泛素介导的蛋白质降解
- 格式:ppt
- 大小:467.51 KB
- 文档页数:30
3分钟带您了解蛋白泛素化修饰人体细胞内蛋白质降解主要有两条途径:一种是在溶酶体内(一种具有“消化降解”功能的细胞器)通过ATP(体内直接供能分子)非依赖途径被降解,此途径主要降解外来的蛋白质,对蛋白质的选择性较差。
另一种是在蛋白酶体内,通过ATP依赖途径(需耗能),经过泛素化修饰后被降解。
此途径主要降解细胞内结构异常的蛋白质和短寿的蛋白质。
如果我告诉你真核生物80%~90%蛋白质的降解是由泛素-蛋白酶体降解途径(ubiquitin-pro-teasomepathway, UPP)介导的,而此途径是泛素化修饰蛋白最主要的去向,你是不是很好奇泛素化修饰到底是何方神圣?那小编就言简意赅、简明扼要的给大家介绍一下蛋白泛素化修饰。
泛素(Ub, ubiquitin)是一种普遍存在于真核细胞中的由76氨基酸残基组成的多肽。
一个或多个泛素分子能够在一系列酶的作用下共价连接至蛋白质底物上,形成泛素化修饰(ubiquitination)。
调控蛋白表达水平的重要机制,参与了几乎所有生命过程,是一种至关重要的翻译后修饰。
01在ATP供给能量的情况下,泛素激活酶E1将泛素分子活化。
02泛素激活酶E1将活化的泛素分子传递给泛素结合酶E2。
03泛素连接酶E3将结合E2的泛素连接到靶蛋白上。
图1. 泛素化修饰过程[1]泛素-蛋白酶体途径(UPP)20S催化核心与19S调节复合物结合形成26S蛋白酶体结构。
泛素标记的蛋白质与19S复合物结合,并在蛋白水解β亚基处降解。
19S亚单位与多泛素链结合,ATP展开蛋白质底物并将其转移到20S核心颗粒中。
蛋白质通过20S 中心,在那里被降解成25个氨基酸以下的小寡肽。
介导泛素非依赖性蛋白质降解。
图2. 蛋白酶体结构与蛋白质降解[1]泛素化修饰类型在泛素链中,泛素部分可通过其赖氨酸(Lys11、Lys27、Lys6、Lys29、Lys33、Lys63和Lys48)或N端蛋氨酸残基(Met1)结合。
2014年细胞生物学复习题第七章细胞质基质与内膜系统1.试述泛素化和蛋白酶体所介导的蛋白质降解的机制。
泛素化和蛋白酶体所介导的蛋白质降解机制是识别并降解错误折叠或不稳定蛋白质的机制。
其中,蛋白酶体是细胞内降解蛋白质的大分子复合体,富含ATP依赖的蛋白酶活性。
泛素是由氨基酸残基组成的小分子球蛋白,普遍存在与真核细胞中。
在蛋白质降解过程中,多个泛素分子共价结合到含有不稳定氨基酸残基的蛋白质N端,更常见的是与靶蛋白赖氨酸残基的ε氨基相连接。
然后带有泛素化标签的蛋白质被蛋白酶体识别并降解,通过该途径降解的蛋白质大体包括两大类:一是错误折叠或异常的蛋白质;二是需要进行存量调控和不稳定的蛋白质。
蛋白质的泛素化需要多酶复合体发挥作用,通过3种酶的先后催化来完成,包括泛素活化酶(E1)、泛素结合酶(E2,又称泛素载体蛋白)和泛素连接酶(E3)。
泛素化过程涉及如下步骤:(1)泛素活化酶E1通过形成酰基-腺苷酸中介物使泛素分子C端被激活,该反应需要ATP;(2)转移活化的泛素分子与泛素结合酶E2的半胱氨酸残基结合;(3)异肽键形成,即与E2结合的泛素羧基和靶蛋白赖氨酸侧链的氨基之间形成异肽键,该反应由泛素连接酶E3催化完成。
重复上述步骤,形成具有寡聚泛素链的泛素化靶蛋白。
泛素化标签被蛋白酶体帽识别,并利用ATP水解提供的能量驱动泛素分子的切除和靶蛋白解折叠,去折叠的蛋白质转移至蛋白酶体核心腔内被降解。
当泛素化的靶蛋白其泛素自身的赖氨酸残基也被泛素化时,便形成具有寡聚泛素链的泛素化蛋白。
2.试述高尔基体的结构及其功能。
高尔基体是有极性的细胞器,面向细胞核扁囊弯曲成凸面称形成面(forming face)或顺面(cis face),面向质膜的凹面(concave)称成熟面(mature face)或反面(trans face)高尔基体的结构由三部分组成:(1)顺面管网状结构(CGN) 和顺面膜囊(cis膜囊):该区域接受来自内质网新合成的物质并将其分类后大部分转入高尔基体中间膜囊,少部分蛋白质与脂质再返回内质网。
泛素化和蛋白酶体所介导的蛋白质降解途径随着生物技术不断发展,蛋白质降解的途径也被越来越多地关注
和研究。
其中,泛素化和蛋白酶体所介导的蛋白质降解途径是两种非
常重要的途径。
泛素化是指通过泛素连接酰化酶(E1)、泛素结合酶(E2)和泛
素连接酶(E3)等多种酶参与的一种降解途径。
当人体内的蛋白质需
要被降解时,其被标记上泛素,从而被蛋白酶体识别并降解。
泛素化
途径具有高度专一性和选择性,因此被广泛应用于调节细胞周期、转
录调控、信号转导等重要生命活动。
与之相似的是蛋白酶体所介导的蛋白质降解途径,也是细胞内重
要的蛋白质质量控制机制之一。
蛋白酶体是一种分子大小为12S的多
酶体复合体,它们以高度选择性地降解特定的蛋白质。
蛋白质的降解
过程是由一种名为蛋白酶体状的复合酶所调控的。
蛋白酶体状酶在蛋
白酶体中负责将泛素连接的蛋白质降解成小分子物质,以便细胞能够
重新利用它们。
这两种蛋白质降解途径在维持细胞内正常代谢和生长发育中起着
至关重要的作用。
它们不仅能够清除细胞内的有害蛋白质和失去活性
的蛋白质,同时也可以促进细胞生命活动所需的功能蛋白生成。
此外,泛素化和蛋白酶体所介导的蛋白质降解途径也成为了细胞自我调节、
病毒感染和免疫反应等方面的研究热点。
在这个信息化时代,掌握这些蛋白质降解途径的研究成果,对于生命科学的发展和创新将有着广阔的前景。
我们相信,在科学家们的不懈努力下,更多深入生物学奥秘的途径将会被发现和研究。
李艳凤, 张强, 朱大海(中国医学科学院基础医学研究所中国协和医科大学基础医学院, 北京100005)摘要: 泛素介导的蛋白质降解途径是降解细胞内蛋白质的主要途径, 在维持细胞正常的蛋白质代谢中起着至关重要的作用。
泛素介导的蛋白质降解途径的异常与许多疾病特别是肿瘤的发生密切相关。
通过介绍泛素介导的蛋白质降解途径在细胞周期、DNA修复、细胞凋亡中的作用, 系统阐述了泛素介导的蛋白质降解途径与肿瘤发生的关系。
关键词: 基因表达调控; 泛素; 蛋白质降解; 细胞周期; DNA修复; 细胞凋亡; 肿瘤发生中图分类号: Q519 文献标识码: A 文章编号: 0253-9772(2006)12-1591-06The Ubiquitin-Proteasome Proteolytic Pathway and TumorigenesisLI Yan-FenG, ZHANG Qiang, ZHU Da-Hai(Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of MedicalSciences & Peking Union Medical College, Beijing 10005, China)Abstract: The ubiquitin-proteasome proteolytic pathway, a major pathway for protein degradation in cells, plays a critical role in the protein metabolism. So abnormality of the ubiquitin-proteasome proteolytic pathway is closely related to many diseases, especially cancer. In this paper, we reviewed the study of the significant role of the ubiquitin-proteasome proteolytic pathways during the cell cycle, DNA repair and apoptosis, especially the relationship between these pathways and tumorigenesis.Key words: gene expression and regulation; ubiquitin; protein degradation; cell cycle; DNA repair; apoptosis; tumorigenesis蛋白质是执行生命活动的基本分子, 细胞中的蛋白质不断地处于合成、修饰与降解的代谢更新过程中。
HEREDITAS (Beijing) 2011年ISSN 0253-9772 自噬与泛素化蛋白降解途径的分子机制及其功能1陈科, 程汉华, 周荣家武汉大学生命科学学院,武汉 430072摘要:细胞内所有的蛋白质和大多数的细胞外蛋白都在不断的进行更新,即它们在不断地被降解,并被新合成的蛋白质取代。
细胞内蛋白的降解主要通过两个途径,即自噬和泛素蛋白酶体系统。
自噬是一种由溶酶体介导的细胞内过多或异常蛋白质的降解机制。
在细胞内主要有3种类型的自噬,即分子伴侣介导的自噬、微自噬和巨自噬。
泛素蛋白酶体系统是由泛素介导的一种高度复杂的蛋白降解机制,它参与降解细胞内许多蛋白质并且这个过程具有高度特异性。
细胞内蛋白质的降解参与调节许多细胞过程,包括细胞周期、DNA修复、细胞生长和分化、细胞质量的控制、病原生物的感染反应和细胞凋亡等。
许多严重的人类疾病被认为是由于蛋白质降解系统的紊乱而引起的。
文章综述了自噬和泛素化途径及其分子机制,以及蛋白质降解系统紊乱的病理学意义。
关键词: 蛋白质降解;自噬; 泛素蛋白酶体系统Molecular mechanisms and functions of autophagyand the ubiquitin-proteasome pathwayCHEN Ke, CHENG Han-Hua, ZHOU Rong-JiaLife Science College, Wuhan University,Wuhan 430072, ChinaAbstract:All proteins in eukaryotic cells are continually being degraded and replaced. Autophagy and theubiquitin-proteasome system are two mechanisms for intracellular protein degradation. Autophagy is mediated bylysosome, and is further divided into chaperone-mediated autophagy, microautophagy and macroautophagy. Theubiquitin-proteasome system is highly complex and mediated by ubiquitin, which participates in intracellularprotein degradation in a specific manner. It is now known that degradation of intracellular proteins is involved inregulation of a series of cellular processes, including cell-cycle division, DNA repair, cell growth anddifferentiation, quality control, pathogen infection, and apoptosis. The aberrations in the protein degradationsystems are involved in many serious human diseases. The present review summarizes the mechanisms of proteindegradation and related human diseases.Keywords:protein degradation; autophagy; ubiquitin-proteasome system收稿日期:2011-06-03;修回日期:2011-08-19 基金项目:转基因生物新品种培育重大专项(编号:2009ZX08009-148B)作者简介:陈科,博士研究生,研究方向:动物发育遗传学。
【化学与社会・期中论文】2004年诺贝尔奖研究成果简介泛素调节的蛋白质降解光华管理学院葛佳洁2004年诺贝尔化学奖授予了以色列科学家阿夫拉姆・赫什科 (Avram Hershko 、阿龙・切哈诺沃 (Aaron Ciechanover和美国加利福尼亚大学的教授欧文・罗斯 (Irwin Rose(下图从左到右依次为以色列科学家切哈诺沃、赫什科和美国科学家罗斯 , 以表彰他们发现了泛素调节的蛋白质降解 (for the discovery of ubiquitin-mediated protein degradation 。
我通过查阅文献资料和期刊搜索,了解了一些他们的研究成果,以下做些简要介绍:1,待降解蛋白质的标记真核细胞中含有 6000至 30000个蛋白质合成基因 , 编码至少同等数量的蛋白质。
在对蛋白质的研究中很多工作都致力于阐述细胞怎样控制特定蛋白质的合成, 而对其相反过程即蛋白质的降解, 研究得相对较少。
大多数负责蛋白质降解的酶作用时都不消耗能量。
在已知的许多蛋白质降解酶中, 一个典型的例子是胰岛素, 其作用是将小肠中的食物蛋白质转化为氨基酸。
另一个典型的例子是细胞中的溶酶体, 其作用是降解从细胞外吸收进来的蛋白质。
它们在作用的过程中均不消耗能量。
然而,早在 20世纪 50年代就有实验显示,细胞内蛋白质的降解需要能量。
这一现象一直困惑着研究者 , 为何细胞内的蛋白质降解需要能量,而细胞外蛋白质的降解却不需要能量? 1977年, Goldberg 及其同事在这个领域迈出了第一步。
他们从不成熟的红血球及网状细胞中获得了一种提取液, 这种提取液在催化异常细胞降解时需要 ATP 的参与。
应用这种提取物, Aaron Ciechanover,Avram Hershko,Irwin Rose在 70年代晚期和 80年代早期进行了一系列具有划时代意义的研究。
成功地揭示了细胞内蛋白质的降解是一个多步骤反应的过程 , 蛋白质先被泛素(一种多肽标记, 然后被分解。
文章编号 :1004-0374(2010)03-0212-04泛素介导的蛋白质降解系统——从基础研究到临床应用Aaron Ciechanover(以色列工学院医学科学研究所)摘 要:20世纪60 ̄80年代,大多数生物科研人员都致力于核酸和遗传信息传递的研究。
蛋白质降解被认为是非特异的过程,因此没有人感兴趣。
泛素修饰的发现使蛋白质降解领域发生革命性的变化,人们逐渐认识到蛋白质降解是一个特异的受严格调控的过程。
细胞内蛋白质降解事件的发生会调节许多生命过程,如细胞增殖、分化、衰老和死亡。
细胞内蛋白质降解调控异常也会引发多种疾病,包括癌症和神经退行性疾病。
人们对细胞内蛋白质降解的研究已经取得一定成果,但是还有很多问题没有解决,全面解读该过程还需要更多的努力和探索。
关键词:泛素;蛋白酶体;蛋白质降解;癌症中图分类号:Q591.2;R730.231.3 文献标识码:AThe ubiquitin proteolytic system – from bench to the bedsideAaron Ciechanover(Medicine Technion-Israel Institute of Technology, Haifa, Israel)Abstract: Between the sixties and eighties, most life scientists focused their attention on studies of nucleic acidsand the translation of the coded information. Protein degradation was a neglected area, considered to be a non-specific, dead-end process. While it was known that proteins do turnover, the large extent and high specificityof the process-whereby distinct proteins have half-lives that range from a few minutes to several days- was notappreciated. The discovery of the complex cascade of ubiquitin pathway revolutionized the field. The highcomplexed, temporarily controlled and tightly regulated process of protein degradation plays major role in avariety of basic pathways during cell life and death. Aberrations in this pathway are implicated in the pathogen-esis of many diseases, certain malignancies and neurodegeneration among them. Despite intensive research,the unknown still exceeds what we currently know on intracellular protein degradation process. More effort isneeded.Key words: ubiquitin; proteasome; proteolysis; cancer20世纪50年代,Walson和Crick解读了DNA的双螺旋结构,建立了生物学中心法则。
泛素化和蛋白酶体所介导的蛋白质降解途
径
泛素化和蛋白酶体是两种重要的蛋白质降解途径。
泛素化是一种通过连接泛素分子来标记蛋白质的过程,而蛋白酶体则是一种特殊的细胞器,能够将被泛素标记的蛋白质降解为小分子。
泛素化是一种非常重要的蛋白质降解途径。
在这个过程中,泛素分子会被连接到目标蛋白质的特定位置上。
这个过程需要多个酶的参与,包括泛素激活酶、泛素连接酶和泛素去除酶。
泛素化的主要作用是标记蛋白质,使其能够被蛋白酶体识别并降解。
此外,泛素化还能够调节蛋白质的功能和稳定性,对于细胞的正常生理过程具有重要的作用。
蛋白酶体是一种特殊的细胞器,能够将被泛素标记的蛋白质降解为小分子。
蛋白酶体由多种蛋白质组成,其中最重要的是蛋白酶体核心复合物。
这个复合物包括多种蛋白质,其中最重要的是ATP酶和泛素连接酶。
这些蛋白质能够协同作用,将被泛素标记的蛋白质降解为小分子。
泛素化和蛋白酶体是两种非常重要的蛋白质降解途径。
它们能够协同作用,对于细胞的正常生理过程具有重要的作用。
在细胞中,泛素化和蛋白酶体能够清除不需要的蛋白质,维持细胞内环境的稳定性。
此外,它们还能够调节蛋白质的功能和稳定性,对于细胞的正常生理过程具有重要的作用。
因此,泛素化和蛋白酶体的研究对于
理解细胞生物学和疾病发生机制具有重要的意义。
2024年考研《西医综合》近年真题汇编(含答案)学校:________ 班级:________ 姓名:________ 考号:________一、单选题(45题)1.男性,20岁,渐进性心悸,乏力,消瘦6个月,腹胀,下肢水肿2个月,查体:T37.2℃,P 106次/分,BP 90/75mmHg,半卧位,颈静脉怒张,双肺(-),心界向两侧扩大,心律整,心音遥远,心尖部可闻及2/6级收缩期吹风样杂音,脉搏减弱,肝颈静脉回流征阳性,双下肢凹陷性水肿(+),该患者最可能的诊断是()。
A.心包积液B.风湿性心脏病C.扩张型心肌病D.病毒性心肌炎2.急性弥漫性增生性肾小球肾炎肉眼观()。
A.固缩肾B.大白肾C.蚤咬肾D.瘢痕肾3.℃期肺硅沉着病的病变特点是()A.病变主要在肺门淋巴结B.胸膜明显增厚C.结节病变散在分布于双肺D.肺重量增加4.男,38岁,胸痛,发热3天,既往糖尿病病史5年,查体:T37.6℃,右下肺叩浊,呼吸音减低。
胸部X线显示右侧胸腔积液,右侧胸水穿刺提示WBC650×106/L,其中淋巴细胞占90%,葡萄糖3.2mmol/L。
该患者最可能的诊断是()。
A.结核性胸膜炎B.恶性胸腔积液C.脓胸D.类肺炎性胸腔积液5.类固醇激素作用的受体是()A.酪氨酸激酶受体B.核受体C.G蛋白偶联受体D.鸟苷酸环化酶受体6.物理热价与生物热价不相等的营养物质是()。
A.糖类B.蛋白质C.动物性脂肪D.植物性脂肪7.泛素化所涉及反应是什么?()。
A.多肽链的合成B.蛋白质亚基的聚合C.消化道蛋白质的分解D.体内蛋白质的降解8.黄疸进行性加重,一般无腹痛,最可能的诊断是()。
A.胰头癌B.慢性胰腺炎C.硬化性胆管炎D.胆总管结石9.休克代偿期的临床表现是()。
A.血压正常或稍高,心率和脉压正常B.血压正常或稍低,心率和脉压正常C.血压正常或稍高,心率加快,脉压缩小D.血压正常或稍低,心率加快,脉压增加10.引起病毒性心肌炎最常见的病毒是A.流感病毒B.柯萨奇B组病毒C.脊髓灰质炎病毒D.埃可病毒11.下列疾病中最常出现叹息样呼吸的是()。
泛素—蛋白酶体途径在病毒感染中的作用研究进展泛素-蛋白酶体途径是真核生物中非溶酶体蛋白降解的主要系统,主要包括泛素,26S蛋白酶体和酶系统E1、E2、E3。
泛素-蛋白酶体参与调节细胞周期进程、抗原递呈、转录和信号转导等多种细胞生理过程。
研究发现,病毒可以利用泛素系统调控病毒的基因转录、抑制细胞凋亡、降解抗病毒蛋白、促使病毒出芽和释放等逃避宿主的免疫监视。
深入理解泛素-蛋白酶体在病毒感染中的作用可以为抗病毒治疗提供新思路。
标签:泛素-蛋白酶体途径;病毒;感染人体组织细胞中存在多种蛋白降解途径,目前研究最多的是溶酶体降解途径和泛素-蛋白酶体降解途径,溶酶体降解途径无需能量,主要降解细胞外和细胞膜蛋白质;泛素-蛋白酶体降解途径是一种耗能的高效、特异的蛋白质降解过程,控制细胞内大多数蛋白质特别是膜蛋白的降解。
泛素-蛋白酶体系统主要由泛素、泛素启动酶包括泛素激活酶(ubiquitin-activating enzyme)E1、泛素载体蛋白(ubiquitin-carrier protein)E2和泛素连接酶(ubiquitin ligase)E3、26 S蛋白酶体和去泛素化酶组成[1-2]。
泛素蛋白酶体系统在高等真核生物细胞中的功能主要体现在两个方面:一方面降解细胞内的蛋白质;另一方面是非降解作用,调节细胞内不同蛋白的定位和活性。
泛素-蛋白酶体途径(ubiquitin-proteasome pathway,UPP)调控高等真核生物细胞内几乎所有的生命活动,包括细胞增殖、分化、凋亡,DNA复制和修复、转录和蛋白质质量控制等,并参与病原体的入侵、致病和人类机体的免疫应答等过程。
另外,泛素介导的蛋白质降解还参与环境有害物质的致病过程以及机体的解毒机制[3]。
泛素是一个广泛分布在真核细胞中的小分子球状蛋白质,其序列高度保守。
细胞内需降解的靶蛋白在ATP的作用下被一系列酶催化,其Lys侧链连接到泛素分子的C-末端Gly侧链,而后其他泛素分子以Gly连接到泛素分子的Lys侧链上而形成多泛素化链,这个过程称为泛素化。
泛素介导的蛋白质降解过程1蛋白质降解蛋白质降解是生物机制调控和保护各种生物过程的基础。
蛋白质水解可以把蛋白质分解成较小的结构,以实现生物细胞维持生命活动的需要。
它可以帮助合成新的蛋白质,以及消除冗余或已损坏的蛋白质。
由于该过程的重要作用,蛋白质的分解一直被认为是生物体内最重要的基础代谢过程之一。
2生物体内蛋白质降解的方式生物体内蛋白质降解可以通过自由基和蛋白酶来实现。
自由基是一种不完整的离子团,有能力聚合单一分子。
它们被认为是蛋白质降解的前体,能够加速蛋白质的水解反应以实现特定的生物细胞功能。
此外,蛋白酶是特定的蛋白质,它们能够促进特定的水解反应,并能够把分解的蛋白质转化为较小的结构。
3生物体内蛋白质降解的调节生物体内蛋白质降解的调控主要是通过抑制或增强自由基或蛋白酶的活性来实现的。
属性抑制物质可以抑制对转录因子和蛋白酶的活性,从而抑制蛋白质分解;属性增强剂可以激活转录因子或蛋白质酶活性,从而促进蛋白质分解。
此外,通过属性抑制剂和增强剂可以实现对蛋白质水解调节。
4聚合物介导的蛋白质降解聚合物介导的蛋白质降解对生物体来说是一种非常重要而敏感的过程。
聚合物包括一系列的聚酰胺类聚合物,如转录因子、转录抑制因子、共价聚合物以及其他介导分子。
这些分子能够用于调节蛋白质水解,以减轻有害的自由基氧化反应,促进蛋白质发挥其功能,以及减少胶原蛋白和其他无用物质的累积。
这一过程能够调节器官和细胞的发育和运动,从而有效地帮助生物体应对环境变化。
蛋白质的降解对生物体具有重要的生物学意义。
尽管它可以通过多种方式实现,但由聚合物介导的蛋白质降解似乎是最有效的,也是最能够解决生物体发育演化中存在的问题的方式之一。
生化复习题(1)生化习题考试时间:6月11日(周三)晚上18:30-20:30 地点:禧强楼-203 题型:名词解释10个,共20分。
简答题6个,共30分。
论述题5个,共50分。
一、糖蛋白和蛋白聚糖1、糖链的一、二、三、四级结构的概念(1)一级结构:单糖残基的组成、排列顺序、相邻单糖残基的连接方式、异头物的构型及糖链有无分支、分支的位置和长短等。
(2)二级结构:多糖骨架链间以氢键结合所形成的各种聚合体,关系到多糖分子中主链的构象,不涉及侧链的空间排布;(3)三级结构:多糖链一级结构的重复顺序,由于糖残基中的羟基、羧基、氨基以及硫酸基之间的非共价相互作用,导致有序的二级结构空间形成有规则而粗大的构象; (4)四级结构:多糖链间非共价键结合形成的聚集体。
2、糖蛋白、蛋白聚糖、O-连糖蛋白、N-连糖蛋白、糖组学等概念(1)糖蛋白Glycoproteins: 由寡糖链和多肽或蛋白质以共价键连接而成的结合蛋白。
糖含量1%—80%。
寡糖链不多于15个单糖残基。
(2)蛋白聚糖proteoglycan : 含大量糖胺聚糖并与多肽骨架连接的高分子物质。
糖含量>95%(3)连接糖蛋白:糖蛋白糖链与蛋白部分的丝/苏氨酸残基的羟基相连,称为O-连接糖蛋白。
(4)N-连接糖蛋白:糖蛋白的糖链与蛋白部分的Asn-X-Ser序列的天氡酰胺氮以共价键连接称N-连接糖蛋白。
(N-连接糖蛋白的糖基化位点为Asn-X-Ser/Thr)(5)糖组学(糖蛋白) Glycomics :涉及单个个体的全部糖蛋白结构分析,确定编码糖蛋白的基因和蛋白质糖基化的机制。
3、糖蛋白中糖链的生物学功能分子间:细胞-细胞间识别、粘附和结合病原体, 趋靶于组织。
分子内:蛋白质的正确折叠、细胞内定位、生物活性、溶解度、抗原性、生物半寿期、蛋白酶敏感性等;介导专一的“识别”和“调控”生物过程。
⑴糖链在糖蛋白新生肽链折叠和缔合中的作用:1)去糖基化的蛋白不能正确折叠→维持亚基正常构象;①α1-抗胰蛋白酶(不能折叠)②疱疹口炎病毒(VSV)的G蛋白(不能形成正确二硫键)③流感病毒红细胞凝集素(HA,一种糖蛋白)用糖链合成抑制剂衣霉素后,肽链部分正常合成,糖链部分不能合成,糖蛋白不能正常折叠,不能形成三聚体,不能被分泌到胞外。
2024年度全国研究生入学考试《西医综合》备考真题库(含答案)学校:________ 班级:________ 姓名:________ 考号:________一、单选题(45题)1.预防甲亢术后甲状腺危象最关键的措施是()。
A.术后给予镇静药物B.吸氧C.术后给予氢化可的松D.术前使基础代谢率降至正常水平2.能特异地与原核生物RNA聚合酶β亚基结合的抗生素是A.氯霉素B.利福霉素C.卡那霉素D.嘌呤霉素3.尿素容易通过的部位()。
A.近端小管B.髓袢C.远曲小管D.集合管髓段4.泛素化所涉及反应是什么?()。
A.多肽链的合成B.蛋白质亚基的聚合C.消化道蛋白质的分解D.体内蛋白质的降解5.突触前抑制的特点是()。
A.感觉传入通路中少见B.减少突触前神经元递质释放C.增加被抑制神经元的CI-内流D.被抑制神经元产生IPSP6.肾炎性水肿主要是由于A.肾小球滤过率下降B.大量蛋白尿致血浆蛋白降低C.淋巴回流受阻D.毛细血管滤过压升高7.下列关于核酸结构的叙述中不正确的是A.双螺旋多为右手螺旋,但也有左手螺旋B.每10对碱基对可使螺旋上升一圈C.双螺旋中碱基间靠非共价键相连D.G和C碱基之间以两个氢键相连8.男性,25岁,发热,咽痛一周,皮肤出血2天。
既往体健。
查体体温38.1℃,双下肢和胸部可见多处出血和数处瘀斑,可触及2个肿大淋巴结,最大3cm×1cm,均质软,无压痛。
咽部充血,扁桃体℃度肿大。
血常规,血红蛋白80g/L,白细胞15.6×109/L,分类见原始细胞30%,血小板30×109/L。
查体应该特别注意()。
A.睑结膜苍白B.眼球黄染C. 胸骨压痛D.心脏杂音9.维生素B12直接参与的反应是()。
A.N5-甲基四氢叶酸的转甲基B.色氨酸生成一碳单位C.不同形式的一碳单位相互转换D.二氢叶酸转变为四氢叶酸10.下列不属于胃食管反流病并发症的是()。
A.食管狭窄B.食管憩室C.上消化道出血D.Barrett食管11.复制中由岡崎片段连接而成的完整新链称为A.编码链B.有意义链C.随从链D.领头链12.女,32岁。