2、我们可利用上面的三条关系式来判断动 点M的轨迹是什么!
例1.已知条件p:平面上的动点M到两定点F1,F2
的距离之和为常数2a> |F1F2| ;条件Q:动点M的
轨迹以F1,F2为焦点的椭圆,则P是Q的(C)条件
A.充分不必要
B。必要不充分
C.充要
D.既不充分也不必要
例2.如图:一圆形纸片的圆心为O,F是圆内一定点,M
MF1 + MF2 =MP + MQ = PQ=定值
V
Q O2
F2 F1
M
O1
P
椭圆的定义:
平面内到两定点 F1,F2的距离和等于常数(大于 F1F2) 的点的轨迹叫做椭圆,两个定点 F1,F2叫做椭圆的焦 点,两焦点间的距离叫做椭圆的焦距。
可以用数学表达式来体现:
设平面内的动点为M,有MF1 MF2 2a
是圆周上一动点,把纸片折叠使M与F重合,然后抹平
纸 片 , 折 痕 为 CD , 设 CD 与 OM 交 于 P , 则 点 P 的 轨 迹 是
(A )
D M
A.椭圆
B.双曲线
C.抛物线
D.圆
O
C
F
例3.一动圆过定点A(-4,0) ,且与定圆 B:(x-4曲线右支 )
看PF1和PF2谁大,偏向小 的一边。
抛物线的定义 :
平面内到一个定点F和一条定直线L(F不在L 上)的距离相等的点轨迹叫做抛物线,定点F叫做 抛物线的焦点,定直线L叫做抛物线的准线
可以用数学表达式来体现: 设平面内的动点为M ,有 MF=d(d为动点M到
直线L的距离)
说明:
1、椭圆、双曲线、抛物线统称为圆锥曲线
变式:过点A(3,0)且与y轴相切的动圆