2018-2019学年浙教版七年级数学下册《第三章整式的乘除》单元测试卷(含答案)
- 格式:doc
- 大小:103.50 KB
- 文档页数:8
七年级数学下册第三章整式的乘除单元检测试题姓名:__________ 班级:__________一、单选题(共10题;共30分)1.如果多项式y2+ky+4是一个完全平方式,那么k=()A. ±2B. 2C. ±4D. 42.下列运算正确的是()A. a3+a2=2a5B. a6÷a2=a3C. a4•a3=a7D. (ab2)3=a2b53.若3x=5,3y=4,则32x-y等于( )A. B. 6 C. 21 D. 204.下列关系式中,正确的是()A. (a﹣b)2=a2﹣b2B. (a+b)(a﹣b)=a2﹣b2C. (a+b)2=a2+b2D. (a+b)2=a2﹣2ab+b25.在边长为a的正方形中挖去一个边长为b的小正方形(a>b),如图1-8-1(1),把余下的部分拼成一个矩形如图1-8-1(2),根据两个图形中阴影部分的面积相等,可以验证()A.B.C.D.6.若二次三项式为完全平方式,则m的值为()A. ±2B. 2C. ±1D. 17.计算3y3•(﹣y2)2•(﹣2y)3的结果是()A. ﹣24y10B. ﹣6y10C. ﹣18y10D. 54y108.已知x2n=3,则(x3n)2•4(x2)2n的值是()A. 12B.C. 27D.9.计算(a2b)3的结果是()A. a6b3B. a2b3C. a5b3D. a6b10.不论x、y为什么实数,代数式x2+y2+2x﹣4y+7的值()A. 总不小于2B. 总不小于7C. 可为任何实数D. 可能为负数二、填空题(共8题;共24分)11.若a m=8,a n=2,则a m﹣n=________.12.若(x+k)(x﹣2)的积中不含有x的一次项,则k的值为________ .13.计算:82015×(﹣0.125)2016=________.14.若m2﹣n2=12,且m﹣n=2,则m+n=________ .15.计算(-2)6÷(-2)2 =________16.若x、y互为相反数,则(5x)2·(52)y=________.17.如图所示的正方形和长方形卡片若干张,拼成一个长为(a+3b),宽为(2a+b)的矩形,需要这三类卡片共________ 张.18.在2001、2002、…、2010这10个数中,不能表示成两个平方数差的数有________个。
绝密★启用前 浙教版2018--2019学年度第二学期 七年级下册数学单元测试题----第3章整式的乘除 注意事项: 1.做卷时间100分钟,满分120分 2.做题要仔细,不要漏做一、单选题(计30分) 1.(本题3分)计算(a 2)3的正确结果是( ) A .3a 2 B .a 6 C .a 5 D .6a 2.(本题3分)下列运算中正确的是( ) A .3a+2a=5a 2 B .(2a 2)3=8a 6 C .2a 2•a 3=2a 6 D .(2a+b )2=4a 2+b 2 3.(本题3分)如果(x ﹣p )(x ﹣3)=x 2+qx+6,那么( ) A .p=2,q=﹣5 B .p=2,q=﹣1 C .p=1,q=﹣5 D .p=﹣2,q=5 4.(本题3分)若32×3x =38,则x 的值为( ) A .6 B .4 C .3 D .以上都不对 5.(本题3分)有下列各式:① a 2n ·a n =a 3n ;②22·33=65;③ 32·32=81;④ a 2·a 3=5a ;⑤(-a )2·(-a )3=a 5.其中计算正确的有 ( ) A .4个 B .3个 C .2个 D .1个 6.(本题3分)若a =255 ,b =344,c =433,则a ,b ,c 大小关系是( ) A .b >c >a B .a >b >c C .c >a >b D .a <b <c 7.(本题3分)若a +b =6,ab =4,则a 2+4ab +b 2的值为( ) A .40 B .44 C .48 D .52 8.(本题3分)计算(-8m 4n +12m 3n 2-4m 2n 3)÷(-4m 2n ) 的结果是( ) A .2m 2n -3m +n 2 B .2m 2-3nm 2+n 2 C .2m 2-3mn +n D .2m 2-3mn +n 2 9.(本题3分)若x 2+2(m -3)x +16是完全平方式,则m 的值等于( ) A .3 B .-5 C .-7或1 D .7或-1 10.(本题3分)将图 1 中阴影部分的小长方形变换到图 2 位置,根据两个图形的面积关系可以得到一个关于 a ,b 的恒等式为( ) A .a 2﹣2ab+b 2=(a ﹣b )2 B .a 2+2ab+b 2=(a+b )2 C .2a 2+2ab =2a (a+b ) D .a 2﹣b 2=(a+b )(a ﹣b )二、填空题(计32分)11.(本题4分)已知x+y=4,xy=2,则x 2+y 2=_____.12.(本题4分)一个三角形的底边长为(2a+6b),高是(4a-5b),则这个三角形的面积是____.13.(本题4分)如果(x+1)(x 2﹣2ax+a 2)的乘积中不含x 2项,则a=________ .14.(本题4分)计算:22011×0.52012= ________________.15.(本题4分)若x n =4,y n =9,则(xy)n =______.16.(本题4分)已知x m =8,x n =2,则x m ﹣n =_____.17.(本题4分)已知m 2+21m =14,则(m +m 1)2的值为________18.(本题4分)请先观察下列算式,再填空:32-12=8×1,52-32=8×2,72-52=8×3;92-72=8×4,…,通过观察归纳,写出用n(n 为正整数)反映这种规律的一般结论:_______________________三、解答题(计58分)19.(本题7分)计算:(1)(-4x)·(2x 2+3x-1); (2)(2x-y)(-2x-y).20.(本题7分)先化简,再求值;(a-4)(a-2)-(a-1)(a-3),其中a=-25. 21.(本题7分)已知4x =8,4y =2,求 x +y 的值. 22.(本题7分)先化简,再求值:其中23.(本题7分)用简便方法计算: ①20192-2018×2019; ②0.932+2×0.93×0.07+0.072.24.(本题7分)一个长方形的长为2xcm,宽比长少4cm,若将长方形的长和宽都扩大3cm.(1)求面积增大了多少?(2)若x=2cm,则增大的面积为多少?25.(本题8分)已知a=8131,b=2741,c=961,比较a,b,c的大小.26.(本题8分)已知a =-0.32,b =-3-2,c =2)32(--,d =(-31)2-,比较a 、b 、c 、d 的大小并用“<”号连接起来.参考答案1.B【解析】【分析】根据幂的乘方公式()n=即可解出.【详解】(a2)3= = a6,选B.【点睛】此题主要考察幂的乘方公式.2.B【解析】【分析】根据合并同类项、积的乘方、单项式的乘法、完全平方公式逐项计算即可.【详解】A. 3a+2a=5a,故不正确;B.(2a2)3=8a6,故正确;C. 2a2•a3=2a5,故不正确;D.(2a+b)2=4a2++4ab+b2,故不正确;故选B.【点睛】本题考查了整式的运算,熟练掌握合并同类项、积的乘方、单项式的乘法法则及完全平方公式是解答本题的关键.3.A【解析】【分析】根据多项式的乘法法则计算出(x﹣p)(x﹣3)的结果并合并同类项,然后和右边比较,根据对应项相等求解即可.【详解】∵(x﹣p)(x﹣3)=x2-3x-px+3p=x2+(-3-p)x+3p,∴,∴ .故选A.【点睛】本题考查了多项式与多项式的乘法运算,多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.4.A【解析】【分析】根据同底数幂的乘法法则可得关于x的方程,解方程即可求得答案.【详解】∵32×3x=38,∴2+x=8,∴x=6,故选A.【点睛】本题考查了同底数幂的乘法,根据法则得出关于x的方程是解题的关键.5.C【解析】【分析】根据同底数幂的乘法底数不变指数相加,可得答案.【详解】①a2n•a n=a3n;③32•32=81正确;②22•33,不是同底数幂的乘法指数不能相加,故②错误;④a2•a3=a5,底数不变指数相加,故④错误;⑤(-a)2•(-a)3=-a5,故⑤错误,故选C.【点睛】本题考查了同底数幂的乘法,利用底数不变指数相加是解题关键.6.A【解析】【分析】根据幂运算的性质,将它们的指数化成相同,只需比较它们的底数的大小,底数大的就大.【详解】解:∵a=255=(25)11=3211,b=344=(34)11=8111,c=433=(43)11=6411,∴8111>6411>3211,即b>c>a.故选A.【点睛】本题要熟练运用幂运算的性质把它们变成相同的指数,然后根据底数的大小比较两个数的大小.7.B【解析】【分析】将a2+4ab+b2化成已知式形式即可解答.【详解】解:a2+4ab+b2=(a+b)2+2ab=36+8=44.故选B.【点睛】本题考查完全平方式变式,掌握完全平方式是解题关键.8.D【解析】【分析】根据多项式除以单项式,先把多项式的每一项都分别除以这个单项式,然后再把所得的商相加计算后即可选取答案.【详解】解:(-8m4n+12m3n2-4m2n3)÷(-4m2n),=-8m4n÷(-4m2n)+12m3n2÷(-4m2n)-4m2n3÷(-4m2n),=2m2-3mn+n2.故选:D.【点睛】本题考查多项式除单项式,熟练掌握运算法则是解题关键.9.D【解析】【分析】完全平方公式:(a±b)2=a2±2ab+b2这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x和4积的2倍,故2(m-3)=±8,∴m=7或-1.【详解】∵x 2+2(m-3)x+16是完全平方式,而16=4 2,∴m-3=4或m-3=-4,∴m=7或-1.故选D.【点睛】本题考查了完全平方公式的应用,解题关键是注意积的2倍的符号,避免漏解.10.D【解析】【分析】分别计算这两个图形阴影部分的面积,根据面积相等即可得到关于a,b 的恒等式.【详解】第一个图形的阴影部分的面积;第二个图形是长方形,则面积.∴.故选:D.【点睛】本题考查了平方差公式的几何背景,正确表示出两个图形中阴影部分的面积是关键.11.12【解析】【分析】原式利用完全平方公式变形,把已知等式代入计算即可求出值.【详解】,∵x+y=4,xy=2,∴−2×2=12.故答案为:12.【点睛】本题考查完全平方公式,解题的关键是利用完全平方公式将原式变形.12.4a2+7ab-15b2【解析】【分析】根据三角形的面积公式列式,再利用多项式乘多项式的法则计算即可.【详解】这个三角形的面积是:S =(2a+6b)(4a-5b)=(a+3b)(4a-5b)=4=4.故答案为:4.【点睛】本题考查多项式乘多项式,熟练掌握运算法则是解题的关键.13.【解析】【分析】先根据多项式的乘法法则计算,合并同类项后令x2的项的系数等于零求解即可.【详解】(x+1)(x2﹣2ax+a2)=x3-2ax2+a2x+x2-2ax+a2=x3+(1-2a)x2+(a2-2a)x +a2∵乘积中不含x2项,∴1-2a=0,∴a=.故答案为:.【点睛】本题考查了利用多项式的不含问题求字母的值,先按照多项式与多项式的乘法法则乘开,再合并关于x的同类项,然后令不含项的系数等于零,列方程求解即可.14.【解析】【分析】首先把0.52012化为0.52011×,然后再根据(ab)n=a n b n进行计算即可.【详解】解:原式=22011×0.52011×=(2×0.5)2011×=.故答案为:.【点睛】本题考查了幂的乘方与积的乘方,逆用了积的乘方法则.15.36【解析】【分析】根据积的乘方的运算法则求解即可.【详解】∵x n=4,y n=9,∴(xy)n=x n y n=4×9=36.故答案为:36【点睛】本题考查了积的乘方,熟练掌握积的乘方的运算法则是解答本题的关键.16.4【解析】【分析】据同底数幂相除,底数不变指数相减进行计算即可得解.【详解】解:∵x m=8,x n=2,∴x m﹣n=x m÷x n=8÷2=4.故答案是:4.【点睛】考查了同底数幂的除法,是基础题,熟记性质并灵活运用是解题的关键.17.16【解析】【分析】利用完全平方公式,把(m+)2展开,把m2+=14代入即可得答案.【详解】∵m2+=14,∴(m+)2=m2+2m+=14+2=16.故答案为:16【点睛】本题考查完全平方公式,熟记公式并灵活运用是解题关键.18.(2n+1)2-(2n-1)2=8n【解析】【分析】结合题意可知,题目中等式左边的被减数和减数的底数都是连续的奇数的平方差,等式的右边是8的倍数,第一个式子是8的1倍,第二个式子是8的2倍,第三个式子是8的3倍,依此得出规律.【详解】由题意,可得等式左边的被减数和减数的底数都是连续的奇数的平方差,等式的右边是8的倍数,第一个式子是8的1倍,第二个式子是8的2倍,第三个式子是8的3倍,…,∴用n(n为正整数)反映这种规律的一般结论为=8n.故答案为:=8n.【点睛】本题考查规律型:数字的变化类.19.(1)-8x3-12x2+4x;(2)y2-4x2【解析】【分析】(1)根据单项式乘多项式法则计算即可;(2)利用平方差公式计算即可.【详解】(1)(-4x)·(2x2+3x-1)=;(2)(2x-y)(-2x-y)=(-y+2x)(-y-2x)==.故答案为:(1);(2).【点睛】本题考查平方差公式,单项式乘多项式.20.-2a+5;10.【解析】【分析】先利用多项式乘以多项式法则去括号,再合并同类项,最后把a的值代入计算即可【详解】(a-4)(a-2)-(a-1)(a-3)==== -2a+5 ;当a=时,原式=10.故答案为:-2a+5 ;10.【点睛】本题考查整式的混合运算—化简求值.21.2【解析】【分析】根据同底数幂的乘法底数不变指数相加,可得答案.【详解】4x=8,4y=2,得4x×4y=4x+y=8×2=16=42,所以x+y=2.【点睛】本题考查了同底数幂的乘法,同底数幂的乘法底数不变指数相加.22.-2【解析】【分析】先利用完全平方式展开化简,再将x,y的值代入求解即可.【详解】解:原式=(+2x-2xy+y--y)=(-4xy+2x)=-2x+8y-4,代入得该式=-2.【点睛】本题主要考察整式化简,细心化简是解题关键.23.①2019;②1.【解析】【分析】①利用提公因式法即可解题;②利用完全平方法即可解题.【详解】①20192-2018×2019=2019×(2019-2018)=2019;②0.932+2×0.93×0.07+0.072=(0.93+0.07)2=1.【点睛】本题考查了整式的计算,因式分解的实际应用,属于简单题,熟悉因式分解方法应用的条件是解题关键.24.(1)(12x-3)cm2;(2)21cm2.【解析】【分析】(1)先表示原长方形的宽为(2x-4)cm,再表示新长方形的长和宽,面积相减即可;(2)将x=2代入(1)中的式子进行计算.【详解】(1)(2x+3)(2x−4+3)−2x(2x−4),=(2x+3)(2x−1)−4+8x,=4−2x+6x−3−4+8x,=12x−3,答:面积增大了(12x−3);(2)当x=2时,12x−3=12×2−3=21;则增大的面积为21.故答案为:(1)(12x-3)cm2;(2)21cm2.【点睛】本题考查整式的混合运算,整式的混合运算—化简求值.25.a>b>c【解析】【分析】根据幂运算的性质,将它们的底数化为相同,只需比较它们的指数的大小,指数大的就大.【详解】解:∵8131=(34)31=3124,2741=(33)41=3123,961=(32)61=3122,∴8131>2741>961,即a>b>c.故答案为:a>b>c.【点睛】本题要熟练运用幂运算的性质把它们变成相同的底数,然后根据指数的大小比较两个数的大小.26.b<a<d<c【解析】【分析】利用乘方性质计算a,b,再利用负指数幂和0次幂计算出c和d,即可比较大小.【详解】解:∵a=-0.32=-0.09=,b=-3-2=-,c=,d=,∴b<a<d<c【点睛】本题考查了幂的乘方和负指数幂的计算,属于简单题,熟悉运算法则是解题关键.。
浙教版七年级数学下册《第3章整式的乘除》单元达标测试题(附答案)一、选择题(本题共计10小题,每题3分,共计30分,)1.下列计算正确的是()A.(2a﹣1)2=4a2﹣1B.3a6÷3a3=a2C.(﹣ab2)4=﹣a4b6D.﹣2a+(2a﹣1)=﹣12.若m、n、p是正整数,则(x m•x n)p=()A.x m•x np B.x mnp C.x mp+np D.x mp•np3.下列各式运算正确的是()A.5a2﹣3a2=2B.a2⋅a3=a6C.(a10)2=a20D.x(a﹣b+1)=ax﹣bx4.若5x=a,5y=b,则52x﹣y=()A.B.a2b C.D.2ab5.计算(ab2)3的结果,正确的是()A.a3b6B.a3b5C.ab6D.ab56.下列四个算式:①63+63;②(2×63)×(3×63);③(22×32)3;④(33)2×(22)3中,结果等于66的是()A.①②③B.②③④C.②③D.③④7.若x2+2mx+16是完全平方式,则(m﹣1)2+2的值是()A.11B.3C.11或27D.3或118.若2a=3,2b=5,2c=15,则()A.a+b=c B.a+b+1=c C.2a+b=c D.2a+2b=c9.若x+m与x+乘积的值不含x项,则m的值为()A.B.4C.﹣D.﹣410.下列计算中,正确的是()A.(﹣2a﹣5)(2a﹣5)=25﹣4a2B.(a﹣b)2=a2﹣b2C.(x+3)(x﹣2)=x2﹣6D.﹣a(2a2﹣1)=﹣2a3﹣a二、填空题(本题共计7小题,每题3分,共计21分,)11.已知2a2+2b2=10,a+b=3,则ab=.12.已知x+y=﹣4,x﹣y=2,则x2﹣y2=.13.已知(x﹣a)(x+a)=x2﹣9,那么a=.14.若n为正整数,且x2n=5,则(3x3n)2﹣45(x2)2n的值为.15.已知x﹣y=5,xy=3,则(x+y)2=.16.有9张边长为a的正方形纸片,9张边长分别为a,b(a<b)的长方形纸片,10张边长为b 的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),则拼成的正方形的边长最长为.17.如图,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式.三、解答题(本题共计8小题,共计69分,)18.若(x﹣2)x+1=1,求x的值.19.若5x﹣3y+2=0,求(102x)3÷(10x•103y)的值.20.计算:(3x3y2z﹣1)﹣2•(5xy﹣2z3)2.21.计算(1)(﹣a2b3)3•(﹣2a2b)3;(2)(a2)5+(﹣a2•a3)2+(﹣a2)5﹣a•a9;(3)2(x+1)+x(x+2)﹣(x﹣1)(x+5)22.先化简,再求值:[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x,其中x=﹣1,y=﹣2023.23.计算(×××…××1)10•(10×9×8×7×…×3×2×1)10.24.乘法公式的探究及应用.(1)如图1,是将图2阴影部分裁剪下来,重新拼成的一个长方形,面积是;如图2,阴影部分的面积是;比较图1,图2阴影部分的面积,可以得到乘法公式;(2)运用你所得到的公式,计算下列各题:①103×97;②(2x+y﹣3)(2x﹣y+3).25.数学活动课上,老师准备了图1中三种不同大小的正方形与长方形,拼成了一个如图2所示的正方形.(1)请用两种不同的方法表示图2中阴影部分的面积和.方法1:;方法2:.(2)请你直接写出三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:①已知m+n=5,m2+n2=20,求mn和(m﹣n)2的值;②已知(x﹣2021)2+(x﹣2023)2=34,求(x﹣2022)2的值.参考答案一、选择题(本题共计10小题,每题3分,共计30分,)1.解:A、原式=4a2﹣4a+1,不符合题意;B、原式=a3,不符合题意;C、原式=a4b8,不符合题意;D、原式=﹣2a+2a﹣1=﹣1,符合题意,故选:D.2.解:(x m•x n)p=(x m+n)p=x(m+n)p=x mp+np,故选:C.3.解:∵5a2﹣3a2=2a2≠2,故选项A错误;a2⋅a3=a5≠a6,故选项B错误;(a10)2=a20,故选项C正确;x(a﹣b+1)=ax﹣bx+x≠ax﹣bx,故选项D错误;故选:C.4.解:52x﹣y=52x÷5y=5x×5x÷5y已知5x=a,5y=b,所以上式=.故选:A.5.解:(ab2)3=a3b6.故选:A.6.解:①63+63=2×63;②(2×63)×(3×63)=6×66=67;③(22×32)3=(62)3=66;④(33)2×(22)3=36×26=66.所以③④两项的结果是66.故选:D.7.解:∵x2+2mx+16是完全平方式.∴m2=16.∴m=±4.当m=4时,(m﹣1)2+2=9+2=11.当m=﹣4时(m﹣1)2+2=25+2=27.故答案为:C.故选:C.8.解:∵2a×2b=2a+b=3×5=15=2c,∴a+b=c,故选:A.9.解:(x+m)(x+)=x2+(m+)x+m,∵乘积中不含x项,∴m+=0,即m=﹣.故选:C.10.解:A、(﹣2a﹣5)(2a﹣5)=25﹣4a2,正确;B、(a﹣b)2=a2﹣2ab+b2,错误;C、(x+3)(x﹣2)=x2+x﹣6,错误;D、﹣a(2a2﹣1)=﹣2a3+a,错误,故选:A.二、填空题(本题共计7小题,每题3分,共计21分,)11.解:∵2a2+2b2=10,∴a2+b2=5,∵a+b=3,∴(a+b)2=9,∴a2+2ab+b2=9,∴5+2ab=9,∴2ab=4,∴ab=2,故答案为:2.12.解:当x+y=﹣4,x﹣y=2时,原式=(x+y)(x﹣y)=﹣4×2=﹣8.故答案为:﹣8.13.解:根据平方差公式,(x﹣a)(x+a)=x2﹣a2,由已知可得,a2=9,所以,a=±=±3.故答案为:±3.14.解:当x2n=5时,原式=9x6n﹣45x4n=9(x2n)3﹣45(x2n)2=9×53﹣45×52=9×53﹣9×53=0.故答案为:0.15.解:将x﹣y=5两边平方得:(x﹣y)2=25,即(x+y)2=x2+y2+2xy=x2+y2﹣2xy+4xy=(x﹣y)2+4xy,把xy=3代入得:(x+y)2=(x﹣y)2+4xy=25+4×3=37.故答案为:37.16.解:假设正方形的边长为xa+yb,其中x、y为正整数.则(xa+yb)2≤9a2+9b2+10ab,x2a2+2xyab+y2b2≤9a2+9b2+10ab,即(9﹣x2)a2+(9﹣y2)b2+(10﹣2xy)ab≥0.∵a<b,∴9﹣y2≥0,y≤3.当y取最大值3时,由10﹣2xy≥0,得x≤1,即x取最大值1.∴拼成得正方形边长最长为:3b+a.故答案为:3b+a.17.解:a2﹣b2=(a+b)(a﹣b).三、解答题(本题共计9小题,共计69分,)18.解:①依题意得:x+1=0,且x﹣2≠0解得x=﹣1.②依题意得:x﹣2=1,即x=3时,也符合题意;③依题意得:当x﹣2=﹣1即x=1时,也符合题意.综上所述,x的值是﹣1或3或1.19.解:5x﹣3y+2=0则5x﹣3y=﹣2.原式=106x÷10x+3y=106x﹣x﹣3y=105x﹣3y=10﹣2=.20.解:原式=3﹣2x﹣6y﹣4z2•25x2y﹣4z6=(×25)•x﹣6+2•y﹣4﹣4•z2+6=.21.解:(1)(﹣a2b3)3•(﹣2a2b)3=﹣a6b9•(﹣8a6b3)=a12b12;(2)(a2)5+(﹣a2•a3)2+(﹣a2)5﹣a•a9=a10+a10﹣a10﹣a10=0;(3)2(x+1)+x(x+2)﹣(x﹣1)(x+5)=2x+2+x2+2x﹣x2﹣5x+x+5=7.22.解:[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x =(x2﹣4xy+4y2+x2﹣4y2﹣4x2+2xy)÷2x=(﹣2x2﹣2xy)÷2x=﹣x﹣y,当x=﹣1,y=﹣2023时,原式=1+2023=2022.23.解:(×××…××1)10•(10×9×8×7×…×3×2×1)10=(×××…××1×10×9×8×7×…×3×2×1)10=110=1;24.解:(1)由拼图可知,图形1的长为(a+b),宽为(a﹣b),因此面积为(a+b)(a﹣b),图形2的阴影部分的面积为两个正方形的面积差,即a2﹣b2,由图形1,图形2的面积相等可得,(a+b)(a﹣b)=a2﹣b2,故答案为:(a+b)(a﹣b),a2﹣b2,(a+b)(a﹣b)=a2﹣b2;(2)①103×97=(100+3)(100﹣3)=1002﹣32=10000﹣9=9991;②原式=(2x+y﹣3)=(2x)2﹣(y﹣3)2=4x2﹣(y2﹣6y+9)=4x2﹣y2+6y﹣9.25.解:(1)阴影两部分求和为a2+b2,用总面积减去空白部分面积为(a+b)2﹣2ab,故答案为:a2+b2,(a+b)2﹣2ab;(2)由题意得,a2+b2=(a+b)2﹣2ab;(3)①由(2)题结论a2+b2=(a+b)2﹣2ab可得ab=,∴m+n=5,m2+n2=20时,mn===,(m﹣n)2=m2﹣2mn+n2;=20﹣2×=20﹣5=15;②设a=x﹣2021,b=x﹣2023,可得a+b=(x﹣2021)+(x﹣2023)=x﹣2021+x﹣2023=2x﹣4044=2(x﹣2022),由(2)题结论a2+b2=(a+b)2﹣2ab可得,(a+b)2=a2+2ab+b2,又∵(a﹣b)2=[(x﹣2021)﹣(x﹣2023)]2=22=4,且由(a﹣b)2=a2﹣2ab+b2,可得2ab=(a2+b2)﹣(a﹣b)2=(x﹣2021)2+(x﹣2023)2﹣[(x﹣2021)﹣(x﹣2023)]2=34﹣4=30,∴(x﹣2022)2=()2====16.。
浙教新版七年级下册数学第3章《整式的乘除》测试卷时间:100分钟;满分:100分班级:___________姓名:___________座号:___________成绩:___________一.选择题(共10小题,共30分)1.计算﹣(﹣m2)•(﹣m)3•(﹣m),正确的是()A.﹣m3B.m5C.m6D.﹣m6 2.下列运算正确的是()A.a3•a3=a9B.a3+a2=a5C.(a2)3=a5D.(a4)3=a12 3.计算(﹣x3)2÷(﹣x)所得结果是()A.x5B.﹣x5C.x6D.﹣x64.计算(π﹣3)0÷3×(﹣)的结果是()A.﹣1B.﹣C.1D.95.下列计算中,正确的是()A.4a3•2a2=8a6B.2x4•3x4=6x8C.3x2•4x2=6x2D.3y4•5y4=15y206.计算:15a3b÷(﹣5a2b)等于()A.﹣3ab B.﹣3a3b C.﹣3a D.﹣3a2b 7.若(x+a)(x+b)的积中不含x的一次项,那么a与b一定是()A.互为相反数B.互为倒数C.相等D.a比b大8.如果(2a+2b﹣3)(2a+2b+3)=40,则a+b的值为()A.B.﹣C.D.±39.若要使等式(3x+4y)2=(3x﹣4y)2+A成立,则A等于()A.24xy B.48xy C.12xy D.50xy 10.已知y2+my+1是完全平方式,则m的值是()A.2B.±2C.1D.±1二.填空题(共5小题,共20分)11.若a4•a2m﹣1=a11,则m=.12.计算:20+(﹣)﹣1=.13.若a2b=2,则代数式2ab(a﹣2)+4ab=.14.如果表示3xyz表示﹣2a b c d,则÷3mn2=.15.如图,有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为3和15,则正方形A,B的面积之和为.三.解答题(共8小题,共50分)16.计算:(1)(x+y)3•(x+y)•(x+y)2;(2)(m﹣n)2•(n﹣m)2•(n﹣m)3;(3)x3•x n﹣1﹣x n﹣2•x4+x n+2;(4)﹣(﹣p)3•(﹣p)3•(﹣p)2.17.求值(1)已知2x+5y+3=0,求4x•32y的值;(2)已知2×8x×16=223,求x的值.18.先化简,再求值:(m+2n)(m﹣2n)﹣(m﹣n)2+(3m2n﹣4mn2)÷(﹣m),其中m =2,n=﹣1.19.已知:x m=4,x n=8.(1)求x2m的值;(2)求x m+n的值;(3)求x3m﹣2n的值.20.已知(x2+mx+3)(x2﹣3x+n)的展开式中不含x2项和x3项.(1)求m,n的值.(2)求(m+n)(m2﹣mn+n2)的值.21.(1)已知x+y=5,xy=3,求x2+y2的值;(2)已知x﹣y=5,x2+y2=51,求(x+y)2的值;(3)已知x2﹣3x﹣1=0,求x2+的值.22.我们知道,图形是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系,而运用代数思想也能巧妙的解决一些图形问题.(1)如图1所示,甲同学从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),求矩形的面积;(2)乙同学用如图2所示不同颜色的正方形与长方形纸片拼成了一个如图3所示的正方形.①用不同的代数式表示图中阴影部分的面积,你能得到怎样的等式,试用乘法公式说明这个等式成立;②根据①中的结论计算:已知(2016﹣m)(2018﹣m)=2009,求(2018﹣m)2+(m﹣2016)223.动手操作:如图①是一个长为2a,宽为2b的长方形,沿图中的虚线剪开分成四个大小相等的长方形,然后按照图②所示拼成一个正方形.提出问题:(1)观察图②,请用两种不同的方法表示阴影部分的积:,;(2)请写出三个代数式(a+b)2,(a﹣b)2,ab之间的一个等量关系:;(3)问题解决:根据上述(2)中得到的等量关系,解决下列问题:已知x+y=8,xy=7,求(x﹣y)2的值.参考答案与试题解析部分一.选择题(共10小题)1.计算﹣(﹣m2)•(﹣m)3•(﹣m),正确的是()A.﹣m3B.m5C.m6D.﹣m6【分析】根据同底数幂的乘法法则计算即可.【解答】解:﹣(﹣m2)•(﹣m)3•(﹣m)=﹣(﹣m2)•(﹣m3)•(﹣m)=m2+3+1=m6.故选:C.2.下列运算正确的是()A.a3•a3=a9B.a3+a2=a5C.(a2)3=a5D.(a4)3=a12【分析】分别根据同底数幂的乘法法则,合并同类项的法则以及幂的乘方运算法则逐一判断即可.【解答】解:a3•a3=a6,故选项A不合题意;a3与a2不是同类项,所以不能合并,故选项B不合题意;(a2)3=a6,故选项C不合题意;(a4)3=a12,正确,故选项D符合题意.故选:D.3.计算(﹣x3)2÷(﹣x)所得结果是()A.x5B.﹣x5C.x6D.﹣x6【分析】先算乘方,再算除法即可.【解答】解:(﹣x3)2÷(﹣x)=x6÷(﹣x)=﹣x5,故选:B.4.计算(π﹣3)0÷3×(﹣)的结果是()A.﹣1B.﹣C.1D.9【分析】先算零次幂,再算乘除即可.【解答】解:原式=1××(﹣)=﹣,故选:B.5.下列计算中,正确的是()A.4a3•2a2=8a6B.2x4•3x4=6x8C.3x2•4x2=6x2D.3y4•5y4=15y20【分析】根据单项式乘单项式的法则计算,判断即可.【解答】解:A、4a3•2a2=8a5,本选项错误;B、2x4•3x4=6x8,本选项正确;C、3x2•4x2=12x4,本选项错误;D、3y4•5y4=15y8,本选项错误;故选:B.6.计算:15a3b÷(﹣5a2b)等于()A.﹣3ab B.﹣3a3b C.﹣3a D.﹣3a2b【分析】根据单项式除以单项式的法则计算即可.【解答】解:15a3b÷(﹣5a2b)=15÷(﹣5)•a3﹣2•b1﹣1=﹣3a.故选:C.7.若(x+a)(x+b)的积中不含x的一次项,那么a与b一定是()A.互为相反数B.互为倒数C.相等D.a比b大【分析】原式利用多项式乘以多项式法则计算,根据结果中不含x的一次项,求出a与b 的关系即可.【解答】解:(x+a)(x+b)=x2+ax+bx+ab=x2+(a+b)x+ab,由结果中不含x的一次项,得到a+b=0,即a与b一定是互为相反数.故选:A.8.如果(2a+2b﹣3)(2a+2b+3)=40,则a+b的值为()A.B.﹣C.D.±3【分析】先根据平方差公式进行计算,再求出(a+b)2的值,最后求出答案即可.【解答】解:∵(2a+2b﹣3)(2a+2b+3)=40,∴(2a+2b)2﹣32=40,∴4(a+b)2=49,∴(a+b)2=,∴a+b=±,故选:C.9.若要使等式(3x+4y)2=(3x﹣4y)2+A成立,则A等于()A.24xy B.48xy C.12xy D.50xy【分析】利用A=(3x+4y)2﹣(3x﹣4y)2,然后利用完全平方公式展开合并即可.【解答】解:∵(3x+4y)2=9x2+24xy+16y2,(3x﹣4y)2=9x2﹣24xy+16y2,∴A=9x2+24xy+16y2﹣(9x2﹣24xy+16y2)=48xy.故选:B.10.已知y2+my+1是完全平方式,则m的值是()A.2B.±2C.1D.±1【分析】利用完全平方公式的结构特征判断即可求出m的值.【解答】解:∵y2+my+1是完全平方式,∴m=±2,故选:B.二.填空题(共5小题)11.若a4•a2m﹣1=a11,则m=4.【分析】根据同底数幂的乘法法则解答即可.【解答】解:∵a4•a2m﹣1=a11,∴4+(2m﹣1)=11,解得m=4.故答案为:4.12.计算:20+(﹣)﹣1=﹣1.【分析】直接利用零指数幂的性质以及负整数指数幂的性质分别化简得出答案.【解答】解:原式=1﹣2=﹣1.故答案为:﹣1.13.若a2b=2,则代数式2ab(a﹣2)+4ab=4.【分析】根据单项式与多项式相乘的运算法则把原式化简,代入计算即可.【解答】解:2ab(a﹣2)+4ab=2a2b﹣4ab+4ab=2a2b,当a2b=2时,原式=2×2=4,故答案为:4.14.如果表示3xyz表示﹣2a b c d,则÷3mn2=﹣4m3n,.【分析】原式根据题中的新定义计算即可求出值.【解答】解:解:根据题中的新定义得:原式=6mn•(﹣2n2m3)÷3mn2=﹣4m3n,故答案为﹣4m3n.15.如图,有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为3和15,则正方形A,B的面积之和为18.【分析】设正方形的边长,根据方程的思想,正方形的面积公式和已知阴影部分的面积构建一个方程组,数形结合,整体法求出正方形A、B的面积之和为18.【解答】解:如图所示:设正方形A、B的边长分别为x,y,依题意得:,化简得:由①+②得:x2+y2=18,∴,故答案为18.三.解答题(共8小题)16.计算:(1)(x+y)3•(x+y)•(x+y)2;(2)(m﹣n)2•(n﹣m)2•(n﹣m)3;(3)x3•x n﹣1﹣x n﹣2•x4+x n+2;(4)﹣(﹣p)3•(﹣p)3•(﹣p)2.【分析】根据同底数幂的乘法法则计算即可.【解答】解:(1)(x+y)3•(x+y)•(x+y)2=(x+y)3+1+2=(x+y)6;(2)(m﹣n)2•(n﹣m)2•(n﹣m)3=(n﹣m)2+2+3=(n﹣m)7;(3)x3•x n﹣1﹣x n﹣2•x4+x n+2=x n+2﹣x n﹣2+4+x n+2=x n+2;(4)﹣(﹣p)3•(﹣p)3•(﹣p)2=﹣p3+3+2=﹣p8.17.求值(1)已知2x+5y+3=0,求4x•32y的值;(2)已知2×8x×16=223,求x的值.【分析】(1)直接利用幂的乘方运算法则以及同底数幂的乘法运算法则将原式变形得出答案;(2)直接利用幂的乘方运算法则以及同底数幂的乘法运算法则将原式变形得出答案.【解答】解:(1)∵2x+5y+3=0,∴2x+5y=﹣3,∴4x•32y=22x•25y=22x+5y=2﹣3=;(2)∵2×8x×16=223,∴2×23x×24=223,∴1+3x+4=23,解得:x=6.18.先化简,再求值:(m+2n)(m﹣2n)﹣(m﹣n)2+(3m2n﹣4mn2)÷(﹣m),其中m =2,n=﹣1.【分析】根据平方差公式、完全平方公式、多项式除单项式的运算法则把原式化简,代入计算即可.【解答】解:(m+2n)(m﹣2n)﹣(m﹣n)2+(3m2n﹣4mn2)÷(﹣m)=m2﹣4n2﹣m2+2mn﹣n2﹣3mn+4n2=﹣n2﹣mn,当m=2,n=﹣1时,原式=﹣1+2=1.19.已知:x m=4,x n=8.(1)求x2m的值;(2)求x m+n的值;(3)求x3m﹣2n的值.【分析】(1)直接利用幂的乘方运算法则计算得出答案;(2)直接利用同底数幂的乘法运算法则计算得出答案;(3)直接利用幂的乘方运算法则以及同底数幂的除法运算法则计算得出答案.【解答】解:(1)∵x m=4,x n=8,∴x2m=(x m)2=16;(2)∵x m=4,x n=8,∴x m+n=x m•x n=4×8=32;(3)∵x m=4,x n=8,∴x3m﹣2n=(x m)3÷(x n)2=43÷82=1.20.已知(x2+mx+3)(x2﹣3x+n)的展开式中不含x2项和x3项.(1)求m,n的值.(2)求(m+n)(m2﹣mn+n2)的值.【分析】(1)根据整式的运算法进行化简后即可求出答案;(2)先将原式化简,然后将m与n代入原式即可求出答案.【解答】解:(1)原式=x4﹣3x3+nx2+mx3﹣3mx2+mnx+3x2﹣9x+3n=x4﹣3x3+mx3+nx2﹣3mx2+3x2+mnx﹣9x+3n=x4+(m﹣3)x3+(n﹣3m+3)x2+mnx﹣9x+3n由于展开式中不含x2项和x3项,∴m﹣3=0且n﹣3m+3=0,∴解得:m=3,n=6,(2)由(1)可知:m+n=9,mn=18,∴(m+n)2=m2+2mn+n2,∴81=m2+n2+36,∴m2+n2=45,∴原式=9×(45﹣18)=24321.(1)已知x+y=5,xy=3,求x2+y2的值;(2)已知x﹣y=5,x2+y2=51,求(x+y)2的值;(3)已知x2﹣3x﹣1=0,求x2+的值.【分析】(1)将x2+y2变形为(x+y)2﹣2xy,然后将x+y=5,xy=3代入求解即可;(2)由x﹣y=5可得x2+y2﹣2xy=25,结合x2+y2=51,可得2xy=26,由完全平方公式计算结果;(3)利用完全平方公式求值即可.【解答】解:(1)因为x+y=5,xy=3,所以x2+y2=(x+y)2﹣2xy=25﹣6=19;即x2+y2的值是19;(2)∵x﹣y=5,∴(x﹣y)2=x2+y2﹣2xy=25,又∵x2+y2=51,∴2xy=26,∴(x+y)2=x2+y2+2xy=51+26=77;即(x+y)2的值是77;(3)解:∵x2﹣3x﹣1=0∴x﹣3﹣=0,∴x﹣=3,∴x2+=(x﹣)2+2=11,即x2+的值是11.22.我们知道,图形是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系,而运用代数思想也能巧妙的解决一些图形问题.(1)如图1所示,甲同学从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),求矩形的面积;(2)乙同学用如图2所示不同颜色的正方形与长方形纸片拼成了一个如图3所示的正方形.①用不同的代数式表示图中阴影部分的面积,你能得到怎样的等式,试用乘法公式说明这个等式成立;②根据①中的结论计算:已知(2016﹣m)(2018﹣m)=2009,求(2018﹣m)2+(m﹣2016)2【分析】(1)根据矩形的面积公式计算;(2)①根据正方形的面积公式表示出阴影部分的面积,根据图形表示出阴影部分的面积,得到等式,根据完全平方公式证明结论;②根据①的结论计算即可.【解答】解:(1)矩形的面积=(a+4)2﹣(a+1)2=a2+8a+16﹣a2﹣2a﹣1=6a﹣15;(2)①如图2,阴影部分的面积=a2+b2,如图3,阴影部分的面积=(a+b)2﹣2ab,则得到等式a2+b2=(a+b)2﹣2ab,证明:(a+b)2﹣2ab=a2+2ab+b2﹣2ab=a2+b2;②(2018﹣m)2+(m﹣2016)2=(2018﹣m+m﹣2016)2﹣2×(m﹣2016)(2018﹣m)=4+2009×2=4022.23.动手操作:如图①是一个长为2a,宽为2b的长方形,沿图中的虚线剪开分成四个大小相等的长方形,然后按照图②所示拼成一个正方形.提出问题:(1)观察图②,请用两种不同的方法表示阴影部分的积:(a+b)2﹣4ab,(a ﹣b)2;(2)请写出三个代数式(a+b)2,(a﹣b)2,ab之间的一个等量关系:(a+b)2﹣4ab =(a﹣b)2;(3)问题解决:根据上述(2)中得到的等量关系,解决下列问题:已知x+y=8,xy=7,求(x﹣y)2的值.【分析】(1)第一种方法为:大正方形面积﹣4个小长方形面积,第二种表示方法为:阴影部分正方形的面积;(2)化简后可知:相等;(3)利用(a+b)2﹣4ab=(a﹣b)2可求解.【解答】解:(1)(a+b)2﹣4ab或(a﹣b)2,故答案为:(a+b)2﹣4ab,(2)∵(a+b)2﹣4ab=a2﹣2ab+b2=(a﹣b)2;故答案为:(a+b)2﹣4ab=(a﹣b)2;(3)由(2)知:(x﹣y)2=(x+y)2﹣4xy,∵x+y=8,xy=7,∴(x﹣y)2=64﹣28=36.。
第3章 单元测试卷一、选择题(每题2分,共20分)1.计算32a (-2) 的结果是 ( )A .58a -B .68a -C .64aD .664a 2.下列计算正确的是 ( )A .x 2+x 3=x 5B .x 2·x 3=x 6C .(x 2)3=x 5D .x 5÷x 3=x 23.用科学记数方法表示错误!未找到引用源。
,得( )A . 错误!未找到引用源。
B . 错误!未找到引用源。
C . 错误!未找到引用源。
D . 错误!未找到引用源。
4.下列运算中正确的是 ( )A .x 3·y 3=x 6B .(m 2)3=m 5C .2x -2=12x 2D .(-a )6÷(-a )3=-a 3 5.计算20132012)2()2(-+-所得结果 ( )A. 20122B. 20122-C. 1D. 26. 已知,3,5=-=+xy y x 则=+22y x ( )A. 25. B 25- C 19 D 、19-7.一个正方形的边长增加了2cm ,面积相应增加了322c m ,则原正方形的边长为 ( )A 、5cmB 、6cmC 、7cmD 、8cm8.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为 ( )A 、 –3B 、3C 、0D 、19. 若x y 3=4,9=7 ,则x 2y 3-的值为 ( )A .47B .74C .3-D .2710.如果整式29x mx ++ 恰好是一个整式的平方,那么 m 的值是 ( )A 、±3B 、±4.5C 、±6D 、9二、填空题(每题3分,共30分)11.化简:6a 6÷3a 3= .12.已知x n =4,则x 3n =__ __.13.若8a 3b 2÷M =2ab 2,则M =__ __. 14. (__ __)2=9a 2-__ __+16b 2.15.若622=-n m ,且3=-n m ,则=+n m .16. 若2a +2a=1,则22a +4a 1=- .17.若(1)1m m -= ,则m = .18.若5320x y --= ,则528x y ÷= .19.若代数式232x x ++ 可以表示为2(x 1)(x 1)b a -+-+ 的形式,则a b += ________. 20.定义新运算“⊗”规定:2143a b a ab ⊗=-- 则3(1)⊗-= ___________. 三、解答题(共50分)21.计算:(本题9分)(1)()()02201314.3211π--⎪⎭⎫ ⎝⎛-+-- (2)()()222223366m m n m n m -÷--(3)()()()()233232222x y x xy y x ÷-+-⋅22.(本题10分)(1)先化简,再求值:()()()222b +a+b a b a b ---,其中a=﹣3,b=12.(2)先化简,再求值: 6)6()3)(3(2+---+a a a a ,其中12-=a .23.(本题6分)已知A =2x +y ,B =2x -y ,计算A 2-B 2.24.(本题8分)说明代数式2(x y)(x y)(x y)(2)y y ⎡⎤--+-÷-+⎣⎦ 的值与y 的值无关。
浙教版七下数学第三单元测试卷(含答案)一、单选题1.下列计算中,不正确的是()A.5x5-x5=4x5B.x3÷x=x2C.(-2ab)3=-6a3b3D.2a•3a=6a22.下列运算正确的是()A.x2+x2=x4B.(a﹣b)2=a2﹣b2C.(﹣a2)3=﹣a6D.3a2•2a3=6a63.三个连续奇数,若中间的一个为n,则这三个连续奇数之积为()A.4n3﹣nB.n3﹣4nC.8n2﹣8nD.4n3﹣2n4.下列计算正确的是()A.x(x2﹣x﹣1)=x3﹣x﹣1B.ab(a+b)=a2+b2C.3x(x2﹣2x﹣1)=3x3﹣6x2﹣3xD.﹣2x(x2﹣x﹣1)=﹣2x3﹣2x2+2x5.下列能用平方差公式计算的是()A.(-x+y)(x-y)B.(x-1)(-1-x)C.(2x+y)(2y-x)D.(x-2)(x+1)6.多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式不可以是()A.4xB.-4xC.4x4D.-4x47.已知P=m−1,Q=m2−m(m为任意实数),则P、Q的大小关系为()A.P>QB.P=QC.P<QD.不能确定8.长度单位1纳米=10-9米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是()A.2.51×10-5米B.25.1×10-6米C.0.251×10-4米D.2.51×10-4米9.计算4a6÷(﹣a2)的结果是()A.4a4B.﹣4a4C.﹣4a3D.4a310.在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是100,小正方形的面积为20,那么每个直角三角形的周长为()A.10+6B.10+10C.10+4D.24二、填空题11.计算:a2•a3=________.12.若4x2•□=8x3y,则“□”中应填入的代数式是________ .13.若a+b=6,ab=4,则a2+b2=________ .14.夏老师发现,两位同学将一个二次三项式分解因式时,聪聪同学因看错了一次项而分解成3(x﹣1)(x ﹣9),江江同学因看错了常数项而分解成3(x﹣2)(x﹣4),那么,聪明的你,通过以上信息可以知道,原多项式应该是被因式分解为________ .15.若9x2﹣kxy+4y2是一个完全平方式,则k的值是________.16.若2m=3,4n=8,则23m﹣2n+3的值是________17.已知A=2x,B是多项式,在计算B+A时,小马虎同学把B+A看成B÷A,结果得x+,则B+A=________18.请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b)6= ________三、解答题19.计算:(1)(+﹣)×|﹣12|;(2)2(x2)3+3(﹣x3)2.20.已知x n=2,y n=3,求(x2y)2n的值.21.若(x﹣1)(x+2)(x﹣3)(x+4)+a是一个完全平方式,求a的值.22.把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子,或可以求出一些不规则图形的面积.(1)如图1,是将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c的正方形,试用不同的方法计算这个图形的面积,你能发现什么结论,请写出来.(2)如图2,是将两个边长分别为a和b的正方形拼在一起,B、C、G三点在同一直线上,连接BD和BF,若两正方形的边长满足a+b=10,ab=20,你能求出阴影部分的面积吗?答案部分第 1 题:【答案】C第 2 题:【答案】C第 3 题:【答案】B第 4 题:【答案】C第 5 题:【答案】B第 6 题:【答案】 D第7 题:【答案】C第8 题:【答案】A第9 题:【答案】B第10 题:【答案】A第11 题:【答案】a5第12 题:【答案】2xy第13 题:【答案】28第14 题:【答案】3(x﹣3)2第15 题:【答案】k=±12第16 题:【答案】27第17 题:【答案】2x2+3x第18 题:【答案】a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6 第19 题:【答案】解:(1)原式=6+8﹣3=11;(2)原式=2x6+3x6=5x6.第20 题:【答案】解:∵x n=2,y n=3,∴(x2y)2n=x4n y2n=(x n)4(y n)2=24×32=144.第21 题:【答案】解:原式=(x2+x﹣2)(x2+x﹣12)+a=(x2+x)2﹣14(x2+x)+a+24,由结合为完全平方式,得到a+24=49,解得:a=25.第22 题:【答案】解(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac(2)∵a+b=10,ab=20,∴S阴影=a2+b2﹣(a+b)•b﹣a2=a2+b2﹣ab=(a+b)2﹣ab=×102﹣×20=50﹣30=20.。
浙教版本初中七年级的下数学第三章整式的乘除单元总结复习检测试卷习题包括答案.docx浙教版七年级下数学《第三章整式的乘除》单元检测试卷含答案第三章整式的乘除单元检测卷姓名: __________ 班级: __________题号一二三评分一、选择题(共9 题;每小题 4 分,共36 分)1.若( x2+px﹣ q)( x2+3x+1)的结果中不含x2和x3项,则p﹣ q 的值为()A. 11B. 5C. -11D. -142.下列计算正确的是()A. (﹣2)3=8B. ()﹣1=3C. a4?a2=a8D. a6÷a3=a23.(mx+8)( 2﹣ 3x)展开后不含x 的一次项,则m 为()A. 3B.C. 12D. 244.下列关系式中,正确的是()A. B. C. D.5.下列运算正确的是()2365510623326A. a ?a =aB. a +a =aC. a÷a=aD. ( a)=a6.22)若 a+b=﹣ 3, ab=1,则 a +b =(A. -11B. 11C. -7D. 77.如图中,利用面积的等量关系验证的公式是()22222 A. a﹣ b =(a+b)( a﹣ b) B. ( a﹣ b) =a ﹣ 2ab+bC. ( a+2b)( a﹣ b) =a2+ab﹣ 2b2D. ( a+b)2=a2+2ab+b28.算(23的果正确的是()a b )A. a4b2B. a6b3C.a6b3D.a5b 39.已知,的是()A. 5B. 6C. 8D. 9二、填空题(共10 题;共 30 分)10.算: a n ?a n?a n =________;( x)( x2)( x3)( x4)=________.11.你能化( x 1)( x99+x98+? +x+1)?遇到的复,我可以先从的情形入手,然后出一些方法,分化下列各式并填空:(2231;( x x 1)( x+1)=x 1;( x 1)( x+x+1) =x1)( x3+x2+x+1)=x4 1根据上述律,可得(9998x 1)( x +x +? +x+1) =________你利用上面的,完成下面:算: 299+298+297+? +2+1,并判断末位数字是________12.如果( x+q)( x+)的果中不含x ,那么 q=________.13.若 5x=12,5y=4,5x-y=________.14.若 x n=4, y n =9,( xy)n =________15.m ( a b+c) =ma mb+mc. ________.2的是 ________.16.若 x +kx+25 是完全平方式,那么 k17.若 x+2y 3=0, 2x?4y的 ________.0﹣ 218.算:(π) +2 =________.19.(22.________ )÷ 7st=3s+2t;( ________ )( x 3)=x 5x+6三、解答题(共 3 题;共 34 分)20.解不等式:(x 6)( x 9)( x 7)( x 1)< 7( 2x 5)21.当 a=3, b= 1(1)求代数式 a2 b2和( a+b)( a b)的;(2)猜想两个代数式的有何关系?( 3)根据( 1)( 2),你能用便方法算出a=2008, b=2007 ,a2 b 2的?22.已知: 2x+3y 4=0,求 4x?8y的.参考答案一、选择题B BC BD D D C B二、填空题10. a3n; x1011. x100﹣ 1; 512. ﹣13. 314. 3615. 正确16. ±1017. 818.19. 21s2t2+14st3; x﹣ 2三、解答题20.解:原不等可化为: x2﹣ 15x+54﹣ x2+8x﹣ 7< 14x﹣ 35,整理得:﹣ 21x<﹣ 82,解得: x>,则原不等式的解集是x>.222﹣(﹣221. 解:( 1)a﹣ b=31) =9﹣ 1=8( a+b)( a﹣ b) =(3﹣ 1)( 3+1) =8;( 2) a2﹣ b2=( a+b)( a﹣b );( 3) a2﹣ b2=( a+b)( a﹣b )=( 2008+2007 )( 2008﹣ 2007 ) =4015.22. 解:∵ 2x+3y﹣ 4=0,∴ 2x+3y=4,∴4x?8y=22x?23y=22x+3y=24=16,∴4x?8y的值是 16。
第3章 测试卷一、选择题(每题3分,共30分) 1.计算(-x 3)2的结果是( )A .x 5B .-x 5C .x 6D .-x 62.下列计算正确的是( )A .2a -2=12aB .(2a +b )(2a -b )=2a 2-b 2C .2a ·3b =5abD .3a 4÷(2a 4)=323.花粉的质量很小,一粒某种植物花粉的质量约为0.000 037 mg ,已知1 g =1 000 mg ,那么0.000 037 mg 用科学记数法表示为( ) A .3.7×10-5 g B .3.7×10-6 g C .3.7×10-7 gD .3.7×10-8 g4.在下列计算中,不能用平方差公式计算的是( )A .(m -n )(-m +n ) B.()x 3-y 3()x 3+y 3 C .(-a -b )(a -b ) D.()c 2-d 2()d 2+c 25.已知a +b =m ,ab =-4,化简(a -2)(b -2)的结果是( )A .6B .2m -8C .2mD .-2m6.若3x =4,9y =7,则3x -2y 的值为( )A.47B.74C .-3D.277.如果x +m 与x +3的乘积中不含x 的一次项,则m 的值为( )A .-3B .3C .0D .18.若a =-0.32,b =(-3)-2,c =⎝ ⎛⎭⎪⎫-13-2,d =⎝ ⎛⎭⎪⎫-130,则( )A .a <b <c <dB .a <b <d <cC .a <d <c <bD .c <a <d <b9.如图,在边长为a 的正方形中挖掉一个边长为b 的小正方形,把余下的部分剪成两个直角梯形后,再拼成一个长方形,通过计算阴影部分的面积,验证了一个等式,这个等式是( )A .a 2-b 2=(a +b )(a -b )B .(a +b )2=a 2+2ab +b 2C .(a -b )2=a 2-2ab +b 2D .a 2-ab =a (a -b )10.若A =(2+1)(22+1)(24+1)(28+1)+1,则A 的末位数字是( )A .2B .4C .6D .8二、填空题(每题3分,共24分) 11.已知x n =4,则x 3n =________. 12.计算:(2a )3·(-3a 2)=________.13.若x +y =5,x -y =1,则式子x 2-y 2的值是________. 14.若(a 2-1)0=1,则a 的取值范围是________.15.已知x 2-x -1=0,则代数式-x 3+2x 2+2 018的值为__________. 16.如果(3m +3n +2)(3m +3n -2)=77,那么m +n 的值为________. 17.对实数a ,b 定义运算☆如下:a ☆b =⎩⎨⎧a b(a >b ,a ≠0),a -b (a ≤b ,a ≠0),如2☆3=2-3=18.计算[2☆(-4)]÷[(-4)☆2]=________.18.已知a +1a =5,则a 2+1a 2的结果是________.三、解答题(20题4分,19,21,22,23题每题8分,24题10分,共46分) 19.计算:(1)-23+13(2 018+3)0-⎝ ⎛⎭⎪⎫-13-2; (2)⎝ ⎛⎭⎪⎫52x 3y 3+4x 2y 2-3xy ÷(-3xy );(3)(-2+x )(-2-x ); (4)(a +b -c )(a -b +c ).20.先化简,再求值:[(x2+y2)-(x+y)2+2x(x-y)]÷(4x),其中x-2y=2.21.(1)已知a+b=7,ab=12.求下列各式的值:①a2-ab+b2;②(a-b)2.(2)已知a=275,b=450,c=826,d=1615,比较a,b,c,d的大小.22.图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀把它均分成四个小长方形,然后按图②的形状拼成一个正方形.(1)你认为图②中的阴影部分的正方形的边长等于多少?(2)请用两种不同的方法求图②中阴影部分的面积.(3)观察图②你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m-n)2,mn.(4)根据(3)题中的等量关系,解决如下问题:已知a+b=7,ab=5,求(a-b)2的值.(写出过程)23.已知(x2+px+8)(x2-3x+q)的展开式中不含x2和x3项,求p,q的值.24.王老师家买了一套新房,其结构如图所示(单位:米).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米x元,木地板的价格为每平方米3x元,那么王老师需要花多少钱?答案一、1.C 2.D3.D 点拨:1 mg =10-3 g ,将0.000 037 mg 用科学记数法表示为3.7×10-5× 10-3=3.7×10-8(g).故选D.4.A 点拨:A 中m 和-m 符号相反,n 和-n 符号相反,而平方差公式中需要有一项是相同的,另一项互为相反数.5.D 点拨:因为a +b =m ,ab =-4,所以(a -2)(b -2)=ab +4-2(a +b )=-4+4-2m =-2m .故选D . 6.A 点拨:3x-2y=3x ÷32y =3x ÷9 y =47.故选A.7.A 点拨:(x +m )(x +3)=x 2 +(3+m )x +3m ,因为乘积中不含x 的一次项,所以m +3=0,所以m =-3.故选A. 8.B 9.A10.C 点拨:(2+1)(22+1)(24+1)(28+1)+1=(2-1)(2+1)(22+1)(24+1)(28+1)+1 =(22-1)(22+1)(24+1)(28+1)+1 =(24-1)(24+1)(28+1)+1 =(28-1)(28+1)+1 =216-1+1 =216.因为216的末位数字是6,所以A 的末位数字是6.二、11.6412.-24a 5 13.5 14.a ≠±115.2 019 点拨:由已知得x 2-x =1,所以-x 3+2x 2+2 018=-x (x 2-x )+x 2+2 018=-x +x 2+2 018=2 019. 16.±3 17.118.23 点拨:由题意知⎝ ⎛⎭⎪⎫a +1a 2=25,即a 2+1a 2+2=25,所以a 2+1a 2=23.三、19.解 :(1)原式=-8+13-9=-17+13=-1623.(2)原式=-56x 2y 2-43xy +1. (3)原式=(-2)2-x 2=4-x 2.(4)原式=a 2-()b -c 2=a 2-b 2-c 2+2bc .20.解:原式=(x 2+y 2-x 2-2xy -y 2+2x 2-2xy )÷(4x )=(2x 2-4xy )÷(4x )=12x -y .因为x -2y =2,所以12x -y =1.所以原式=1.21.解:(1) ①a 2-ab +b 2=a 2+b 2-ab =(a +b )2-3ab =72-3×12=13.②(a -b )2=(a +b )2-4ab =72-4×12=1.点拨:完全平方公式常见的变形:①(a +b )2-(a -b )2=4ab ;②a 2+b 2=(a +b )2-2ab =(a -b )2+2ab .解答本题关键是不求出a ,b 的值,主要利用完全平方公式的整体变换求式子的值. (2)因为a =275, b =450=(22)50=2100, c =826=(23)26=278, d =1615=(24)15=260,100>78>75>60,所以2100>278>275>260, 所以b >c >a >d . 22.解:(1)m -n .(2)方法一:(m -n )2;方法二:(m +n )2-4mn .(3)(m +n )2-4mn =(m -n )2,即(m +n )2-(m -n )24=mn .(4)由(3)可知(a -b )2=(a +b )2-4ab , ∵a +b =7,ab =5,∴(a -b )2=49-20=29.23.解:(x2+px+8)(x2-3x+q)=x4-3x3+qx2+px3-3px2+pqx+8x2-24x+8q=x4+(p-3)x3+(q-3p+8)x2+(pq-24)x+8q.因为展开式中不含x2和x3项,所以p-3=0,q-3p+8=0,解得p=3,q=1.24.解:(1)卧室的面积是2b(4a-2a)=4ab(平方米).厨房、卫生间、客厅的面积和是b·(4a-2a-a)+a·(4b-2b)+2a·4b=ab+2ab+8ab=11ab(平方米),即木地板需要4ab平方米,地砖需要11ab平方米.(2)11ab·x+4ab·3x=11abx+12abx=23abx(元).即王老师需要花23abx元.。
浙教版初中数学七年级下册第三单元《整式的乘除》单元测试卷(标准难度)(含答案解析)考试范围:第三单元; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. 已知a=833,b=1625,c=3219,则有( )A. a<b<cB. c<b<aC. c<a<bD. a<c<b2. 下列等式中,错误的是( )A. (2mn)2=4m2n2B. (−2mn)2=4m2n2C. (2m2n2)3=8m6n6D. (−2m2n2)3=−8m5n53. 若(a m+1b n+2)⋅(−a2n−1b2m)=−a3b5,则m+n的值为( )A. 1B. 2C. 3D. −34. 已知一个长方形的长为3x2y,宽为2xy3,则它的面积为.( )A. 5x 3y 4B. 6x 2y 3C. 6x 3y 4D. 3xy225. 下列各式中,计算结果是x3+4x2−7x−28的是( )A. (x2+7)(x+4)B. (x2−2)(x+14)C. (x+4)(x2−7)D. (x+7)(x2−4)6. 若M=(x−3)(x−4),N=(x−1)(x−6),则M与N的大小关系为( )A. M>NB. M=NC. M<ND. 由x的取值而定7. 已知4y2+my+9是完全平方式,则m为( )A. 6B. ±6C. ±12D. 128. 如图,点C是线段BG上的一点,以BC,CG为边向两边作正方形,面积分别是S1和S2,两正方形的面积和S1+S2=40,已知BG=8,则图中阴影部分面积为( )A. 6B. 8C. 10D. 129. 若将下表从左到右在每个格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数是( )A. 3B. 2C. 0D. −110. 下列运算正确的是( )A. a6÷a2=a3B. (a2b)3=a8b3C. 3a2b−ba2=2a2bD. (1−3a)2=1−9a211. 已知25a⋅52b=56,4b÷4c=4,则代数式a2+ab+3c值是( )A. 3B. 6C. 7D. 812. 在幼发拉底河岸的古代庙宇图书馆遗址里,曾经发掘出大量的黏土板,美索不达米亚人在这些黏土板上刻出来乘法表、加法表和平方表.用这些简单的平方表,他们很快算出两数的乘积.例如:对于95×103,美索不达米亚人这样计算:第一步:(103+95)÷2=99;第二步:(103−95)÷2=4;第三步:查平方表,知99的平方是9801;第四步:查平方表,知4的平方是16;第五步:9801−16=9785=95×103.请结合以上实例,设两因数分别为a和b,写出蕴含其中道理的整式运算( )A. (a+b)2−(a−b)22=ab B. (a+b)2−(a2+b2)2=abC. (a+b2)2−(a−b2)2=ab D. (a+b2)2+(a−b2)2=ab第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 已知2m=a,16n=b,则23m+8n=____(用含a,b的式子表示).14. 一个长方体的长、宽、高分别是(3x−4)米,(2x+1)米和(x−1)米,则这个长方体的体积是.15. 已知a−b=2,ab=1,则(a−2b)2+3a(a−b)=.16. 将4个数a,b,c,d排成2行、2列,两边各加一条竖线段记成|a bc d |,定义|a bc d|=ad−bc,上述记号就叫做二阶行列式.若|x+11−x1−x x+1|=8,则x=.三、解答题(本大题共9小题,共72.0分。
浙教版七年级下册数学第三章整式的乘除单元测试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)若(a m b n)3=a9b15,则m、n的值分别为()A.9;5B.3;5C.5;3D.6;122.(3分)计算的结果是()A.B.C.D.3.(3分)若a+b=10,ab=11,则代数式a2﹣ab+b2的值是()A.89B.﹣89C.67D.﹣674.(3分)某商场四月份售出某品牌衬衣b件,每件c元,营业额a元.五月份采取促销活动,售出该品牌衬衣3b件,每件打八折,则五月份该品牌衬衣的营业额比四月份增加()A.1.4a元B.2.4a元C.3.4a元D.4.4a元5.(3分)下列说法正确的是()A.多项式乘以单项式,积可以是多项式也可以是单项式B.多项式乘以单项式,积的次数等于多项式的次数与单项式次数的积C.多项式乘以单项式,积的系数是多项式系数与单项式系数的和D.多项式乘以单项式,积的项数与多项式的项数相等6.(3分)如图,甲图是边长为a(a>1)的正方形去掉一个边长为1的正方形,乙图是边长为(a ﹣1)的正方形,则两图形的面积关系是()A.甲>乙B.甲=乙C.甲<乙D.甲≤乙7.(3分)若3m=5,3n=4,则32m﹣n等于()A.B.6C.21D.208.(3分)若(x+1)2=(x+2)0,则x的值可取()A.0B.﹣2C.0或﹣2D.无解9.(3分)已知(x﹣m)(x+n)=x2﹣3x﹣4,则m﹣n的值为()A.1B.﹣3C.﹣2D.310.(3分)下列计算①(﹣1)0=﹣1;②;③;④用科学记数法表示﹣0.0000108=1.08×10﹣5;⑤(﹣2)2011+(﹣2)2010=﹣22010.其中正确的个数是()A.3个B.2个C.1个D.0个二.填空题(共6小题,满分24分,每小题4分)11.(4分)计算:(π﹣3)0+()﹣1=12.(4分)若x2﹣2ax+16是完全平方式,则a=.13.(4分)若2m=a,2n=b,m,n均为正整数,则25m+n的值是.14.(4分)如图,有多个长方形和正方形的卡片,图甲是选取了2块不同的卡片,拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证等式a(a+b)=a2+ab成立,根据图乙,利用面积的不同表示方法,仿照上边的式子写出一个等式.15.(4分)已知x2+y2﹣2x+6y+10=0,则x+y=.16.(4分)《数书九章》中的秦九韶部算法是我国南宋时期的数学家秦九提出的一种多项式简化算法,现在利用计算机解决多项式的求值问题时,秦九韶算法依然是最优的算法.例如,计算“当x =8时,多项式3x3﹣4x2﹣35x+8的值”,按照秦九韶算法,可先将多项式3x3﹣4x2﹣35x+8进行改写:3x3﹣4x2﹣35x+8=x(3x2﹣4x﹣35)+8=x[x(3x﹣4)﹣35]+8按改写后的方式计算,它一共做了3次乘法,3次加法,与直接计算相比节省了乘法的次数,使计算量减少,计算当x=8时,多项式3x3﹣4x2﹣35x+8的值1008.请参考上述方法,将多项式x3+2x2+x﹣1改写为:,当x=8时,这个多项式的值为.三.解答题(共8小题,满分66分)17.(6分)计算:()﹣1+|﹣2|﹣(π﹣1)0.18.(6分)若(a m+1b n+2)(a2n﹣1b2n)=a5b3,则求m+n的值.19.(8分)先化简,再求值:(x+2y)(x﹣2y)+(20xy3﹣8x2y2)÷4xy,其中x=2018,y=2019.20.(8分)如图1,将一个长为4a,宽为2b的长方形,沿图中虚线均分成4个长方形,然后按图2形状拼成一个正方形.(1)图2中阴影部分的边长是(用含a、b的式子表示);(2)若2a+b=7,且ab=3,求图2中阴影部分的面积;(3)观察图2,用等式表示出(2a﹣b)2,ab,(2a+b)2的数量关系是.21.(8分)【规定】=a﹣b+c﹣d.【理解】例如:=3﹣2+1﹣(﹣3)=5.【应用】先化简,再求值:,其中x=﹣2,y=﹣.22.(10分)张老师在黑板上写了三个算式,希望同学们认真观察,发现规律.请你结合这些算式,解答下列问题:请观察以下算式:①32﹣12=8×1②52﹣32=8×2③72﹣52=8×3(1)请你再写出另外两个符合上述规律的算式;(2)验证规律:设两个连续奇数为2n+1,2n﹣1(其中n为正整数),则它们的平方差是8的倍数;(3)拓展延伸:“两个连续偶数的平方差是8的倍数”,这个结论正确吗?23.(10分)若a m=a n(a>0且a≠1,m,n是正整数),则m=n.你能利用上面的结论解决下面的问题吗?试试看,相信你一定行!(1)如果2×8x×16x=222,求x的值;(2)如果(27x)2=38,求x的值.24.(10分)如图1,长方形的两边长分别为m+3,m+13;如图2的长方形的两边长分别为m+5,m+7.(其中m为正整数)(1)写出两个长方形的面积S1,S2,并比较S1,S2的大小;(2)现有一个正方形的周长与图1中的长方形的周长相等.试探究该正方形的面积与长方形的面积的差是否是一个常数,如果是,求出这个常数;如果不是,说明理由.(3)在(1)的条件下,若某个图形的面积介于S1,S2之间(不包括S1,S2)且面积为整数,这样的整数值有且只有19个,求m的值.参考答案一.选择题(共10小题,满分30分,每小题3分)1.B2.A3.C 4.A5.A6.A7.A8.A9.D10.C 二.填空题(共6小题,满分24分,每小题4分)11.3 12.±4 13.a5b14.(a+b)(a+2b)=a2+3ab+2b2.15.﹣2 16.x[x(x+2)+1]﹣1;647三.解答题(共8小题,满分66分)17.解:()﹣1+|﹣2|﹣(π﹣1)0=2+2﹣1=3.18.解:∵(a m+1b n+2)(a2n﹣1b2n)=a5b3,∴,解得:,则m+n=4.19.解:原式=x2﹣4y2+5y2﹣2xy=x2﹣2xy+y2,=(x﹣y)2,当x=2018,y=2019时,原式=(2018﹣2019)2=(﹣1)2=1.20.解:(1)图2的阴影部分的边长是2a﹣b,故答案为:2a﹣b;(2)由图2可知,阴影部分的面积=大正方形的面积﹣4个小长方形的面积,∵大正方形的边长=2a+b=7,∴大正方形的面积=(2a+b)2=49,又∵4个小长方形的面积之和=大长方形的面积=4a×2b=8ab=8×3=24,∴阴影部分的面积=(2a﹣b)2=49﹣24=25;(3)由图2可以看出,大正方形面积=阴影部分的正方形的面积+四个小长方形的面积,即:(2a+b)2﹣(2a﹣b)2=8ab.故答案为:(2a+b)2﹣(2a﹣b)2=8ab.21.解:=(3xy+2x2)﹣(2xy+y2)+(﹣x2+2)﹣(2﹣xy)=3xy+2x2﹣2xy﹣y2﹣x2+2﹣2+xy=2xy+x2﹣y2,当x=﹣2,y=﹣时,原式=2×(﹣2)×(﹣)+(﹣2)2﹣(﹣)2=2+4﹣=5.22.解:(1)92﹣72=8×4,112﹣92=8×5;(2)验证规律:设两个连续奇数为2n+1,2n﹣1(其中n为正整数),则它们的平方差是8的倍数;(2n+1)2﹣(2n﹣1)2=(2n+1﹣2n+1)(2n+1+2n﹣1)=2×4n=8n故两个连续奇数的平方差是8的倍数.(3)拓展延伸:“两个连续偶数的平方差是8的倍数”,这个结论正确吗?不正确.解法一:举反例:42﹣22=12,因为12不是8的倍数,故这个结论不正确.解法二:设这两个偶数位2n和2n+2,(2n+2)2﹣(2n)2=(2n+2﹣2n)(2n+2+2n)=8n+4因为8n+4不是8的倍数,故这个结论不正确.23.解:(1)∵2×8x×16x=21+3x+4x=222,∴1+3x+4x=22.解得x=3.(2)∵(27x)2=36x=38,∴6x=8,解得x=.24.解:(1)∵S1=(m+13)(m+3)=m2+16m+39,S2=(m+7)(m+5)=m2+12m+35,∴S1﹣S2=4m+4>0,∴S1>S2.(2)∵一个正方形的周长与图1中的长方形的周长相等,∴正方形的边长为m+8,∴正方形的面积=m2+16m+64,∴m2+16m+64﹣(m2+16m+39)=25,∴该正方形的面积与长方形的面积的差是一个常数;(3)由(1)得,S1﹣S2=4m+4,∴当19<4m+4≤20时,∴<m≤4,∵m为正整数,m=4.。
第3章 测试卷
一、选择题(每题3分,共30分)
1.花粉的质量很小,一粒某种植物花粉的质量约为0.000 037 mg ,已知1 g =1 000 mg ,那么0.000 037 mg 用科学记数法表示为( )
A .3.7×10-5 g
B .3.7×10-6 g
C .3.7×10-7 g
D .3.7×10-8 g
2.在下列计算中,不能用平方差公式计算的是( )
A .(m -n )(-m +n ) B.()x 3-y 3()x 3+y 3
C .(-a -b )(a -b ) D.()c 2-d 2()d 2+c 2
3.下列计算正确的是( )
A .2a -2=1
2a
B .(2a +b )(2a -b )=2a 2-b 2
C .2a ·3b =5ab
D .3a 4÷(2a 4)=32
4.计算(-x 3)2的结果是( )
A .x 5
B .-x 5
C .x 6
D .-x 6
5.已知a +b =m ,ab =-4,化简(a -2)(b -2)的结果是( )
A .6
B .2m -8
C .2m
D .-2m
6.若3x =4,9y =7,则3x -2y 的值为( )
A.47
B.74 C .-3 D.27
7.如果x +m 与x +3的乘积中不含x 的一次项,则m 的值为(
) A .-3 B .3 C .0 D .1
8.若a =-0.32,b =(-3)-2,c =⎝ ⎛⎭⎪⎫-13-2,d =⎝ ⎛⎭⎪⎫-130
,则(
) A .a <b <c <d B .a <b <d <c
C .a <d <c <b
D .c <a <d <b
9.如图,在边长为a 的正方形中挖掉一个边长为b 的小正方形,把余下的部分剪成两个直角梯形后,再拼成一个长方形,通过计算阴影部分的面积,验证了一个等式,这个等式是( )
A .a 2-b 2=(a +b )(a -b )
B .(a +b )2=a 2+2ab +b 2
C .(a -b )2=a 2-2ab +b 2
D .a 2-ab =a (a -b )
10.若A =(2+1)(22+1)(24+1)(28+1)+1,则A 的末位数字是( )
A .2
B .4
C .6
D .8
二、填空题(每题3分,共24分)
11.已知x n =4,则x 3n =________.
12.计算:(2a )3·(-3a 2)=________.
13.若x +y =5,x -y =1,则式子x 2-y 2的值是________.
14.若(a 2-1)0=1,则a 的取值范围是________.
15.已知x 2-x -1=0,则代数式-x 3+2x 2+2 018的值为__________.
16.如果(3m +3n +2)(3m +3n -2)=77,那么m +n 的值为________.
17.对实数a ,b 定义运算☆如下:
a ☆
b =⎩⎨⎧a b (a >b ,a ≠0),a -b (a ≤b ,a ≠0),
如2☆3=2-3=18.计算[2☆(-4)]÷[(-4)☆2]=________.
18.已知a +1a =5,则a 2+1a 2的结果是________.
三、解答题(20题4分,19,21,22,23题每题8分,24题10分,共46分)
19.计算:
(1)-23
+13(2 018+3)0-⎝ ⎛⎭⎪⎫-13-2; (2)⎝ ⎛⎭⎪⎫52x 3y 3+4x 2y 2-3xy ÷(-3xy );
(3)(-2+x)(-2-x);(4)(a+b-c)(a-b+c).
20.先化简,再求值:
[(x2+y2)-(x+y)2+2x(x-y)]÷(4x),其中x-2y=2.
21.(1)已知a+b=7,ab=12.求下列各式的值:
①a2-ab+b2;②(a-b)2.
(2)已知a=275,b=450,c=826,d=1615,比较a,b,c,d的大小.
22.图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀把它均分成四个小长方形,然后按图②的形状拼成一个正方形.
(1)你认为图②中的阴影部分的正方形的边长等于多少?
(2)请用两种不同的方法求图②中阴影部分的面积.
(3)观察图②你能写出下列三个代数式之间的等量关系吗?
代数式:(m+n)2,(m-n)2,mn.
(4)根据(3)题中的等量关系,解决如下问题:
已知a+b=7,ab=5,求(a-b)2的值.(写出过程)
23.已知(x2+px+8)(x2-3x+q)的展开式中不含x2和x3项,求p,q的值.
24.王老师家买了一套新房,其结构如图所示(单位:米).他打算将卧室铺上木地板,其余部分铺上地砖.
(1)木地板和地砖分别需要多少平方米?
(2)如果地砖的价格为每平方米x元,木地板的价格为每平方米3x元,那么王老师需要
花多少钱?
答案
一、1.D 点拨:1 mg =10-3 g ,将0.000 037 mg 用科学记数法表示为3.7×10-5× 10-3=3.7×10-8(g).故选D.
2.A 点拨:A 中m 和-m 符号相反,n 和-n 符号相反,而平方差公式中需要有一项是相同的,另一项互为相反数.
3. D 4.C
5.D 点拨:因为a +b =m ,ab =-4,所以(a -2)(b -2)=ab +4-2(a +b )=-4+4-2m =-2m .故选D .
6.A 点拨:3x -2y =3x ÷32y =3x ÷9 y =47.故选A.
7.A 点拨:(x +m )(x +3)=x 2 +(3+m )x +3m ,因为乘积中不含x 的一次项,所以m +3=0,所以m =-3.故选A.
8.B
9.A
10.C 点拨:(2+1)(22+1)(24+1)(28+1)+1
=(2-1)(2+1)(22+1)(24+1)(28+1)+1
=(22-1)(22+1)(24+1)(28+1)+1
=(24-1)(24+1)(28+1)+1
=(28-1)(28+1)+1
=216-1+1
=216.
因为216的末位数字是6,所以A 的末位数字是6.
二、11.64
12.-24a 5
13.5
14.a ≠±1
15.2 019 点拨:由已知得x 2-x =1,所以-x 3+2x 2+2 018=-x (x 2-x )+x 2+2 018=-x +x 2+2 018=2 019.
16.±3
17.1
18.23 点拨:由题意知⎝ ⎛⎭
⎪⎫a +1a 2=25,即a 2+1a 2+2=25,所以a 2+1a 2=23. 三、19.解 :(1)原式=-8+13-9=-17+13=-1623.
(2)原式=-56x 2y 2-43xy +1.
(3)原式=(-2)2-x 2=4-x 2.
(4)原式=a 2-()b -c 2
=a 2-b 2-c 2+2bc . 20.解:原式=(x 2+y 2-x 2-2xy -y 2+2x 2-2xy )÷(4x )
=(2x 2-4xy )÷(4x )=12x -y .
因为x -2y =2,
所以12x -y =1.所以原式=1.
21.解:(1) ①a 2-ab +b 2=a 2+b 2-ab =(a +b )2-3ab =72-3×12=13.
②(a -b )2=(a +b )2-4ab =72-4×12=1.
点拨:完全平方公式常见的变形:①(a +b )2-(a -b )2=4ab ;②a 2+b 2=(a +b )2-2ab =(a -b )2+2ab .解答本题关键是不求出a ,b 的值,主要利用完全平方公式的整体变换求式子的值.
(2)因为a =275,
b =450=(22)50=2100,
c =826=(23)26=278,
d =1615=(24)15=260,
100>78>75>60,所以2100>278>275>260,
所以b >c >a >d .
22.解:(1)m -n .
(2)方法一:(m -n )2;方法二:(m +n )2-4mn .
(3)(m +n )2-4mn =(m -n )2,即(m +n )2-(m -n )24
=mn . (4)由(3)可知(a -b )2=(a +b )2-4ab ,
∵a +b =7,ab =5,∴(a -b )2=49-20=29.
23.解:(x2+px+8)(x2-3x+q)
=x4-3x3+qx2+px3-3px2+pqx+8x2-24x+8q
=x4+(p-3)x3+(q-3p+8)x2+(pq-24)x+8q.
因为展开式中不含x2和x3项,
所以p-3=0,q-3p+8=0,
解得p=3,q=1.
24.解:(1)卧室的面积是2b(4a-2a)=4ab(平方米).
厨房、卫生间、客厅的面积和是b·(4a-2a-a)+a·(4b-2b)+2a·4b=ab+2ab +8ab=11ab(平方米),即木地板需要4ab平方米,地砖需要11ab平方米.
(2)11ab·x+4ab·3x=11abx+12abx=23abx(元).
即王老师需要花23abx元.。