小学数学奥数测试题多人多次相遇追及_人教版-最新教育文档
- 格式:docx
- 大小:420.31 KB
- 文档页数:13
一、解答题1.甲、乙两名同学在周长为米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑米,乙每秒钟跑米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?2.上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?3.甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离是多少千米?4.甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相5.如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.6.小明和小红两人在长100米的直线跑道上来回跑步,做体能训练,小明的速度为6米/秒,小红的速度为4米/秒.他们同时从跑道两端出发,连续跑了12分钟.在这段时间内,他们迎面相遇了多少次?7.、两地间有条公路,甲从地出发,步行到地,乙骑摩托车从地出发,不停地往返于、两地之间,他们同时出发,80分钟后两人第一次相遇,100分钟后乙第一次追上甲,问:当甲到达地时,乙追上甲几次?8.A,B两地相距540千米。
甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。
设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。
那么到两车第三次相遇为止,乙车共走了多少千米?9.小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?10.一条电车线路的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟.有一个人从乙站出发沿电车线路骑车前往甲站.他出发的时候,恰好有一辆电车到达乙站.在路上他又遇到了10辆迎面开来的电车.到达甲站时,恰好又有一辆电车从甲站开出.问他从乙站到甲站用了多少分钟?11.A、 B 两地相距1000 米,甲从 A地、乙从 B 地同时出发,在 A、 B 两地间往返锻炼.乙跑步每分钟行150米,甲步行每分钟行 60米.在 30分钟内,甲、乙两人第几次相遇时距 B 地12. A、 B 两地相距 950 米.甲、乙两人同时由 A地出发往返锻炼半小时.甲步行,每分钟走 40 米;乙跑步,每分钟行 150 米.则甲、乙二人第几次迎面相遇时距 B 地最近?13. (2008年国际小学数学竞赛)、两地相距,甲、乙两人同时从地出发,往返、两地跑步分钟.甲跑步的速度是每分钟;乙跑步的速度是每分钟.在这段时间内他们面对面相遇了数次,请问在第几次相遇时他们离点的距离最近?14. (仁华入学试题)甲、乙两车同时从同一点出发,沿周长6千米的圆形跑道以相反的方向行驶.甲车每小时行驶65千米,乙车每小时行驶55千米.一旦两车迎面相遇,则乙车立刻调头;一旦甲车从后面追上乙车,则甲车立刻调头,那么两车出发后第11次相遇的地点距离点有多少米?(每一次甲车追上乙车也看作一次相遇)15.下图是一个边长90米的正方形,甲、乙两人同时从A点出发,甲逆时针每分行75米,乙顺时针每分行45米.两人第一次在CD边(不包括C,D两点)上相遇,是出发以后的第几次相遇?16.如图所示,甲、乙两人从长为米的圆形跑道的点背向出发跑步。
四年级奥数多次相遇问题试题及答案【篇一】有人沿公路前进,对面来了一辆汽车,他问司机:“后面有自行车吗?”司机回答:“十分钟前我超过一辆自行车”,这人继续走了十分钟,遇到自行车,已知自行车速度是人步行速度的三倍,问汽车的速度是步行速度的()倍.考点:多次相遇问题.分析:人遇见汽车的时候,离自行车的路程是:(汽车速度-自行车速度)×10,这么长的路程要自行车和人合走了10分钟,即:(自行车+步行)×10,等式:(汽车速度-自行车速度)×10=(自行车+步行)×10,即:汽车速度-自行车速度=自行车速度+步行速度.汽车速度=2×自行车速度+步行速度,又自行车的速度是步行的3倍,所以汽车速度是步行的7倍.解答:(汽车速度-自行车速度)×10=(自行车+步行)×10,即:汽车速度-自行车速度=自行车速度+步行速度.汽车速度=2×自行车速度+步行,又自行车的速度是步行的3倍,所以汽车速度=(2×3+1)×步行速度=步行速度×7.故答案为:7.点评:解答此题的关键是要推出:汽车与自行车的速度差等于人与自行车的速度和. 【篇二】1.前进钢铁厂用两辆汽车从距工厂90千米的矿山运矿石,现有甲、乙两辆汽车,甲车自矿山,乙车自钢铁厂同时出发相向而行,速度分别为每小时40千米和50千米,到达目的地后立即返回,如此反复运行多次,如果不计装卸时间,且两车不作任何停留,则两车在第三次相遇时,距矿山多少千米?解析请看下一页分析:在往返来回相遇问题中,第一次相遇两人合走完一个全程,以后每次再相遇,都合走完两个全程.即:两人相遇时是在他们合走完1,3,5个全程时.然后根据路程÷速度和=相遇时间解答即可.解答:解答:①第三次相遇时两车的路程和为:90+90×2+90×2,=90+180+180,=450(千米);②第三次相遇时,两车所用的时间:450÷(40+50)=5(小时);③距矿山的距离为:40×5-2×90=20(千米);答:两车在第三次相遇时,距矿山20千米.点评:在多次相遇问题中,相遇次数n与全程之间的关系为:1+(n-1)×2个全程=一共行驶的路程.【篇三】求两地之间的距离1.给出两人的速度以及某次相遇的时间,求两地距离。
新人教版2021-2022学年数学小学奥数系列3-1-4多人相遇和追及问题(一)(I)卷姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共20题;共97分)1. (5分) (2019六下·竞赛) 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?2. (5分) (2019六下·竞赛) 甲、乙两人沿 400 米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。
相遇后甲比原来速度增加 2 米/秒,乙比原来速度减少 2 米/秒,结果都用 24 秒同时回到原地。
求甲原来的速度。
3. (5分) (2019六下·竞赛) 有一种机器人玩具装置,配备长、短不同的两条跑道,其中长跑道长400厘米,短跑道长300厘米,且有200厘米的公用跑道(如下图)。
机器人甲按逆时针方向以每秒6厘米的速度在长跑道上跑动,机器人乙按顺时针方向以每秒4厘米的速度在短跑道上跑动。
如果甲、乙两个机器人同时从点出发,那么当两个机器人在跑道上第3次迎面相遇时,机器人甲距离出发点点多少厘米?4. (5分)(2018·广东模拟) 一辆汽车和一辆摩托车同时从甲、乙两地相向开出,相遇后两车继续行驶,当摩托车到达甲城。
汽车到达乙城后,立即返回,第二次相遇时汽车距甲城160千米,汽车与摩托车的速度比是2:3,则甲、乙两城相距多少千米?5. (5分)(2019·黄埔) 甲、乙二人分别从A、B两地同时出发,相向而行,甲、乙的速度之比是4:3,二人相遇后继续行进,甲到达B地和乙到达A地后都立即沿原路返回,已知二人第二次相遇的地点距第一次相遇的地点30千米,则A、B两地相距多少千米?6. (5分) (2019六下·竞赛) 甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地6千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地4千米处第二次相遇,求两人第5次相遇地点距B多远。
1. 学会画图解行程题2. 能够利用柳卡图解决多次相遇和追及问题3. 能够利用比例解多人相遇和追及问题板块一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.【例 1】 甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【巩固】 甲、乙两人从400米的环形跑道上一点A 背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A 沿跑道上的最短路程是多少米?【例 2】 甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。
如果二人的速度各增加1千米/时,那么相遇地点距前一次相遇地点1千米。
问:甲、乙二人的速度各是多少?知识精讲 教学目标3-1-4多次相遇和追及问题板块二、运用倍比关系解多次相遇问题【例 3】上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?【例 4】甲、乙两车同时从A地出发,不停的往返行驶于A,B两地之间。
已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C地。
问:甲车的速度是乙车的多少倍?【例 5】如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【巩固】A、B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇.已知C离A有75米,D离B有55米,求这个圆的周长是多少米?【巩固】如右图,A,B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇。
1. 学会画图解行程题2. 能够利用柳卡图解决多次相遇和追及问题3. 能够利用比例解多人相遇和追及问题板块一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.【例 1】 甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【考点】行程问题 【难度】1星 【题型】解答【解析】 从开始到两人第十次相遇的这段时间内,甲、乙两人共跑的路程是操场周长的10倍,为300103000⨯=米,因为甲的速度为每秒钟跑3.5米,乙的速度为每秒钟跑4米,所以这段时间内甲共行了 3.5300014003.54⨯=+米,也就是甲最后一次离开出发点继续行了200米,可知甲还需行300200100-=米才能回到出发点.【答案】100米【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【考点】行程问题 【难度】1星 【题型】解答【解析】 17【答案】17【巩固】 甲、乙两人从400米的环形跑道上一点A 背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A 沿跑道上的最短路程是多少米?【考点】行程问题 【难度】2星 【题型】解答【解析】 176【答案】176【例 2】 甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。
如果二人的速度各增加1千米/时,那么相遇地点距前一次相遇地点1千米。
问:甲、乙二人的速度各是多少?【考点】行程问题 【难度】3星 【题型】解答【解析】 甲、乙两人的速度和第一次为60÷6=10(千米/时),第二次为12(千米/时),故第二次出发后5时相遇。
一、多人相遇追及问题多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。
所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系转化.由此还可以得到如下两条关系式:=⨯路程和速度和相遇时间;=⨯路程差速度差追及时间;多人相遇与追及问题虽然较复杂,但只要抓住这两条公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇追及问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解. 多次相遇与全程的关系 1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程; 第3次相遇,共走5个全程; …………, ………………; 第N 次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N 米,以后每次都走2N 米。
2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程; 第3次相遇,共走6个全程; …………, ………………;知识框架长方体与正方体表面积第N 次相遇,共走2N 个全程; 3、多人多次相遇追及的解题关键多次相遇追及的解题关键 几个全程 多人相遇追及的解题关键 路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。
折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
【例 1】A 、B 两地相距203米,甲、乙、丙的速度分别是4米/分、6米/分、5米/分。
1. 學會畫圖解行程題2. 能夠利用柳卡圖解決多次相遇和追及問題3. 能夠利用比例解多人相遇和追及問題板塊一、由簡單行程問題拓展出的多次相遇問題所有行程問題都是圍繞“=⨯路程速度时间”這一條基本關係式展開的,多人相遇與追及問題雖然較複雜,但只要抓住這個公式,逐步表徵題目中所涉及的數量,問題即可迎刃而解.【例 1】 甲、乙兩名同學在周長為300米圓形跑道上從同一地點同時背向練習跑步,甲每秒鐘跑3.5米,乙每秒鐘跑4米,問:他們第十次相遇時,甲還需跑多少米才能回到出發點?【巩固】 甲乙兩人在相距90米的直路上來回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他們同時分別從直路兩端出發,10分鐘內共相遇幾次?知識精講 教學目標3-1-4多次相遇和追及問題【巩固】甲、乙兩人從400米的環形跑道上一點A背向同時出發,8分鐘後兩人第五次相遇,已知每秒鐘甲比乙多走0.1米,那麼兩人第五次相遇的地點與點A沿跑道上的最短路程是多少米?【例 2】甲、乙二人從相距60千米的兩地同時相向而行,6時後相遇。
如果二人的速度各增加1千米/時,那麼相遇地點距前一次相遇地點1千米。
問:甲、乙二人的速度各是多少?板塊二、運用倍比關係解多次相遇問題【例 3】上午8點8分,小明騎自行車從家裏出發,8分鐘後,爸爸騎摩托車去追他,在離家4千米的地方追上了他.然後爸爸立即回家,到家後又立刻回頭去追小明,再追上小明的時候,離家恰好是8千米,這時是幾點幾分?【例 4】甲、乙兩車同時從A地出發,不停的往返行駛於A,B兩地之間。
已知甲車的速度比乙車快,並且兩車出發後第一次和第二次相遇都在途中C地。
問:甲車的速度是乙車的多少倍?【例 5】如圖,甲和乙兩人分別從一圓形場地的直徑兩端點同時開始以勻速按相反的方向繞此圓形路線運動,當乙走了100米以後,他們第一次相遇,在甲走完一周前60米處又第二次相遇.求此圓形場地的周長.【巩固】A、B是圓的直徑的兩端,甲在A點,乙在B點同時出發反向而行,兩人在C點第一次相遇,在D點第二次相遇.已知C離A有75米,D離B有55米,求這個圓的周長是多少米?【巩固】如右圖,A,B是圓的直徑的兩端,甲在A點,乙在B點同時出發反向而行,兩人在C點第一次相遇,在D點第二次相遇。
奥数思维拓展-多次相遇问题(试题)-小学数学六年级上册人教版一、解答题1.童童和乐乐是医院疫情期间新引进的两款智能机器人,每天早上童童和乐乐“唱着歌”穿梭在104米长的病区走廊上,童童负责配送药物,只要护士下单,它就能准确的送达。
乐乐负责卫生,保证病区干干净净,不留卫生死角。
童童与乐乐分别从东、西两地同时相向出发。
规定:童童从东边A点出发,跑到西边B点马上返回,跑到起点又返回,……,如此继续下去,当乐乐从西边B点打扫到东边A点时,它们同时停止运动。
已知童童每秒跑10.2米,乐乐每秒跑0.2米。
问(1)第三次相遇距离B点多远?(2)若乐乐打扫到60米处时,它们共相遇了多少次?2.甲、乙、丙三人,甲每分钟走20米,乙每分钟走22.5米,丙每分钟走25米。
甲、乙从东镇,丙从西镇,同时相向出发,丙遇乙后10分钟再遇甲,求两镇相距多少米?3.甲,乙两人在一条长100米的直路上来回跑步,甲的速度3米/秒,乙的速度2米/秒。
如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇多少次?4.快、慢两车同时从甲、乙两地相对开出并往返行驶。
快车每小时行80千米,慢车每小时行45千米。
两车第二次相遇时,快车比慢车多行了210千米。
求甲、乙两地间的路程。
5.△ABC是一个等边三角形跑道,D在A、B之间,且有AD:BD=2:3,某日甲、乙、丙三人从A、B、C同时出发(如图所示),甲、乙按顺时针方向跑步,丙按逆时针跑步,当甲、丙第一次相遇时,乙正好走到B;当乙、丙第二次相遇是在D时,甲走了2012米,那么,△ABC的周长是多少米。
6.A,B两地相距105千米,甲、乙两人分别骑车从A,B两地同时相向出发,甲速度为每小时40千米,出发后1小时45分钟相遇,然后甲、乙两人继续沿各自方向往前骑。
在他们相遇3分钟后,甲与迎面骑车而来的丙相遇,而丙在C地追上乙。
若甲以每小时20千米的速度,乙以每小时比原速度快2千米的车速,两人同时分别从A,B出发相向而行,则甲、乙二人在C点相遇,问丙的车速是多少?7.汽车从A地出发,到B地去,一人骑自行车同时从B地出发到A地去,当汽车与骑自行车人第一次相遇时,距B地12.8千米,自行车与汽车继续以原速驶到各自的目的地后立即返回,第二次相遇时,距A地0.24千米,求AB两地间的路程是多少千米?8.二人同时从AB两地出发相向而行,当他们第一次相遇时,离开A地1.62千米,然后他们以不变的速度不停地往前走,各自到达目的地后立即返回,第二次相遇时,距B地1.12千米,求AB两地间的路程是多少?9.小王和小李同时从东、西两村出发,相向而行,当他们第一次相遇时,离开东村1.8千米,然后他们各以原速继续前进,小王到达西村后立即返回,小李到达东村后也立即返回,当他们第二次相遇时,相遇点离开西村1.2千米,那么东西二村相距多少千米?10.甲、乙分别从A和B两地同时出发,相向而行,往返运动。