18版:专题探究课二 高考中三角函数问题的热点题型(创新设计)
- 格式:docx
- 大小:115.70 KB
- 文档页数:7
最后一讲向量1、设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件2、在中,为边上的中线,为的中点,则=A.43-41ACB. 41-43AC C. 43AB +41 D. 41AB +433、已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .04、已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是A1BC.2D .25、已知向量,,.若,则________.6、设向量a =(1,0),b =(−1,m ),若()m ⊥-a a b ,则m =_________.7、已知向量,,.若,则________.ABC △AD BC E AD π3()=1,2a ()=2,2-b ()=1,λc ()2∥c a +b λ=()=1,2a ()=2,2-b ()=1,λc ()2∥c a +b λ=三角函数1、若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4B .π2C .3π4D .π2、已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________.3、将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数 (A)在区间35[,]44ππ上单调递增(B)在区间3[,]4ππ上单调递减 (C)在区间53[,]42ππ上单调递增(D)在区间3[,2]2ππ上单调递减4、已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 ▲ .5、已知,αβ为锐角,4tan 3α=,cos()αβ+=.(1)求cos 2α的值; (2)求tan()αβ-的值.6、设常数a R ∈,函数f x ()22?asin x cos x =+ (1)若f x ()为偶函数,求a 的值; (2)若4f π〔〕1=,求方程1f x =()ππ-[,]上的解。
高考数学二轮复习:三角函数的专题(附参照答案 )自己在十多年的职中数学教课实践中,面对三角函数内容的有关教课时,累积了一些解题方面的办理技巧以及心得、领会。
下边试试进行商讨一下:一、对于 sincos 与 sin cos (或 sin 2 ) 的关系的推行应用:1、因为 (sincos ) 2 sin 2cos 22sin cos1 2 sin cos 故知道 (sincos ) ,必可推出 sin cos (或 sin 2 ) ,比如:例 1已知 sincos3 , 求 sin 3cos 3。
3剖析:因为 sin 3cos 3(sin cos )(sin 2sin coscos 2 )(sincos )[(sincos )23sin cos ]此中, sin cos 已知,只需求出 sin cos 即可,本题是典型的知 sin -cos,求 sin cos 的题型。
解:∵ (sincos ) 21 2 sin cos故: 1 2 sin cos( 3 ) 2 1 sin cos1333sin 3cos 3(sin cos )[(sincos )23sin cos ]3[( 3)2 3 1] 3 14 33 3 33 39例 2若 sin+cos =m 2,且 tg +ctg =n ,则 m 2 n 的关系为()。
2B221C. m 22 D . n 2A .m=n.m=nm 2n剖析:察看 sin+cos 与 sin cos 的关系:sincos= (sincos ) 21 m 2122而: tg ctg1nsin cos故:m 2 1 1m 221,选 B 。
2nn例 3已知: tg +ctg =4,则 sin2的值为()。
A .1B .1 C .1D .12244剖析: tg+ctg= 14sin cos1cos4sin故: sin 22sin cossin 21 。
答案选 A 。
2例 4 已知: tg+ctg =2,求 sin 4cos 4剖析:由上边例子已知,只需 sin 4cos 4 能化出含 sin ± cos 或 sin cos 的式子,则即可依据已知 tg+ctg 进行计算。
专题18 三角恒等变换【考点预测】知识点一.两角和与差的正余弦与正切 ①sin()sin cos cos sin αβαβαβ±=±;②cos()cos cos sin sin αβαβαβ±=;③tan tan tan()1tan tan αβαβαβ±±=;知识点二.二倍角公式 ①sin22sin cos ααα=;②2222cos2cos sin 2cos 112sin ααααα=-=-=-;③22tan tan 21tan ααα=-; 知识点三:降次(幂)公式2211cos 21cos 2sin cos sin 2;sin ;cos ;222ααααααα-+===知识点四:半角公式sin22αα== sin 1cos tan.21cos sin aαααα-==+知识点五.辅助角公式)sin(cos sin 22ϕααα++=+b a b a (其中abb a a b a b =+=+=ϕϕϕtan cos sin 2222,,). 【方法技巧与总结】 1.两角和与差正切公式变形)tan tan 1)(tan(tan tan βαβαβα ±=±; 1)tan(tan tan )tan(tan tan 1tan tan ---=++-=⋅βαβαβαβαβα.2.降幂公式与升幂公式ααααααα2sin 21cos sin 22cos 1cos 22cos 1sin 22=+=-=;;; 2222)cos (sin 2sin 1)cos (sin 2sin 1sin 22cos 1cos 22cos 1αααααααααα-=-+=+=-=+;;;.3.其他常用变式αααααααααααααααααααsin cos 1cos 1sin 2tan tan 1tan 1cos sin sin cos 2cos tan 1tan 2cos sin cos sin 22sin 222222222-=+=+-=+-=+=+=;;. 3. 拆分角问题:①=22αα⋅;=(+)ααββ-;②()αββα=--;③1[()()]2ααβαβ=++-; ④1[()()]2βαβαβ=+--;⑤()424πππαα+=--.注意 特殊的角也看成已知角,如()44ππαα=--.【题型归纳目录】题型一:两角和与差公式的证明 题型二:给式求值 题型三:给值求值 题型四:给值求角题型五:正切恒等式及求非特殊角 【典例例题】题型一:两角和与差公式的证明例1.(2022·山西省长治市第二中学校高一期末)(1)试证明差角的余弦公式()C αβ-:cos()cos cos sin sin αβαβαβ-=+;(2)利用公式()C αβ-推导:①和角的余弦公式()C αβ+,正弦公式()S αβ+,正切公式()T αβ+; ②倍角公式(2)S α,(2)C α,(2)T α.【答案】(1)证明见解析;(2)①答案见解析;②答案见解析 【解析】 【分析】在单位圆里面证明()C αβ-,然后根据诱导公式即可证明()C αβ+和()S αβ+,利用正弦余弦和正切的关系即可证明()T αβ+;用正弦余弦正切的和角公式即可证明对应的二倍角公式.【详解】(1)不妨令2,k k απβ≠+∈Z . 如图,设单位圆与x 轴的正半轴相交于点1,0A ,以x 轴非负半轴为始边作角,,αβαβ-,它们的终边分别与单位圆相交于点()1cos ,sin P αα,()1cos ,sin A ββ,()()()cos ,sin P αβαβ--.连接11,A P AP .若把扇形OAP 绕着点O 旋转β角,则点,A P 分別与点11,A P 重合.根据圆的旋转对称性可知,AP 与11A P 重合,从而,AP =11A P ,∴11AP A P =. 根据两点间的距离公式,得:()()2222[cos 1]sin (cos cos )(sin sin )αβαβαβαβ--+-=-+-,化简得:()cos cos cos sin sin .αβαβαβ-=+ 当()2k k απβ=+∈Z 时,上式仍然成立.∴,对于任意角,αβ有:()cos cos cos sin sin αβαβαβ-=+. (2)①公式()C αβ+的推导: ()()cos cos αβαβ⎡⎤+=--⎣⎦()()cos cos sin sin αβαβ=-+-cos cos sin sin αβαβ=-.公式()S αβ+的推导:()sin cos 2παβαβ⎛⎫+=+- ⎪⎝⎭cos 2παβ⎡⎤⎛⎫=-- ⎪⎢⎥⎝⎭⎣⎦cos cos sin sin 22ππαβαβ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭cos sin sin cos αβαβ=+正切公式()T αβ+的推导: ()()()sin tan cos αβαβαβ++=+sin cos cos sin cos cos sin sin αβαβαβαβ+=-tan tan 1tan tan αβαβ+=-②公式()2S α的推导:由①知,()sin2sin cos sin sin cos 2sin cos ααααααααα=+=+=. 公式()2C α的推导:由①知,()22cos2cos cos cos sin sin cos sin ααααααααα=+=-=-.公式()2T α的推导:由①知,()2tan tan 2tan tan2tan 1tan tan 1tan ααααααααα+=+==-⋅-.例2.(2022·云南·昭通市第一中学高三开学考试(文))已知以下四个式子的值都等于同一个常数 22sin 26cos 343sin 26cos34+-; 22sin 39cos 213sin 39cos 21+-;()()22sin 52cos 1123sin 52cos112-+--;22sin 30cos 303sin 30cos30+-.(1)试从上述四个式子中选择一个,求出这个常数.(2)根据(1)的计算结果,推广为三角恒等式,并证明你的结论.【答案】(1)选第四个式子,14;(2)证明见解析.【解析】 【分析】(1)选第四个式子,由1sin 30,cos302︒=︒=(2)由题意,设一个角为α,另一个角为60α︒-,应用两角差的余弦公式展开三角函数,由同角正余弦的平方和关系化简求值 【详解】(1)由第四个式子:221331sin 30cos 303sin 30cos304444+-=+-= (2)证明:()()22sin cos 603sin cos 60αααα+---2211sin cos cos 22αααααα⎛⎫⎛⎫=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭2222133sin cos cos sin cos sin 442αααααααα=++-14=【点睛】本题考查了三角函数,利用特殊角的函数值求三角函数式的值,应用两角差余弦公式展开三角函数式及同角的正余弦平方和关系化简求值,属于简单题例3.(2022·陕西省商丹高新学校模拟预测(理))如图带有坐标系的单位圆O 中,设AOx α∠=,BOx β∠=,AOB αβ∠=-,(1)利用单位圆、向量知识证明:cos()cos cos sin sin αβαβαβ-=+(2)若π,π2α⎛⎫∈ ⎪⎝⎭,π0,2β⎛⎫∈ ⎪⎝⎭,4cos()5αβ-=-,5tan 12α=-,求cos β的值【答案】(1)证明见解析;(2)6365. 【解析】(1)根据向量的数量积公式即可证明;(2)根据角的范围分别求出正弦和余弦值,利用两角和的余弦公式计算得出答案. 【详解】(1)由题意知:||||1OA OB ==,且OA 与OB 的夹角为αβ-, 所以·11cos()cos()OA OB αβαβ=⨯⨯-=-, 又(cos ,sin )OA αα=,(cos ,sin )OB ββ=, 所以·cos cos sin sin OA OB αβαβ=+, 故cos()cos cos sin sin αβαβαβ-=+.(2)π,π2α⎛⎫∈ ⎪⎝⎭且5tan 12α=-,则512sin ,cos 1313αα==-;π0,2β⎛⎫∈ ⎪⎝⎭,则,02πβ⎛⎫-∈- ⎪⎝⎭,又π,π2α⎛⎫∈ ⎪⎝⎭,()0,αβπ∴-∈,4cos(),sin()553αβαβ-=--=,()()()1245363cos cos cos cos sin sin 13513565βααβααβααβ⎛⎫=--=-+-=-⨯-+⨯=⎡⎤ ⎪⎣⎦⎝⎭【点睛】本题主要考查平面向量的数量积的定义,考查平面向量数量积的坐标运算,考查两角和与差的余弦公式,属于中档题.例4.(2022·全国·高三专题练习)如图,考虑点(1,0)A ,1(cos ,sin )P αα,2(cos ,sin )P ββ-,(cos(),sin())P αβαβ++,从这个图出发.(1)推导公式:cos()cos cos sin sin αβαβαβ+=-;(2)利用(1)的结果证明:1cos cos [cos()cos()]2αβαβαβ=++-,并计算sin 37.5cos37.5︒︒⋅的值.【答案】(1)推导见解析;(2【解析】 【分析】(1)根据图象可知2212AP PP =,再展开化简,得到两角和的余弦公式;(2)首先令ββ=-,求()cos αβ-,再代入所证明的公式;首先根据二倍角公式和诱导公式化简为11sin 37.5cos37.5sin 75cos1522⋅==,再根据两角差的余弦公式化简. 【详解】(1)因为12(cos ,sin ),(cos ,sin ),(cos(),sin())P P P ααββαβαβ-++, 根据图象,可得2212AP PP =,即2212||AP PP =, 即2222(cos()1)sin ()(cos cos )(sin sin )αβαββαβα+-++=-++. 即cos()cos cos sin sin αββαβα+=-.(2)由(1)可得cos()cos cos sin sin αββαβα+=-, ① cos()cos cos sin sin αββαβα-=+ ②由①+②可得:2cos cos cos()cos()βααβαβ=++- 所以1cos cos [cos()cos()]2βααβαβ=++-,所以()111sin 37.5cos37.5sin 75cos15cos 4530222︒︒︒︒︒︒===-.()1cos 45cos30sin 45sin 302=+1122⎫==⎪⎪⎝⎭【点睛】本题考查两角和差余弦公式的证明,以及利用三角恒等变换求值,重点考查逻辑推理证明,公式的灵活应用,属于基础题型.【方法技巧与总结】推证两角和与差公式就是要用这两个单角的三角函数表示和差角的三角公式,通过余弦定理或向量数量积建立它们之间的关系,这就是证明的思路.题型二:给式求值例5.(2022·全国·高三专题练习)已知sin α=()cos αβ-=且304πα<<,304πβ<<,则sin β=( )A B C D 【答案】A 【解析】易知()()sin sin βααβ=--,利用角的范围和同角三角函数关系可求得cos α和()sin αβ-,分别在()sin αβ-=和sin β,结合β的范围可确定最终结果.【详解】2sin α=<且304πα<<,04πα∴<<,5cos 7α∴=.又304πβ<<,344ππαβ∴-<-<,()sin αβ∴-==当()sin αβ-=时,()()()()sin sin sin cos cos sin βααβααβααβ=--=---57==,304πβ<<,sin 0β∴>,sin β∴=当()sin αβ-=sin β=.综上所述:sin β= 故选:A . 【点睛】易错点睛:本题中求解cos α时,易忽略sin α的值所确定的α的更小的范围,从而误认为cos α的取值也有两种不同的可能性,造成求解错误.例6.(2020·四川·乐山外国语学校高三期中(文))已知sin 15tan 2102α⎛⎫︒-=︒ ⎪⎝⎭,则()sin 60α︒+的值为( )A .13B .13-C .23D .23-【答案】A 【解析】根据题意得到sin 152α⎛⎫︒- ⎪⎝⎭进而得到26cos 1529α⎛⎫︒-= ⎪⎝⎭,()1cos 303α︒-=,从而有()()()sin 60sin 9030cos 30ααα⎡⎤︒+=︒-︒-=︒-⎣⎦.【详解】∵sin 15tan 2102α⎛⎫︒-=︒ ⎪⎝⎭,∴()sin 15tan 210tan 18030tan302α⎛⎫︒-=︒=︒+︒=︒ ⎪⎝⎭,则226cos 151sin 15229αα⎛⎫⎛⎫︒-=-︒-= ⎪ ⎪⎝⎭⎝⎭,()221cos 30cos 15sin 15223ααα⎛⎫⎛⎫︒-=︒--︒-= ⎪ ⎪⎝⎭⎝⎭,∴()()sin 60sin 9030αα⎡⎤︒+=︒-︒-⎣⎦ ()1cos 303α=︒-=, 故选A. 【点睛】本题主要考查二倍角公式,同角三角函数的基本关系,诱导公式,属于基础题.例7.(2020·全国·高三专题练习)若7cos(2)38x π-=-,则sin()3x π+的值为( ).A .14B .78C .14±D .78±【答案】C 【解析】 【分析】利用倍角公式以及诱导公式,结合已知条件,即可求得结果. 【详解】∵27cos(2)cos[2()]2cos ()13668x x x πππ-=-=--=-, ∴1cos()64x π-=±,∵1sin()cos[()]cos()32364x x x ππππ+=-+=-=±,故选:C. 【点睛】本题考查利用三角恒等变换解决给值求值问题,属基础题.(多选题)例8.(2022·全国·高三专题练习)设sin()sin 6πββ++=sin()3πβ-=( )A B .12C .12-D . 【答案】AC 【解析】 【分析】利用三角恒等变换化简已知条件,结合同角三角函数的基本关系式,求得sin 3πβ⎛⎫- ⎪⎝⎭.【详解】依题意sin()sin 6πββ++=sin()sin 3233ππππββ⎛⎫-++-+= ⎪⎝⎭,1cos()sin )3233πππβββ⎛⎫-+--= ⎪⎝⎭1sin )233ππββ⎛⎫--= ⎪⎝⎭ )sin 2cos()133ππββ⎛⎫-+- ⎪⎝⎭,)1sin cos()3πβπβ⎛⎫-- ⎪-=22sin cos 133ππββ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,)221sin 1sin 3πβπβ⎛⎫⎡⎤⎢⎥⎛⎫-+= ⎪⎝⎭-- ⎪⎦⎣,化简得(()(28sin 2sin 3033ππββ⎛⎫⎛⎫+----+= ⎪ ⎪⎝⎭⎝⎭,2,(24sin 2sin 033ππββ⎛⎫⎛⎫-+-- ⎪ ⎪⎝⎭⎝⎭,2sin 12sin 033ππββ⎡⎤⎡⎛⎫⎛⎫-+-= ⎪ ⎪⎢⎥⎢⎝⎭⎝⎭⎣⎦⎣, 解得1sin 32πβ⎛⎫-=- ⎪⎝⎭或sin 3πβ⎛⎫-=⎪⎝⎭. 故选:AC例9.(2022·全国·模拟预测(文))已知,0,2παβ⎛⎫∈ ⎪⎝⎭,3cos25β=,()4cos 5αβ+=,则cos α=___________.【解析】 【分析】 由,0,2,()4cos 5αβ+=,即可求得()sin αβ+,用二倍角公式即可求得sin β 和cos β ,用拼凑角思想可表示出()ααββ=+-,用三角恒等变换公式求解即可. 【详解】因为()4cos 5αβ+=,且,0,2,所以()3sin 5αβ+=.又因为23cos 212sin 5ββ=-=,解得sin β=则cos β==故()()()cos cos cos cos sin sin ααββαββαββ=+-=+++⎡⎤⎣⎦4355==.例10.(2022·上海静安·模拟预测)已知sin 4πα⎛⎫+= ⎪⎝⎭,则sin 2α的值为_____________.【答案】12##0.5 【解析】 【分析】由倍角公式以及诱导公式求解即可. 【详解】231cos 212sin 124442ππαα⎛⎫⎛⎫+=-+=-⨯=- ⎪ ⎪⎝⎭⎝⎭cos 2cos 2sin 242ππααα⎛⎫⎛⎫+=+=- ⎪ ⎪⎝⎭⎝⎭1sin 22α∴=故答案为:12例11.(2022·江苏泰州·模拟预测)若0θθ=时,()2sin2cos f θθθ=-取得最大值,则0sin 24πθ⎛⎫+= ⎪⎝⎭______.【解析】 【分析】首先利用二倍角公式和辅助角公式,化简,再代入求值. 【详解】()()111sin 21cos2sin 2cos2222f θθθθθ=-+=--()112222θθθϕ⎫---⎪⎝⎭(其中cos ϕ=,sin ϕ=, 当()f θ取最大值时,022πθϕ-=,∴022πθϕ=+0sin 2sin cos 2πθϕϕ⎛⎫=+= ⎪⎝⎭0cos2cos sin 2πθϕϕ⎛⎫=+=-= ⎪⎝⎭∴0sin 24πθ⎛⎛⎫+== ⎪ ⎝⎭⎝⎭⎝⎭.【方法技巧与总结】给式求值:给出某些式子的值,求其他式子的值.解此类问题,一般应先将所给式子变形,将其转化成所求函数式能使用的条件,或将所求函数式变形为可使用条件的形式.题型三:给值求值例12.(2022·福建省福州第一中学三模)若3sin 5α=-,且3ππ,2α⎛⎫∈ ⎪⎝⎭,则1tan21tan2αα-=+( ) A .12B .12-C .2D .-2【答案】D 【解析】 【分析】由2222sin cos2tan222sin 2sincos22sin cos tan 1222ααααααααα===++,可解得tan 2α,即可求解 【详解】3sin 2sincos225ααα==-,故2222sincos2tan32225sin cos tan 1222αααααα==-++, 可解得1tan23α=-或tan 32α=-,又3ππ,2α⎛⎫∈ ⎪⎝⎭,故tan 32α=-,故1tan 221tan2αα-=-+, 故选:D例13.(2022·湖北武汉·模拟预测)已知1sin 64x π⎛⎫-= ⎪⎝⎭,则cos 23x π⎛⎫-= ⎪⎝⎭( )A .78-B .78C.D【答案】B 【解析】 【分析】根据题意得sin 6x π⎛⎫- ⎪⎝⎭的值,再根据2cos 212sin 36x x ππ⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭求解即可.【详解】因为sin sin 66x x ππ⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭,所以1sin 64x π⎛⎫-=- ⎪⎝⎭, 2217cos 2cos 212sin 1236648x x x πππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=-=--=--= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.故选:B.例14.(2022·湖北·模拟预测)已知,22ππα⎛⎫∈- ⎪⎝⎭,且1cos 42πα⎛⎫-= ⎪⎝⎭,则cos2α=( )A .B .±C .12D 【答案】D 【解析】 【分析】由已知α的取值范围,求出4πα-的取值范围,再结合1cos 42πα⎛⎫-= ⎪⎝⎭即可解得α的值,cos2α即可求解 【详解】 因为22ππα-<<,所以3444πππα-<-< 又1cos 42πα⎛⎫-= ⎪⎝⎭,所以43ππα-=-,所以12πα=-所以cos 2cos cos 66ππα⎛⎫=-==⎪⎝⎭故选:D例15.(2022·全国·模拟预测)已知1sin 35πα⎛⎫+= ⎪⎝⎭,则cos 23πα⎛⎫-= ⎪⎝⎭( )A .2325B .2325-C D . 【答案】B 【解析】 【分析】利用诱导公式化简,然后利用二倍角公式即得. 【详解】因为1sin cos cos 3665πππααα⎛⎫⎛⎫⎛⎫+=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以22123cos 2cos22cos 121366525πππααα⎛⎫⎛⎫⎛⎫⎛⎫-=-=--=⨯-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:B .例16.(2022·黑龙江·哈师大附中三模(文))已知()3sin 455α︒+=,45135α︒<<︒,则cos2=α( )A .2425B .2425-C .725D .725-【答案】B 【解析】【分析】首先根据同角三角函数的基本关系求出()cos 45α︒+,再利用二倍角公式及诱导公式计算可得; 【详解】解:因为45135α︒<<︒,所以9045180α︒<+︒<︒,又()3sin 455α︒+=,所以()4cos 455α︒+==-,所以()()()3424sin 2452sin 45cos 4525525ααα⎛⎫︒+=︒+︒+=⨯⨯-=- ⎪⎝⎭。
2018-2020年高考全国卷数学之三角函数专题训练 一.选择题(共25小题) 1.(2018•全国)要得到y=cosx,则要将y=sinx( ) A.向左平移π个单位 B.向右平移π个单位 C.向左平移个单位 D.向右平移个单位 2.(2018•全国)已知α为第二象限的角,且tanα=﹣,则sinα+cosα=( ) A.﹣ B.﹣ C.﹣ D. 3.(2020•新课标Ⅰ)已知α∈(0,π),且3cos2α﹣8cosα=5,则sinα=( ) A. B. C. D. 4.(2020•新课标Ⅰ)设函数f(x)=cos(ωx+)在[﹣π,π]的图象大致如图,则f(x)的最小正周期为( )
A. B. C. D. 5.(2020•新课标Ⅱ)若α为第四象限角,则( ) A.cos2α>0 B.cos2α<0 C.sin2α>0 D.sin2α<0 6.(2020•新课标Ⅲ)已知2tanθ﹣tan(θ+)=7,则tanθ=( ) A.﹣2 B.﹣1 C.1 D.2 7.(2020•新课标Ⅲ)在△ABC中,cosC=,AC=4,BC=3,则cosB=( ) A. B. C. D. 8.(2020•新课标Ⅲ)在△ABC中,cosC=,AC=4,BC=3,则tanB=( ) A. B.2 C.4 D.8 9.(2020•新课标Ⅲ)已知sinθ+sin(θ+)=1,则sin(θ+)=( ) A. B. C. D. 10.(2019•新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c.已知asinA﹣bsinB=4csinC,cosA=﹣,则=( )
A.6 B.5 C.4 D.3 11.(2019•新课标Ⅰ)tan255°=( ) A.﹣2﹣ B.﹣2+ C.2﹣ D.2+ 12.(2019•新课标Ⅱ)下列函数中,以为最小正周期且在区间(,)单调递增的是( ) A.f(x)=|cos2x| B.f(x)=|sin2x| C.f(x)=cos|x| D.f(x)=sin|x| 13.(2019•新课标Ⅱ)已知α∈(0,),2sin2α=cos2α+1,则sinα=( ) A. B. C. D. 14.(2019•新课标Ⅱ)若x1=,x2=是函数f(x)=sinωx(ω>0)两个相邻的极值点,则ω=( )
高考数学复习考点题型专题讲解专题3 三角中的最值、范围问题高考定位 以三角函数、三角形为背景的最值及范围问题是高考的热点,常用的方法主要有:函数的性质(如有界性、单调性)、基本不等式、数形结合等.1.(2018·全国Ⅱ卷)若f (x )=cos x -sin x 在[-a ,a ]上是减函数,则a 的最大值是( )A.π4B.π2C.3π4D.π 答案 A解析法一f (x )=cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4,且函数y =cos x 在区间[0,π]上单调递减,则由0≤x +π4≤π, 得-π4≤x ≤3π4.因为f (x )在[-a ,a ]上是减函数, 所以⎩⎪⎨⎪⎧-a ≥-π4,a ≤3π4,解得a ≤π4,所以0<a ≤π4,所以a 的最大值是π4,故选A. 法二 因为f (x )=cos x -sin x , 所以f ′(x )=-sin x -cos x ,则由题意,知f ′(x )=-sin x -cos x ≤0在[-a ,a ]上恒成立, 即sin x +cos x ≥0,即2sin ⎝⎛⎭⎪⎫x +π4≥0在[-a ,a ]上恒成立,结合函数y =2sin ⎝ ⎛⎭⎪⎫x +π4的图象可知有⎩⎪⎨⎪⎧-a +π4≥0,a +π4≤π,解得a ≤π4, 所以0<a ≤π4,所以a 的最大值是π4,故选A. 2.(2022·全国甲卷)设函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π3在区间(0,π)上恰有三个极值点、两个零点,则ω的取值范围是( ) A.⎣⎢⎡⎭⎪⎫53,136 B.⎣⎢⎡⎭⎪⎫53,196 C.⎝ ⎛⎦⎥⎤136,83 D.⎝ ⎛⎦⎥⎤136,196答案 C解析 由题意可得ω>0,故由x ∈(0,π),得ωx +π3∈⎝⎛⎭⎪⎫π3,πω+π3.根据函数f (x )在区间(0,π)上恰有三个极值点,知5π2<πω+π3≤7π2,得136<ω≤196. 根据函数f (x )在区间(0,π)上恰有两个零点,知2π<πω+π3≤3π,得53<ω≤83.综上,ω的取值范围为⎝ ⎛⎦⎥⎤136,83.3.(2018·北京卷)若△ABC 的面积为34(a 2+c 2-b 2),且∠C 为钝角,则∠B =________;ca的取值范围是________. 答案 60° (2,+∞)解析 △ABC 的面积S =12ac sin B =34(a 2+c 2-b 2)=34×2ac cos B ,所以tan B =3,因为0°<∠B <90°, 所以∠B =60°.因为∠C 为钝角,所以0°<∠A <30°, 所以0<tan A <33,所以c a =sin C sin A =sin (120°-A )sin A=sin 120°cos A -cos 120°sin Asin A=32tan A +12>2, 故ca的取值范围为(2,+∞).4.(2022·新高考Ⅰ卷)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos A1+sin A =sin 2B1+cos 2B.(1)若C =2π3,求B ;(2)求a 2+b 2c2的最小值.解 (1)因为cos A 1+sin A =sin 2B1+cos 2B ,所以cos A 1+sin A =2sin B cos B1+2cos 2B -1,所以cos A 1+sin A =sin Bcos B,所以cos A cos B =sin B +sin A sin B , 所以cos(A +B )=sin B , 所以sin B =-cos C =-cos2π3=12. 因为B ∈⎝ ⎛⎭⎪⎫0,π3,所以B =π6.(2)由(1)得cos(A +B )=sin B , 所以sin ⎣⎢⎡⎦⎥⎤π2-(A +B )=sin B ,且0<A +B <π2,所以0<B <π2,0<π2-(A +B )<π2,所以π2-(A +B )=B ,解得A =π2-2B ,由正弦定理得a 2+b 2c 2=sin 2A +sin 2Bsin 2C=sin 2A +sin 2B 1-cos 2C =sin 2⎝ ⎛⎭⎪⎫π2-2B +sin 2B 1-sin 2B=cos 22B +sin 2B cos 2B =(2cos 2B -1)2+1-cos 2B cos 2B=4cos 4B -5cos 2B +2cos 2B =4cos 2B +2cos 2B -5≥24cos 2B ·2cos 2B -5=42-5,当且仅当cos 2B =22时取等号, 所以a 2+b 2c2的最小值为42-5.热点一 三角函数式的最值或范围求三角函数式的最值或范围问题,首先把函数式化为一个角的同名三角函数形式,接着利用三角函数的有界性或单调性求解.例1(2022·宁波调研)已知函数f (x )=2sin x cos x -23cos 2x + 3. (1)求f ⎝ ⎛⎭⎪⎫π4的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.解 (1)因为f (x )=2sin x cos x -23cos 2x +3=sin 2x -3cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π3,所以f ⎝ ⎛⎭⎪⎫π4=2sin ⎝ ⎛⎭⎪⎫π2-π3=2sin π6=1.(2)因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,所以sin ⎝ ⎛⎭⎪⎫2x -π3∈⎣⎢⎡⎦⎥⎤-32,1,所以,当2x -π3=π2,即x =5π12时,f (x )取到最大值2; 当2x -π3=-π3,即x =0时,f (x )取到最小值- 3.易错提醒 求三角函数式的最值范围问题要注意: (1)把三角函数式正确地化简成单一函数形式;(2)根据所给自变量的范围正确地确定ωx +φ的范围,从而根据三角函数的单调性求范围.训练1(2022·潍坊质检)在①函数y =f (x )的图象关于直线x =π3对称,②函数y =f (x ) 的图象关于点P ⎝ ⎛⎭⎪⎫π6,0对称,③函数y =f (x )的图象经过点Q ⎝ ⎛⎭⎪⎫2π3,-1,这三个条件中任选一个,补充在下面问题中并解答.问题:已知函数f (x )=sin ωx cos φ+cos ωx sin φ⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,且________,判断函数f (x )在区间⎝ ⎛⎭⎪⎫π6,π2上是否存在最大值?若存在,求出最大值及此时的x 值;若不存在,说明理由.解f (x )=sin ωx cos φ+cos ωx sin φ=sin(ωx +φ), 由已知函数f (x )的周期T =2πω=π,得ω=2,所以f (x )=sin(2x +φ). 若选①,则有2×π3+φ=k π+π2(k ∈Z ), 解得φ=k π-π6(k ∈Z ).又因为|φ|<π2,所以φ=-π6, 所以f (x )=sin ⎝⎛⎭⎪⎫2x -π6.当x ∈⎝ ⎛⎭⎪⎫π6,π2时,则2x -π6∈⎝ ⎛⎭⎪⎫π6,5π6,所以当2x -π6=π2,即x =π3时,函数f (x )取得最大值,最大值为1.若选②,则有2×π6+φ=k π(k ∈Z ), 解得φ=k π-π3(k ∈Z ). 又因为|φ|<π2,所以φ=-π3, 所以f (x )=sin ⎝⎛⎭⎪⎫2x -π3.当x ∈⎝⎛⎭⎪⎫π6,π2时,则2x -π3∈⎝ ⎛⎭⎪⎫0,2π3, 所以当2x -π3=π2,即x =5π12时,函数f (x )取得最大值,最大值为1.若选③,则有2×2π3+φ=2k π-π2(k ∈Z ),解得φ=2k π-11π6(k ∈Z ).又因为|φ|<π2, 所以φ=π6,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6.当x ∈⎝ ⎛⎭⎪⎫π6,π2时,则2x +π6∈⎝ ⎛⎭⎪⎫π2,7π6,显然,函数f (x )在该区间上没有最大值. 热点二 与三角函数性质有关的参数范围与三角函数性质有关的参数问题,主要分为三类,其共同的解法是将y =A sin(ωx +φ)中的ωx +φ看作一个整体,结合正弦函数的图象与性质进行求解. 考向1 由最值(或值域)求参数的范围例2 若函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π4(ω>0)在⎣⎢⎡⎦⎥⎤0,π2上的值域是⎣⎢⎡⎦⎥⎤-22,1,则ω的取值范围是( ) A.⎝ ⎛⎦⎥⎤0,32B.⎣⎢⎡⎦⎥⎤32,3C.⎣⎢⎡⎦⎥⎤3,72D.⎣⎢⎡⎦⎥⎤52,72答案 B解析 因为ω>0,所以当x ∈⎣⎢⎡⎦⎥⎤0,π2时,ωx -π4∈⎣⎢⎡⎦⎥⎤-π4,ωπ2-π4.又因为函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π4(ω>0)在x ∈⎣⎢⎡⎦⎥⎤0,π2上的值域是⎣⎢⎡⎦⎥⎤-22,1,所以π2≤ωπ2-π4≤5π4,解得32≤ω≤3.故选B.考向2 由单调性求参数的范围例3 已知f (x )=sin(2x -φ)⎝ ⎛⎭⎪⎫0<φ<π2在⎣⎢⎡⎦⎥⎤0,π3上是增函数,且f (x )在⎝ ⎛⎭⎪⎫0,7π8上有最小值,那么φ的取值范围是( ) A.⎣⎢⎡⎭⎪⎫π6,π2 B.⎣⎢⎡⎭⎪⎫π6,π4C.⎣⎢⎡⎭⎪⎫π3,π2D.⎣⎢⎡⎭⎪⎫π4,π3答案 B解析 由x ∈⎣⎢⎡⎦⎥⎤0,π3,得2x -φ∈⎣⎢⎡⎦⎥⎤-φ,2π3-φ, 又由0<φ<π2,且f (x )在⎣⎢⎡⎦⎥⎤0,π3上是增函数,可得2π3-φ≤π2,所以π6≤φ<π2. 当x ∈⎝ ⎛⎭⎪⎫0,7π8时,2x -φ∈⎝ ⎛⎭⎪⎫-φ,7π4-φ, 由f (x )在⎝⎛⎭⎪⎫0,7π8上有最小值,可得7π4-φ>3π2,则φ<π4.综上,π6≤φ<π4.故选B.考向3 由函数的零点求参数的范围例4 已知a =⎝⎛⎭⎪⎫sin ω2x ,sin ωx ,b =⎝ ⎛⎭⎪⎫sin ω2x ,12,其中ω>0,若函数f (x )=a·b -12在区间(π,2π)上没有零点,则ω的取值范围是( ) A.⎝⎛⎦⎥⎤0,18B.⎝ ⎛⎦⎥⎤0,58C.⎝ ⎛⎦⎥⎤0,18∪⎣⎢⎡⎦⎥⎤58,1D.⎝ ⎛⎦⎥⎤0,18∪⎣⎢⎡⎦⎥⎤14,58答案 D 解析f (x )=sin 2ω2x +12sin ωx -12=1-cos ωx 2+12sin ωx -12=12(sin ωx -cos ωx )=22sin ⎝⎛⎭⎪⎫ωx -π4.由函数f (x )在区间(π,2π)上没有零点,知其最小正周期T ≥2π, 即2πω≥2π,所以ω≤1. 当x ∈(π,2π)时,ωx -π4∈⎝⎛⎭⎪⎫ωπ-π4,2ωπ-π4,所以⎩⎪⎨⎪⎧ωπ-π4≥k π,2ωπ-π4≤(k +1)π(k ∈Z ),解得k +14≤ω≤k 2+58(k ∈Z ).因为0<ω≤1, 当k =0时,14≤ω≤58,当k =-1时,0<ω≤18,所以ω∈⎝ ⎛⎦⎥⎤0,18∪⎣⎢⎡⎦⎥⎤14,58.故选D.规律方法 由三角函数的性质求解参数,首先将解析式化简,利用对称性、奇偶性或单调性得到含有参数的表达式,进而求出参数的值或范围.训练2 (1)(2022·广州调研)若函数f (x )=12cos ωx -32sin ωx (ω>0)在[0,π]内的值域为⎣⎢⎡⎦⎥⎤-1,12,则ω的取值范围为( ) A.⎣⎢⎡⎦⎥⎤23,43B.⎝ ⎛⎦⎥⎤0,43C.⎝⎛⎦⎥⎤0,23D.(0,1](2)(2022·金华质检)将函数f (x )=sin 4x +cos 4x 的图象向左平移π8个单位长度后,得到g (x )的图象,若函数y =g (ωx )在⎣⎢⎡⎦⎥⎤-π12,π4上单调递减,则正数ω的最大值为( )A.12B.1 C.32D.23答案 (1)A (2)A解析 (1)f (x )=12cos ωx -32sin ωx =cos ⎝ ⎛⎭⎪⎫ωx +π3(ω>0),当x ∈[0,π]时,π3≤ωx +π3≤ωπ+π3. 又f (x )∈⎣⎢⎡⎦⎥⎤-1,12,所以π≤ωπ+π3≤5π3,解得23≤ω≤43, 故ω的取值范围为⎣⎢⎡⎦⎥⎤23,43.(2)依题意,f (x )=⎝ ⎛⎭⎪⎫1-cos 2x 22+⎝ ⎛⎭⎪⎫1+cos 2x 22=1+cos 22x 2=3+cos 4x4, 其图象向左平移π8个单位长度得到g (x )=34+14cos ⎣⎢⎡⎦⎥⎤4⎝ ⎛⎭⎪⎫x +π8=34+14cos ⎝ ⎛⎭⎪⎫4x +π2 =34-14sin 4x 的图象, 故g (ωx )=34-14sin(4ωx ).令-π2+2k π≤4ωx ≤π2+2k π,k ∈Z ,由于ω>0,得-π8+k π2ω≤x ≤π8+k π2ω,k ∈Z .由于函数g (ωx )在⎣⎢⎡⎦⎥⎤-π12,π4上单调递减,故⎩⎪⎨⎪⎧-π8+k π2ω≤-π12,π8+k π2ω≥π4,解得⎩⎪⎨⎪⎧ω≤32-6k ,ω≤12+2k ,k ∈Z ,所以当k =0时,ω=12为正数ω的最大值.热点三 三角形中有关量的最值或范围三角形中的最值、范围问题的解题策略(1)定基本量:根据题意画出图形,找出三角形中的边、角,利用正弦、余弦定理求出相关的边、角,并选择边、角作为基本量,确定基本量的范围.(2)构建函数:根据正弦、余弦定理或三角恒等变换,将所求范围的变量表示成函数形式.(3)求最值:利用基本不等式或函数的单调性等求函数的最值.例5(2022·滨州二模)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知6cos 2⎝ ⎛⎭⎪⎫π2+A +cos A =5. (1)求A 的大小;(2)若a =2,求b 2+c 2的取值范围. 解 (1)由已知得6sin 2A +cos A =5,整理得6cos 2A -cos A -1=0, 解得cos A =12或cos A =-13.又A ∈⎝⎛⎭⎪⎫0,π2,所以cos A =12,即A =π3.(2)由余弦定理a 2=b 2+c 2-2bc cos A 及a =2,A =π3得4=b 2+c 2-bc , 即b 2+c 2=4+bc ,由正弦定理得a sin A =b sin B =c sin C =232=433,即b =433sin B ,c =433sin C ,又C =2π3-B ,所以bc =163sin B sin C =163sin B sin ⎝⎛⎭⎪⎫2π3-B =833sin B ·cos B +83sin 2B=433sin 2B -43cos 2B +43=83sin⎝ ⎛⎭⎪⎫2B -π6+43, 又由⎩⎪⎨⎪⎧0<B <π2,0<23π-B <π2,解得π6<B <π2,所以π6<2B -π6<56π,所以sin ⎝ ⎛⎭⎪⎫2B -π6∈⎝ ⎛⎦⎥⎤12,1,所以bc ∈⎝ ⎛⎦⎥⎤83,4,所以b 2+c 2=4+bc ∈⎝ ⎛⎦⎥⎤203,8.易错提醒 求解三角形中的最值、范围问题的注意点(1)涉及求范围的问题,一定要搞清楚变量的范围,若已知边的范围,求角的范围可以利用余弦定理进行转化.(2)注意题目中的隐含条件,如A +B +C =π,0<A <π,|b -c |<a <b +c ,三角形中大边对大角等.训练3 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知S =34(b 2+c 2-a 2),a =4.(1)求角A 的大小.(2)求△ABC 周长的取值范围. 解 (1)由S =34(b 2+c 2-a 2), 得12bc sin A =34(b 2+c 2-a 2)=34×2bc cos A , 整理得tan A =3,因为A ∈(0,π), 所以A =π3.(2)设△ABC 的周长为L , 因为a =4,A =π3, 由余弦定理得:42=b 2+c 2-2bc cos π3,即42=b 2+c 2-bc =(b +c )2-3bc ≥(b +c )2-3⎝⎛⎭⎪⎫b +c 22=14(b +c )2, 所以b +c ≤8, 又b +c >a =4,所以L =a +b +c ∈(8,12].一、基本技能练1.已知函数f (x )=2sin(ωx +φ)(ω>0)的图象关于直线x =π3对称,且f ⎝ ⎛⎭⎪⎫π12=0,则ω的最小值为( ) A.2 B.4 C.6 D.8 答案 A解析 函数f (x )的周期T ≤4⎝ ⎛⎭⎪⎫π3-π12=π,则2πω≤π,解得ω≥2,故ω的最小值为2.2.将函数y =cos(2x +φ)的图象向右平移π3个单位长度,得到的函数为奇函数,则|φ|的最小值为( ) A.π12B.π6C.π3D.5π6 答案 B解析 将函数y =cos(2x +φ)的图象向右平移π3个单位长度,得到图象的函数解析式为y =cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π3+φ=cos ⎝ ⎛⎭⎪⎫2x -2π3+φ,此函数为奇函数,所以-2π3+φ=π2+k π(k ∈Z ),解得φ=7π6+k π(k ∈Z ), 则当k =-1时,|φ|取得最小值π6.3.(2022·海南模拟)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin A +2c sinC =2b sin C cos A ,则角A 的最大值为( ) A.π6B.π4 C.π3D.2π3答案 A解析 因为a sin A +2c sin C =2b sin C cos A , 由正弦定理可得,a 2+2c 2=2bc cos A ,① 由余弦定理得,a 2=b 2+c 2-2bc cos A ,② ①+②得2a 2=b 2-c 2,所以cos A =b 2+c 2-a 22bc=b 2+c 2-12(b 2-c 2)2bc=b 2+3c 24bc ≥23bc 4bc =32(当且仅当b =3c 时取等号),所以角A 的最大值为π6.4.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若2a -cb=cos Ccos B,b =4,则△ABC 的面积的最大值为( ) A.43B.2 3 C.2 D. 3 答案 A解析 ∵在△ABC 中,2a -cb=cos C cos B, ∴(2a -c )cos B =b cos C ,由正弦定理,得(2sin A -sin C )cos B =sin B cos C , 整理得sin(B +C )=2sin A cos B , ∵A ∈(0,π),∴sin A ≠0. ∴cos B =12,即B =π3,由余弦定理可得16=a 2+c 2-2ac cos B =a 2+c 2-ac ≥2ac -ac =ac , ∴ac ≤16,当且仅当a =c 时取等号, ∴△ABC 的面积S =12ac sin B =34ac ≤4 3.即△ABC 的面积的最大值为4 3.5.(2022·苏北四市模拟)若函数f (x )=cos 2x +sin ⎝ ⎛⎭⎪⎫2x +π6在(0,α)上恰有2个零点,则α的取值范围为( ) A.⎣⎢⎡⎭⎪⎫5π6,4π3 B.⎝⎛⎦⎥⎤5π6,4π3C.⎣⎢⎡⎭⎪⎫5π3,8π3 D.⎝ ⎛⎦⎥⎤5π3,8π3 答案 B解析 由题意,函数f (x )=cos 2x +sin ⎝ ⎛⎭⎪⎫2x +π6=3sin ⎝ ⎛⎭⎪⎫2x +π3,因为0<x <α,所以π3<2x +π3<2α+π3, 又由f (x )在(0,α)上恰有2个零点, 所以2π<2α+π3≤3π,解得5π6<α≤4π3, 所以α的取值范围为⎝⎛⎦⎥⎤5π6,4π3.故选B. 6.已知函数f (x )=cos(ωx +φ)(ω>0)的最小正周期为π,且对x ∈R ,f (x )≥f ⎝ ⎛⎭⎪⎫π3恒成立,若函数y =f (x )在[0,a ]上单调递减,则a 的最大值是( ) A.π6B.π3 C.2π3D.5π6答案 B解析 因为函数f (x )=cos(ωx +φ)的最小正周期为π, 所以ω=2ππ=2, 又对x ∈R ,都有f (x )≥f ⎝ ⎛⎭⎪⎫π3,所以函数f (x )在x =π3时取得最小值,则2π3+φ=π+2k π,k ∈Z , 即φ=π3+2k π,k ∈Z ,所以f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3,令2k π≤2x +π3≤π+2k π,k ∈Z , 解得-π6+k π≤x ≤π3+k π,k ∈Z ,则函数y =f (x )在⎣⎢⎡⎦⎥⎤0,π3上单调递减,故a 的最大值是π3,故选B.7.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值为-2,则ω的取值范围是________. 答案⎣⎢⎡⎭⎪⎫32,+∞解析 x ∈⎣⎢⎡⎦⎥⎤-π3,π4,因为ω>0,-π3ω≤ωx ≤π4ω, 由题意知-π3ω≤-π2,即ω≥32,故ω取值范围是⎣⎢⎡⎭⎪⎫32,+∞.8.已知函数f (x )=cos ωx +sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0)在[0,π]上恰有一个最大值点和两个零点,则ω的取值范围是________. 答案⎣⎢⎡⎭⎪⎫53,136解析函数f (x )=cos ωx +sin ⎝⎛⎭⎪⎫ωx +π6=3sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0), 由x ∈[0,π],得ωx +π3∈⎣⎢⎡⎦⎥⎤π3,ωπ+π3.又f (x )在[0,π]上恰有一个最大值点和两个零点, 则2π≤ωπ+π3<52π, 解得53≤ω<136.9.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =120°,∠ABC 的角平分线交AC 于点D ,且BD =1,则4a +c 的最小值为________. 答案 9解析 因为∠ABC =120°,∠ABC 的平分线交AC 于点D , 所以∠ABD =∠CBD =60°,由三角形的面积公式可得12ac sin 120°=12a ×1·sin 60°+12c ·1·sin 60°,化简得ac =a +c ,又a >0,c >0,所以1a +1c=1,则4a +c =(4a +c )⎝ ⎛⎭⎪⎫1a +1c =5+c a +4a c ≥5+2c a ·4ac=9, 当且仅当c =2a 时取等号,故4a+c的最小值为9.10.已知△ABC的内角A,B,C所对的边分别为a,b,c,且A≠π2,c+b cos A-a cos B=2a cos A,则ba=________;内角B的取值范围是________.答案22⎝⎛⎦⎥⎤0,π4解析由c+b cos A-a cos B=2a cos A结合正弦定理得sin C+sin B cos A-sin A cos B=2sin A cos A,即sin(A+B)+sin B cos A-sin A cos B=2sin A cos A,化简得2sin B cos A=2sin A cos A.因为A≠π2,所以cos A≠0,则2sin B=2sin A,所以ba=sin Bsin A=22,则由余弦定理得cos B=a2+c2-b22ac=2b2+c2-b222bc=b2+c222bc≥2bc22bc=22,当且仅当b=c时等号成立,解得0<B≤π4.11.设△ABC的内角A,B,C的对边分别为a,b,c,a=b tan A,且B为钝角.(1)证明:B-A=π2;(2)求sin A+sin C的取值范围. (1)证明由a=b tan A及正弦定理,得sin A cos A =a b =sin A sin B , 所以sin B =cos A , 即sin B =sin ⎝ ⎛⎭⎪⎫π2+A .又B 为钝角,因此π2+A ∈⎝ ⎛⎭⎪⎫π2,π,故B =π2+A ,即B -A =π2.(2)解 由(1)知,C =π-(A +B ) =π-⎝⎛⎭⎪⎫2A +π2=π2-2A >0, 所以A ∈⎝⎛⎭⎪⎫0,π4,于是sin A +sin C =sin A +sin ⎝ ⎛⎭⎪⎫π2-2A =sin A +cos 2A =-2sin 2A +sin A +1=-2⎝ ⎛⎭⎪⎫sin A -142+98.因为0<A <π4,所以0<sin A <22,因此22<-2⎝⎛⎭⎪⎫sin A -142+98≤98.由此可知sin A +sin C 的取值范围是⎝ ⎛⎦⎥⎤22,98.12.已知向量a =⎝ ⎛⎭⎪⎫cos ⎝ ⎛⎭⎪⎫π2+x ,sin ⎝ ⎛⎭⎪⎫π2+x ,b =(-sin x ,3sin x ),f (x )=a ·b .(1)求函数f (x )的最小正周期及f (x )的最大值;(2)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若f ⎝ ⎛⎭⎪⎫A 2=1,a =23,求△ABC面积的最大值并说明此时△ABC 的形状. 解 (1)由已知得a =(-sin x ,cos x ), 又b =(-sin x ,3sin x ), 则f (x )=a ·b =sin 2x +3sin x cos x=12(1-cos 2x )+32sin 2x =sin ⎝⎛⎭⎪⎫2x -π6+12, 所以f (x )的最小正周期T =2π2=π, 当2x -π6=π2+2k π(k ∈Z ),即x =π3+k π(k ∈Z )时,f (x )取得最大值32. (2)在锐角△ABC 中,因为f ⎝ ⎛⎭⎪⎫A 2=sin ⎝ ⎛⎭⎪⎫A -π6+12=1,所以sin ⎝ ⎛⎭⎪⎫A -π6=12,所以A =π3.因为a 2=b 2+c 2-2bc cos A , 所以12=b 2+c 2-bc , 所以b 2+c 2=bc +12≥2bc ,所以bc ≤12(当且仅当b =c =23时等号成立),此时△ABC 为等边三角形, S △ABC =12bc sin A =34bc ≤3 3.所以当△ABC 为等边三角形时面积取最大值3 3. 二、创新拓展练13.设锐角△ABC 的三个内角A ,B ,C 所对边分别为a ,b ,c ,且a =1,B =2A ,则b 的取值范围为( ) A.(2,3) B.(1,3) C.(2,2) D.(0,2) 答案 A解析 ∵B =2A ,∴sin B =sin 2A =2sin A cos A . ∵a =1,∴b =2a cos A =2cos A .又△ABC 为锐角三角形,∴⎩⎪⎨⎪⎧0<2A <π2,0<A <π2,0<π-3A <π2,∴π6<A <π4, ∴22<cos A <32, 即2<2cos A <3,故选A.14.(多选)(2022·台州质检)设函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx +π3(ω>0),已知f (x )在[0,2π]上有且仅有3个极小值点,则( )A.f (x )在(0,2π)上有且仅有5个零点B.f (x )在(0,2π)上有且仅有2个极大值点C.f (x )在⎝ ⎛⎭⎪⎫0,π6上单调递减D.ω的取值范围是⎣⎢⎡⎭⎪⎫73,103答案 CD解析 因为x ∈[0,2π], 所以ωx +π3∈⎣⎢⎡⎦⎥⎤π3,2πω+π3. 设t =ωx +π3∈⎣⎢⎡⎦⎥⎤π3,2πω+π3,画出y =cos t 的图象如图所示.由图象可知,若f (x )在[0,2π]上有且仅有3个极小值点, 则5π≤ 2πω+π3<7π, 解得73≤ω<103, 故D 正确;故f (x )在(0,2π)上可能有5,6或7个零点,故A 错误;f (x )在(0,2π)上可能有2或3个极大值点,故B 错误; 当x ∈⎝ ⎛⎭⎪⎫0,π6时,ωx +π3∈⎝ ⎛⎭⎪⎫π3,π6ω+π3.因为73≤ω<103,所以13π18≤π6ω+π3<8π9,故f (x )在⎝⎛⎭⎪⎫0,π6上单调递减,故C 正确.15.(多选)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且c =6,记S 为△ABC 的面积,则下列说法正确的是( ) A.若C =π3,则S 有最大值9 3 B.若A =π6,a =23,则S 有最小值3 3C.若a =2b ,则cos C 有最小值0D.若a +b =10,则sin C 有最大值2425答案 ABD解析 对于选项A ,对角C 由余弦定理得36=c 2=a 2+b 2-ab ≥2ab -ab =ab , 因此,S =12ab sin C =34ab ≤93,当且仅当a =b =6时取等号,故A 正确; 对于选项B ,对角A 用余弦定理得 12=a 2=c 2+b 2-3bc =36+b 2-63b , 解得b =23或b =43, 因此,S =12bc sin A =32b ≥33,当且仅当b =23时取等号,故B 正确. 对于选项C ,若a =2b ,由三边关系可得a -b =b <c =6<a +b =3b ⇒2<b <6,此时,由余弦定理,得cos C =a 2+b 2-c 22ab =5b 2-364b 2=54-9b 2∈(-1,1),故C 错误.对于选项D ,若a +b =10,则cos C =a 2+b 2-c 22ab =(a +b )2-c 2-2ab 2ab =32ab -1,又ab ≤(a +b )24=25,当且仅当a =b =5时取等号,∴cos C =32ab -1≥725⇒sin C =1-cos 2C ≤2425,故D 正确,故选ABD.16.(2022·南京师大附中模拟)法国的拿破仑提出过一个几何定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个等边三角形的外接圆圆心恰好是一个等边三角形的三个顶点”.在△ABC 中,A =60°,以AB ,BC ,AC 为边向外作三个等边三角形,其外接圆圆心依次为O 1,O 2,O 3,则∠O 1AO 3=________;若△O 1O 2O 3的面积为3,则三角形中AB +AC 的最大值为________.答案 120° 4解析 由于O 1,O 3是正△ABC ′,△AB ′C 的外接圆圆心,故也是它们的中心, 所以在△O 1AB 中,∠O 1AB =30°,同理∠O 3AC =30°, 又∠BAC =60°,所以∠O 1AO 3=120°; 由题意知△O 1O 2O 3为等边三角形,设边长为m , 则S △O 1O 2O 3=12m 2sin 60°=34m 2=3,解得O 1O 3=m =2.设BC =a ,AC =b ,AB =c ,在等腰△BO 1A 中,∠O 1AB =∠O 1BA =30°,∠AO 1B =120°, 则AB sin 120°=O 1Asin 30°,解得O 1A =c 3,同理得O 3A =b 3,在△O 1AO 3中,由余弦定理得O 1O 23=O 1A 2+O 3A 2-2O 1A ·O 3A ·cos 120°,即4=c 23+b 23-2·bc 3·⎝ ⎛⎭⎪⎫-12,即b 2+c 2+bc =12,即(b +c )2-bc =12, 故(b +c )2-12=bc ≤⎝⎛⎭⎪⎫b +c 22, 解得b +c ≤4,当且仅当b =c =2时取等号,故三角形中AB +AC 的最大值为4. 17.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b 2c =a (b 2+c 2-a 2). (1)若A =π3,求B 的大小;(2)若a ≠c ,求c -3ba 的最小值.解 (1)因为b 2c =a (b 2+c 2-a 2),所以由余弦定理得cos A =b 2+c 2-a 22bc =b2a .因为A =π3,所以b 2a =12,即a =b , 所以B =A =π3.(2)由(1)及正弦定理得cos A =sin B2sin A,即sin B =2sin A cos A =sin 2A , 所以B =2A 或B +2A =π.当B +2A =π时,A =C ,与a ≠c 矛盾,故舍去, 所以B =2A .c -3b a =sin C -3sin B sin A =sin (A +B )-3sin Bsin A =sin A cos B +cos A sin B -3sin Bsin A=cos B +(cos A -3)sin 2Asin A=cos 2A +2(cos A -3)·cos A =4cos 2A -6cos A -1 =4⎝⎛⎭⎪⎫cos A -342-134.因为C =π-A -B =π-3A >0, 即A <π3,所以cos A >12,所以当cos A =34时,c -3b a 有最小值-134.。
[考情分析]以三角形、三角函数为载体,以三角函数的图象与性质、正弦定理、余弦定理为工具,以三角恒等变换为手段来考查三角函数的综合问题是高考的热点题型,主要考查内容有正、余弦定理、三角形面积的计算、三角恒等变换和三角函数的性质.解题时要充分利用三角函数的图象与性质,交替使用正弦定理、余弦定理,利用数形结合、函数与方程思想等进行求解.考点一三角函数图象与性质的综合例1已知函数f (x )=A sin(ωx +φ)A >0,ω>0,|φ|<π2的部分图象如图所示.(1)求f (x )=2的解集;(2)求函数g (x )=fx -π12-f x +π12的单调递增区间.解(1)由图象可知,周期T =5π12+7π12=π,∴ω=2ππ=2,∵点5π12,0,∴A sin 2×5π12+φ=0,∴sin 5π6+φ=0,解得5π6+φ=π+2k π,φ=2k π+π6,k ∈Z ,∵|φ|<π2,∴φ=π6,∵点(0,1)在函数图象上,∴A sin π6=1,A =2,∴函数f (x )的解析式为f (x )=2sin 2x +π6由f (x )=2sin 2x +π62,得sin 2x +π61,即2x +π6=π2+2k π,k ∈Z ,解得x =π6+k π,k ∈Z ,∴f (x )=2|x =π6k π,k ∈(2)g (x )=由(1)知f (x )=xg (x )=2sin 2+π6-2sin 2+π6=2sin2x -2sinx =2sin2x -x +32cos2sin2x -3cos2x=x 由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z ,∴函数g (x )=f k π-π12,k π+5π12,k ∈Z .解决三角函数图象与性质综合问题的方法利用图象讨论三角函数的性质,应先把函数化成y =A sin(ωx +φ)(ω>0)或y =A cos(ωx +φ)(ω>0)的形式,然后通过换元法令t =ωx +φ,转化为研究y =A sin t 或y =A cos t 的性质.1.已知函数f (x )=2sin ωx cos φ+2sin φ-4sin 2ωx 2sin φ(ω>0,|φ|<π),其图象的一条对称轴与相邻对称中心的横坐标相差π4,________,从以下两个条件中任选一个补充在空白横线中.①函数f (x )的图象向左平移π6个单位长度后得到的图象关于y 轴对称且f (0)<0;②函数f (x )的图象的一条对称轴为直线x =-π3且f (1).(1)求函数f (x )的解析式;(2)若x ∈π2,3π4,函数h (x )=f (x )-a 存在两个不同零点x 1,x 2,求x 1+x 2的值.解(1)f (x )=2sin ωx cos φ+2sin φ-2(1-cos ωx )sin φ=2sin(ωx +φ),又函数f (x )的最小正周期为T =4×π4=π,所以ω=2πT=2,若选条件①:将函数f (x )的图象向左平移π6个单位长度得到的图象关于y 轴对称,所得函数为y =2sin 2φ=x +π3+由函数y =2sin x +π3+y 轴对称,可得π3+φ=π2+k π(k ∈Z ),解得φ=π6+k π(k ∈Z ),因为|φ|<π,所以φ的可能取值为-5π6,π6,若φ=-5π6,则f (x )=xf (0)=1,符合题意;若φ=π6,则f (x )=x f (0)=2sin π6=1,不符合题意.所以f (x )=x若选条件②:因为函数f (x )图象的一条对称轴为直线x =-π3,所以φ=π2+k π(k ∈Z ),解得φ=7π6+k π(k ∈Z ),因为|φ|<π,所以φ的可能取值为-5π6,π6,若φ=-5π6,则f (x )=x则2<f (1),符合题意;若φ=π6,则f (x )=x则2sin π2=2>f (1),不符合题意.所以f (x )=x(2)令t =2x -5π6∈π6,2π3,此时函数h (x )=f (x )-a 存在两个不同零点x 1,x 2等价于直线y =a 与函数y =2sin t ,t ∈π6,2π3的图象有两个不同交点.当t =π2时,函数取到最大值,所以t 1+t 2=π,即2x 1-5π6+2x 2-5π6=π,所以x 1+x 2=4π3.考点二三角函数与解三角形的综合例2(2023·河北石家庄二中模拟)设函数f (x )=2sin(ωx +φ)(ω>0,0<φ<π),该函数图象上相邻两个最高点间的距离为4π,且f (x )为偶函数.(1)求ω和φ的值;(2)已知角A ,B ,C 为△ABC 的三个内角,若(2sin A -sin C )cos B =sin B cos C ,求[f (A )]2+[f (C )]2的取值范围.解(1)因为f (x )=2sin(ωx +φ)的图象上相邻两个最高点间的距离为4π,所以2πω=4π,解得ω=12,所以f (x )=2sin +又因为f (x )为偶函数,所以φ=k π+π2,k ∈Z .又因为0<φ<π,所以φ=π2.(2)因为(2sin A -sin C )cos B =sin B cos C ,所以2sin A cos B -sin C cos B =sin B cos C ,所以2sin A cos B =sin(B +C ),又因为A +B +C =π,且0<A <π,所以sin(B +C )=sin A ≠0,所以cos B =12,因为0<B <π,所以B =π3,则A +C =2π3,即C =2π3-A ,由(1)知,函数f (x )=2cos 12x ,所以[f (A )]2+[f (C )]2=2cos 212A +2cos 212C =cos A +cos C +2=cos A +2=cos A -12cos A +32sin A +2=32sin A +12cos A +2=2,因为0<A <2π3,所以π6<A +π6<5π6,所以1,则23,即[f (A )]2+[f (C )]23.解三角形与三角函数的综合应用主要体现在以下两个方面:(1)利用三角恒等变换化简三角函数式进行解三角形;(2)解三角形与三角函数图象和性质的综合应用.2.设f (x )=sin x cos x -cos x ∈[0,π].(1)求f (x )的单调递增区间;(2)在锐角三角形ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若0,a =1,求△ABC面积的最大值.解(1)由题意,得f (x )=12sin2x -12cos x 1=sin2x -12,因为0≤x ≤π,所以0≤2x ≤2π,由正弦函数的单调性可知,当0≤2x ≤π2或3π2≤2x ≤2π,即0≤x ≤π4或3π4≤x ≤π时,函数f (x )=sin2x -12单调递增,所以f (x )的单调递增区间是0,π4和3π4,π.(2)由题意,得sin A -12=0,所以sin A =12,因为△ABC 为锐角三角形,所以A 故A =π6.由余弦定理,得b 2+c 2-2bc cos A =a 2,故b 2+c 2-3bc =1,由基本不等式,得b 2+c 2≥2bc ,故bc ≤2+3,当且仅当b =c 时,等号成立.因此S △ABC =12bc sin A ≤2+34,当且仅当b =c 时,△ABC 的面积取得最大值2+34.考点三三角函数与平面向量的综合例3已知向量a =(sin x ,3sin(π+x )),b =(cos x ,-sin x ),函数f (x )=a ·b -32.(1)求f (x )的最小正周期及f (x )图象的对称轴方程;(2)先将f (x )的图象上每个点的纵坐标不变,横坐标变为原来的2倍,再向左平移π3个单位长度得到函数g (x )的图象,若函数y =g (x )-m 在区间π6,5π6内有两个零点,求m 的取值范围.解(1)因为f (x )=a ·b -32sin x cos x +3sin 2x -32=12sin2x -32cos2x =x 故f (x )的最小正周期为T =2π2=π.由2x -π3=k π+π2,k ∈Z ,得x =k π2+5π12,k ∈Z ,所以f (x )的最小正周期为π,对称轴方程为x =k π2+5π12,k ∈Z .(2)由(1),知f (x )=x由题意,得g (x )=sin x .函数y =g (x )-m 在区间π6,5π6内有两个零点,转化为函数y =sin x ,x ∈π6,5π6的图象与直线y =m 有两个交点.由图象可得,m 的取值范围为12,当题目条件给出的向量坐标中含有三角函数的形式时,首先运用向量数量积的定义、向量共线、向量垂直等,得到三角函数的关系式,然后利用三角函数的图象、性质解决问题.3.已知向量a x b =(cos x ,-1).(1)当a ∥b 时,求2cos 2x -sin2x 的值;(2)求f (x )=(a +b )·b 在-π2,0上的单调递增区间.解(1)由a ∥b ,得(-1)sin x =32cos x ,所以tan x =-32,所以2cos 2x -sin2x =2cos 2x -2sin x cos x cos 2x +sin 2x =2-2tan x 1+tan 2x =2+31+94=2013.(2)f (x )=a ·b +b 2=sin x cos x -32+cos 2x +1=12sin2x +1+cos2x 2-12=22sin x 当x ∈-π2,0时,2x +π4∈-3π4,π4,令-π2≤2x +π4≤π4,得-3π8≤x ≤0.故函数f (x )在-π2,0上的单调递增区间为-3π8,0.考点四解三角形与平面向量的综合例4(2024·四川成都调研)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且m =(2b +c ,a ),n =(cos A ,cos C ),m ⊥n .(1)求角A 的大小;(2)D 是线段BC 上的点,且AD =BD =2,CD =3,求△ABD 的面积.解(1)因为m =(2b +c ,a ),n =(cos A ,cos C ),m ⊥n ,所以m ·n =(2b +c )cos A +a cos C =0,由正弦定理可得2sin B cos A +(sin A cos C +cos A sin C )=0,即2sin B cos A +sin(A +C )=0,又A +C =π-B ,所以2sin B cos A +sin B =0,又B ∈(0,π),则sin B >0,所以cos A =-12,又A ∈(0,π),因此A =2π3.(2)设B =θ,因为A =2π3,则C =π-2π3-θ=π3-θ,因为AD =BD =2,所以∠BAD =B =θ,∠ADC =2θ,∠DAC =2π3-θ,在△ACD 中,由正弦定理可知AD sin C =CD sin ∠DAC,即23即θ-12sin θ+12sin 化简可得5sin θ=3cos θ,即tan θ=35,所以sin2θ=2sin θcos θsin 2θ+cos 2θ=2tan θtan 2θ+1=5314,所以S △ABD =12AD ·BD sin(π-2θ)=12AD ·BD sin2θ=12×22×5314=537.解决解三角形与平面向量综合问题的关键:准确利用向量的坐标运算化简已知条件,将其转化为三角函数的问题解决.4.(2023·广东广州天河区模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足b cos B +C 2=a sin B .(1)求A ;(2)若a =19,BA →·AC →=3,AD 是△ABC 的中线,求AD 的长.解(1)因为cos B +C 2=sin A 2,所以b sin A 2=a sin B .由正弦定理,得sin B sin A 2=sin A sin B .因为sin B ≠0,所以sin A 2=sin A .所以sin A 2=2sin A 2cos A 2.因为A ∈(0,π),A 2∈所以sin A 2≠0,所以cos A 2=12.所以A 2=π3.所以A =2π3.(2)因为BA →·AC →=3,所以bc cos(π-A )=3.又A =2π3,所以bc =6.由余弦定理,得b 2+c 2=a 2+2bc cos A =13.又AD →=12(AB →+AC →),所以|AD →|2=14(AB →+AC →)2=14(c 2+b 2+2bc cos A )=74.所以|AD →|=72,即AD 的长为72.课时作业1.(2023·广东佛山模拟)已知函数f (x )=cos 4x +23sin x cos x -sin 4x .(1)求f (x )的最小正周期和单调递减区间;(2)已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若f (A )=1,BC 边的中线AD 的长为7,求△ABC 面积的最大值.解(1)∵f (x )=cos 4x +23sin x cos x -sin 4x =(cos 2x -sin 2x )(cos 2x +sin 2x )+3sin2x =cos2x +3sin2x =x 故f (x )的最小正周期T =π,由π2+2k π≤2x +π6≤3π2+2k π,k ∈Z ,得π6+k π≤x ≤2π3+k π,k ∈Z ,∴f (x )的单调递减区间为π6+k π,2π3+k π(k ∈Z ).(2)由(1)得,f (A )=A 1,即A =12,∵0<A <π,∴2A +π6=5π6,∴A =π3,又AD →=12(AB →+AC →),∴AD →2=14(AB →2+AC →2+2AB →·AC →),∴7=14(c 2+b 2+2bc cos A )=14(b 2+c 2+bc ),∵b 2+c 2≥2bc ,∴b 2+c 2+bc ≥3bc ,∴bc ≤283,当且仅当b =c =2213时取等号,∴S △ABC =12bc sin A =34bc ≤34×283=733,∴△ABC 面积的最大值为733.2.(2024·江西南昌模拟)如图为函数f (x )=A sin(ωx +φ>0,ω>0,|φ|<π2,x ∈(1)求函数f (x )的解析式和单调递增区间;(2)若将y =f (x )的图象向右平移π12个单位长度,然后再将横坐标缩短为原来的12得到y =g (x )的图象,求函数g (x )在区间-π4,π12上的最大值和最小值.解(1)由图象知,A =2,T 4=π3-π12=π4,T =π,又ω>0,则ω=2ππ=2,则f (x )=2sin(2x +φ),,2,得π6+φ=2k π+π2,k ∈Z ,解得φ=2k π+π3,k ∈Z ,因为|φ|<π2,所以φ=π3,所以f (x )=x 令-π2+2k π≤2x +π3≤π2+2k π,k ∈Z ,得-5π12+k π≤x ≤π12+k π,k ∈Z ,所以f (x )的单调递增区间为-5π12+k π,π12+k π(k ∈Z ).(2)将f (x )=2sin x 的图象向右平移π12个单位长度,得2sin 2+π3=2sin x ,然后再将横坐标缩短为原来的12,得g (x )=2sin x .因为x ∈-π4,π12,则4x +π6∈-5π6,π2,所以-1≤x 1.故当4x +π6=-π2,即x =-π6时,g (x )取得最小值,为-2;当4x +π6=π2,即x =π12时,g (x )取得最大值,为2.3.设函数f (x )=m ·n ,其中向量m =(2cos x ,1),n =(cos x ,3sin2x )(x ∈R ).(1)求f (x )的最小值;(2)在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,已知f (A )=2,b =1,△ABC 的面积为32,求b sin B的值.解(1)因为m =(2cos x ,1),n =(cos x ,3sin2x ),所以f (x )=2cos 2x +3sin2x =3sin2x +cos2x +1=x 1,所以当x 1,即2x +π6=-π2+2k π,k ∈Z ,即x =-π3+k π,k ∈Z 时,f (x )取得最小值,为-1.(2)由f (A )=2,得A 1=2,则A =12,又A ∈(0,π),所以2A +π6∈故2A +π6=5π6,则A =π3,由S △ABC =12bc sin A =12×1×c ×32=32,可得c =2,在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A =1+4-2×1×2×12=3,所以a =3,所以b sin B =a sin A =332=2.4.(2023·四川成都模拟)已知函数f (x )=2cos 2x +3sin2x .(1)求函数f (x )的单调递增区间;(2)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且f (C )=3,c =1,ab =23,求△ABC 的周长.解(1)依题意,f (x )=2cos 2x +3sin2x =1+cos2x +3sin2x =x 1,由-π2+2k π≤2x +π6≤π2+2k π,k ∈Z ,得-π3+k π≤x ≤π6+k π,k ∈Z ,所以函数f (x )的单调递增区间是-π3+k π,π6+k π(k ∈Z ).(2)由(1)知,f (C )=C 1=3,即C 1,而C ∈(0,π),则2C +π6∈于是2C +π6=π2,解得C =π6,由余弦定理c 2=a 2+b 2-2ab cos C ,得1=(a +b )2-(2+3)ab =(a +b )2-23×(2+3),解得a +b =2+3,所以△ABC 的周长为3+ 3.5.(2023·福建福州模拟)已知向量m 23sin x 4,n cos x 4,cos(1)若m ·n =2,求cos (2)记f (x )=m ·n ,在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a -c )cos B =b cos C ,求f (A )的取值范围.解(1)m ·n =23sin x 4cos x 4+2cos 2x 4=3sin x 2+cos x 2+1= 1.因为m ·n =2,所以=12.所以1-2sin =12.(2)因为f (x )=m ·n =1,所以f (A )= 1.因为(2a -c )cos B =b cos C ,由正弦定理,得(2sin A -sin C )cos B =sin B cos C .所以2sin A cos B -sin C cos B =sin B cos C ,所以2sin A cos B =sin(B +C ).因为A +B +C =π,所以sin(B +C )=sin A ,且sin A ≠0.所以cos B =12.因为B ∈(0,π),所以B =π3.所以0<A <2π3.所以π6<A 2+π6<π2,12<sin ,故f (A )的取值范围是(2,3).6.(2024·湖北黄冈调研)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知向量m =(b ,a ),n =(sin A ,3cos(A +C )),且m ·n =0.(1)求角B 的大小;(2)若b =3,求3a +c 的最大值.解(1)在△ABC 中,因为m =(b ,a ),n =(sin A ,3cos(A +C )),m ·n =0,所以b sin A -3a cos B =0.由正弦定理,得sin A sin B =3sin A cos B ,又sin A >0,所以sin B =3cos B ,即tan B = 3.又0<B <π,所以B =π3.(2)由(1),知B =π3,b =3,由正弦定理,得a sin A =c sin C =b sin B=2,即a =2sin A ,c =2sin C .又C =2π3-A ,所以3a +c =6sin A +2sin C =6sin A +7sin A +3cos A =213sin(A +θ),其中锐角θ由tan θ=37确定,又0<A <2π3,所以θ<A +θ<2π3+θ.则当且仅当A +θ=π2,即tan A ==733时,sin(A +θ)取最大值1,所以3a +c 的最大值为213.7.已知函数f (x )=cos 4x -2sin x cos x -sin 4x .(1)求f (x )的最小正周期和单调递增区间;(2)求函数f (x )在区间0,π2上的值域;(3)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若0,a =2,求△ABC 面积的最大值.解(1)依题意,f (x )=(cos 2x +sin 2x )(cos 2x -sin 2x )-sin2x =cos2x -sin2x =2sinx 所以f (x )的最小正周期T =2π2=π;由2k π-π2≤2x +3π4≤2k π+π2,k ∈Z ,得k π-5π8≤x ≤k π-π8,k ∈Z ,所以f (x )的单调递增区间为k π-5π8,k π-π8(k ∈Z ).(2)由x ∈0,π2,得2x +3π4∈3π4,7π4,则-1≤x ≤22,即-2≤f (x )≤1,所以函数f (x )在区间0,π2上的值域为[-2,1].(3)由(1)知,=2sin 0,而0<A <π,即有3π4<A +3π4<7π4,则A +3π4=π,解得A =π4,由余弦定理a 2=b 2+c 2-2bc cos A ,得4=b 2+c 2-2bc ≥2bc -2bc ,于是bc ≤4+22,当且仅当b =c 时等号成立,因此S △ABC =12bc sin A =24bc ≤2+1,所以△ABC 面积的最大值为2+1.8.(2024·重庆永川北山中学模拟)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,cos(A-C )+cos B =32,设m =(b ,c ),n =(a ,b )且m ∥n .(1)求角B 的大小;(2)延长BC 至D ,使BD =5,若△ACD 的面积S =3,求AD 的长.解(1)由cos(A -C )+cos B =32,可知cos(A -C )-cos(A +C )=32,即cos A cos C +sin A sin C -cos A cos C +sin A sin C =32,可得sin A sin C =34.由m ∥n 可得b 2-ac =0,由正弦定理可知sin 2B =sin A sin C =34,因为B ∈(0,π),所以sin B =32,因此B =π3或2π3.分别代入cos(A -C )+cos B =32,可知当B =2π3时,cos(A -C )=2,不成立.因此B =π3.(2)由B =π3可知cos(A -C )=1,即A =C ,因此△ABC 为等边三角形,即a =b =c ,S △ACD =12AC ·CD sin ∠ACD =12b (5-a )sin 2π3=34a (5-a )=3,整理可得a (5-a )=4,即a 2-5a =-4,在△ABD 中,由余弦定理可知,AD 2=AB 2+BD 2-2AB ·BD cos π3=c 2+25-5c =a 2+25-5a =21,因此AD 的长为21.。
高考导航 从近几年的高考试题看,全国卷交替考查三角函数、解三角形.该部分解答题是高考得分的基本组成部分,不能掉以轻心.该部分的解答题考查的热点题型有:一考查三角函数的图象变换以及单调性、最值等;二考查解三角形问题;三是考查三角函数、解三角形与平面向量的交汇性问题,在解题过程中抓住平面向量作为解决问题的工具,要注意三角恒等变换公式的多样性和灵活性,注意题目中隐含的各种限制条件,选择合理的解决方法,灵活地实现问题的转化.
热点一 三角函数的图象和性质(规范解答) 注意对基本三角函数y=sin x,y=cosx的图象与性质的理解与记忆,有关三角函数的五点作图、图象的平移、由图象求解析式、周期、单调区间、最值和奇偶性等问题的求解,通常先将给出的函数转化为y=Asin(ωx+φ)的形式,然后利用整体代换的方法求解.
【例1】(满分13分)(2015·北京卷)已知函数f(x)=sin x-23sin2x2. (1)求f(x)的最小正周期; (2)求f(x)在区间0,2π3上的最小值. 满分解答 (1)解 因为f(x)=sin x+3cosx-3. 2分
=2sinx+π3-3.4分 所以f(x)的最小正周期为2π.6分 (2)解 因为0≤x≤2π3, 所以π3≤x+π3≤π.8分 当x+π3=π,即x=2π3时,f(x)取得最小值.11分 所以f(x)在区间0,2π3上的最小值为f2π3=-3.13分 ❶将f(x)化为asinx+bcosx+c形式得2分. ❷将f(x)化为Asin(ωx+φ)+h形式得2分. ❸求出最小正周期得2分. ❹写出ωx+φ的取值范围得2分. ❺利用单调性分析最值得3分. ❻求出最值得2分. 求函数y=Asin(ωx+φ)+B周期与最值的模板 第一步:三角函数式的化简,一般化成y=Asin(ωx+φ)+h或y=Acos(ωx+φ)+h的形式;
第二步:由T=2π|ω|求最小正周期; 第三步:确定f(x)的单调性; 第四步:确定各单调区间端点处的函数值; 第五步:明确规范地表达结论.
【训练1】设函数f(x)=32-3sin2ωx-sin ωxcosωx(ω>0),且y=f(x)的图象的一个对称中心到最近的对称轴的距离为π4. (1)求ω的值; (2)求f(x)在区间π,3π2上的最大值和最小值.
解 (1)f(x)=32-3sin2ωx-sin ωxcosωx =32-3·1-cos 2ωx2-12sin 2ωx =32cos 2ωx-12sin 2ωx=-sin2ωx-π3. 因为y=f(x)的图象的一个对称中心到最近的对称轴的距离为π4,故该函数的周期T=4×π4=π. 又ω>0,所以2π2ω=π,因此ω=1. (2)由(1)知f(x)=-sin2x-π3. 设t=2x-π3,则函数f(x)可转化为y=-sin t. 当π≤x≤3π2时,5π3≤t=2x-π3≤8π3, 如图所示,作出函数y=sin t在5π3,8π3上的图象, 由图象可知,当t∈5π3,8π3时,sin t∈-32,1, 故-1≤-sin t≤32,因此-1≤f(x)=-sin2x-π3≤32. 故f(x)在区间π,3π2上的最大值和最小值分别为32,-1. 热点二 解三角形 高考对解三角形的考查,以正弦定理、余弦定理的综合运用为主.其命题规律可以从以下两方面看:(1)从内容上看,主要考查正弦定理、余弦定理以及三角函数公式,一般是以三角形或其他平面图形为背景,结合三角形的边角关系考查学生利用三角函数公式处理问题的能力;(2)从命题角度看,主要是在三角恒等变换的基础上融合正弦定理、余弦定理,在知识的交汇处命题.
【例2】(2016·四川卷)在△ABC中,角A,B,C所对的边分别是a,b,c,且cos Aa
+cos Bb=sin Cc. (1)证明:sin AsinB=sin C; (2)若b2+c2-a2=65bc,求tan B. (1)证明 在△ABC中,根据正弦定理, 可设asin A=bsin B=csin C=k(k>0). 则a=ksinA,b=ksinB,c=ksinC. 代入cosAa+cos Bb=sin Cc中, 有cos Aksin A+cos Bksin B=sin Cksin C,变形可得 sin AsinB=sin AcosB+cosAsinB=sin(A+B). 在△ABC中,由A+B+C=π, 有sin(A+B)=sin(π-C)=sin C, 所以sin AsinB=sin C.
(2)解 由已知,b2+c2-a2=65bc,根据余弦定理,有
cosA=b2+c2-a22bc=35. 所以sin A=1-cos2A=45. 由(1)知,sin AsinB=sin AcosB+cosAsinB, 所以45sin B=45cosB+35sin B,
故tan B=sin Bcos B=4. 探究提高 (1)①在等式中既有边长又有角的正余弦时,往往先联想正弦定理;②出现含有边长的平方及两边之积的等式,往往想到应用余弦定理. (2)正余弦定理与两角和(差)角公式的活用是求解该类问题的关键. 【训练2】四边形ABCD的内角A与C互补,且AB=1,BC=3,CD=DA=2. (1)求角C的大小和线段BD的长度; (2)求四边形ABCD的面积. 解 (1)设BD=x,
在△ABD中,由余弦定理,得cosA=1+4-x22×2×1,
在△BCD中,由余弦定理,得cosC=9+4-x22×2×3, ∵A+C=π,∴cosA+cosC=0. 联立上式,解得x=7,cosC=12. 由于C∈(0,π).∴C=π3,BD=7. (2)∵A+C=π,C=π3,∴sin A=sin C=32. 又四边形ABCD的面积SABCD=S△ABD+S△BCD =12AB·ADsinA+12CB·CDsinC=32×(1+3)=23, ∴四边形ABCD的面积为23. 热点三 三角函数与平面向量结合 三角函数、解三角形与平面向量的结合主要体现在以下两个方面:(1)以三角函数式作为向量的坐标,由两个向量共线、垂直、求模或求数量积获得三角函数解析式;(2)根据平面向量加法、减法的几何意义构造三角形,然后利用正、余弦定理解决问题. 【例3】(2017·贵州适应性考试)已知△ABC的三内角A,B,C所对的边分别是a,b,c,向量m=(cosB,cosC),n=(2a+c,b),且m⊥n. (1)求角B的大小; (2)若b=3,求a+c的范围. 解 (1)∵m=(cosB,cosC),n=(2a+c,b),且m⊥n, ∴(2a+c)cosB+bcosC=0, ∴cosB(2sin A+sin C)+sin BcosC=0, ∴2cos BsinA+cosBsinC+sin BcosC=0. 即2cos BsinA=-sin(B+C)=-sin A.
∵A∈(0,π),∴sin A≠0,∴cosB=-12.
∵0<B<π,∴B=2π3. (2)由余弦定理得 b2=a2+c2-2accos23π=a2+c2+ac=(a+c)2-ac≥(a+c)2-a+c22=34(a+c)2,当且仅当a=c时取等号. ∴(a+c)2≤4,故a+c≤2. 又a+c>b=3,∴a+c∈(3,2].即a+c的取值范围是(3,2]. 探究提高 向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题. 【训练3】已知向量a=(m,cos 2x),b=(sin 2x,n),函数f(x)=a·b,且y=f(x)
的图象过点π12,3和点2π3,-2. (1)求m,n的值; (2)将y=f(x)的图象向左平移φ(0g(x)图象上各最高点到点(0,3)的距离的最小值为1,求y=g(x)的单调递增区间. 解 (1)由题意知f(x)=a·b=msin 2x+ncos 2x.
因为y=f(x)的图象过点π12,3和2π3,-2,
所以3=msinπ6+ncosπ6,-2=msin4π3+ncos4π3,
即3=12m+32n,-2=-32m-12n,解得m=3,n=1. (2)由(1)知f(x)=3sin 2x+cos 2x=2sin2x+π6. 由题意知g(x)=f(x+φ)=2sin2x+2φ+π6. 设y=g(x)的图象上符合题意的最高点为(x0,2), 由题意知x20+1=1, 所以x0=0, 即到点(0,3)的距离为1的最高点为(0,2).
将其代入y=g(x)得sin2φ+π6=1, 因为0因此g(x)=2sin2x+π2=2cos 2x. 由2kπ-π≤2x≤2kπ,k∈Z得kπ-π2≤x≤kπ,k∈Z. 所以函数y=g(x)的单调递增区间为kπ-π2,kπ,k∈Z.