下培优训练三平面直角坐标系综合问题压轴题
- 格式:docx
- 大小:244.90 KB
- 文档页数:5
1、、在直角坐标系中,△ABC 的顶点A (—2,0),B (2,4),C (5,0)。
(1)求△ABC 的面积(2)点D 为y 负半轴上一动点,连BD 交x 轴于E ,是否存在点D 使得ADEBCES S?若存在,请求出点D 的坐标;若不存在,请说明理由.(3)点F (5,n )是第一象限内一点,,连BF ,CF ,G 是x 轴上一点,若△ABG 的面积等于四边形ABDC 的面积,则点G 的坐标为(用含n 的式子表示)2、、如图,在平面直角坐标系中,△AOB 是直角三角形,∠AOB=90°,斜边AB 与y 轴交于点C.(1)若∠A=∠AOC ,求证:∠B=∠BOC ;xy OCBAFA O C ByxA yxO C B(2)延长AB 交x 轴于点E ,过O 作OD ⊥AB ,且∠DOB=∠EOB ,∠OAE=∠OEA ,求∠A 度数;(3)如图,OF 平分∠AOM ,∠BCO 的平分线交FO 的延长线于点P.当△ABO 绕O 点旋转时(斜边AB 与y 轴正半轴始终相交于点C ),在(2)的条件下,试问∠P 的度数是否发生改变?若不变,请求其度数;若改变,请说明理由.3、如图,y 轴的负半轴平分∠AOB , P 为y 轴负半轴上的一动点,过点P 作x 轴的平行线分别交OA 、OB 于点M 、N.(1)如图1, MN ⊥y 轴吗?为什么?(2)如图2,当点P 在y 轴的负半轴上运动到AB 与y 轴的交点处,其他条件都不变时,等式∠APM=21(∠OBA -∠A )是否成立?为什么?xy OEDCBAPMF xy OCBAMNADBCb 21aE βαMaADBCbF HQ(3)当点P 在y 轴的负半轴上运动到图3处(Q 为BA 、NM 的延长线的交点),其他条件都不变时,试问∠Q 、∠OAB 、∠OBA 之间是否存在某种数量关系?若存在,请写出其关系式,并加以证明;若不存在,请说明理由.4、.已知直线a ∥b ,点A 在直线a 上,点B 、C 在直线b 上,点D 在线段BC 上.(1)如图1,AB 平分∠MAD ,AC 平分∠NAD ,DE ⊥AC 于E ,求证:∠1=∠2.(5分)(2)若点F 为线段AB 上不与A 、B 重合的一动点,点H 在AC 上,FQ 平分∠AFD 交AC于Q ,设∠HFQ =x °,(此时点D 为线段BC 上不与点B 、C 重合的任一点),问当α、β、x 之间满足怎样的等量关系时,FH ∥a (如图2)?试写出α、β、x 之间满足的某种等量关系,并以此为条件证明FH ∥a .(5分)AOBQMPNyx 图37、如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足02)22ba(,过C作CB⊥x轴于B.(1)求三角形ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE、DE分别平分∠CAB、∠ODB,如图2求∠AED的度数.(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等,若存在,求出P点坐标;若不存在,请说明理由.yACxO ByACxO BEDyACxO B图1图2 备用图8、在平面直角坐标系中,点)0,(a A ,)0,(b B ,),0(c C ,且满足342c b a ,过点C 作x MN //轴,D 是MN上一动点. (1)求ABC 的面积;(2)如图1,若点D 的横坐标为-3,AD 交OC 于E ,求点E 的坐标;(3)如图2,若B 35AD,P 是A D 上的点,Q 是射线DM 上的点,射线QG平分PQM ,射线PH 平分APQ ,//PF QG ,请你补全图形,并求HPF ADN的值.9、(12分)如图,直角坐标系中,C 点是第二象限一点,CB ⊥y 轴于B ,且B (0,b )是y 轴正半轴上一点,A (a ,0)是x 轴负半轴上一点,且2230a b ,S 四边形AOBC =9。
坐标系综合运用(压轴)学校:___________姓名:___________班级:___________考号:___________1.如图①,在平面直角坐标系中,(),0A a ,(),4C b ,且满足()240a ++=,过C 作CB x ⊥轴于B . (1)求三角形ABC 的面积;(2)若线段AC 与y 轴交于点()0,2Q ,在y 轴上是否存在点P ,使得三角形ABC 和三角形QCP 的面积相等,若存在,求出P 点坐标;若不存在,请说明理由.(3)若过B 作//BD AC 交y 轴于D ,且AE ,DE 分别平分CAB ∠,ODB ∠,如图①,求AED ∠的度数.2.如图①,在平面直角坐标系中,等边ABC ∆的顶点A ,B 的坐标分别为()5,0,()9,0,点D 是x 轴正半轴上一个动点,连接CD ,将ACD ∆绕点C 逆时针旋转60︒得到BCE ∆,连接DE .(1)并判断CDE ∆的形状,说明理由.(2)如图①,当D 在线段AB 上运动时,BDE ∆的周长随D 点的移动而变化,求出BDE ∆的最小周长.(3)当BDE ∆是直角三角形时,直接写出点D 的坐标.3.如图,平面直角坐标系中,ABCD 为长方形,其中点A 、C 坐标分别为(﹣4,2)、(1,﹣4),且AD①x 轴,交y 轴于M 点,AB 交x 轴于N .(1)求B 、D 两点坐标和长方形ABCD 的面积;(2)一动点P 从A 出发(不与A 点重合),以12个单位/秒的速度沿AB 向B 点运动,在P 点运动过程中,连接MP 、OP ,请直接写出①AMP 、①MPO 、①PON 之间的数量关系;(3)是否存在某一时刻t ,使三角形AMP 的面积等于长方形面积的13?若存在,求t 的值并求此时点P 的坐标;若不存在请说明理由.4.如图1,在平面直角坐标系中,点,A B 的坐标分别为(),0A a ,(),0B b ,且,a b 满足|3|0a +=,现同时将点,A B 分别向左平移2个单位长度,再向上平移2个单位长度,分别得到点,A B 的对应点,C D ,连接AC ,BD .(1)请求出,C D 两点的坐标;(2)如图2,点P 是线段AC 上的一个动点,点Q 是线段CD 的中点,连接PQ ,PO ,当点P 在线段AC 上移动时(不与,A C 重合),请找出PQD ∠,OPQ ∠,BOP ∠的数量关系,并证明你的结论;(3)在坐标轴上是否存在点M ,使三角形MAD 的面积与三角形ACD 的面积相等?若存在直接写出点M 的坐标;若不存在,试说明理由.5.如图1,C 点是第二象限内一点, CB y ⊥轴于B ,且()0,B b 是y 轴正半轴上一点,(),0A a 是x 轴负半x 轴上一点,且()2230, 9AOBC a b S ++-==四边形.(1)A ( ),B ( )(2)如图2,设D 为线段OB 上一动点,当AD AC ⊥时,ODA ∠的角平分线与CAE ∠的角平分线的反向延长线交于点P ,求APD ∠的度数: (注: 三角形三个内角的和为180)(3)如图3,当D 点在线段OB 上运动时,作DM AD ⊥交CB 于,,M BMD DAO ∠∠的平分线交于N ,当D 点在运动的过程中,N ∠的大小是否变化?若不变,求出其值;若变化,请说明理由.6.如图,在平面直角坐标系中,已知(,0)A a ,(,0)B b ,其中,a b 2(3)0b -=.(1)填空:a =_______,b =________;(2)若在第三象限内有一点(2,)M m -,用含m 的式子表示ABM 的面积;(3)在(2)条件下,当32m =-时,点P 是坐标轴上的动点,当满足PBM 的面积是ABM 的面积的2倍时,求点P 的坐标.7.如图,()0,A a ,(),0C c ,且()2182140c a -+-=,将点C 向上平移7个单位长度再向左平移4个单位长度,得到对应点B .(1)求点A ,点B ,点C 的坐标;(2)若点P 从点C 以2个单位长度/秒的速度沿CO 方向移动,同时点Q 从点O 以每秒1个单位长度的速度沿OA 方向移动,设移动的时间为t 秒(07t <<).①李超在解题过程中发现:P ,Q 移动过程中四边形QOPB 的面积与移动的时间t 无关.你同意她的结论吗?请说明理由;①是否存在一段时间,使2OQB OPBA S S ∆<四边形,若存在,求出t 的取值范围;若不存在,请说明理由.8.如图,在平面直角坐标系中,点A (a ,0)在x 轴负半轴上,点C (2,0)在x 正半轴上,点B (0,b )在y 轴正半轴上,并且a 、b 是方程组2356a b a b +=-⎧⎨+=⎩的解,连接AB 、BC . (1)a =________,b =________;(2)经过计算AB=10,动点M 从点A 出发,沿射线AB 以每秒2个单位长度的速度匀速运动,连接MC ,设点M 的运动时间为t (t>0)秒,用含t 的式子表示①BCM 的面积S ,并直接写出t 的取值范围;(3)在(2)的条件下,点N 在线段BC 上,且BN=2CN ,连接MN.当三角形BMN 的面积为8时,求t 值,并直接写出点M 的坐标.9.如图1,在平面直角坐标系中,A (a ,0)是x 轴负半轴上一点,C 是第三象限内一点,CB①y 轴交y 轴负半轴于B (0,b ),且|a+3|+(b+4)2=0,S 四边形AOBC =16.(1)求点C的坐标;(2)如图2,设D为线段OB上一动点,当AD①AC时,①ODA的平分线与①CAN的平分线的反向延长线交于点E,求①AED的度数(点N在x轴的负半轴);(3)如图3,当点D在线段OB上运动时,作DP①AD交BC于P点,①BPD、①DAO的平分线交于Q点,则点D 在运动过程中,①Q的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.10.如图,A点的坐标为(0,3),B点的坐标为(﹣3,0),D为x轴上的一个动点且不与B,O重合,将线段AD 绕点A逆时针旋转90°得线段AE,使得AE①AD,且AE=AD,连接BE交y轴于点M.(1)如图,当点D在线段OB的延长线上时,①若D点的坐标为(﹣5,0),求点E的坐标.①求证:M为BE的中点.①探究:若在点D运动的过程中,OMBD的值是否是定值?如果是,请求出这个定值;如果不是,请说明理由.(2)请直接写出三条线段AO,DO,AM之间的数量关系(不需要说明理由).11.在平面直角坐标系中,已知A(a ,0),B(b ,0),C(0,4),D(6,0).点P(m ,n)为线段CD 上一点(不与点C 和点D 重合).(1)利用三角形COP 、三角形DOP 及三角形COD 之间的面积关系,求m 与n 之间的数量关系;(2)如图1,若a =﹣2,点B 为线段AD 的中点,且三角形ABC 的面积等于四边形AOPC 面积,求m 的值; (3)如图2,设a ,b ,m 满足230325a b m a b m ++=⎧⎨++=-⎩,若三角形ABP 的面积小于5,求m 的取值范围.12.如图1,在平面直角坐标系中,点()2,0A -,()5,0B -,点C 在第三象限,已知AC AB ⊥,且AB AC =.(1)求点C 的坐标;图1(2)如图2,N 为线段AC 上一动点(端点除外),P 是y 轴负半轴的一点,连接BP 、CP ,射线BN 与ACP ∠的角平分线交于D ,若45BDC ABD ∠-∠=︒,求点P 的坐标;图2(3)在第(2)问的基础上,如图3,点Q 与点P 关于x 轴对称,E 是射线PC 上一个动点,连接QE ,EF 平分QEC ∠,QM 平分EQP ∠,射线//QH EF .试问MQH ∠的度数是否发生改变?若不变,请求其度数:若改变,请指出其变化范围.图313.在下面直角坐标系中,已知A(0,a)、B(b,0)、C(b,c)三点,其中a、b、c满足关系式|a﹣2|+(b﹣3)2=0,(c﹣4)2≤0.(1)a=;b=;c=;(2)在第二象限内,是否存在点P(m,12),使四边形ABOP的面积与①ABC的面积相等?若存在,求出点m的值;若不存在,请说明理由;(3)D为线段OB上一动点,连接CD,过D作DE①CD交y轴于点E,EP、CP分别平分①DEO和①DCB,当点D在OB上运动的过程中,①P的度数是否变化,若不变,请求出①P的度数;若变化,请说明理由.14.如图,在平面直角坐标系中,已知A(﹣2,0),B(3,0),C(﹣1,2).(1)在x轴正半轴上存在一点M使S三角形COM=S三角形ABC,求出点M的坐标.(2)在坐标轴的其他位置是否存在点M,使S三角形COM=13ABCS恒成立?若存在,请写出符合条件的点M的坐标.15.如图,已知长方形ABC O中,边AB=12,BC=8.以点0为原点,O A、OC所在的直线为y轴和x轴建立直角坐标系.(1)点A的坐标为(0,8),写出B.C两点的坐标;(2)若点P从C点出发,以3单位/秒的速度向C O方向移动(不超过点O),点Q从原点O出发,以2单位/秒的速度向O A方向移动(不超过点A),设P、Q两点同时出发,在它们移动过程中,四边形OPBQ的面积是否发生变化?若不变,求其值;若变化,求变化范围.16.如图1,在平面直角坐标系中,已知点A(a,0),B(b,0),C(2,7),连接AC,交y轴于D,且a25=.(1)求点D的坐标.(2)如图2,y轴上是否存在一点P,使得①ACP的面积与①ABC的面积相等?若存在,求点P的坐标,若不存在,说明理由.(3)如图3,若Q(m,n)是x轴上方一点,且QBC的面积为20,试说明:7m+3n是否为定值,若为定值,请求出其值,若不是,请说明理由.17.如图,在平面直角坐标系中,已知点 (0, 3)A,(5,0)B,(5,4)C三点.(1)在平面直角坐标中画出ABC∆,求ABC∆的面积(2)在x轴上是否存在一点M使得BCM∆的面积等于ABC∆的面积?若存在,求出点M坐标;若不存在,说明理由.(3)如果在第二象限内有一点(, 1)P a,用含a的式子表示四边形ABOP的面积;(4)且四边形ABOP的面积是ABC∆的面积的三倍,是否存在点P,若存在,求出满足条件的P点坐标;若不存在,请说明理由.18.如图,在平面直角坐标系xOy 中,已知(4,0)A ,将线段OA 平移至CB ,点D 在x 轴正半轴上,(,)C a b ,且|3|0b -=.连接OC ,AB ,CD ,BD .(1)写出点C 的坐标为 ;点B 的坐标为 ;(2)当ODC △的面积是ABD △的面积的3倍时,求点D 的坐标;(3)设OCD ∠=α,DBA ∠=β,BDC θ∠=,判断α、β、θ之间的数量关系,并说明理由.19.如图1,点A 的坐标为()0,2,将点A 向右平移m 个单位得到点B ,其中关于x 的一元一次不等式152mx x -<-的解集为1x >,过点B 作BC x ⊥轴于C 得到长方形ABCO ,(1)求B 点坐标______及四边形AOCB 的面积_______;(2)如图2,点Q 从O 点以每秒1个单位长度的速度在y 轴上向上运动,同时点P 从C 点以每秒2个单位长度的速度匀速在x 轴上向左运动,设运动的时间为t 秒()02t <<,问是否存在一段时间,使得BOQ ∆的面积不大于BOP ∆的面积,若存在,求出t 的取值范围;若不存在,说明理由;(3)在(2)的条件下,四边形BPOQ 的面积是否发生变化,若不变化,请求出其值;若变化,说明理由.20.如图1,在平面直角坐标系中,点A (a ,0),B (b ,3),C (c ,0)+6a b -++2(4)c -=0. (1)分别求出点A ,B ,C 的坐标及三角形ABC 的面积.(2)如图2.过点C 作CD AB ⊥于点D ,F 是线段AC 上一点,满足FDC FCD ∠=∠,若点G 是第二象限内的一点,连接DG ,使ADG ADF ∠=∠,点E 是线段AD 上一动点(不与A 、D 重合),连接CE 交DF 于点H ,点E 在线段AD 上运动的过程中,DHC ACECED∠+∠∠的值是否会变化?若不变,请求出它的值;若变化,请说明理由.(3)如图3,若线段AB 与y 轴相交于点F ,且点F 的坐标为(0,32),在坐标轴上是否存在一点P ,使三角形ABP 和三角形ABC 的面积相等?若存在,求出P 点坐标.若不存在,请说明理由.(点C 除外)21.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限内一点,CB①y轴交y轴负半轴于B(0,b),且|a﹣3|+(b+4)2=0,S四边形AOBC=16.(1)求点C的坐标.(2)如图2,设D为线段OB上一动点,当AD①AC时,①ODA的角平分线与①CAE的角平分线的反向延长线交于点P,求①APD的度数;(点E在x轴的正半轴).(3)如图3,当点D在线段OB上运动时,作DM①AD交BC于M点,①BMD、①DAO的平分线交于N点,则点D在运动过程中,①N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.+=,22.如图所示,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足|a2|0点C的坐标为(0,3).(1)求a,b的值及S三角形ABC;(2)若点M在x轴上,且S三角形ACM=13S三角形ABC,试求点M的坐标.23.如图,在平面直角坐标系中,点A、C分别在x轴上、y轴上,CB//OA,OA=8,若点B的坐标为(a,b),且b=4.(1)直接写出点A、B、C的坐标;(2)若动点P从原点O出发沿x轴以每秒2个单位长度的速度向右运动,当直线PC把四边形OABC分成面积相等的两部分停止运动,求P点运动时间;(3)在(2)的条件下,在y轴上是否存在一点Q,连接PQ,使三角形CPQ的面积与四边形OABC的面积相等?若存在,求点Q的坐标;若不存在,请说明理由.24.如图,以直角三角形AOC 的直角顶点O 为原点,以OC 、OA 所在直线为x 轴和y 轴建立平面直角坐标系,点()0,A a ,(),0C b 20b -=.()1则C 点的坐标为______;A 点的坐标为______.()2已知坐标轴上有两动点P 、Q 同时出发,P 点从C 点出发沿x 轴负方向以1个单位长度每秒的速度匀速移动,Q点从O 点出发以2个单位长度每秒的速度沿y 轴正方向移动,点Q 到达A 点整个运动随之结束.AC 的中点D 的坐标是()1,2,设运动时间为(0)t t >秒.问:是否存在这样的t ,使ODPODQ S S=?若存在,请求出t 的值;若不存在,请说明理由.()3点F 是线段AC 上一点,满足FOC FCO ∠=∠,点G 是第二象限中一点,连OG ,使得.AOG AOF ∠=∠点E是线段OA 上一动点,连CE 交OF 于点H ,当点E 在线段OA 上运动的过程中,OHC ACEOEC∠+∠∠的值是否会发生变化?若不变,请求出它的值;若变化,请说明理由.25.如图1,在平面直角坐标系中,点A 为x 轴负半轴上一点,点B 为x 轴正半轴上一点,C(0,a),D(b ,a),其中a ,b 满足关系式:|a+3|+(b -a+1)2=0.(1)a=___,b=___,①BCD 的面积为______;(2)如图2,若AC①BC ,点P 线段OC 上一点,连接BP ,延长BP 交AC 于点Q ,当①CPQ=①CQP 时,求证:BP 平分①ABC ;(3)如图3,若AC①BC ,点E 是点A 与点B 之间一动点,连接CE,CB 始终平分①ECF,当点E 在点A 与点B 之间运动时,BECBCO∠∠的值是否变化?若不变,求出其值;若变化,请说明理由.26.如图,在平面直角坐标系中,已知(,0)A a,(,0)B b,其中a,b|1|0a+=,点M为第三象限内一点.(1)若(2,210)M m m--到坐标轴的距离相等,MN AB,且NM AB=,求N点坐标(2)若M为(2,)m-,请用含m的式子表示ABM∆的面积.(3)在(2)条件下,当1m=-时,在y轴上有点P,使得ABP∆的面积是ABM∆的面积的2倍,请求出点P的坐标.27.如图1,在平面直角坐标系中,A(m,0),B(n,0),C(﹣1,2),且满足式|m+2|+(m+n﹣2)2=0.(1)求出m,n的值.(2)①在x轴的正半轴上存在一点M,使①COM的面积等于①ABC的面积的一半,求出点M的坐标;①在坐标轴的其它位置是否存在点M,使①COM的面积等于①ABC的面积的一半仍然成立,若存在,请直接在所给的横线上写出符合条件的点M的坐标;(3)如图2,过点C作CD①y轴交y轴于点D,点P为线段CD延长线上一动点,连接OP,OE平分①AOP,OF①OE,当点P运动时,OPDDOE∠∠的值是否会改变?若不变,求其值;若改变,说明理由.28.如图①,在平面直角坐标系中,点A、B在x轴上,AB①BC,AO=OB=2,BC=3(1)写出点A、B、C的坐标.(2)如图①,过点B作BD①AC交y轴于点D,求①CAB+①BDO的大小.(3)如图①,在图①中,作AE、DE分别平分①CAB、①ODB,求①AED的度数.29.如图①,在平面直角坐标系中,A()0a,,C()2b,,且满足()220a++=,过点C作CB①x轴于点B.(1)__________ABCa b S===,,;(2)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等?若存在,求出点P 的坐标;若不存在,请说明理由;(3)如图①,若过点B 作BD①AC 交y 轴于点D ,且AE 、DE 分别平分①CAB 、①ODB ,求①AED 的度数.30.如图,在平面直角坐标系中,A (a ,0),C (b ,2),且满足(a+b )2+|a -b+4|=0,过点C 作CB①x 轴于B , (1)如图1,求①ABC 的面积.(2)如图2,若过B 作BD①AC 交y 轴于D ,在①ABC 内有一点E ,连接AE.DE ,若①CAE+①BDE=①EAO+①EDO ,求①AED 的度数.(3)如图3,在(2)的条件下,DE 与x 轴交于点M ,AC 与y 轴交于点F ,作①AME 的角平分线MP ,在PE 上有一点Q ,连接QM ,①EAM+2①PMQ=45°,当AE=2AM ,FO=2QM 时,求点E 的纵坐标.31.如图,在平面直角坐标系中,()()()A 1,0,B 3,0,C 0,2-,CD//x 轴,CD=AB .(1)求点D 的坐标: (2)四边形OCDB 的面积S四边形OCDB;(3)在y 轴上是否存在点P ,使S ①PAB =S四边形OCDB;若存在,求出点P 的坐标,若不存在,请说明理由.32.如图,在平面直角坐标系中,长方形ABCD的顶点A(a,0),B(b,0)在坐标轴上,C的纵坐标是2,且a,b满足式子:b-=40(1)求出点A、B、C的坐标.(2)连接AC,在y轴上是否存在点M,使①COM的面积等于①ABC的面积,若存在请求出点M的坐标,若不存在请说明理由.(3)若点P是边CD上一动点,点Q是CD与y轴的交点,连接OP,OE平分①AOP交直线CD于点E,OF①OE交直线CD于点F,当点P运动时,探究①OPD和①EOQ之间的数量关系,并证明.33.如图,直角坐标系中,A点是第二象限内一点,AB①x轴于B,且C(0,2)是y轴正半轴上一点,OB-OC=2,AB=4.(1)求A点坐标;(2)设D为线段OB上一动点,当①CDO=①A时,CD与AC之间存在怎么样的位置关系?证明你的结论;(3)当D点在线段OB上运动时,作DE①CD交AB于E,①BED,①DCO的平分线交于M,现在给出两个结论:①①M 的大小不变;①①BED+①CDO的大小不变.其中有且只有一个是正确的,请你选出正确结论,并给予证明.34.如图,在直角坐标系xOy 中,己知()0A ,()6B ,将线段OA 平移至CB ,点D 在x 轴正半轴上(不与点A 重合),连接OC ,AB ,CD ,BD .(1)直接写出点C 的坐标;(2)当①ODC 的面积是①ABD 的面积的2倍时,求点D 的坐标;(3)若①OCD=25°,①DBA=15°,求①BDC .并说明理由.35.如图,在直角坐标系xoy中,点A、B的坐标分别是A(-1,0),B(3,0),将线段AB向上平移2个单位,再向右平移1个单位,得到线段DC,点A、B的对应点分别是D、C,连接AD、BC.(1)直接写出点C,D的坐标;(2)求四边形ABCD的面积;(3)点P为线段BC上任意一点(与点B、C不重合),连接PD,PO.求证:①CDP+①BOP=①OPD.36.如图,以直角①AOC的直角顶点O为原点,以OC,OA所在直线为x轴和y轴建立平面直角坐标系,点A(0,b-=.a),C(b,080(1)点A的坐标为________;点C的坐标为________.(2)已知坐标轴上有两动点P,Q同时出发,P点从C点出发沿x轴负方向以每秒2个单位长度的速度匀速移动,Q点从O点出发沿y轴正方向以每秒1个单位长度的速度匀速移动,点P到达O点整个运动随之结束.AC的中点D的坐标是(4,3),设运动时间为t秒.问:是否存在这样的t,使得①ODP与①ODQ的面积相等?若存在,请求出t的值;若不存在,请说明理由.(3)在(2)的条件下,若①DOC=①DCO,点G是第二象限中一点,并且y轴平分①GOD.点E是线段OA上一动点,连接接CE交OD于点H,当点E在线段OA上运动的过程中,探究①GOA,①OHC,①ACE之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用).37.如图,在平面直角坐标系中,A(4,0),B(0,4),C是第一象限内一点,且BC①x轴.(1)连接AC,当S①ABC=6时,求点C的坐标;(2)设D为y轴上一动点,连接AD,CD,作①BCD、①DAO的平分线相交于点P,在点D的运动过程中,试判断等式①CPA=2①CDA是否始终成立,并说明理由.。
(1)已知点A的坐标为(﹣3,1),(1)请直接写出点A ,B ,C 的坐标;(2)如图(1),若点D 的坐标为()1,0-,点(),F m n 为线段DE 12,求m 的取值范围;(3)如图(2),若DE 与y 轴的交点G 在B 点上方,点P 为EBO Ð,BPD Ð,PDA Ð之间的数量关系.【答案】(1)()4,0A ,()0,2B ,()0,3C -14Q 将线段AB 平移到DE ,AB DE \=,AB DE ∥,AD =\四边形ABED 的面积25=´=152ABF ABEDS S D \==四边形,ABF ADF ABO ABFD S S S S D D D =+=+Q 四边形11155422(222n m \+´´=´´+´´-Q将线段AB平移到DE \∥,AD BE AB DE∥ADP BFD\Ð=Ð,\Ð=°-Ð=180180 PFB BFD Q,Ð=Ð+ÐEBO BPD BFPEBO BPD\Ð=Ð+°-Ð180Q将线段AB平移到DE \∥,AD BE\Ð+Ð=°,PDA BFD180\Ð=°-Ð,180BFP PDAÐ=Ð+ÐQ,EBO BFP BPF\Ð=°-Ð+180180 EBO PDA如图,当点P 在AD 的延长线与y 轴的交点T 上方时,EBO BEG EGB Ð=Ð+ÐQ ,又BE AD Q ∥,BEG GDT \Ð=Ð,由对顶角得EGB TGD Ð=Ð,PTD TGD TDG Ð=Ð+ÐQ ,PTD EBO \Ð=Ð,PDA PTD TPD Ð=Ð+ÐQ ,PDA EBO BPD\Ð=Ð+Ð综上所述:当点P 在点B 的下方时,180EBO BPD ADP Ð=Ð+°-Ð;当点P 在B 、与AD 的延长线与y 轴的交点之间时,360EBO PDA BPD Ð+Ð+Ð=°;当点P 在AD 的延长线与y 轴的交点T 上方时,PDA EBO BPD Ð=Ð+Ð.【点睛】本题是三角形综合题,考查了平移的性质,三角形面积公式,利用分类讨论思想解决问题是解题的关键.3.如图所示,在平面直角坐标系中,如图①,将线段AB 平移至线段CD ,点A 在x 轴的负半轴,点C 在y 轴的正半轴上,连接AC 、BD .(1)若(3,0)A -、(2,2)B --,(0,2)C ,直接写出点D 的坐标;(2)如图②,在平面直角坐标系中,已知一定点(2,0)M ,两个动点(,21)E a a +、(,23)F b b -+.请你探索是否存在以两个动点E 、F 为端点的线段EF 平行于线段OM 且等于线段OM ,若存在,求点E 、F 的坐标;若不存在,请说明理由;(3)如图③,在直线EF 上有两点A 、C ,分别引两条射线AB 、CD .110BAF Ð=°,//EF OM Q ,EF OM =,\点E 与F 的纵坐标相等,横坐标的差的绝对值为即2123a b +=-+,||a b -=如图①,AB 与CD 在EF 的两侧时,110BAF Ð=°Q ,60DCF Ð=°,18060312031203ACD t t t \Ð=°-°-°´=°-°´=°-°要使//AB CD ,则ACD BAF ÐÐ=,即120°-解得5t =,此时(18060)340°-°¸°=,040t \<<,∴a−6=0,c+8=0,∴a=6,c=−8,∴A(6,0),B(6,−8).当点P到AB的距离为2个单位长度时,运动路程s=6−2=4或s=6+8+2=16,∴4÷2=2s或16÷2=8s,故答案为:2s或8s;(2)①当0≤t≤3时,点P在OA上,此时,P(2t,0);②当3≤t≤7时,点P在AB上,此时PA=2t−6,由于点P在第四象限,纵坐标小于0,则P (6,6−2t);③当7≤t≤10时,点P在BC上,此时PB=2t−OA−AB=2t−14,PC=BC−PB=6−(2t−14)=20−2t,∴P(20−2t,−8);(3)当点P在线段AB上时,分两种情况:①如图3中,结论:∠PEA+∠PFC=160°,理由如下:连接OP,∵∠PFC=∠FPO+∠FOP,∠AEP=∠EOP+∠EPO,∴∠PEA+∠PFC=∠FPO+∠FOP+∠EOP+∠EPO=∠AOF+∠EPF=90°+70°=160°;②如图4中,结论:∠PFC−∠AEP=20°,理由如下:a______,b=______;(1)直接写出=轴上一点,且三角形ABP的面积为12,求点P=,设OC mAE BDQ∥,\ADQ=(1)求B 点的坐标时,小明是这样想的:先设B 点坐标为以()m n ,是方程2x y -=-的解;又因为B 点在直线BC 解,从而m ,n 满足228m n m n -=-ìí+=î,据此可求出B 点坐标为______;C 点坐标为______.(均直接写出结果)(2)若线段BC 上存在一点D ,使12OCD ABC S S =△△(O∵S△ABM+S梯形AMNF=S△FBN,∴1 2×4×4+12(4+FN)×3=12×FN×7,∴FN=7,∴F(-5,-3),过点∠MDQ=90°,△MDQ是等腰直角三角形,过点D作DG⊥x轴于E,过点M作MG⊥DG于G,同理得△BOA≌△AED,△MGD≌△DEQ,∴DE=MG=OA=2,OE=2+6=8,∴OE=8=m+2,∴m=6,∴OQ=OE+EQ=OE+DG=8+2+3m-6=3m+4=22,∴Q(22,0);③如图4,∠MDQ=90°,△MDQ 是等腰直角三角形,过点D作DE⊥x轴于E,过M作MG∥y轴,过点D作DG⊥MG于G,同理得:OA=DE=DG=2,∴m=2+6+2=10,∴OQ=EQ-OE=MG-OE=2+3m-6-8=18,∴Q(-18,0);综上,点Q的坐标为(-3,0)或(22,0)或(-18,0).【点睛】本题是三角形的综合题,考查了坐标与图形性质及非负数的性质,等腰直角三角形的性质和判定,三角形全等的性质和判定等知识,解决本题的关键是作辅助线构建三角形全等.过点过点过点(1)求点A ,B 的坐标;(2)如图1,将AB 平移到A B ¢¢,使点B 的对应点B ¢落在x 轴的正半轴上,在且20ABP Ð=°,试判断PB A ¢¢Ð与B PB ¢Ð之间的数量关系,并说明理由;(3)如图2,线段AB 与y 轴交于点M ,将AB 平移到A B ¢¢,连接MA ¢∵由平移得:AB A B ¢¢∥∴PQ A B ¢¢∥∴QPB PB A ¢¢¢Ð=Ð,20QPB PBA Ð=Ð=°∴PB A QPB B PB QPB B PB PBA ¢¢¢¢¢Ð=Ð=Ð+Ð=Ð+Ð∵ACDB ACOM OMDBS S S =+梯形梯形梯形∴()()(111826246222m ´´+=´++´´解得:4m =如图3,过点A ¢、B ¢构造矩形A GEF ¢∴A B M A GB MEB A GEF S S S S ¢¢¢¢¢¢=---矩形△△△(1118884488222n n =´-´´-´×-´×-64162324n n---+216n =+\Ð∵Q由平移可得:,MN PQ ∥180,MNQ PQN EQP MNE ENQ EQN \Ð+Ð=°=Ð+Ð+Ð+Ð 180,NEQ ENQ EQN Ð+Ð+Ð=°Q,NEQ EQP MNE \Ð=Ð+Ð如图,当E 在NQ 的右边,直线MN 的左边时,(包括E 在这两条直线上),同理可得:180,180,MNQ PQN QNE NEQ NQE Ð+Ð=°Ð+Ð+Ð=° 360,MNE NEQ EQP \Ð+Ð+Ð=°如图,当E 在直线MN 的右边时,记直线MN 与EQ 的交点为F ,同理,当C 点平移后的点不是“自大点时”, 1t …或3t …,\当平移后的正方形边界及其内部的所有点都不是“自大点”时,1t …或7t …,故答案为:1t …或7t ….【点睛】本题主要考查正方形的性质,坐标与图形的平移变化,根据题意,准确找出“自大点”的纵横坐标满足的关系是解答此题的关键.。
培优训练三:平面直角坐标系(压轴题)一、坐标与面积:【例1】如图,在平面直角坐标中,A (0,1),B (2,0),C (2,1.5). (1)求△AB C的面积;(2)如果在第二象限内有一点P(a ,0.5),试用a 的式子表示四边形ABOP 的面积;(3)在(2)的条件下,是否存在这样的点P ,使四边形ABOP 的面积与△AB C的面积相等?若存在,求出点P 的坐标,若不存在,请说明理由.yxPOCBA【例2】在平面直角坐标系中,已知A (-3,0),B (-2,-2),将线段AB 平移至线段CD .图1y xDO CB A图2y xDOCB AyxOBAyxOBA(1)如图1,直接写出图中相等的线段,平行的线段;(2)如图2,若线段AB 移动到CD ,C 、D 两点恰好都在坐标轴上,求C 、D 的坐标;(3)若点C 在y 轴的正半轴上,点D在第一象限内,且S△ACD =5,求C、D 的坐标;(4)在y 轴上是否存在一点P ,使线段AB 平移至线段PQ 时,由A 、B 、P、Q 构成的四边形是平行四边形面积为10,若存在,求出P 、Q的坐标,若不存在,说明理由;【例3】如图,△ABC 的三个顶点位置分别是A (1,0),B (-2,3),C (-3,0).(1)求△ABC 的面积;(2)若把△AB C向下平移2个单位长度,再向右平移3个单位长度,得到△A B C ''',请你在图中画出△A B C '''; (3)若点A、C的位置不变,当点P 在y 轴上什么位置时,使2ACPABCS S=;(4)若点B 、C的位置不变,当点Q在x 轴上什么位置时,使2BCQABCS S=.【例4】如图1,在平面直角坐标系中,A (a ,0),C (b,2),且满足2(2)20a b ++-=,过C 作CB ⊥x 轴于B.(1)求三角形ABC 的面积;(2)若过B作BD ∥AC 交y 轴于D,且AE ,D E分别平分∠CA B,∠ODB ,如图2,求∠AE D的度数;(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形A CP 的面积相等,若存在,求出P 点坐标;若不存在,请说明理由.【例5】如图,在平面直角坐标系中,四边形AB CD 各顶点的坐标分别是A(0,0),B(7,0),C (9,5),D (2,7)(1)在坐标系中,画出此四边形; (2)求此四边形的面积;(3)在坐标轴上,你能否找一个点P ,使S △PBC =50, 若能,求出P 点坐标,若不能,说明理由.【例6】如图,A点坐标为(-2, 0), B 点坐标为(0, -3). (1)作图,将△ABO沿x轴正方向平移4个单位, 得到△DEF , 延长ED 交y 轴于C点, 过O点作O G⊥C E, 垂足为G ;(2) 在(1)的条件下, 求证: ∠C OG =∠E DF ; (3)求运动过程中线段A B扫过的图形的面积.【例7】在平面直角坐标系中,点B (0,4),C(-5,4),点A 是x轴负半轴上一点,S四边形A OBC =24.图1yxHOFEDAC B(1)线段B C的长为 ,点A的坐标为 ;(2)如图1,EA 平分∠CAO ,DA 平分∠CA H,CF ⊥A E点F,试给出∠ECF 与∠DAH 之间满足的数量关系式,并说明理由;(3)若点P 是在直线C B与直线AO 之间的一点,连接BP 、OP ,BN 平分CBP ∠,ON平分AOP ∠,BN 交ON 于N,请依题意画出图形,给出BPO ∠与BNO ∠之间满足的数量关系式,并说明理由. 【例8】在平面直角坐标系中,OA=4,O C=8,四边形ABC O是平行四边形.A(-2,0)B(0,-3)y x 0(1)求点B 的坐标及的面积ABCO S 四边形;(2)若点P 从点C以2单位长度/秒的速度沿CO 方向移动,同时点Q 从点O 以1单位长度/秒的速度沿OA 方向移动,设移动的时间为t 秒,△AQ B与△BPC 的面积分别记为AQB S ∆,BPC S ∆,是否存在某个时间,使AQB S ∆=3OQBPS 四边形,若存在,求出t 的值,若不存在,试说明理由;(3)在(2)的条件下,四边形Q BPO 的面积是否发生变化,若不变,求出并证明你的结论,若变化,求出变化的范围.【例9】如图,在平面直角坐标系中,点A ,B的坐标分别为(-1,0),(3,0),现同时将点A,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A,B 的对应点C,D 连结AC ,B D. (1)求点C ,D 的坐标及四边形ABD C的面积S 四边形ABDC ;(2)在y轴上是否存在一点P ,连结P A ,PB ,使S △PAB =S △明理由;(3)若点Q自O 点以0.5个单位/s 的速度在线段AB上移动,运动到B点就停止,设移动的时间为t 秒,(1)是否是否存在一个时刻,使得梯形CDQB 的面积是四边形ABCD 面积的三分之一?(4)是否是否存在一个时刻,使得梯形CDQB 的面积等于△ACO 面积的二分之一?【例10】在直角坐标系中,△AB C的顶点A (—2,0),B (2,4),C (5,0). (1)求△ABC 的面积(2)点D 为y负半轴上一动点,连BD 交x 轴于E ,是否存在点D 使得ADE BCE S S ∆∆=?若存在,请求出点D 的坐标;若不存在,请说明理由.(3)点F (5,n )是第一象限内一点,,连BF ,CF ,G 是x轴上一点,若△ABG 的面积等于四边形ABDC 的面积,则点G 的坐标为 (用含n 的式子表示)二、坐标与几何:【例1】如图,已知A (0,a),B (0,b),C (m ,b)且(a -4)2+|b+3|=0,S △ABC =14. (1)求C点坐标(2)作DE ⊥DC,交y 轴于E点,EF 为∠AED 的平分线,且∠DF E=900.求证:FD 平分∠ADO;(3)E 在y 轴负半轴上运动时,连E C,点P为A C延长线上一点,EM 平分∠AEC,且PM ⊥EM,PN ⊥x 轴于N点,PQ 平分∠APN,交x轴于Q点,则E 在运动过程中,错误!的大小是否发生变化,若不变,求出其值.【例2】如图,在平面直角坐标系中,已知点A(-5,0),B(5.0),D(2,7), (1)求C点的坐标;(2)动点P 从B 点出发以每秒1个单位的速度沿BA 方向运动,同时动点Q从C 点出发也以每秒1位的速度沿y轴正半轴方向运动(当P 点运动到A 点时,两点都停止运动)。
人教版2019年七年级数学下册平面直角坐标系压轴题专项培优1.已知A(0,1),B(2,0),C(4,3).(1)在如图所示的平面直角坐标系中描出各点,画出三角形ABC;(2)求三角形ABC的面积;(3)设点P在坐标轴上,且三角形ABP与三角形ABC的面积相等,求点P的坐标.2.如图在下面直角坐标系中,已知A(0,a),B(b,0),C(3,c)三点,其中a、b、c满足关系式:.(1)求a、b、c的值;(2)如果在第二象限内有一点P(m,0.5),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积为△AOP的面积的两倍?若存在,求出点P的坐标,若不存在,请说明理由.3.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A、B 的对应点C,D,连接AC,BD,CD.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC;(2)在y轴上是否存在一点P,连接PA,PB,使S△PAB=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由.4.如图,在平面直角坐标系中,O为原点,点A(0,8),点B(m,0),且m>0.把△AOB绕点A逆时针旋转90°,得△ACD,点O,B旋转后的对应点为C,D.(1)点C的坐标为;(2)①设△BCD的面积为S,用含m的式子表示S,并写出m的取值范围;②当S=6时,求点B的坐标(直接写出结果即可).5.如图,已知在平面直角坐标系中,△ABO的面积为8, OA=OB, BC=12,点P的坐标是(a, 6).(1)求△ABC三个顶点A, B, C的坐标;(2)若点P坐标为(1, 6),连接PA, PB,则△PAB的面积为 ;(3)是否存在点P,使△PAB的面积等于△ABC的面积?如果存在,请求出点P的坐标.6.如图,已知平面直角坐标系内A (2a-1,4) , B (-3,3b+1),A、B;两点关于y轴对称.(1)求A、B的坐标;(2)动点P、Q分别从A点、B点同时出发,沿直线AB向右运动,同向而行,点的速度是每秒2个单位长度,Q点的速度是每秒4个单位长度,设P、Q的运时间为t秒,用含t的代数式表示三角形OPQ的面积S,并写出t的取值范围;(3)在平面直角坐标系中存在一点M,点M的横纵坐标相等,且满足S△PQM:S△OPQ=3:2,求出点M的坐标,并求出当S△AQM=15时,三角形OPQ的面积.7.如图所示,A(1,0),点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(-3,2).(1)直接写出点E的坐标;(2)在四边形ABCD中,点P从点B出发,沿“BC→CD”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:①当t= 秒时,点P的横坐标与纵坐标互为相反数;②求点P在运动过程中的坐标,(用含t的式子表示,写出过程);③当3秒<t<5秒时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,试问 x,y,z之间的数量关系能否确定?若能,请用含x,y的式子表示z,写出过程;若不能,说明理由.8.如图1,在平面直角坐标系中,A(a,0),B(b,3),C(4,0),且满足(a+b)2+|a-b+6|=0,线段AB交y轴于F点.(1)求点A、B的坐标.(2)点D为y轴正半轴上一点,若ED∥AB,且AM,DM分别平分∠CAB,∠ODE,如图2,求∠AMD的度数.(3)如图3,(也可以利用图1)①求点F的坐标;②点P为坐标轴上一点,若△ABP的三角形和△ABC的面积相等?若存在,求出P点坐标.9.如图1,在平面直角坐标系中,点A为x轴负半轴上一点,点B为x轴正半轴上一点,C(0,a),D(b,a),其中a,b满足关系式:|a+3|+(b-a+1)2=0.(1)a= ,b= ,△BCD的面积为;(2)如图2,若AC⊥BC,点P线段OC上一点,连接BP,延长BP交AC于点Q,当∠CPQ=∠CQP时,求证:BP 平分∠ABC;(3)如图3,若AC⊥BC,点E是点A与点B之间一动点,连接CE,CB始终平分∠ECF,当点E在点A与点B之间运动时,的值是否变化?若不变,求出其值;若变化,请说明理由.10.如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足(a+2)2+b-2=0,过C作CB⊥x轴于B.(1)求△ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)在y轴上是否存在点P,使得△ABC和△ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.11.已知A(0,a),B(b,0),a、b满足.(1)求a、b的值;(2)在坐标轴上找一点D,使三角形ABD的面积等于三角形OAB面积的一半,求D点坐标;(3)做∠BAO平分线与∠AOC平分线BE的反向延长线交于P点,求∠P的度数.12.如图,在平面直角坐标系中,AB∥CD∥x轴,BC∥DE∥y轴,且AB=CD=4cm,OA=5cm,DE=2cm,动点P从点A出发,沿A→B→C路线运动到点C停止;动点Q从点O出发,沿O→E→D路线运动到点D停止.若P,Q两点同时出发,且点P的运动速度为1cm/s,点Q的运动速度为2cm/s.(1)直接写出B,C,D三个点的坐标;(2)当P,Q两点出发5.5s时,试求三角形PQC的面积;(3)设两点运动的时间为ts,用含t的式子表示运动过程中三角形OPQ的面积S(单位:cm2).13.三角形ABC在平面直角坐标系中的位置如图所示,三个顶点A,B,C的坐标分别是(﹣1,4)(﹣4,﹣1)(1,1).(1)将三角形ABC向右平移5个单位长度,再向上平移1个单位长度,得到三角形A′B′C′,请画出平移后的三角形A′B′C′,并写出A′,B′,C′的坐标.(2)若在第四象限内有一点M(4,m),试用含m的式子表示四边形AOMB′的面积.(3)在(2)的条件下,是否存在点M,使得四边形A′OMB′的面积与三角形A′B′C′的面积相等?若存在,请求出点M的坐标;若不存在,请说明理由.14.已知,在平面直角坐标系中,点A, B的坐标分别是(a, 0),(b, 0)且.(1)求a, b的值;(2)在y车由上是否存在点C,使三角形ABC的面积是12?若存在,求出点C的坐标;若不存在,请说明理由.(3)已知点P是y车由正半轴上一点,且到x车由的距离为3,若点P沿x轴负半轴方向以每秒1个单位长度平移至点Q,当运动时间t为多少秒时,四边形ABPQ的面积S为15个平方单位?写出此时点Q的坐标.答案1.解:(1)图略.(2)过点C 向x 轴,y 轴作垂线,垂足分别为点D ,E ,∴S 四边形DOEC =3×4=12,S 三角形BCD =21×2×3=3,S 三角形ACE =21×2×4=4,S 三角形AOB =21×2×1=1.∴S 三角形ABC =S 四边形DOEC -S 三角形BCD -S 三角形ACE -S 三角形AOB =12-3-4-1=4.(3)当点P 在x 轴上时,S 三角形ABP =21AO ·BP=4,即21×1×BP=4,解得BP=8,∴点P 的坐标为(10,0)或(-6,0); 当点P 在y 轴上时,S 三角形ABP =21·BO ·AP=4,即21×2×AP=4,解得AP=4,∴点P 的坐标为(0,5)或(0,-3).故点P 的坐标为(0,5)或(0,-3)或(10,0)或(-6,0). 2.解:3.解:(1)C (0,2),D (4,2),四边形ABCD 的面积=(3+1)×2=8;(2)假设y 轴上存在P (0,b )点,则S △PAB =S 四边形ABDC ∴|AB|•|b|=8,∴b=±4,∴P (0,4)或P (0,﹣4).4.解:(1)∵点A(0,8),∴AO=8,∵△AOB绕点A逆时针旋转90°得△ACD,∴AC=AO=8,∠OAC=90°,∴C(8,8),故答案为:(8,8);(2)①延长DC交x轴于点E,∵点B(m,0),∴OB=m,∵△AOB绕点A逆时针旋转90°得△ACD,∴DC=OB=m,∠ACD=∠AOB=90°,∠OAC=90°,∴∠ACE=90°,∴四边形OACE是矩形,∴DE⊥x主,OE=AC=8,分三种情况:a、当点B在线段OE的延长线上时,如图1所示:则BE=OB﹣OE=m﹣8,∴S=0.5DC•BE=0.5m(m﹣8),即S=0.5m2﹣4m(m>8);b、当点B在线段OE上(点B不与O,E重合)时,如图2所示:则BE=OE﹣OB=8﹣m,∴S=0.5DC•BE=0.5m(8﹣m),即S=﹣0.5m2+4m(0<m<8);c、当点B与E重合时,即m=8,△BCD不存在;综上所述,S=0.5m2﹣4m(m>8),或S=﹣0.5m2+4m(0<m<8);②当S=6,m>8时,0.5m2﹣4m=6,解得:m=4±2(负值舍去),∴m=4+2;当S=6,0<m<8时,﹣0.5m2+4m=6,解得:m=2或m=6,∴点B的坐标为(4+2,0)或(2,0)或(6,0).5.6.7.解:8.解:(1)根据题意,可得三角形OAB沿x轴负方向平移3个单位得到三角形DEC,∵点A的坐标是(1,0),∴点E的坐标是(-2,0);故答案为:(-2,0);(2)①∵点C的坐标为(-3,2).∴BC=3,CD=2,∵点P的横坐标与纵坐标互为相反数;∴点P在线段BC上,∴PB=CD,即t=2;∴当t=2秒时,点P的横坐标与纵坐标互为相反数;故答案为:2;②当点P在线段BC上时,点P的坐标(-t,2),当点P在线段CD上时,点P的坐标(-3,5-t);③能确定,如图,过P作PE∥BC交AB于E,则PE∥AD,∴∠1=∠CBP=x°,∠2=∠DAP=y°,∴∠BPA=∠1+∠2=x°+y°=z°,∴z=x+y.9.解:10.解:11.解:12.解:(1)a=-4,b=8;(2)D(-6,0),(-2,0),(0,4),(0,12);(3)45°. 13.解:14.解:15.略。
人教版七年级数学严选学习材料一线名师严选内容,逐一攻克☆基本概念、基本原理、基础技能一网打尽☆点拨策略思路,侧重策略指导,拓宽眼界思路☆专题2.3平面直角坐标系压轴培优强化卷班级:_________ 姓名:______________ 座号:__________ 分数:___________注意事项:本试卷共26题.其中选择10道,填空8道,解答8道。
答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级、座号填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•南山区期末)在平面直角坐标系中,下列说法正确的是()A.点P(3,2)到x轴的距离是3B.若ab=0,则点P(a,b)表示原点C.若A(2,﹣2)、B(2,2),则直线AB∥x轴D.第三象限内点的坐标,横纵坐标同号【分析】根据点的坐标的几何意义进行判断.【解析】A、点P(3,2)到x轴的距离是2,故本选项不符合题意.B、若ab=0,则点P(a,b)表示原点或坐标轴上的点,故本选项不符合题意.C、若A(2,﹣2)、B(2,2),则直线AB∥y轴,故本选项不符合题意.D、第三象限内点的坐标,横纵坐标都是负号,故本选项符合题意.故选:D.2.(2020秋•市北区期末)点M到x轴的距离为3,到y轴的距离为2,且在第一象限内,则点M的坐标为()A.(﹣2,3)B.(2,3)C.(3,2)D.不能确定【分析】根据第一象限内的点的坐标(+,+),可得答案.【解析】M到x轴的距离为3,到y轴距离为2,且在第一象限内,则点M的坐标为(2,3),故选:B.3.(2020秋•邛崃市期末)如图是某市市内简图(图中每个小正方形的边长为1个单位长度),如果文化馆的位置是(﹣2,1),超市的位置是(3,﹣3),则市场的位置是()A.(﹣3,3)B.(3,2)C.(﹣1,﹣2)D.(5,3)【分析】直接利用文化馆的位置是(﹣2,1),超市的位置是(3,﹣3)得出原点位置,进而得出市场的位置.【解析】如图所示:市场的位置是(5,3),故选:D.4.(2019春•磁县期末)若点P(x,y)的坐标满足xy=0(x≠y),则点P必在()A.原点上B.x轴上C.y轴上D.x轴上或y轴上(除原点)【分析】根据有理数的乘法判断出x、y的值,再根据坐标轴上点的坐标特征解答.【解析】∵xy=0,∴x=0或y=0,当x=0时,点P在x轴上,当y=0时,点P在y轴上,∵x≠y,∴点P不是原点,综上所述,点P必在x轴上或y轴上(除原点).故选:D.点评:本题考查了点的坐标,主要利用了坐标轴上点的坐标特征,需熟记.5.(2020秋•建邺区期末)如图,在平面直角坐标系中,线段AB的两个端点是A(1,3),B(2,1).将线段AB沿某一方向平移后,若点A的对应点A′的坐标为(﹣2,0),则点B的对应点B′的坐标为()A.(﹣3,2)B.(﹣1,﹣3)C.(﹣1,﹣2)D.(0,﹣2)【分析】利用平移变换的性质解决问题即可.【解析】观察图象可知,点B的对应点B′的坐标为(﹣1,﹣2).故选:C.6.(2020春•丛台区校级期末)若点A(6,6),AB∥x轴,且AB=2,则B点坐标为()A.(4,6)B.(6,4)或(6,8)C.(6,4)D.(4,6)或(8,6)【分析】根据平行于x轴的直线上的点的纵坐标相等求出点B的纵坐标,再分点B在点A的左边与右边两种情况讨论求解.【解析】∵A(6,6),AB∥x轴,∴点B的纵坐标为6,点B在点A的左边时,6﹣2=4,此时点B的坐标为(4,6),点B在点A的右边时,6+2=8,此时,点B的坐标为(8,6),综上所述,点B的坐标为(4,6)或(8,6).故选:D.7.(2019春•杭锦后旗期末)已知点P(0,a)在y轴的负半轴上,则点Q(﹣a2﹣1,﹣a+1)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据y轴负半轴上点的纵坐标是负数求出a的取值范围,再求出点Q的横坐标与纵坐标的正负情况,然后求解即可.【解析】∵点P(0,a)在y轴的负半轴上,∴a<0,∴﹣a2﹣1<0,﹣a+1>0,∴点Q在第二象限.故选:B.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).8.(2020秋•织金县期末)已知点Q的坐标为(﹣2+a,2a﹣7),且点Q到两坐标轴的距离相等,则点Q 的坐标是()A.(3,3)B.(3,﹣3)C.(1,﹣1)D.(3,3)或(1,﹣1)【分析】根据点Q到坐标轴的距离相等列出绝对值方程,然后求出a的值,再解答即可.【解析】∵点Q(﹣2+a,2a﹣7)到两坐标轴的距离相等,∴|﹣2+a|=|2a﹣7|,∴﹣2+a=2a﹣7或﹣2+a=﹣(2a﹣7),解得a=5或a=3,所以,点Q的坐标为(3,3)或(1,﹣1).故选:D.9.(2019春•梁园区期末)平面直角坐标系中,点A(﹣3,2),B(1,4),经过点A的直线l∥x轴,点C 是直线l上的一个动点,则线段BC的长度最小时,点C的坐标为()A.(﹣1,4)B.(1,0)C.(1,2)D.(4,2)【分析】如图,根据垂线段最短可知,BC⊥AC时BC最短;【解析】如图,根据垂线段最短可知,BC⊥AC时BC最短.∵A(﹣3,2),B(1,4),AC∥x轴,∴BC=2,∴C(1,2),故选:C.点评:本题考查坐标与图形的性质、垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.(2020春•丛台区校级期末)在平面直角坐标系中,若干个等腰三角形按如图所示的规律摆放.点P从原点O出发,沿着“O→A1→A2→A3→A4…”的路线运动(每秒一条直角边),已知A1坐标为(1,1),A2(2,0),A3(3,1),A4(4,0)…设第n秒运动到点P n(n为正整数),则点P2020的坐标是()A.(2020,0)B.(2019,1)C.(1010,0)D.(2020,﹣1)【分析】通过观察可知,纵坐标每6个进行循环,先求出前面6个点的坐标,从中得出规律,再按规律写出结果便可.【解析】由题意知,A1(1,1)A2(2,0)A3(3,1)A4(4,0)A5(5,﹣1)A6(6,0)A7(7,1)…由上可知,每个点的横坐标等于序号,纵坐标每6个点依次为:1,0,1,0,﹣1,0这样循环,∴A2020(2020,0),故选:A.二、填空题(本大题共8小题,每小题3分,共24分)11.(2019春•临河区期末)在平面直角坐标系中,若点M(2,4)与点N(x,4)之间的距离是3,则x 的值是.【分析】根据点M(2,4)与点N(x,4)之间的距离是3,可以得到|2﹣x|=3,从而可以求得x的值.【解析】∵点M(2,4)与点N(x,4)之间的距离是3,∴|2﹣x|=3,解得,x=﹣1或x=5,故答案为:﹣1或5.点评:本题考查两点间的距离,解题的关键是明确题意,找出所求问题需要的条件.12.(2020秋•沙坪坝区校级期末)在平面直角坐标系中,已知点P(m﹣1,2m+2)位于x轴上,则P点坐标为(﹣2,0).【分析】根据x轴上点的纵坐标等于零,可得答案.【解析】由题意,得2m+2=0,解得m=﹣1,∴m﹣1=﹣2,∴点P的坐标为(﹣2,0),故答案为:(﹣2,0).13.(2020秋•芝罘区期末)若点A(a,b﹣2)在第二象限,则点B(﹣a,b+1)在第一象限.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列不等式求出a、b的取值范围,然后求解即可.【解析】∵点A(a,b﹣2)在第二象限,∴a<0,b﹣2>0,∴b>2,∴﹣a>0,b+1>3,∴点B(﹣a,b+1)在第一象限.故答案为:一.14.(2020秋•雁塔区校级期末)A、B两点的坐标分别为(1,0)、(0,2),落将线段AB平移至A1B1,点A1、B1的坐标分别为(﹣2,a),(b,3),则a+b=﹣2.【分析】根据点A、B平移后横纵坐标的变化可得线段AB向右平移1个单位,向上平移了1个单位,然后再确定a、b的值,进而可得答案.【解析】由题意可得线段AB向左平移3个单位,向上平移了1个单位,∵A、B两点的坐标分别为(1,0)、(0,2),∴点A1、B1的坐标分别为(﹣2,1),(﹣3,3),∴a+b=1﹣3=﹣2,故答案为:﹣2.15.(2020秋•道里区期末)已知线段AB∥y轴,若点A的坐标为(5,n﹣1),B(n2+1,1),则n为﹣2.【分析】根据平行于y轴的点的横坐标相同可得n的值即可.【解析】∵线段AB∥y轴,点A的坐标为(5,n﹣1),B(n2+1,1),∴5=n2+1,n﹣1≠1,解得:n=﹣2,故答案为:﹣2.16.(2020春•无棣县期末)如图,若在象棋盘上建立平面直角坐标系,使棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为(3,2).【分析】直接利用已知点坐标建立平面直角坐标系进而得出答案.【解析】如图所示:棋子“炮”的坐标为(3,2).故答案是:(3,2).17.(2020春•嘉陵区期末)若点P(m+5,m﹣3)在第二、四象限角平分线上,则m=﹣1.【分析】根据第二、第四象限坐标轴夹角平分线上的点,横纵坐标互为相反数,由此就可以得到关于m 的方程,即可解出m的值.【解析】∵点P(5+m,m﹣3)在第二、四象限的角平分线上,∴5+m+m﹣3=0,解得:m=﹣1,故答案为:﹣1.18.(2020春•镜湖区期末)在平面直角坐标系xOy中,对于点P(x,y),我们把点P(﹣y+1,x+1)叫做点P伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…这样依次得到点A1,A2,A3,…,A n,若点A的坐标为(a,b),则点A2021的坐标为(﹣b+1,a+1).【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.【解析】∵A的坐标为(a,b),∴A1(﹣b+1,a+1),A2(﹣a,﹣b+2),A3(b﹣1,﹣a+1),A4(a,b),…,依此类推,每4个点为一个循环组依次循环,∵2021÷4=505余1,∴点A2021的坐标与A1的坐标相同,为(﹣b+1,a+1);故答案为:(﹣b+1,a+1).三、解答题(本大题共8小题,满分66分)19.(2020春•临颍县期末)平面直角坐标系中,有一点M(a﹣1,2a+7),试求满足下列条件的a的值.(1)点M在x轴上;(2)点M在第二象限;(3)点M到y轴距离是1.【分析】(1)点在x 轴上,该点的纵坐标为0;(2)根据第二象限的点的横坐标小于0,纵坐标大于0解答即可;(3)根据点到y 轴的距离为1,则该点的横坐标的绝对值为1,据此计算即可.【解析】(1)要使点M 在x 轴上,a 应满足2a +7=0,解得a =−72,所以,当a =−72时,点M 在x 轴上;(2)要使点M 在第二象限,a 应满足{a −1<02a +7>0,解得−72<a <1, 所以,当−72<a <1时,点M 在第二象限;(3)要使点M 到y 轴距离是1,a 应满足|a ﹣1|=1,解得a =2或a =0,所以,当a =2或a =0时,点M 到y 轴距离是1.20.(2020秋•白银期末)小明和爸爸、妈妈到白银水川湿地公园游玩,回到家后,他利用平面直角坐标系画出了公园的景区地图,如图所示.可是他忘记了在图中标出原点、x 轴及y 轴.只知道长廊E 的坐标为(4,﹣3)和农家乐B 的坐标为(﹣5,3),请你帮他画出平面直角坐标系,并写出其他各点的坐标.【分析】由长廊E 的坐标为(4,﹣3)和农家乐B 的坐标为(﹣5,3),可以确定平面直角坐标系中原点的位置,以及坐标轴的位置,从而可以确定其它点的坐标.【解析】由题意可知,本题是以点D 为坐标原点(0,0),DA 为y 轴的正半轴,建立平面直角坐标系. 则A 、C 、F 的坐标分别为:A (0,4);C (﹣3,﹣2);F (5,5).21.(2020秋•松北区期末)按要求画图及填空:在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O及△ABC的顶点都在格点上.(1)点A的坐标为(﹣4,2);(2)将△ABC先向下平移2个单位长度,再向右平移5个单位长度得到△A1B1C1,画出△A1B1C1.(3)△A1B1C1的面积为 5.5.【分析】(1)直接利用平面直角坐标系得出A点坐标;(2)直接利用平移的性质得出对应点位置进而得出答案;(3)利用△A1B1C1的所在矩形面积减去多于三角形面积进而得出答案.【解析】(1)如图所示:点A的坐标为(﹣4,2);故答案为:(﹣4,2);(2)如图所示:△A1B1C1,即为所求;(3)△A1B1C1的面积为:3×4−12×1×3−12×2×3−12×1×4=5.5.故答案为:5.5.22.(2019春•阳东区期末)在平面直角坐标系xOy中,点A的坐标为(0,4),线段MN的位置如图所示,其中点M的坐标为(﹣3,﹣1),点N的坐标为(3,﹣2).(1)将线段MN平移得到线段AB,其中点M的对应点为A,点N的对称点为B.①点M平移到点A的过程可以是:先向平移个单位长度,再向平移个单位长度;②点B的坐标为;(2)在(1)的条件下,若点C的坐标为(4,0),连接AC,BC,求△ABC的面积.【分析】(1)由点M及其对应点的A的坐标可得平移的方向和距离,据此可得点N的对应点B的坐标;(2)割补法求解可得.【解析】(1)如图,①点M平移到点A的过程可以是:先向右平移3个单位长度,再向上平移5个单位长度;②点B的坐标为(6,3),故答案为:右、3、上、5、(6,3);(2)如图,S△ABC=6×4−12×4×4−12×2×3−12×6×1=10.点评:本题主要考查作图﹣平移变换,熟练掌握平移变换的定义及其性质是解题的关键.23.(2020春•郯城县期末)已知点P(2a﹣2,a+5),解答下列各题.(1)点P在x轴上,求出点P的坐标.(2)点Q的坐标为(4,5),直线PQ∥y轴;求出点P的坐标.(3)若点P在第二象限,且它到x轴、y轴的距离相等,求a2020+2020的值.【分析】(1)根据x轴上的点的纵坐标为0,可得关于a的方程,解得a的值,再求得点P的横坐标即可得出答案.(2)根据平行于y轴的直线的横坐标相等,可得关于a的方程,解得a的值,再求得其纵坐标即可得出答案.(3)根据第二象限的点的横纵坐标的符号特点及它到x轴、y轴的距离相等,可得关于a的方程,解得a的值,再代入要求的式子计算即可.【解析】(1)∵点P在x轴上,∴a+5=0,∴a=﹣5,∴2a﹣2=2×(﹣5)﹣2=﹣12,∴点P的坐标为(﹣12,0).(2)点Q的坐标为(4,5),直线PQ∥y轴,∴2a﹣2=4,∴a=3,∴a+5=8,∴点P的坐标为(4,8).(3)∵点P在第二象限,且它到x轴、y轴的距离相等,∴2a﹣2=﹣(a+5),∴2a﹣2+a+5=0,∴a=﹣1,∴a2020+2020=(﹣1)2020+2020=2021.∴a2020+2020的值为2021.24.(2020春•兴城市期末)把三角形ABC放在直角坐标系中如图所示,现将三角形ABC向上平移1个单位长度,再向右平移3个单位长度就得到三角形A1B1C1.(1)在图中画出三角形A1B1C1,并写出A1、B1、C1的坐标;(2)点P在x轴上,且三角形P AC与三角形ABC面积相等,请直接写出点P的坐标.【分析】(1)首先确定A、B、C三点平移后的位置,再连接即可,再利用坐标系确定A1、B1、C1的坐标;(2)根据三角形的面积公式可得三角形的面积,然后再确定P点坐标即可.【解析】(1)如图所示:A1(4,4)、B1、(1,2)、C1(4,﹣1);(2)点P的坐标(﹣2,0),(4,0).25.(2020春•兴国县期末)在平面直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),则称点Q是点P的“a级关联点”(其中a为常数,且a≠0),例如,点P(1,4)的“2级关联点”为Q(2×1+4,1+2×4),即Q(6,9).(1)若点P的坐标为(﹣1,5),则它的“3级关联点”的坐标为(2,14);(2)若点P的“5级关联点”的坐标为(9,﹣3),求点P的坐标;(3)若点P(m﹣1,2m)的“﹣3级关联点”P′位于坐标轴上.求点P′的坐标.【分析】(1)根据关联点的定义,结合点的坐标即可得出结论.(2)根据关联点的定义,结合点的坐标即可得出结论.(3)根据关联点的定义和点P(m﹣1,2m)的“﹣3级关联点”P′位于坐标轴上,即可求出P′的坐标.【解析】(1)3×(﹣1)+5=2;﹣1+3×5=14,∴若点P的坐标为(﹣1,5),则它的“3级关联点”的坐标为(2,14).故答案为:(2,14);(2)设点P的坐标为(a,b),由题意可知{5a +b =9a +5b =−3, 解得:{a =2b =−1, ∴点P 的坐标为(2,﹣1);(3)∵点P (m ﹣1,2m )的“﹣3级关联点”为P ′(﹣3(m ﹣1)+2m ,m ﹣1+(﹣3)×2m ),①P ′位于x 轴上,∴m ﹣1+(﹣3)×2m =0,解得:m =−15,∴﹣3(m ﹣1)+2m =165,∴P ′(165,0).②P ′位于y 轴上,∴﹣3(m ﹣1)+2m =0,解得:m =3∴m ﹣1+(﹣3)×2m =﹣16,∴P ′(0,﹣16).综上所述,点P ′的坐标为(165,0)或(0,﹣16).26.(2019春•惠城区期末)如图所示,A (1,0)、点B 在y 轴上,将三角形OAB 沿x 轴负方向平移,平移后的图形为三角形DEC ,且点C 的坐标为(﹣3,2).(1)直接写出点E 的坐标 ;(2)在四边形ABCD 中,点P 从点B 出发,沿“BC →CD ”移动.若点P 的速度为每秒1个单位长度,运动时间为t 秒,回答下列问题:①当t = 秒时,点P 的横坐标与纵坐标互为相反数;②求点P 在运动过程中的坐标,(用含t 的式子表示,写出过程);③当3秒<t <5秒时,设∠CBP =x °,∠P AD =y °,∠BP A =z °,试问x ,y ,z 之间的数量关系能否确定?若能,请用含x ,y 的式子表示z ,写出过程;若不能,说明理由.【分析】(1)根据平移的性质即可得到结论;(2)①由点C的坐标为(﹣3,2).得到BC=3,CD=2,由于点P的横坐标与纵坐标互为相反数;于是确定点P在线段BC上,有PB=CD,即可得到结果;②当点P在线段BC上时,点P的坐标(﹣t,2),当点P在线段CD上时,点P的坐标(﹣3,5﹣t);③如图,过P作PF∥BC交AB于F,则PF∥AD,根据平行线的性质即可得到结论.【解析】(1)根据题意,可得三角形OAB沿x轴负方向平移3个单位得到三角形DEC,∵点A的坐标是(1,0),∴点E的坐标是(﹣2,0);故答案为:(﹣2,0);(2)①∵点C的坐标为(﹣3,2)∴BC=3,CD=2,∵点P的横坐标与纵坐标互为相反数;∴点P在线段BC上,∴PB=CD,即t=2;∴当t=2秒时,点P的横坐标与纵坐标互为相反数;故答案为:2;②当点P在线段BC上时,点P的坐标(﹣t,2),当点P在线段CD上时,点P的坐标(﹣3,5﹣t);③能确定,如图,过P作PF∥BC交AB于F,则PF∥AD,∴∠1=∠CBP=x°,∠2=∠DAP=y°,∴∠BP A=∠1+∠2=x°+y°=z°,∴z=x+y.点评:本题考查了坐标与图形的性质,坐标与图形的变化﹣平移,平行线的性质,正确的作出辅助线是解题的关键.。
实用文案培优训练三:平面直角坐标系(压轴题)一、坐标与面积:【例 1 】如图,在平面直角坐标中,A(0,1),B(2,0),C(2,1.5).( 1)求△ABC 的面积;( 2)如果在第二象限内有一点P( a,0.5),试用 a 的式子表示四边形ABOP 的面积;( 3)在( 2)的条件下,是否存在这样的点P,使四边形 ABOP 的面积与△ ABC 的面积相等?若存在,求出点P 的坐标,若不存在,请说明理由.yCAPO B x【例 2 】在平面直角坐标系中,已知A(-3,0), B(-2, -2 ),将线段AB平移至线段CD .y y yyDDA AAC O O xAOCxOxxBB BB图1图2图3图4(1)如图 1 ,直接写出图中相等的线段,平行的线段;( 2 )如图 2 ,若线段AB移动到CD,C、D两点恰好都在坐标轴上,求C、 D 的坐标;( 3 )若点C在y轴的正半轴上,点 D 在第一象限内,且S△ACD=5 ,求C、D的坐标;(4 )在y轴上是否存在一点P,使线段AB平移至线段PQ时,由A、B、P、Q构成的四边形是平行四边形面积为 10 ,若存在,求出P、Q的坐标,若不存在,说明理由;【例 3 】如图,△ABC 的三个顶点位置分别是A(1,0),B(- 2 ,3 ),(- 3, 0).C( 1 )求△ABC的面积;( 2)若把△ABC 向下平移2个单位长度,再向右平移 3 个单位长度,得到△A B C,请你在图中画出△ABC ;( 3)若点 A、 C 的位置不变,当点 P 在 y 轴上什么位置时,使S V ACP2S V ABC;( 4 )若点B、C的位置不变,当点Q 在 x 轴上什么位置时,使S V BCQ2S V ABC.【例 4 】如图 1,在平面直角坐标系中,A(a,0), C( b ,2),且满足(a2) 2 b 2 0 ,过C作CB⊥x轴于 B.( 1 )求三角形ABC 的面积;( 2 )若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图 2 ,求∠AED的度数;( 3 )在y轴上是否存在点P,使得三角形ABC 和三角形ACP 的面积相等,若存在,求出P 点坐标;若不存在,请说明理由.【例 5 】如图,在平面直角坐标系中,四边形ABCD 各顶点的坐标分别是A(0,0),B(7,0),C(9,5),D(2,7 )(1 )在坐标系中,画出此四边形;(2 )求此四边形的面积;( 3 )在坐标轴上,你能否找一个点P,使S△PBC=50,若能,求出P 点坐标,若不能,说明理由.实用文案【例 6 】如图,A点坐标为(- 2 , 0),B点坐标为( 0,-3 ).(1) 作图,将△ABO沿x轴正方向平移 4 个单位,得到△DEF,延长 ED 交 y 轴于yC 点,过 O 点作 OG ⊥CE,垂足为 G;(2) 在 (1) 的条件下,求证 : ∠COG=∠EDF;A(-2,0)0xB(0,-3)( 3 )求运动过程中线段AB 扫过的图形的面积.【例 7 】在平面直角坐标系中,点B(0,4),C(-5,4),点 A 是 x 轴负半轴上一点,S 四边形AOBC=24.yD C B EFHA O x图1( 1 )线段BC的长为,点A的坐标为;(2 )如图 1 ,EA平分∠CAO,DA平分∠CAH, CF⊥AE 点F,试给出∠ECF与∠DAH之间满足的数量关系式,并说明理由;( 3 )若点P是在直线CB 与直线 AO 之间的一点,连接BP、OP ,BN 平分CBP ,ON平分AOP ,BN交ON实用文案于 N ,请依题意画出图形,给出BPO 与BNO 之间满足的数量关系式,并说明理由.【例 8 】在平面直角坐标系中,OA =4, OC=8,四边形 ABCO 是平行四边形.yyA BBAQxxO P CO C( 1 )求点B的坐标及的面积S四边形 ABCO;(2)若点P从点 C以2单位长度 / 秒的速度沿CO方向移动,同时点Q从点O以 1 单位长度 / 秒的速度沿OA 方向移动,设移动的时间为t 秒,△AQB 与△BPC 的面积分别记为S AQB,S BPC,是否存在某个时间,使SAQBS四边形OQBP=,若存在,求出 t 的值,若不存在,试说明理由;3(3 )在( 2)的条件下,四边形QBPO的面积是否发生变化,若不变,求出并证明你的结论,若变化,求出变化的范围.【例 9 】如图,在平面直角坐标系中,点A, B 的坐标分别为(-1, 0 ),( 3 , 0 ),现同时将点A, B 分别向上平移 2 个单位,再向右平移 1 个单位,分别得到点A,B的对应点C,D y连结 AC, BD.y(1) 求点C,D的坐标及四边形ABDC的面积 S 四边形ABDC;C D C DA B A B( 2 )在y轴上是否存在一点P,连结 PA, PB,使S△PAB=S△PDB,若存在这样一点,求出点P 点坐标,若不存在,试说明理由;( 3 )若点Q自O点以 0.5 个单位 /s 的速度在线段AB 上移动,运动到 B 点就停止,设移动的时间为t 秒,( 1)是否是否存在一个时刻,使得梯形CDQB 的面积是四边形ABCD 面积的三分之一?yCDA B-1oQ3x( 4 )是否是否存在一个时刻,使得梯形CDQB 的面积等于△ ACO 面积的二分之一?yB【例 10 】在直角坐标系中,△ABC的顶点A(— 2 ,0),B( 2, 4),C( 5, 0).( 1 )求△ABC的面积 A O C x( 2 )点D为y负半轴上一动点,连BD 交 x 轴于 E,是否存在点 D 使得S ADE S BCE?若存在,请求出点 D 的坐标;若不存在,请说明理由.( 3 )点 F( 5 ,n)是第一象限内一点,,连BF,CF,G是x轴上一点,若△ABG的面积等于四边形ABDC 的面积,则点 G 的坐标为(用含n的式子表示)yBFA O C x二、坐标与几何:【例 1 】如图,已知A(0 , a) ,B( 0 , b ), C( m ,b )且( a -4 )2+ |b + 3| =0 ,S△ABC= 14.(1)求 C 点坐标(2)作 DE⊥ DC ,交 y 轴于 E 点, EF 为∠AED 的平分线,且∠ DFE= 90 0.求证: FD 平分∠ADO ;(3) E 在 y 轴负半轴上运动时,连 EC,点 P 为 AC 延长线上一点, EM 平分∠AEC,且 PM ⊥EM , PN ⊥x 轴于∠MPQN 点, PQ 平分∠APN ,交 x 轴于 Q 点,则 E 在运动过程中,的大小是否发生变化,若不变,求出∠ECA其值 .yyAAF D No D o Q xxE MCB C PE【例 2 】如图,在平面直角坐标系中,已知点A(-5,0 ), B( 5.0 ), D( 2 ,7 ),( 1)求 C 点的坐标;(2 )动点 P 从 B 点出发以每秒 1 个单位的速度沿BA 方向运动,同时动点Q 从 C 点出发也以每秒 1 位的速度沿 y 轴正半轴方向运动(当P 点运动到 A 点时,两点都停止运动)。
中考数学总复习《平面直角坐标系压轴题》专题训练(附带答案)学校:___________班级:___________姓名:___________考号:___________ 1.如图,在平面直角系中,点A的坐标是(0,4)在x轴上任取一点B连接AB作线段AB的垂直平分线1l过点B作x轴的垂线2l记1l2l的交点为P.设点P的坐x y.标为(,)(1)用含x y二个字母的代数式表示PA的长度.(2)当点B在x轴上移动时点P也随之运动请求出点P的运动路径所对应的函数解析式.2.如图1 在平面直角坐标系中,点B的坐标是(0,2)动点A从原点O出发沿着x轴正方向移动ABP是以AB为斜边的等腰直角三角形(点A B P顺时针方向排列).(1)当点A 与点O 重合时 得到等腰直角OBC △(此时点P 与点C 重合) 则BC =______.当2OA =时 点P 的坐标是______; (2)设动点A 的坐标为(,0)(0)t t ≥.①点A 在移动过程中,作PM y ⊥轴于M PN OA ⊥于N 求证:四边形PMON 是正方形;①用含t 的代数式表示点P 的坐标为:(______ ______);(3)在上述条件中,过点A 作y 轴的平行线交MP 的延长线于点Q 如图2 是否存在这样的点A 使得AQB 的面积是AOB 的面积的3倍?若存在 请求出A 的坐标 若不存在 请说明理由.3.如图,在平面直角坐标系中,点O 是坐标原点 直线3y x分别交x 轴 y 轴于点A B .(1)求ABO ∠的度数;(2)点C 是线段AB 上一点 连接OC 以OC 为直角边作等腰直角OCD 其中OC OD=且点D在第三象限连接AD.设点C的横坐标为t ACD的面积为S 求S与t之间的函数解析式(不要求写出自变量t的取值范围);(3)在(2)的条件下点E为x轴正半轴上的一点连接BE点F是BE的中点连∥交x轴于点H若接CF并延长交x轴于点G过点D作DH CFCG DH=求点D的坐标.∠-∠=︒345AEB ADH4.如图,在直角平面坐标系中,ABC的边AB在x轴上且3AB=点A的坐标为-点C的坐标为(2,5).(5,0)(1)求这样的ABC一共几个?并写出符合条件的点B的坐标;(2)试求ABC的面积.5.如图,平面直角坐标系中有点()1,0B 和y 轴上一动点(0,)A a - 其中0a > 以点A 为直角顶点在第四象限内作等腰直角ABC 设点C 的坐标为(,)c d .(1)当2a =时 点C 的坐标为 .(2)动点A 在运动的过程中,试判断+c d 的值是否发生变化 若不变 请求出其值;若发生变化 请说明理由.(3)当3a =时 在坐标平面内是否存在一点P (不与点C 重合) 使PAB 与ABC 全等?若存在 请直接写出点P 的坐标;若不存在 请说明理由.6.如图,在平面直角坐标系中,()2,0A - ()0,3B .(1)如图1 以A 为直角顶点在第二象限内作等腰直角三角形ABE 过点E 作EF x ⊥轴于点F 求点F 的坐标;(2)如图2 点()0,P P y 为y 轴正半轴上一动点 以AP 为直角边作等腰直角三角形APC 点(),C C C x y 在第一象限 90APC ∠=︒ 当点P 运动时 P C y y -的值是否发生变化?若不变 求出其值;若变化 请说明理由.(3)如图3 点P 在y 轴负半轴上 以AP 为直角边作等腰直角三角形APC 90APC ∠=︒ 点C 在第一象限 点H 在AC 延长线上 作HG x ⊥轴于G 当(),2H m 探究线段PH AG OP 之间的数量关系 并证明你的结论.7.已知在平面直角坐标系中,()()4003A B ,,, 以线段AB 为直角边在第一象限内作等腰直角三角形90ABC AB AC BAC =∠=︒,,.(1)直接写出OA OB ⋅的值. (2)求点C 坐标.(3)若点A B ,是x y ,轴正半轴上的动点 BQ AQ ,分别是ABy ∠和BAx ∠的角平分线 交点为Q 求Q ∠的大小.8. 在平面直角坐标系中,点A B ,分别在x 轴负半轴 y 轴正半轴上运动 且满足AB BC = 90ABC ∠=︒ 点C 在第二象限.(1)如图1 当点()()4002A B -,,,时 点C 的坐标为________; (2)以OB 为直角边作等腰直角()90OBD OB BD OBD =∠=︒,△ 如图2 连接AD 和OC 且相交于点P 判断AD 和OC 的数量关系与位置关系 并说明理由;(3)以OB 为直角边作等腰直角()90OBD OB BD OBD =∠=︒,△ 如图3 连接CD 交y 轴于点Q 在点,A B 的运动过程中,判断BQ 与OA 的数量关系 并说明理由.9.在平面直角坐标系中,AOB 为等腰直角三角形 ()4,4A .(1)直接写出B 点坐标;(2)如图2 若C 为x 轴正半轴上一动点 以AC 为直角边作等腰直角ACD =90ACD ∠︒ 连接OD 求AOD ∠度数;(3)如图3 过点A 作y 轴的垂线交y 轴于E F 为x 轴负半轴上一点 G 在EF 的延长线上 以EG 为直角边作等腰Rt EGH 过A 作x 轴的垂线交EH 于点M 连接FM 等式1AM FMOF-=是否成立?若成立 请证明;若不成立 说明理由.10.如图,在平面直角坐标系中,直线24y x =-+交坐标轴于A B 两点 过x 轴负半轴上一点C 作直线CD 交y 轴正半轴于点D 且AOB DOC △≌△.(1)OC =________ OD =________.(2)点()1,M a -是线段CD 上一点 作ON OM ⊥交AB 于点N 连接MN 求点N 的坐标;(3)若()1,E b 为直线AB 上的点 P 为y 轴上的点 请问:直线CD 上是否存在点Q 使得EPQ △是以E 为直角顶点的等腰直角三角形 若存在 请直接写出此时Q 点的坐标;若不存在 请说明理由.象限内作等腰直角ABC则点b点D在第一象限作等腰直角BDE△c ABO,=∠(1)如图1 点A 关于x 轴的对称点为P 点 则点P 的坐标为________ 当PB 最短时 点B 的坐标为________;(结果均用a 表示)(2)如图2 当AB y ⊥轴 且垂足为点A 时 以OA 为边作正方形ABQO M 在x 轴的正半轴 且OM OA < 以OM 为边在x 轴上方作正方形OMNH 连接AN 若6QM = 两个正方形面积之和为20 求AHN 的面积;(3)如图3 当AB y ⊥轴 且垂足为点A 时 点F 在线段OB 上运动(不与端点重合) 点C 是线段BF 的中点 连接AF AC , 以A 为直角顶点 AF 为直角边在第二象限内作等腰Rt EAF △ 连接OE 交AC 于点G 探究线段OE 与AC 的关系 并说明理由.13.如图,在平面直角坐标系中,点A B C 都在坐标轴上 08A BO CO BC ===,.(1)点A 坐标为(______ _______).(2)过点C 作x 轴的垂线l 动点Р从点C 出发 沿着直线①向上运动 若点Р的速度是1个单位/秒 时间是t 连接PA PB , 请用含t 的式子表示PABS.(3)在(2)的条件下 连接AP 以AP 为斜边 在AP 下方作等腰直角APD △ 连接BD 并延长至点Q 连接PO QC , 当点D 为BQ 中点时 请判断PCQ △的形状 并说明理由.14.如图,在平面直角坐标系中,(0,2)A (3,0)B 过点B 作直线ly 轴 点P 是直线l 上的动点 以AP 为边在AP 右上侧作等腰直角APQ △ 使90APQ ∠=︒.(1)如图1当点P 落在点B 时 则点Q 的坐标是________; 学生甲认为点Q 的坐标一定跟点P 有关 于是进行了如下探究:(2)如图2 小聪同学画草图时 让点P 落在1P 2P 3P 不同的特殊位置时(1P 在x 轴上 2P A 与x 轴平行 当Q 落在x 轴上时对应点3P ) 画出了几个点对应的1Q 2Q 3Q 三个不同的位置 发现1Q 2Q 3Q 在同一条直线上 请你根据学生甲的猜测及题目条件 求出点Q 所在直线的解析式;(3)在(2)中,虽然求出了点Q 所在直线的解析式 但是小明同学认为几个特殊点确定解析式是一种猜测 当点P 在l 上运动时 所有的Q 点都在一条直线上吗?就解设了点Q 的坐标为(,)x y 希望用一般推理的方式求出x 和y 满足的关系式 请你帮助小明给出解答.15.在平面直角坐标系中,直线AB 与x 轴交于点()6,0A - 与y 轴交于点B 且45ABO ∠=︒.(1)求点B 坐标和ABO 的面积;(2)如图2 点D 为OA 上的一条延长线的一个动点 以BD 为直角边 以点D 为直角顶点 作等腰三角形BDE 求证AB AE ⊥;(3)如图3 AF 平分OAB ∠ 点M 是射线AF 上一动点 点N 是线段AO 上一动点 判断是否存在这样的点M N 使得OM NM +的值最小 若存在 求出此时点N 的坐标 并加以说明;若不存在 则说明理由.参考答案: 1.(1)解:过点A 作2AH l ⊥于点H 如图所示:①点A 的坐标是(0,4) 点P 的坐标为(,)x y①4OA = ||OB x =①||AH OB x == 4BH OA ==①|4|HP y =-根据勾股定理 得()2222224816PA AH HP x y x y y =+=+-=+-+ 即22816PA x y y =+-+;(2)根据题意 可知点B 坐标为(,0)x①点P 在线段AB 的垂直平分线上①PA PB =①222816y x y y =+-+①2128y x =+ 2.(1)解:①OBC △是等腰直角三角形①,90BC AC C =∠=︒①2OB BC =①点B 的坐标是(0,2)①2OB =①22OB BC ==;①OAB是等腰直角三角形∠=∠OAB①ABP是等腰直角三角形ABP∠=∠∠=∠OBP四边形OAPB==BP OA点P的坐标为①ABP是等腰直角三角形∠=APB90∠=∠MPB在BPM△和APN中∠=∠=︒ANP BMP90≌△△BPM APNPMON是正方形;△△BPM≌①2AN t AN +=-①22t AN -=①22t OM ON +==①点P 的坐标为22,22t t ++⎛⎫⎪⎝⎭;故答案为:22t +;22t +(3)解:存在设点A 的坐标为()(),00m m ≥ 则OA m =①11222AOB S OA OB m m =⨯=⨯=由(2)①得:点P 的坐标为22,22m m ++⎛⎫ ⎪⎝⎭ 则22m OM +=根据题意得:90OMP AOB OAQ ∠=∠=∠=︒①四边形OAQM 是矩形①2,2m MQ OA m AQ OM +====①()2112122224ABQ m S AQ OA m m m +=⨯=⨯=+①AQB 的面积是AOB 的面积的3倍①()21234m m m +=解得:10m =或0(舍去)即存在点()10,0A 使得AQB 的面积是AOB 的面积的3倍. 3.(1)解:在3y x 中,当0x =时 3y = 当0y =时 03x =+ 解得3x =-①()30A -, ()0,3B①3OA OB ==①BAO ABO ∠=∠①90AOB ∠=︒①45BAO ABO ∠=∠=︒.(2)解:如图1 过点C 作CR y ⊥轴于点R .Rt BCR 中,90BCR =︒-∠BR CR t ==-2BC BR =+COD AOB =∠在ACD 中,12S AD =⨯3)解:如图所示①90BOE ∠=︒ BF EF =①OF BF EF ==①FOE FEO ∠=∠设ADH a ∠=①45AEB a ∠=+︒①45FOE FEO a ∠=∠=+︒ 45AHD OAD ADH a ∠=∠-∠=︒- ①DH CG ∥①45CGO AHD a ∠=∠=︒-①454590CFO FOG FGO a a ∠=∠+∠=︒++︒-=︒取OC 的中点K 连接FK 交OB 于点P 过点F 作FL OB ⊥于点L过点K 分别作KM OB ⊥于点M KN FL ⊥交FL 的延长线于点N 连接KL . ①四边形KMLN 是矩形;①90CFO ∠=︒ CK OK =①FK OK CK ==①BF OF = FL OB ⊥①BL OL =①KL BC ∥①45OLK OBC ∠=∠=︒①904545NLK NLO OLK ∠=∠-∠=︒-︒=︒①KM KN =①Rt Rt KOM KFN ≌△△①KOM KFN ∠=∠又①OPK FPL ∠=∠①90KOM OPK KFN FPL ∠+∠=∠+∠=︒①90OKP ∠=︒①FK OC ⊥①CF OF =①45CFK OFK ∠=∠=︒①45OCF ∠=︒①90COD ∠=︒ OC OD =在Rt ODS △中,()22223910()44OS OD DS =-=-= ①点D 的坐标为93,44⎛⎫-- ⎪⎝⎭. 4.1)解:如图所示 符合条件的ABC 有两个 分别为1AB C 2AB C 其中12(2,0)(8,0)B B --、;(2)点C 的坐标为(2,5)115|2(5)|57.522ABC S ∴=⨯---⨯==△. 5.(1)解:如下图 过点C 作CE y ⊥轴于点E 则CEA AOB ∠=∠①ABC 是等腰直角三角形①,90AC BA BAC =∠︒=①90ACE CAE BAO CAE ∠+∠=︒=∠+∠①ACE BAO ∠=∠.在ACE △和BAO 中CEA AOB ACE BAO AC BA ∠=∠⎧⎪∠=∠⎨⎪=⎩①ACE BAO≌(AAS)①(0,1),(0,2)B A-①12BO AE AO CE====,①123OE=+=①2,3C-();(2)解:动点A在运动的过程中,+c d的值不变.理由如下:由(1)知ACE BAO≌①(0,1)B(0,)A a-①1,BO AE AO CE a====①1OE a=+①(,1)C a a--又①点C的坐标为(,)c d①11c d a a+=--=-即+c d的值不变;(3)解:存在一点P使PAB与ABC全等符合条件的点P的坐标是(4,)1-或(3,2)--或(2,1)-分为三种情况讨论:①如下图过点P作PE x⊥轴于点E则90PBA AOB PEB∠=∠=∠=︒①90,90EPB PBE PBE ABO∠+∠=︒∠+∠=︒①EPB ABO∠=∠在PEB△和BOA△中EPB OBAPEB BOAPB BA∠=∠⎧⎪∠=∠⎨⎪=⎩①PEB BOA△≌△(AAS)①1,3PE BO EB AO ====①314OE =+=即点P 的坐标是(4,)1-①如下图 过点C 作CM x ⊥轴于点M 过点P 作PE x ⊥轴于点E则90CMB PEB ∠=∠=︒.①CAB PAB △≌△①45,PBA CBA BC BP ∠=∠=︒=①90CBP ∠=︒①90,90MCB CBM CBM PBE ∠+∠=︒∠+∠=︒①MCB PBE ∠=∠在CMB 和BEP △中MCB EBP CMB BEP BC PB ∠=∠⎧⎪∠=∠⎨⎪=⎩①CMB BEP △≌△(AAS )①,PE BM CM BE ==.①3,4),10C B -((,)①2,413PE OE BE BO ==-=-=即点P 的坐标是(3,2)--;①如下图 过点P 作PE x ⊥轴于点E 则90BEP BOA ∠=∠=︒.①CAB PBA △≌△①,90AB BP CAB ABP =∠=∠=︒①90,90ABO PBE PBE BPE ∠+∠=︒∠+∠=︒①ABO BPE ∠=∠.在BOA △和PEB △中ABO BPE BOA PEB BA PB ∠=∠⎧⎪∠=∠⎨⎪=⎩①BOA PEB △≌△(AAS )①1,3PE BO BE OA ====①312OE BE BO =-=-=即点P 的坐标是(2,1)-综上所述 符合条件的点P 的坐标是(4,)1-或(3,2)--或(2,1)-. 6.(1)三角形ABE 是等腰直角三角形AE AB ∴= 90EAB ∠=︒90FAE BAO ∴∠+∠=︒.EF x ⊥轴90EFA ∴∠=︒90AEF FAE ∴∠+∠=︒AEF OAB ∴∠=∠.90AOB ∠=︒EFA AOB ∴∠=∠.在AEF △和BAO 中,,,AEF BAO EFA AOBAE BA ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AEF BAO ∴≌3AF BO ∴==235OF ∴=+=()5,0F ∴-;(2)不变 理由如下:如图2 作CF y ⊥轴于FC y OF ∴=90PFC CFO ∴∠=∠=︒90FPC FCP ∴∠+∠=︒.三角形APC 是等腰直角三角形 90APC ∠=︒ PA PC ∴=90APO OPC ∴∠+∠=︒.APO PCF ∴∠=∠.又90AOP PFC ∠=∠=︒.在AOP 和PFC △中,,,APO PCF AOP PFC PA CP ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AOP PFC ∴△≌△AO PF .2P C y y OP OF PF AO ∴-=-===;(3)AG PH OP =+ 证明如下:在OG 上取一点M 使MG OP = 连接HM 并延长交AP 的延长线于N 如图3所示()2,0A -2AO ∴=HG x ⊥轴于G (),2H m2HG ∴=AO HG ∴=90AOP HGM ∠=∠=︒ MG OP =()SAS APO HMG ∴△≌△PAO MHG ∴∠=∠ AP HM =AMN HMG ∠=∠90ANM HGM ∴∠=∠=︒90APC ∠=︒ PC AP =45PAC ∴∠=︒AHN ∴是等腰直角三角形45PAH MHA ∴∠=∠=︒又AP HM = AH HA =()SAS APH HMA ∴△≌△PH MA ∴=AG AM MG =+AG PH OP ∴=+.7.(1)解:()()4003A B ,,,4∴=OA 3OB =4312OA OB ⋅=⨯=∴;(2)解:如图,作CD x ⊥轴于点D 则90AOB CDA ∠=∠=︒90ACD CAD ∴∠+∠=︒90BAC ∠=︒90CAD BAO ∴∠+∠=︒ACD BAO ∴∠=∠在BAO 和ACD 中90AOB CDA ACD BAOAB CA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()AAS BAO ACD ∴≌3AD OB ∴== 4CD OA ==437OD OA AD ∴=+=+=()74C ∴,;(3)解:如图BQ 平分ABy ∠ AQ 平分BAx ∠12ABQ ABy ∴∠=∠ 12BAQ BAx ∠=∠ABO∠+∴∠=ABy∴∠+ABQ(1180=︒21︒=-180∠+∠Q ABQ ∴∠=Q180 8.(1)解:作①()SAS CBO ABD ≌△△①AD OC = BCO BAD ∠=∠①BCO ABC BAD APC ∠+∠=∠+∠又90ABC ∠=︒①90APC ∠=︒ 即AD OC ⊥;(3)解:2OA BQ = 理由如下:作CF y ⊥轴于点F同理 ()AAS BAO CBF ≌△△ ①CF OB = BF OA =①90OB BD OBD =∠=︒,①=CF BD CF BD ∥①QCF QDB ∠=∠ 90QFC QBD ∠=∠=︒①()ASA QCF QDB ≌△△ ①BQ FQ =①1122BQ BF OA == 即2OA BQ =. 9.(1)解:如图,作AE OB ⊥于点E①()4,4A①4OE =①AOB 为等腰直角三角形 AE OB ⊥①=2=8OB OE①()8,0B ;①ACD 为等腰直角三角形AC DC =即ACF ∠+∠FDC ∠+∠ACF ∠=∠又①DFC ∠①()DFC CEA AAS ≌EC DF = FC =()4,4A4AE OE ===FC OE 即OF +①AOB 为等腰直角三角形45AOB ∠==AOD ∠∠AM FM -①()4,4A ①4AE OE ==又①==90EAN EOF ∠∠︒ AN OF =①()EAN EOF SAS ≌①=OEF AEN ∠∠ EF EN =又①EGH 为等腰直角三角形①45GEH ∠=︒ 即=45OEF OEM ∠+∠︒ ①=45AEN OEM ∠+∠︒又①90AEO ∠=︒①=45=NEM FEM ∠︒∠又①EM EM =①()NEM FEM SAS ≌①MN MF =①==AM MF AM MN AN --①=AM MF OF -即1AM FM OF-=.10.(1)解:把0x =代入24y x =-+得:4y =①点()04B ,①4OB =把0y =代入24y x =-+得:2x =①点()20A ,①2OA =①AOB DOC △≌△①(ASA OBN OCM ≌OM ON =分别过点M N 作ME①OFN OEM ∠=∠①BON COM OM ON ∠=∠=,①()AAS OFN OEM ≌①312OF OE FN EM ====, ①点N 的坐标为312⎛⎫ ⎪⎝⎭,; (3)解:直线CD 上存在点Q 使EPQ △是以E 为直角顶点的等腰三角形. ①()1E b ,为直线AB 上的点①2142b =-⨯+=①()12E ,①当点P 在点B 下方时 如图,连接DE 过点Q 作QM DE ⊥ 交DE 的延长线于M 点①()02D ,①DE y ⊥轴 1DE = 点M 的纵坐标为2 90M EDP ∠=∠=︒ ①EPQ △是以E 为直角顶点的等腰直角三角形①(AAS DEP MQE ≌1MQ DE ==Q 点的纵坐标为3把3y =代入12y x =+点()23Q ,;①()AAS EQM PEN ≌1EM PN ==()12E ,①M 点的纵坐标为1①Q 点的纵坐标为1把1y =代入122y x =+中得:2x =- ①()21Q -,; 综上所述 直线CD 上存在点Q 使得EPQ △是以E 为直角顶点的等腰直角三角形 Q 点的坐标为()23,或()21-,. 11.(1)解:()2430a b -+-= ()240a -≥ 30b -≥ 40a ∴-= 30b -=4a ∴= 3b =()()00A a B b ,、,4∴=OA 3OB =如图,过点C 作CN y ⊥轴于N则90BNC ∠=︒90ABC AOB ∠︒∠==90CBN ABO 90BAO ABO ∠+∠=︒ CBN BAO ∴∠=∠90BNC AOB ∠=∠=︒ BC AB =()AAS BNC AOB ∴≌4BN AO ∴== 3CN BO ==7ON OB BN ∴=+=()37C ∴,故答案为:()37,; (2)证明:如图,过E 作EF x ⊥轴于F 则90EFD ∠=︒a b =OA OB ∴=90AOB ∠=︒OAB ∴是等腰直角三角形45ABO BAO ∴∠=∠=︒BDE 是等腰直角三角形 90BDE ∠=︒BD DE ∴=90EDF BDO ∠+∠=︒ 90DEF EDF ∠+∠=︒ BDO DEF ∴∠=∠90EFD DOB ∠=∠=︒()AAS DEF BDO ∴≌EDF DBO ∴∠=∠ DF OB = EF OD = OB OA =DF OA ∴=DF AD OA OD ∴+=+ 即AF OD =AF EF ∴=AEF ∴是等腰直角三角形45EAF AEF ∴∠=∠=︒45EDF EAF AED AED ∠=∠+∠=︒+∠ 45DBO OBA ABD ABD ∠=∠+∠=︒+∠ ABD AED ∴∠=∠;(3)解:如图,过点D 作DM y ⊥轴于M DH x ⊥轴于H DG BA ⊥交BA 的延长线于G()33D -,3DM DH OM OH ∴====BD 平分ABO ∠ ⊥DM OB DG AB ⊥DM DG ∴=BD BD =()Rt Rt HL BDG BDM ∴≌同理可得:()Rt Rt HL ADH ADG ≌AH AG ∴=OA a = OB b = AB c =a b c OA OB AB ∴-+=-+()()()OH AH BM OM BG AG =+--+-33AH BM BG AG =+-++-6=即6a b c -+=.12.(1)解:①点A 关于x 轴的对称点为P 点 ①点P 的坐标为(0,)a -;由垂线段最短 当PB l ⊥时 PB 最短 过点B 作BD y ⊥轴于D 点 如图①直线l 平分坐标系的第二 四象限①45BOD ∠=︒①PB l ⊥①45BOD OPB ∠=∠=︒①OBP 是等腰直角三角形 OB PB =①BD y ⊥轴 OP a =22⎝⎭a a⎛⎫①()ACF QCB SAS △≌△①QB AF AE == QB AF ∥①180QBA BAF ∠+∠=︒又①90EAF BAO ∠=∠=︒①180BAF EAO ∠+∠=︒①QBA EAO ∠=∠又①BA AO =①(SAS)QBA EAO ≌△△①2OE AQ AC == BAQ AOE ∠=∠①90AOE GAO GAO BAQ ∠+∠=∠+∠=︒ ①90AGO ∠=︒①OE AC ⊥13.(1)OB OC = 8BC =4OB OC ∴==4OA OB ==()0,4A ∴故答案为:0 4;(2)4OC =()4,0C ∴.PC BC ⊥()4,P t ∴4OA OB OC ∴=== PC t =①当08t ≤<时 如图1PAB AOB BCP AOCP S S S S =+-梯形PAB PBC AOB SS S S =--梯形1122BC PC OA OB =⨯-⨯(1118444t =⨯⨯-⨯⨯-PAB S ⎧-⎪=⎨⎪⎩是等腰直角三角形;延长PD 至ADP 是等腰直角三角形AD ∴垂直平分AP AH ∴=90BAC ∠=︒BAH PAC ∴∠=∠在ABH 和ACP △中AH AP BAH CAP AB AC =⎧⎪∠=∠⎨⎪=⎩()SAS ABH ACP ∴≌45ABH ACP ∴∠=∠=︒ BH PC =45ABC ∠=︒∴点H 在BC 上点D 是BD 的中点BD QB ∴=在PDQ 和HDB 中DP DH PDQ HDB BD QD =⎧⎪∠=∠⎨⎪=⎩()SAS PDQ HDB ∴≌PQ BH ∴∥ PQ BH =BH PC =PC PQ ∴=PQ BC ∥ 90BCP ∠=︒90CPQ BCP ∴∠=∠=︒PAQ ∴是等腰直角三角形;14.(1)解:作QG l ⊥于点G①(0,2)A (3,0)B①2AO = 3BO =①AP PQ = 90APQ ∠=︒①90APO APG QPG ∠=︒-∠=∠①APO QPG ≌△△①2QG AO == 3BG BO ==①点Q 的坐标是()53,故答案为:()53,; (2)解:当点Q 在于直线l 上时 如图2223P Q AP OB ===①点2Q 的坐标是()35,由(1)知点1Q 的坐标是()53,设点Q 所在直线的解析式为y kx b =+则5335k b k b +=⎧⎨+=⎩ 解得18k b =-⎧⎨=⎩①点Q 所在直线的解析式为8y x =-+;(3)解:如图,作PM OA ⊥于M QN MP ⊥于N①90APQ ∠=︒①四边形OBPM 是矩形PA PQ = 90APQ ∠=︒①90APM QPN ∠+∠=︒ 90QPN PQN ∠+∠=︒APM PQN ∴∠=∠在PAM △和QPN 中AMP PNQ APM PQN AP PQ ∠=∠⎧⎪∠=∠⎨⎪=⎩PAM QPN ∴≌△△QN PM ∴= AM PN =①点Q 的坐标为(,)x y①MN x = 3PN x =- 3PB y QN y PM y =-=-=- ()2223AM OM PB y =-=-=--①AM PN =①()233y x --=-整理得8y x =-+.15.(1)①()6,0A -①6OA =;①45ABO ∠=︒①6OB OA ==①()0,6B11661822ABO S OA OB ==⨯⨯=. (2)过点E 作EF x ⊥轴①90EDB ∠=︒①90FED ODB FDE ∠=∠=︒-∠①FED ODB EFD DOB ED DB ∠=∠⎧⎪∠=∠⎨⎪=⎩①()AAS EFD DOB ≌①(ASA AGH AOH ≌6AG AO == OH ①O G 是对称点故OM GM =根据垂线段最短故OM NM +最小①()6,0A -①6OA =;①45ABO ∠=︒①6OB OA == 45BAO ∠=︒ ①45AGN ∠=︒①AN GN =①222236AN GN AN +== 解得32,32AN AN ==-(舍去) ①632ON OA AN =-=-. 故()326,0N -.。
专题4.1 平面直角坐标系中的规律问题【典例1】综合与实践:(1)动手探索在平面直角坐标系内,已知点A(−6,3),B(−4,−5),C(8,0),D(2,7),连接AB,BC,CD,DA,BD,并依次取AB,BC,CD,DA,BD的中点E,F,G,H,I,分别写出E,F,G,H的坐标;(2)观察归纳以上各线段两端点的横、纵坐标与该线段中点的横、纵坐标之间的对应关系,猜想:若线段PQ两端点坐标分别为P(x1,y1)、Q(x2,y2),线段PQ的中点是R(x0,y0),请用等式表示你所观察的规律,并用G,I的坐标验证规律是否正确(填“是”或“否” );(3)实践运用利用上面探索得到的规律解决问题:①若点M1(−9,5),点M2(11,17),则线段M1M2的中点M的坐标为;②已知点N是线段N1N2的中点,且点N1(−12,−15),N(1,2),求点N2的坐标.(1)根据图形可以直接读取坐标即可得到答案;(2)根据观察得到规律并写出等式,再利用B、C、D、G、I五点坐标即可验证所得规律,得到答案;(3)①根据(2)中发现的规律,即可得到线段M1M2的中点M的坐标;②设点N2的坐标为(m,n),根据根据(2)中发现的规律解方程求解即可得到点N2的坐标.(1)解:根据图形可以直接读取各点坐标,E(−5,−1),F(2,−52),G(5,72),H(−2,5),I(−1,1),∴E ,F ,G ,H 的坐标分别为:E(−5,−1),F(2,−52),G(5,72),H(−2,5);(2)解:根据各点坐标可以发现,线段中点坐标的纵坐标值为线段两端点纵坐标和的一半,线段中点坐标的横坐标值为线段两端点横坐标和的一半,∵P (x 1,y 1)、Q (x 2,y 2),线段PQ 的中点是R (x 0,y 0),∴ x 0=2y 0=y 1y 22,∵B(−4,−5),C(8,0),D(2,7),G(5,72),I(−1,1),G 、I 分别为线段CD 、BD 的中点,∴=822=072 ,−1=21=−572,∴通过G ,I 的坐标验证规律是正确的,故答案为:x 0=x 1x 2y 0= ;是;(3)解:①∵点M 1(−9,5),点M 2(11,17),∴根据(2)中发现的规律,线段M1M 2的中点M=(1,11),故答案为:(1,11);②设点N 2的坐标为(m,n),∵点N 是线段N 1N 2的中点,且点N 1(−12,−15),N(1,2),∴ =12 ,∴ m =14n =19 ,∴点N 2的坐标为(14,19).1.(2023春·全国·七年级专题练习)如图,正方形的边长依次为2,4,6,8,……,他们在直角坐标系中的位置如图所示,其中A 1(1,1),A 2(−1,1),A 3(−1,−1),A 4(1,−1),A 5(2,2),A 6(−2,2),A 7(−2,−2),A 8(2,−2),A9(3,3),A10(−3,3),……,按此规律接下去,则A2016的坐标为( )A.(−504,−504)B.(504,−504)C.(−504,504)D.(504,504)【思路点拨】由正方形的中心都是位于原点,边长依次为2,4,6,8,…,可得第n个正方形的顶点横坐标与纵坐标的绝对值都是n.计算2016÷4,根据商和余数知道是第几个正方形的顶点,且在哪一个象限,进而得出A2016的坐标.【解题过程】解:∵2016÷4=504,∴顶点A2016是第504个正方形的顶点,且在第四象限,横坐标是504,纵坐标是−504,∴A2016(504,−504),故选:B.2.(2023·全国·七年级专题练习)如图,在一张无穷大的格纸上,格点的位置可用数对(m,n)表示,如点A 的位置为(3,3),点B的位置为(6,2).点M从(0,0)开始移动,规律为:第1次向右移动1个单位到(1,0),第2次向上移动2个单位到(1,2),第3次向右移动3个单位到(4,2),…,第n次移动n个单位(n为奇数时向右,n 为偶数时向上),那么点M第27次移动到的位置为( )A.(182,169)B.(169,182)C.(196,182)D.(196,210)【思路点拨】数对表示位置的方法是:第一个表示列,第二个表示行,当向右移动时,列的数字发生变化,行的数字不变,向上移动时,行的数字发生变化,列的数字不变,据此即可得解.【解题过程】解:根据题意可知:当向右移动时,列的数字发生变化,行的数字不变,当向上移动时,行的数字发生变化,列的数字不变,∴点M第27次移动到的位置时,列的数字是1~27中所有奇数的和,行的数字是1~27中所有偶数的和,∴1+3+5+7+9+11+⋯+27=196,2+4+6+8+10+⋯+26=182,∴点M第27次移动到的位置为(196,182),故选:C.3.(2023秋·江苏扬州·八年级统考期末)如图,平面直角坐标系xOy内,动点P第1次从点P0−3,4运动到点P1−2,2,第2次运动到点P2−1,1,第3次运动到点P30,−1,……按这样的规律,第2023次运动到点P2023的坐标是( )A.2020,1B.2021,1C.2020,−1D.2021,−1【思路点拨】根据图象可得出:横坐标为运动次数,纵坐标依次为4,2,1,−1,2,4,每5次一轮,进而即可求出答案.【解题过程】解:根据动点P0−3,4在平面直角坐标系中的运动,P1−2,2,P2−1,1,P30,−1,P41,2,P52,4,P63,2,…,∴横坐标为运动次数,经过第2023次运动后,点P2023的横坐标是2020,纵坐标依次为4,2,1,−1,2,每5次一轮,∴(2023+1)÷5=404⋅⋅⋅⋅⋅4,∴经过第2023次运动后,点P2023的坐标是2020,−1,故选:C.4.(2023春·全国·七年级专题练习)如图,在平面直角坐标系中,A1,1,B−1,1,C−1,−2,D 1,−2,把一条长为2015个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是( )A.1,−1B.−1,1C.−1,−2D.1,−2【思路点拨】根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【解题过程】解:∵A1,1,B−1,1,C−1,−2,D1,−2,∴AB=1−(−1)=2,BC=1−(−2)=3,CD=1−(−1)=2,DA=1−(−2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2015÷10=201⋯⋯5,∴细线另一端在绕四边形第202圈的第5个单位长度的位置,即点C的位置,∴点的坐标为−1,−2.故选:C.5.(2022春·河北廊坊·七年级校考阶段练习)如图,在平面直角坐标系中,动点A从点A10,0出发,由A1跳动至点A20,2,依次跳动至点A32,−1,点A42,0,点A52,2…根据这个规律,则点A2022的坐标是()A.(1348,-1)B.(1348,2)C.(674,-1)D.(674,2)【思路点拨】观察可知A1−A3,A4−A6,A7−A9,⋯,每三个点为一组,纵坐标为0,2,-1循环,每个循环内横坐标增加2,据此求解即可.【解题过程】解:∵动点A从点A10,0出发,由A1跳动至点A20,2,依次跳动至点A32,−1,点A42,0,点A5 2,2…∴A1−A3,A4−A6,A7−A9,⋯,每三个点为一组,纵坐标为0,2,-1循环,每个循环内横坐标增加2,∵2022÷3=674,∴点A2022的纵坐标与点A3的纵坐标相同,即为-1,点A2022横坐标为674×2=1348,∴点A2022的坐标为(1348,-1).故选:A.6.(2023春·全国·七年级专题练习)如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1 (−1,1),第二次点A1跳动至点A2(2,1),第三次点A2跳动至点A3(−2,2),第四次点A3跳动至点A4(3,2),……依此规律跳动下去,则点A2021与点A2022之间的距离是( )A.2023B.2022C.2021D.2020【思路点拨】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A2021与点A2022的坐标,进而可求出点A2021与点A2022之间的距离.【解题过程】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),则第2022次跳动至点的坐标是(1012,1011),第2021次跳动至点A2021的坐标是(−1011,1011).∵点A2021与点A2022的纵坐标相等,∴点A2021与点A2022之间的距离=1012−(−1011)=2023,故选:A.7.(2022秋·江苏·八年级专题练习)如图,在平面直角坐标系内原点O(0,0)第一次跳动到点A1(0,1),第二次从点A1跳动到点A2(1,2),第三次从点A2跳动到点A3(-1,3),第四次从点A3跳动到点A4(-1,4),……,按此规律下去,则点A2021的坐标是().A.(673,2021)B.(674,2021)C.(-673,2021)D.(-674,2021)【思路点拨】根据已知点的坐标寻找规律并应用解答即可.【解题过程】解:∵A1(0,1),A2(1,2),A3(-1,3),A4(-1,4),∴A5(2,5),A6(-2,6),A7(-2,7),A8(3,8),∴A3n-1(n,3n-1),A3n(-n,3n),A3n+1(-n,3n+1)(n为正整数),∵3×674-1=2021,∴n=674,所以A 2021(674,2021).故选B.8.(2022春·山东济宁·七年级统考期中)在平面直角坐标系中,一只小蛤蟆从原点O出发,第一次向上蹦到A1,第二次向右蹦到A2,第三次向下蹦到A3,第四次向右蹦到A4,第五次向上蹦到A5,…,按照此规律依次不间断蹦,每次蹦1个单位,其蹦的路线如图所示.那么按照上述规律,点A2022的坐标是()A.(1010,1)B.(1010,0)C.(1011,0)D.(1011,1)【思路点拨】根据图象可得移动4次图象完成一个循环,再由2022÷4=505……2,可得点A2022在第505个循环的第2个点的位置,即纵坐标与A1的相同,为1,再由A4(2,0),A8(4,0),A12(6,0),……,可得A4n (2n,0),从而得到A2020的坐标是(1010,0),从而可得出点A2022的坐标.【解题过程】解:根据题意得:点A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),……∴每移动4次图象完成一个循环,∵2022÷4=505……2,∴点A2022在第505个循环的第2个点的位置,即纵坐标与A1的相同,为1,∵A4(2,0),A8(4,0),A12(6,0),……,∴A4n(2n,0),∴A2020的坐标是(1010,0),∴A2022的坐标是(1010+1,1),即A2022的坐标是(1011,1).故选:D.9.(2022·全国·七年级假期作业)如图所示,在平面直角坐标系中,将点A(-1,0)做如下的连续平移,A (-1,0)→A1(-1,1)→A2(2,1)→A3(2,-4)→A4(-5,-4)→A5(-5,5)…,按此规律平移下去,则A102的点坐标是()A.(100,101)B.(101,100)C.(102,101)D.(103,102)【思路点拨】根据题意可知,点A平移时每4次为一个周期,由102÷4=25•••2,可知点A102的坐标与A4n+2的点的坐标规律相同,分别求出A2,A6,A10的坐标,找出规律,进而求解即可.【解题过程】解:由题意可知,将点A(-1,0)向上平移1个单位长度得到A1(-1,1),再向右平移3个单位长度得到A2(2,1),再向下平移5个单位长度得到A3(2,-4),再向左平移7个单位长度得到A4(-5,-4);再向上平移9个单位长度得到A5(-5,5)…,∴点A平移时每4次为一个周期.∵102÷4=25•••2,∴点A102的坐标与A4n+2的点的坐标规律相同.∵A2(2,1),A6(6,5),A10(10,9),以此类推,∴A4n+2(4n+2,4n+1),∴A102的点坐标是(102,101).故选:C.10.(2023秋·山东东营·七年级统考期末)如图,已知A1(1,2),A2(2,2),A3(3,0),A4(4,﹣2),A5(5,﹣2),A6(6,0),…,按这样的规律,则点A2022的坐标为______.【思路点拨】观察发现,每6个点形成一个循环,再根据点A6的坐标及2022÷6所得的整数及余数,可计算出点A2022的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【解题过程】解:观察发现,每6个点形成一个循环,∵A6(6,0),∴OA6=6,∵2022÷6=337,∴点A2022的位于第337个循环组的第6个,∴点A2022的横坐标为6×337=2022,其纵坐标为:0,∴点A2022的坐标为(2022,0).故答案为:(2022,0).11.(2023·全国·九年级专题练习)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…按这样的运动规律,经过第2017次运动后,动点P的坐标是______,经过第2018次运动后,动点P的坐标是______.【思路点拨】观察前几次运动后点的坐标,不难发现动点P的横坐标等于运动的次数,而纵坐标的变化为1,0,2,0,1,0,2,0…,4个一循环;接下来通过总结得到的规律,再结合2017÷4=504……1,即可求出经过2017次运动后动点P的坐标了,同理可找到2018次运动后动点P的坐标.【解题过程】根据动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),第4次接着运动到点(4,0),第5次接着运动到点(5,1),…∴横坐标为运动次数,经过第2017次运动后,动点P的横坐标为2017,纵坐标为1,0,2,0,每4次一轮,∴经过第2017次运动后,动点P的纵坐标为:2017÷4=504……1,故纵坐标为四个数中第一个,即1,∴经过第2017次运动后,动点P的坐标是(2017,1).∵2018÷4=504……2,∴经过第2018次运动后,动点P的坐标是(2018,0).故答案为(2017,1),(2018,0) .12.(2022秋·浙江·八年级专题练习)如图,已知点A1的坐标是(1,2),线段OA1从原点出发后,在第一象限内按如下有规律的方式前行:A1A2⊥OA1,A1A2=OA1;A2A3⊥A1A2,A2A3=A1A2;A3A4⊥A2A3,A3A1=A 2A 3;…;则点A 2023的坐标是______.【思路点拨】先得出A 1(1,2),A 2(3,1),A 3(4,3),A 4(6,2),A 5(7,4),A 6(9,3)的坐标,观察可得A 的纵坐标的规律,然后确定A 的横坐标与下标之间的关系即可求解.【解题过程】解:A 1(1,2),A 2(3,1),A 3(4,3),A 4(6,2),A 5(7,4),A 6(9,3),…,可得:A 1横坐标为:112×3−2=1,纵坐标为:112+1=2;A 3横坐标为:312×3−2=4,纵坐标为:312+1=3;A 5横坐标为:512×3−2=7,纵坐标为:512+1=4,…;∴下标为奇数时,横坐标依次为:1,4,7,…,纵坐标为:2,3,4,…;∴A 2023横坐标为:202312×3−2=3034,纵坐标为:202312+1=1013…;∴A 2023的坐标为:(3034,1013),故答案为:(3034,1013).13.(2023春·七年级单元测试)如图,在平面直角坐标系中,点A 从A 1(−4,0)依次跳动到A 2−4,1,A 3(−3,1),A 4−3,0,A 5−2,0,A 6−2,3,A 7−1,3,A 8−1,0,A 9−1,−3,A 100,−3,A 110,0,…,按此规律,则点A 2022的坐标是______________【思路点拨】根据图形可以发现规律,从A1到A11是一个循环,一个循环周期是10,一个循环后又回到x轴上,且一个循环后横坐标增加4个单位,先求出点A2021的坐标(804,0),再求点A2022的坐标即可.【解题过程】解:观察图形可知,n为正整数时,A n的纵坐标为0,1,3,﹣3纵坐标为0的点:A1,A4A5,A8A11,A14⋯⋯纵坐标为1的点:A2,A3A12,A13A22,A23⋯⋯纵坐标为3的点:A6,A7A16,A17A26,A27⋯⋯纵坐标为﹣3的点:A9,A10A19,A20A29,A30⋯⋯可以看出纵坐标为1,3,﹣3时,n取连续的两个数为一组,则10个10个的增加,∵2021=10×202+1,纵坐标为1的规律A2+10(n−1),A2+10(n−1)+1∴A2022的纵坐标为1,由2+10(n−1)=2022,解得n=203,∵A2022正好是A2往右循环203次,∴A2022横坐标为﹣4+(203-1)×4=804,∴点A2022的坐标是(804,1),故答案为:(804,1)14.(2022秋·河北邯郸·八年级校考开学考试)如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0),(3,−1)…,根据这个规律探索可得,第10个点的坐标为______,第55个点的坐标为______.【思路点拨】从图中可以看出横坐标为1的有一个点,横坐标为2的有2个点,横坐标为3的有3个点,…依此类推横坐标为n的有n个点.题目要求写出第10个点和第55个点的坐标,我们可以通过加法计算算出第10个点和第50个点分别位于第几列第几行,然后对应得出坐标规律,将行列数代入规律式.【解题过程】解:在横坐标上,第一列有一个点,第二列有2个点…第n列有n个点,并且奇数列点数对称而偶数列点数y轴上方比下方多一个,∵1+2+3+4=10,1+2+3+…+10=55,∴第10个点在第4列自下而上第4行,所以奇数列的坐标为:n,n−1−1…n2偶数列的坐标为:n,n−1…n,2由加法推算可得到第55个点位于第10列自下而上第10行.代入上式得第10个点的坐标为4,2,第55个点的坐标为10,5.故答案为:4,210,5.15.(2022春·北京·七年级北京市第五中学分校校考期末)如图,在平面直角坐标系xOy中,点P(1,0).点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(−1,1),第3次向上跳动1个单位至点P3,第4次向右跳动3个单位至点P4,第5次又向上跳动1个单位至点P5,第6次向左跳动4个单位至点P6,…照此规律,点P第2022次跳动至点P2022的坐标是________.【思路点拨】设第n次跳动至点P n,根据部分点的坐标找出变化规律“P4n n+1,2n,P4n+1n+1,2n+1,P4n+2−n−1,2n+1,P4n+3−n−1,2n+2”,照此规律由2022=4×505+2代入求解即可.【解题过程】解:设第n次跳动至点P n,由图知,P11,1、P2−1,1、P3−1,2、P42,2、P52,3、P6−2,3、P7−2,4、P83,4、…,∴可得:点的变化规律为P4n n+1,2n,P4n+1n+1,2n+1,P4n+2−n−1,2n+1,P4n+3−n−1,2n+2,∵2022=4×505+2,∴P2022−505−1,2×505+1,即P2022−506,1011,故答案为:(−506,1011).16.(2022春·山东青岛·八年级校考期中)如图所示,一个机器人从O点出发,向正东方向走3m到达A1点,再向正北方向走6m到达A2点,再向正西方向走9m到达A3点,再向正南方向走12m到达A4点,再向正东方向走15m到达A5点,按照此规律走下去,相对于点O,机器人走到A6时,点A6的坐标是______,点A2022的坐标是______.【思路点拨】根据题意求出点A1的坐标为(3,0);点A2的坐标为(3,6);点A3的坐标为(−6,6);点A4的坐标为(−6,−6);点A5的坐标为(9,−6);点A6的坐标为(9,12),依此类推,从点A2开始,每走动4次一个循环,从而得到点A2022位于第一象限内,再由落在第一象限内的点每个循环,横坐标增加6,纵坐标增加6,即可求解.【解题过程】解:根据题意可知:OA1=3,A1A2=6,A2A3=9,A3A4=12,A4A5=15,A5A6=18,∴点A1的坐标为(3,0);点A2的坐标为(3,0+6),即(3,6);点A3的坐标为(3−9,6),即(−6,6);点A4的坐标为(−6,6−12),即(−6,−6);点A5的坐标为(−6+15,−6),即(9,−6);依此类推,可得点A6的坐标为(9,−6+18),即(9,12).由此发现,从点A2开始,每走动4次一个循环,∵(2022−1)÷4=505⋯⋯1,∴点A2022位于第一象限内,∵点A2的坐标为(3,6),点A6的坐标为(9,12),点A10的坐标为(15,18),∴落在第一象限内的点每个循环,横坐标增加6,纵坐标增加6,∴点A2022的坐标为(505×6+3,505×6+6),即(3033,3036).故答案为①(9,12),②(3033,3036).17.(2022秋·全国·八年级专题练习)如图,在平面直角坐标系中,有若干个整数点.其顺序按照图中“→”方向排列,即(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…….根据这个规律,探究可得到第110个点的坐标为______.【思路点拨】观察点的坐标特点寻找规律,找到横坐标和纵坐标的变化特点即可解答.【解题过程】解:横坐标为1的点有1个,纵坐标为0;横坐标为2的点有2个,纵坐标为0,1;横坐标为3的点有3个,纵坐标为0,1,2;横坐标为4的点有4个,纵坐标为0,1,2,3;…,发现规律:因为1+2+3+4+…+14=105,因为在第14行点的走向为向上,所以第105个点的坐标为(14,13),因为第15行点的走向为向下,故第110个点在此行上,横坐标为15,纵坐标为从106个点(15,14)向下数5个点,即为10;故第110个点的坐标为(15,10)故答案为:(15,10).18.(2023秋·湖北孝感·九年级校考期末)如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…,根据这个规律,第25个点的坐标为________,第2022个点的坐标为________.【思路点拨】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,并且右下角的点的横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,当右下角的点横坐标是偶数时,以横坐标为1,纵坐标为右下角横坐标的偶数减1的点结束,根据此规律解答即可.【解题过程】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,①∵52=25,5是奇数,∴第25个点是(5,0),②∵452=2025,45是奇数,∴第2025个点是(45,0),即第2022个点是(45,3)故答案为(5,0),(45,3).19.(2022春·河北邢台·七年级校考期末)如图,在平面直角坐标系中,AB∥EG∥x轴,BC∥DE∥HG∥AP∥y轴,点D,C,P,H在x轴上,A(1,2),B(−1,2),D(−3,0),E(−3,−2),G(3,−2).(1)若点M在线段EG上,当点M与点A的距离最小时,点M的坐标为____;(2)把一条长为2022个单位长度且无弹性的细线(粗细忽略不计)的一端固定在A处,并按A→B→C→D→E→F→G→H→P→A⋅⋅⋅的规律紧绕在图形“凸”的边上,则细线的另一端所在位置的点的坐标为____.【思路点拨】(1)根据两点之间线段最短即可求出答案;(2)计算“凸”形图中各线段的长度,绕一周需要多少个单位长度,因为是周期变化,所以计算出绕了多少周,余下的线段落在哪里即可求出答案.【解题过程】(1)解:根据题意,画图如下,∵两点之间线段最短,∴当点M在AP⊥EG的直线上时,点M与点A的距离最小,且点M在线段EG上,∴点M的坐标是(1,−2),故答案是:(1,−2).(2)解:∵A(1,2),B(−1,2),D(−3,0),E(−3,−2),G(3,−2),从点A→B→C→D→E→F→G→H→P→A的线段之和为AB+BC+CD+DE+EG+GH+HP+PA,即2+2+2+2+6+2+2+2=20,∴2022÷20=101⋯⋯2,即绕了101周余下2个单位长度,也就是落在点B,∴细线的另一端所在位置的点的坐标是(−1,2),故答案是:(−1,2).20.(2022秋·全国·八年级专题练习)小明在学习了平面直角坐标系后,突发奇想,画出了这样的图形(如图).他把图形与x轴正半轴的交点依次记作A1(1,0),A2(5,0),…,A n,图形与y轴正半轴的交点依次记作B(0,2),B2(0,6),…,B n,图形与x轴负半轴的交点依次记作C1(−3,0),C2(–7,0),…,C n,图形与y轴负半轴的交点依次记作D1(0,−4),D2(0,−8),…,D n,发现其中包含了一定的数学规律.请根据你发现的规律完成下列题目:(1)请分别写出下列点的坐标:A3__________,B3__________,C3__________,D3__________.(2)请分别写出下列点的坐标:A n__________,B n__________,C n__________,D n__________.(3)请求出四边形A5B5C5D5的面积.【思路点拨】(1)根据点的坐标规律即可写出.(2)根据点的坐标规律即可写出.(3)四边形A5B5C5D5的面积为S△A5oB5+S△B5oC5+S△C5oD5+S△D5oA5计算即可.【解题过程】由题意得:A n的横坐标为4n−3,纵坐标为0,得出A3(9,0)B n的横坐标为0,纵坐标为4n−2,得出B3(0,10)C n的横坐标为−4n+1,纵坐标为0,得出C3(−11,0)D n的横坐标为0,纵坐标为−4n,得出D3(0,−12)故答案为:(9,0),(0,10),(−11,0),(0,−12)(2)根据上式得出的规律,直接即可写出(4n−3,0),(0,4n−2),(−4n+1,0),(0,−4n)故答案为:(4n−3,0),(0,4n−2),(−4n+1,0),(0,−4n)(3)∵A5(17,0),B5(0,18),C5(−19,0),D5(0,−20),∴四边形A5B5C5D5的面积为S△A5oB5+S△B5oC5+S△C5oD5+S△D5oA5=12×17×18+12×18×19+12×19×20+12×20×17=684。
专题2.3 平面直角坐标系全章五类必考压轴题【人教版】1.在平面直角坐标系内原点O 0,0第一次跳动到点A 10,1,第二次从点A 1跳动到点A 21,2,第三次从点A 2跳动到点A 3−1,3,第四次从点A 3跳动到点A 4−1,4,…,按此规律下去,则点A 2022的坐标是( )A .674,2022B .675,2022C .−674,2022D .−675,20222.如图,动点P 按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,2),…,按这样的运动规律,则第2023次运动到点( )A .(2023,0)B .(2023,1)C .(2023,2)D .(2022,0)3.如图,在平面直角坐标系上有点A (1,0),点A 第一次跳动至点A 1(−1,1),第二次点A 1跳动至点A 2(2,1),第三次点A 2跳动至点A 3(−2,2),第四次点A 3跳动至点A 4(3,2),……依此规律跳动下去,则点A 2021与点A 2022之间的距离是( )A.2023B.2022C.2021D.20204.如图,在直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第1次移动到点A1,第2次移动到点A2,…第n次移动到点A n,则点A2023的坐标是()A.1011,0B.1012,1C.1012,0D.1011,15.如图所示,在平面直角坐标系中.有若干个整数点,其顺序按图中箭头方向排列.如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),根据这个规律探索可得.第2022个点的坐标为()A.(64,4)B.(63,0)C.(63,4)D.(64,5)6.如图,在平面直角坐标系中,半径均为2个单位长度的半圆组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒π个单位长度,则第2023秒时,点P的坐标是()A .(4044,2)B .(4046,−2)C .(4046,0)D .(2023,−2)7.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列.如1,0,2,0,2,1,1,1,1,2,2,2…根据这个规律,第2022个点的坐标为___________.1.如图,在平面直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3,…,观察每次变换前后的三角形的变化规律,找出规律,推测A n 、B n 的坐标分别是( )A .(n,3),(n 2,0)B .(n,3),(2n ,0)C .(2n ,3),(2n ,0)D .(2n ,3),(2n +1,0)2.在平面直角坐标系中,点P (x,y )经过某种变换后得到点P ′(−y +1,x +2),我们把点P ′(−y +1,x +2)叫做点P (x,y )的终结点,已知点P 1的终结点为P 2,点P 2的终结点为P 3,点P 3的终结点为P 4,这样由P 1依次得到P 2,P 3,P 4⋅⋅⋅⋅⋅⋅p n ,若点P 1的坐标为(2,0),则点P 2023的坐标为( )A .(2,0)B .(−2,−1)C .(−3,3)D .(1,4)3.如图所示,已知点A (−1,2),将长方形ABOC 沿x 轴正方向连续翻转2022次,点A 依次落在点A 1,A 2,A 3,……,A 2022的位置,则A 2022的坐标是______.4.如图,在平面直角坐标系中,将△ABC 绕点A 顺时针旋转到△AB 1C 1的位置,点B ,O 分别落在点B 1,C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,再将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去,…,若点A(3,0),B(0,4),AB =5,则点B 2022的坐标为________.5.如图,在平面直角坐标系中,四边形ABOC 是正方形,点A 的坐标为(1,1),弧AA 1是以点B 为圆心,BA 为半径的圆弧;弧A 1A 2是以点O 为圆心,OA 1为半径的圆弧;弧A 2A 3是以点C 为圆心,CA 2为半径的圆弧;弧A 3A 4是以点A 为圆心,AA 3为半径的圆弧,继续以点B ,O ,C ,A 为圆心,按上述作法得到的曲线AA 1A 2A 3A 4A 5…,称为正方形的“渐开线”,则A 4的坐标是______,那么A 4n +1的坐标为______.1.如图,在平面直角坐标系中,点A ,B 坐标分别为(a,0),(a,b),点C 在y 轴上,且BC ∥x 轴,a ,b 满足|a−3|=0.一动点P 从原点出发,以每秒2个单位长度的速度沿着O ﹣A ﹣B ﹣C ﹣O 的路线运动(点P 首次回到点O 时停止),运动时间为t 秒(t ≠0).(1)直接写出点A,B的坐标;(2)点P在运动过程中,连接PO,若PO把四边形ABCO的面积分成1:2的两部分,求出点P的坐标.t个单位长度的情况,若存在,求出点P的坐标,若(3)点P在运动过程中,是否存在点P到x轴的距离为12不存在,请说明理由.2.如图,在下面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式|a−2|+(b−3)2 =0和(c−4)2=0.(1)求a、b、c的值;(2)如果在第二象限内有一点P m m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使得四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标;若不存在,请说明理由.3.在平面直角坐标系中,已知点A(a,0),B(0,b),C(c,0),且a,b,c满足关系式(a−4)2+|b−3|+=0,点P(m,n)在第一象限.(1)求a,b,c的值;(2)如图1,当n=5时,△ABP的面积等于10,求m的值;(3)如图2,连接BC,当△ABC的面积等于△ABP的面积时,求满足上述条件的整点P(m,n都是整数)的坐标.4.在平面直角坐标系中,已知点A(a,0),B(b,3),C(4,0)+(a−b+6)2=0,线段AB交y轴于点F,点D是y轴正半轴上的一点.(1)求出点A,B的坐标;(2)如图2,若DB∥AC,∠BAC=a,且AM,DM分别平分∠CAB,∠ODB,求∠AMD的度数;(用含a的代数式表示).(3)如图3,坐标轴上是否存在一点P,使得△ABP的面积和△ABC的面积相等?若存在,求出P点坐标;若不存在,请说明理由.5.在平面直角坐标中有三个点A(a,0),B(b,0),C(0,c),且a,b,c满足(a+6)2+|b−2|+=0,点P、Q是平面直角坐标系上两个点.(1)直接写出a,b,c的值;(2)如图,若点P从点A出发以每秒2个单位的速度沿射线AB方向运动;点Q从C点出发以每秒1个单位的速度沿射线OC方向运动.当△QAC的面积等于△PBC面积的2倍时,求P、Q两点的坐标.6.如图,在平面直角坐标系中,A(a,0),B(b,0),且满足(a+2)2+0,过点B作直线m⊥x轴,点P 是直线m上一动点,连接AP,过点B作BC∥AP交y轴于C点,AD,CD分别平分∠PAB,∠OCB.(1)填空:a =_______,b =______;(2)在点P 的运动过程中,∠ADC 的度数是否变化?若不变,请求出它的度数;若变化,请说明理由;(3)若点P 的纵坐标为−4,在y 轴上是否存在点Q ,使得△APQ 的面积和△ABP 的面积相等?若存在,求出Q 点坐标;若不存在,请说明理由.1.在平面直角坐标系中,A(a,0),B(b,0),C(−1,2)(见图①),且|a +2|+0.(1)求a 、b 的值;(2)在坐标轴的其它位置是否存在点M ,使△COM 的面积等于12△ABC 的面积仍然成立?若存在,请直接写出符合条件的点M 的坐标;(3)如图②,过点C 作CD ⊥y 轴交y 轴于点D ,点P 为线段CD 延长线上的一动点,连OP ,OE 平分∠AOP ,OF ⊥OE ,当点P 运动时,∠OPD ∠DOE 的值是否会改变?若不变,求其值;若改变,说明理由.2.已知点A (1,a ),将线段OA 平移至线段CB (A 的对应点是B 点),B (b ,0),a 是m +6n 的算术平3,nm <n ,正数b 满足(b +1)2=16.(1)求出:A、B、C三点坐标.(2)如图1,连接AB、OC,求四边形AOCB的面积;(3)如图2,若∠AOB=α,点P为y轴正半轴上一动点,试探究∠CPO与∠BCP之间的数量关系.3.在平面直角坐标系中,有点A(m,0),B(0,n),且m,n满足m=1(1)求A、B两点坐标;(2)如图1,直线l⊥x轴,垂足为点Q(1,0).点P为直线l上任意一点,若△PAB的面积为7,求点P的坐标;2(3)如图2,点D为y轴负半轴上一点,过点D作CD∥AB,E为线段AB上任意一点,以O为顶点作∠EOF,∠AEO.当点E 使∠EOF=90°,OF交CD于F.点G为线段AB与线段CD之间一点,连接GE,GF,且∠AEG=13在线段AB上运动时,EG始终垂直于GF,试写出∠CFG与∠GFO之间的数量关系,并证明你的结论.4.如图1,以直角△AOC的直角项点O为原点,以OC,OA所在直线为x轴和y轴建立平面直角坐标系,点A(0,a),C(b,0+|b−8|=0.(1)直接写出点A,点C的坐标;(2)如图1,坐标轴上有两动点P,Q同时出发,点P从点C出发沿x轴负方向以每秒2个单位长度的速度匀速运动,点Q从点O出发沿y轴正方向以每秒1个单位长的速度匀速运动,当点P到达点O整个运动随之结束;点D的坐标是(4,3),设运动时间为t秒.是否存在t,使得△DOP与△DOQ的面积相等?若存在,求出t的值;若不存在,说明理由;(3)如图2,在(2)的条件下,若∠DOC=∠DCO,点G是第二象限中一点,并且OA平分∠DOG,点E是线段OA上一动点,连接CE交OD于点H,当点E在OA上运动的过程中,①说明GO∥AC的理由②直接写出∠DOG,∠OHC,∠ACE之间的数量关系.5.如图,点A的坐标为(a,0),点B在y轴上,将△OAB沿x轴负方向平移,平移后的图形为△DEC,且点C的坐标为(b,2),且a,b+|b+3|=0.(1)点E的坐标为______,点B的坐标为______;(2)在四边形ABCD中,点P从点B出发,沿“BC→CD”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:①当t=______时,点P的横坐标与纵坐标互为相反数;②当3<t<5时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,请问x,y,z之间的数量关系能否确定?若能,请用含x,y的式子表示z,若不能,请说明理由;③当点P运动到什么位置时,直线OP将四边形ABCD的面积分成2:5两部分.6.如图,在平面直角坐标系中,A (0,3),C (2,0).(1)若点B 在x 轴上,使得三角形BAC 的面积是三角形AOC 的面积的2倍,求出点B 的坐标;(2)若点F 在AC 上,且∠COF =∠FCO ,∠AOG =∠AOF .①求证:AC //OG ;②若点E 是线段OA 上一动点,连结CE 交OF 于点H ,探求∠OHC ∠ACE ∠OEC的值是否会发生变化?若不变,求出它的值;若变化,说明理由.1.将长方形OABC 的顶点O 放在直角坐标系中,点C ,A 分别在x 轴,y 轴上,点B (a ,b ),且a ,b 满足|a−2b|+(b−4)2=0.(1)求B 点的坐标(2)若过O 点的直线OD 交长方形的边于点D ,且直线OD 把长方形的周长分为2:3两部分,求点D 的坐标;(3)若点P 从点C 出发,以2单位/秒的速度向O 点运动(不超过O 点),同时点Q 从O 点出发以1单位/秒的速度向A 点运动(不超过A 点),试探究四边形BQOP 的面积在运动中是否会发生变化?若不变,求其值;若变化,求变化范围.2.已知A (0,a )、B (b ,0(b ﹣4)2=0.(1)直接写出点A 、B 的坐标;(2)点C 为x 轴负半轴上一点满足S △ABC =15.①如图1,平移直线AB 经过点C ,交y 轴于点E ,求点E 的坐标;②如图2,若点F (m ,10)满足S △ACF =10,求m.(3)如图3,D为x轴上B点右侧的点,把点A沿y轴负半轴方向平移,过点A作x轴的平行线l,在直线l 上取两点G、H(点H在点G右侧),满足HB=8,GD=6.当点A平移到某一位置时,四边形BDHG的面积有最大值,直接写出面积的最大值.3.在平面直角坐标系中,A(a,0),B(1,b),a,b满足|a+b−1|+0,连接AB交y轴于C.(1)直接写出a=______,b=______;(2)如图1,点P是y轴上一点,且三角形ABP的面积为12,求点P的坐标;(3)如图2,直线BD交x轴于D(4,0),将直线BD平移经过点A,交y轴于E,点Q(x,y)在直线AE上,且三,求点Q横坐标x的取值范围.角形ABQ的面积不超过三角形ABD面积的134.如图,已知点A(a,0)、B(b,0)满足(3a+b)2+|b−3|=0.将线段AB先向上平移2个单位,再向右平移1个单位后得到线段CD,并连接AC、BD.(1)请求出点A和点B的坐标;(2)点M从O点出发,以每秒1个单位的速度向上平移运动.设运动时间为t秒,问:是否存在这样的t,使得四边形OMDB的面积等于9?若存在,请求出t的值:若不存在,请说明理由;(3)在(2)的条件下,点M从O点出发的同时,点N从点B出发,以每秒2个单位的速度向左平移运动,设射线DN交y轴于点E.设运动时间为t秒,问:SΔEMD−SΔOEN的值是否会发生变化?若不变,请求出它的值:若变化,请说明理由.5.如图,已知平面直角坐标系中,点A(a,0)、B(0,b),a、b+(4−b)2=0.将线段AB经过水平、竖直方向平移后得到线段A′B′,已知直线A′B′经过点C(4,0),A′的横坐标为5.(1)求A、B两点的坐标;(2)连接BC,BA′,求三角形ABC和三角形ABA′的面积.得S△ABC=____________;S△ABA′=________.(3)①求A′的纵坐标,并写出线段AB的平移方式,②直线A′B′上一点P(m,n),直接写出m、n之间的数量关系.6.如图1,在平面直角坐标系中,点A(a,2),B(b,4),且a,b满足关系式(a+5)20(1)直接写出A,B两点的坐标:A( , ),B( , );(2)线段AB以每秒2个单位长度的速度向右水平移动,A,B的对应点分别为A1,B1;(友情提示:S△ABO 表示三角形ABO的面积)①如图2,若线段A1B1交y轴于点C,当SΔA1B1O=32时,求平移时间t的值;②若直线A1B1交y轴于点C,当SΔA1COSΔB1CO =32时,试求出平移时间t的值,并直接写出点C的坐标.。
培优训练三:平面直角坐标系(压轴题)一、坐标与面积:【例1】如图,在平面直角坐标中,A (0,1),B (2,0),C (2,1.5). (1)求△ABC 的面积;(2)如果在第二象限内有一点P (a ,0.5),试用a 的式子表示四边形ABOP 的面积;(3)在(2)的条件下,是否存在这样的点P ,使四边形ABOP 的面积与△ABC 的面积相等?若存在,求出点P 的坐标,若不存在,请说明理由. 【例2】在平面直角坐标系中,已知A (-3,0),B (-2,-2),将线段AB 平移至线段CD . (1)如图1,直接写出图中相等的线段,平行的线段;(2)如图2,若线段AB 移动到CD ,C 、D 两点恰好都在坐标轴上,求C 、D 的坐标; (3)若点C 在y 轴的正半轴上,点D 在第一象限内,且S △ACD =5,求C 、D 的坐标;(4)在y 轴上是否存在一点P ,使线段AB 平移至线段PQ 时,由A 、B 、P 、Q 构成的四边形是平行四边形面积为10,若存在,求出P 、Q 的坐标,若不存在,说明理由; 【例3】如图,△ABC 的三个顶点位置分别是A (1,0),B (-2,3),C (-3,0). (1)求△ABC 的面积;(2)若把△ABC 向下平移2个单位长度,再向右平移3个单位长度,得到△A B C ''',请你在图中画出△A B C ''';(3)若点A 、C 的位置不变,当点P 在y 轴上什么位置时,使2ACP ABCS S =V V ;(4)若点B 、C 的位置不变,当点Q 在x 轴上什么位置时,使2BCQ ABCS S =V V .【例4】如图1,在平面直角坐标系中,A (a ,0),C (b ,2),且满足2(2)20a b ++-=,过C 作CB ⊥x 轴于B .(1)求三角形ABC 的面积;(2)若过B 作BD ∥AC 交y 轴于D ,且AE ,DE 分别平分∠CAB ,∠ODB ,如图2,求∠AED 的度数; (3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等,若存在,求出P 点坐标;若不存在,请说明理由.【例5】如图,在平面直角坐标系中,四边形ABCD 各顶点的坐标分别是A (0,0),B (7,0),C (9,5),D (2,7)(1)在坐标系中,画出此四边形; (2)求此四边形的面积;(3)在坐标轴上,你能否找一个点P ,使S △PBC =50, 若能,求出P 点坐标,若不能,说明理由. 【例6】如图,A 点坐标为(-2, 0), B 点坐标为(0, -3).(1)作图,将△ABO 沿x 轴正方向平移4个单位, 得到△DEF , 延长ED 交y 轴于C 点, 过O 点作OG ⊥CE , 垂足为G ;(2) 在(1)的条件下, 求证: ∠COG =∠EDF ; (3)求运动过程中线段AB 扫过的图形的面积. 【例7】在平面直角坐标系中,点B (0,4),C (-5,4),点A 是x 轴负半A(-2,0)B(0,-3)y x轴上一点,S 四边形AOBC =24.(1)线段BC 的长为 ,点A 的坐标为 ;(2)如图1,EA 平分∠CAO ,DA 平分∠CAH ,CF ⊥AE 点F ,试给出∠ECF 与∠DAH 之间满足的数量关系式,并说明理由;(3)若点P 是在直线CB 与直线AO 之间的一点,连接BP 、OP ,BN 平分CBP ∠,ON 平分AOP ∠,BN 交ON 于N ,请依题意画出图形,给出BPO ∠与BNO ∠之间满足的数量关系式,并说明理由. 【例8】在平面直角坐标系中,OA =4,OC =8,四边形ABCO 是平行四边形. (1)求点B 的坐标及的面积ABCO S 四边形;(2)若点P 从点C 以2单位长度/秒的速度沿CO 方向移动,同时点Q 从点O 以1单位长度/秒的速度沿OA 方向移动,设移动的时间为t 秒,△AQB 与△BPC 的面积分别记为AQB S ∆,BPC S ∆,是否存在某个时间,使AQB S ∆=3OQBPS 四边形,若存在,求出t 的值,若不存在,试说明理由;(3)在(2)的条件下,四边形QBPO 的面积是否发生变化,若不变,求出并证明你的结论,若变化,求出变化的范围.【例9】如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D 连结AC ,BD . (1)求点C ,D 的坐标及四边形ABDC 的面积S 四边形ABDC ;(2)在y 轴上是否存在一点P ,连结P A ,PB ,使S △P AB =S △若不存在,试说明理由;(3)若点Q 自O 点以0.5个单位/s 的速度在线段AB 秒,(1)是否是否存在一个时刻,使得梯形CDQB (4)是否是否存在一个时刻,使得梯形CDQB 的面积等于△【例10】在直角坐标系中,△ABC 的顶点A (—2,0),B (2,4),C (5(1)求△ABC 的面积(2)点D 为y 负半轴上一动点,连BD 交x 轴于E ,是否存在点D 使得S ∆出点D 的坐标;若不存在,请说明理由. (3)点F (5,n )是第一象限内一点,,连BF ,CF ,G 是x 轴上一点,若△的面积,则点G 的坐标为 (用含n 的式子表示)二、坐标与几何:【例1】如图,已知A(0,a),B (0,b ),C (m ,b )且(a -4)2+|b +3|=0,S △ABC =14. (1)求C 点坐标(2)作DE ⊥DC ,交y 轴于E 点,EF 为∠AED 的平分线,且∠DFE =900.求证:FD 平分∠ADO ; (3)E 在y 轴负半轴上运动时,连EC ,点P 为AC 延长线上一点,EM 平分∠AEC ,且PM ⊥EM ,PN ⊥x 轴于N 点,PQ 平分∠APN ,交x 轴于Q 点,则E 在运动过程中,∠MPQ∠ECA的大小是否发生变化,若不变,求出其值.【例2】如图,在平面直角坐标系中,已知点A (-5,0),B (5.0),D (2,7), (1)求C 点的坐标;(2)动点P 从B 点出发以每秒1个单位的速度沿BA 方向运动,同时动点Q 从C 点出发也以每秒1位的速度沿y 轴正半轴方向运动(当P 点运动到A 点时,两点都停止运动)。
设从出发起运动了x 秒。
①请用含x 的代数式分别表示P,Q 两点的坐标;②当x=2时,y 轴上是否存在一点E ,使得△AQE 的面积与△APQ 的面积相等? 若存在,求E 的坐标,若不存在,说明理由?【例3】如图,在平面直角坐标系中,∠ABO=2∠BAO ,P 为x 轴正半轴上一动点,BC 平分∠ABP ,PC 平分∠APF ,OD 平分∠POE 。
(1)求∠BAO 的度数; (2)求证:∠C=15°+12∠OAP(3)P 在运动中,∠C+∠D 的值是否变化,若发生变化,说明理由,若不变求其值。
【例4】如图,A 为x 轴负半轴上一点,C (0,-2),D (-3,-2)。
(1)求△BCD 的面积;(2)若AC ⊥BC ,作∠CBA 的平分线交CO 于P ,交CA 于Q ,判断∠CPQ 与∠CQP 的大小关系,并说明你的结论。
(3)若∠ADC=∠DAC ,点B 在x 轴正半轴上任意运动,∠ACB 的平分线CE 交DA 的延长线于点E ,在B 点的运动过程中,∠E∠ABC 的值是否变化?若不变,求出其值;若变化,说明理由。
【例5】如图,已知点A (-3,2),B (2,0),点C 在x 轴上,将△ABC 沿x 轴折叠,使点A 落在点D 处。
(1)写出D 点的坐标并求AD 的长;(2)EF 平分∠AED ,若∠ACF-∠AEF=15o ,求∠EFB 的度数。
【例6】如图,在直角坐标系中,已知B (b ,0),C (0,a ),且 | 6 – 2b | +(2c-8)2 =0. B D ⊥x 轴于B.(1)求B 、C 的坐标;(2)如图,AB //CD ,Q 是CD 上一动点,CP 平分∠DCB ,BQ 与CP 交于点P ,求 ∠DQB+∠QBC+∠QPC 的值。
【例7】如图,A 、B 两点同时从原点O 出发,点A 以每秒m 个单位长度沿x 轴的负方向运动,点B 以每秒n 个单位长度沿y 轴的正方向运动。
(1)若|m+2n-5|+|2m-n|=0,试分别求出1秒钟后A 、B 两点的坐标。
(2)如图,设∠BAO 的邻补角和∠ABO 的邻补角平分线相交于点P运动的过程中,∠P 的大小是否会发生变化?若不发生变化,请说明理由。
(3)如图,延长BA 至E ,在∠ABO 的内部作射线BF 交x 轴于点C ,若∠EAC 、∠FCA 、∠ABC 的平分线相交于点G ,过点G 作BE 的垂线,垂足为H ,试问∠AGH 和∠BGC 的大小关系如何?请写出你的结论并说明理由。
【例8】如图,在平面直角坐标系中,A (a ,0),C (b ,2),且满足(a+b )2+|a-b+4|=0,过C 作C B ⊥x 轴于B 。
(1)求三角形ABC 的面积。
(2)若过B 作BD //AC 交y 轴于D ,且AE 、DE 分别平分∠CAB ,∠ODB ,如图,求∠AED 的度数。
(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等,若存在,求出P 点的坐标; 若不存在,请说明理由。
【例9】如图,在平面直角坐标系中,△AOB 是直角三角形,∠AOB=90°,斜边AB 与y 轴交于点C. (1)若∠A=∠AOC ,求证:∠B=∠BOC ; (2)延长AB 交x 轴于点E ,过O 作OD ⊥AB ,且∠DOB=∠EOB ,∠OAE=∠OEA ,求∠度数; (3)如图,OF 平分∠AOM ,∠BCO 的平分线交FO 的延长线于点P.当△ABO 绕O 点旋转时(斜边AB 与y 轴正半轴始终相交于点C ),在(2)的条件下,试问∠P 的度数是否发生改变?若不变,请求其度数;若改变,请说明理由.【例10】如图,y 轴的负半轴平分∠AOB , P 为y 轴负半轴上的一动点,过点P 作x 轴的平行线分别交OA 、OB 于点M 、N.(1)如图1, MN ⊥y 轴吗?为什么?(2)如图2,当点P 在y 轴的负半轴上运动到AB 与y 轴的交点处, 其他条件都不变时,等式∠APM=21(∠OBA -∠A )是否成立?为什么? (3)当点P 在y 轴的负半轴上运动到图3处(Q 为BA 、NM 的延长线的交点),其他条件都不变时,试问∠Q 、∠OAB 、∠OBA 之间是否存在某种数量关系?若存在,请写出其关系式,并加以证明;若不存在,请说明理由.【例11】在平面直角坐标系中,点)0,(a A ,)0,(b B ,),0(c C ,且满足342+-=++-c b a ,过点C 作x MN //轴,D 是MN 上一动点. (1)求A BC ∆的面积;(2)如图1,若点D 的横坐标为-3,AD 交O C 于E ,求点E 的坐标;(3)如图2,若B 35AD ∠=o,P 是A D 上的点,Q 是射线DM 上的点,射线QG 平分PQM ∠,射线PH 平分APQ ∠,//PF QG ,请你补全图形,并求HPFADN∠∠的值.【例12】如图,直角坐标系中,C 点是第二象限一点,CB ⊥y 轴于B ,且B (0,b )是y 轴正半轴上一点,A (a ,0)是x 轴负半轴上一点,且()2230a b ++-=,S 四边形xy CBA o x y OED CBA x y O CB A AO B QMPNyx 图3(1)求C点坐标;(2)设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交与点P,求∠APD的度数?(3)当D点在线段OB上运动时,作DM⊥AD交CB于M,∠BMD,∠DAO动的过程中∠N【例13】在直角坐标系中,A(-4,0),B(2,0),点C在y轴正半轴上,且S△(1)求点C的坐标;(2)是否存在位于坐标轴上的点P,S△ACP =12S△ABC.若存在,请求出P【例14】如图,(1)DO平分∠EDC,探究∠E,∠C,∠DOC的关系.(2)在直角坐标系中,第一象限AB方向放有一个平面镜,一束光线CD 线DH交y轴于点H.交x轴于点F(∠DCE>∠DEC),若平面镜AB绕点D 整数k,使∠DCE -∠DEC = k∠OHF.若存在,请求出kCDOHF.x。