.原理1.测量薄透镜焦距的方法自准法:自准法是自准直技术的简称。
无限远的物经透镜成象,象处在透镜的焦平面上。
自准直技术在光学实验中通常是指产生平行光束或获得处于无限远的物的方法。
自准法测量透镜焦距就是首先利用待测透镜自身产生一个位于无限远的物,再用待测透镜对它成象,通过测量象与透镜之间的距离来确定透镜的焦距。
自准直法测量透镜焦距的原理如图1所示。
当物y位于透镜的焦平面上时,经透镜L和平面反射镜所组成的光学系统后,如果在焦平面上成一与物等大的倒立实象,物到透镜中心的距离就是透镜的焦距。
最简单的显微镜和望远镜都由两个正焦透镜组成(物镜,目镜)。
物镜作用是使物体成像于目镜物方焦点以内,并且靠近物方焦点或位于物方焦点处;目镜起放大镜作用。
2.自组显微镜的光学系统的结构及简单原理显微镜是一种助视光学仪器。
显微镜是用来观察和测量有限远微小目标的工具。
选择两块合适的透镜作显微镜的物镜和目镜,调整使光学系统共轴(等高共轴)。
固定两透镜之间的距离L为18cm。
被观察的物y1处在物镜前面一倍焦距和二倍焦距之间,它经物镜在目镜的焦平面上成一放大的倒立实象y2,通过目镜后成一倒立的虚象y3于无限远处。
显微镜的视角放大率为:Γ=-∆·250f 0'·f e由上式可知,显微镜的视角放大率等于它的物镜的垂轴放大率和目镜的视角放大率的乘积3. 自组望远镜的光学系统的结构及简单原理望远镜用于观察远处大物体的细节。