第6章 神经网络——概念篇和实验篇
- 格式:ppt
- 大小:1.17 MB
- 文档页数:75
1.绪论 (3)1.1 神经网络的提出与发展 (3)1.2神经网络的定义 (3)1.3神经网络的发展历程 (4)1.4 神经网络研究的意义 (6)2.BP神经网络 (7)2.1 BP神经网络介绍 (7)2.2 BP算法的研究现状 (7)2.3 BP网络的应用 (8)2.4基本结构与学习算法 (8)2.5 动作过程 (11)2.6 主要特点及参数优选 (13)3.BP网络在复合材料研究中的应用 (15)3.1 材料设计 (15)3.2 性能预测 (16)2.4损伤检测和预测 (17)2.5 结论 (17)致谢: (18)BP神经网络综述摘要:本文阐述了人工神经网络和神经网络控制的基本概念特点以及两者之间的关系,讨论了人工神经网络的两个主要研究方向神经网络的VC 维计算和神经网络的数据挖掘,着重介绍了人工神经网络的工作原理和神经网络控制技术的应用首先介绍了神经网络的发展历程,随后对BP神经网络的学习方法分为了导师知识学习训练和模式识别决策,并重点分析了导师知识学习训练的网络结构和学习算法,最后介绍了BP神经网络在性能预测中的应用。
关键词:人工神经网络;神经网络控制;应用;维;数据挖掘Abstract:It expounds the basic concepts, characteristics of the artificial neural network and neural network control and the relationship between them.It discusses two aspects: the Vapnik-Chervonenkis dimension calculation and the data mining in neural nets.And the basic principle of artificial neural networks and applications of neural network control technology are emphatically introduced. Key words:Artificial Neural Networks; Neural Network Control;this paper introduces the developing process of neural networks, and then it divides the learning methods of BP neural network into a inst ructor knowledge learning training and pattern recognition decisions, and focus on analysis of the network structure and learning algorith m of knowledge and learning mentors training .And finally it introduc es the applications of BP neural network in performance prediction.Application;Vapnik-Chervonenkis Mimension;Data Mining1.绪1.1 神经网络的提出与发展系统的复杂性与所要求的精确性之间存在尖锐的矛盾。
神经网络基本知识一、内容简述神经网络是机器学习的一个重要分支,是一种模拟生物神经网络结构和功能的计算模型。
它以其强大的学习能力和自适应能力广泛应用于多个领域,如图像识别、语音识别、自然语言处理等。
《神经网络基本知识》这篇文章将带领读者了解神经网络的基本概念、原理和应用。
1. 神经网络概述神经网络是一种模拟生物神经系统结构和功能的计算模型。
它由大量神经元相互连接构成,通过学习和调整神经元之间的连接权重来进行数据处理和模式识别。
神经网络的概念自上世纪五十年代提出以来,经历了漫长的发展历程,逐渐从简单的线性模型演变为复杂的多层非线性结构。
神经网络在人工智能领域发挥着核心作用,广泛应用于计算机视觉、语音识别、自然语言处理等领域。
神经网络的基本构成单元是神经元,每个神经元接收来自其他神经元的输入信号,通过特定的计算方式产生输出信号,并传递给其他神经元。
不同神经元之间的连接强度称为权重,通过训练过程不断调整和优化。
神经网络的训练过程主要是通过反向传播算法来实现的,通过计算输出层误差并反向传播到输入层,不断调整权重以减小误差。
神经网络具有强大的自适应能力和学习能力,能够处理复杂的模式识别和预测任务。
与传统的计算机程序相比,神经网络通过学习大量数据中的规律和特征,自动提取高级特征表示,避免了手动设计和选择特征的繁琐过程。
随着深度学习和大数据技术的不断发展,神经网络的应用前景将更加广阔。
神经网络是一种模拟生物神经系统功能的计算模型,通过学习和调整神经元之间的连接权重来进行数据处理和模式识别。
它在人工智能领域的应用已经取得了巨大的成功,并将在未来继续发挥重要作用。
2. 神经网络的历史背景与发展神经网络的历史可以追溯到上个世纪。
最初的神经网络概念起源于仿生学,模拟生物神经网络的结构和功能。
早期的神经网络研究主要集中在模式识别和机器学习的应用上。
随着计算机科学的快速发展,神经网络逐渐成为一个独立的研究领域。
在20世纪80年代和90年代,随着反向传播算法和卷积神经网络的提出,神经网络的性能得到了显著提升。
神经网络基本知识、BP神经网络一.概述1.1神经网络的定义人工神经网络(Artificial Neural Networks,简写为 ANNs)是由大量类似于生物神经元的处理单元相互连接而成的非线性复杂网络系统。
它是用一定的简单的数学模型来对生物神经网络结构进行描述,并在一定的算法指导下,使其能够在某种程度上模拟生物神经网络所具有的智能行为,解决传统算法所不能胜任的智能信息处理的问题。
它是巨量信息并行处理和大规模并行计算的基础,神经网络既是高度非线性动力学系统,又是自组织自适应系统,可用来描述认知、决策和控制的智能行为。
1.2 神经网络的发展历史对人工神经网络的研究始于 1943 年,经历 60 多年的发展,目前已经在许多工程研究领域得到了广泛应用。
但它并不是从一开始就倍受关注,它的发展道路曲折、几经兴衰,大致可以分为以下五个阶段:①奠基阶段:1943 年,由心理学家 McCulloch 和数学家 Pitts 合作,提出第一个神经计算模型,简称 M-P 模型,开创了神经网络研究这一革命性的思想。
②第一次高潮阶段:20 世纪 50 年代末 60 年代初,该阶段基本上确立了从系统的角度研究人工神经网络。
1957 年 Rosenblatt 提出的感知器(Perceptron)模型,可以通过监督学习建立模式判别能力。
③坚持阶段:随着神经网络研究的深入开展,人们遇到了来自认识、应用实现等方面的难题,一时难以解决。
神经网络的工作方式与当时占主要地位的、以数学离散符号推理为基本特征的人工智能大相径庭,但是更主要的原因是:当时的微电子技术无法为神经网络的研究提供有效的技术保证,使得在其后十几年内人们对神经网络的研究进入了一个低潮阶段。
④第二次高潮阶段:20 世纪 70 年代后期,由于神经网络研究者的突出成果,并且传统的人工智能理论和 Von.Neumann 型计算机在许多智能信息处理问题上遇到了挫折,而科学技术的发展又为人工神经网络的物质实现提供了基础,促使神经网络的研究进入了一个新的高潮阶段。
BP神经网络实验报告一、引言BP神经网络是一种常见的人工神经网络模型,其基本原理是通过将输入数据通过多层神经元进行加权计算并经过非线性激活函数的作用,输出结果达到预测或分类的目标。
本实验旨在探究BP神经网络的基本原理和应用,以及对其进行实验验证。
二、实验方法1.数据集准备本次实验选取了一个包含1000个样本的分类数据集,每个样本有12个特征。
将数据集进行标准化处理,以提高神经网络的收敛速度和精度。
2.神经网络的搭建3.参数的初始化对神经网络的权重和偏置进行初始化,常用的初始化方法有随机初始化和Xavier初始化。
本实验采用Xavier初始化方法。
4.前向传播将标准化后的数据输入到神经网络中,在神经网络的每一层进行加权计算和激活函数的作用,传递给下一层进行计算。
5.反向传播根据预测结果与实际结果的差异,通过计算损失函数对神经网络的权重和偏置进行调整。
使用梯度下降算法对参数进行优化,减小损失函数的值。
6.模型评估与验证将训练好的模型应用于测试集,计算准确率、精确率、召回率和F1-score等指标进行模型评估。
三、实验结果与分析将数据集按照7:3的比例划分为训练集和测试集,分别进行模型训练和验证。
经过10次训练迭代后,模型在测试集上的准确率稳定在90%以上,证明了BP神经网络在本实验中的有效性和鲁棒性。
通过调整隐藏层结点个数和迭代次数进行模型性能优化实验,可以发现隐藏层结点个数对模型性能的影响较大。
随着隐藏层结点个数的增加,模型在训练集上的拟合效果逐渐提升,但过多的结点数会导致模型的复杂度过高,容易出现过拟合现象。
因此,选择合适的隐藏层结点个数是模型性能优化的关键。
此外,迭代次数对模型性能也有影响。
随着迭代次数的增加,模型在训练集上的拟合效果逐渐提高,但过多的迭代次数也会导致模型过度拟合。
因此,需要选择合适的迭代次数,使模型在训练集上有好的拟合效果的同时,避免过度拟合。
四、实验总结本实验通过搭建BP神经网络模型,对分类数据集进行预测和分类。
一、实验背景随着人工智能技术的飞速发展,神经网络作为一种强大的机器学习模型,在各个领域得到了广泛应用。
为了更好地理解神经网络的原理和应用,我们进行了一系列的实训实验。
本报告将详细记录实验过程、结果和分析。
二、实验目的1. 理解神经网络的原理和结构。
2. 掌握神经网络的训练和测试方法。
3. 分析不同神经网络模型在特定任务上的性能差异。
三、实验内容1. 实验一:BP神经网络(1)实验目的:掌握BP神经网络的原理和实现方法,并在手写数字识别任务上应用。
(2)实验内容:- 使用Python编程实现BP神经网络。
- 使用MNIST数据集进行手写数字识别。
- 分析不同学习率、隐层神经元个数对网络性能的影响。
(3)实验结果:- 在MNIST数据集上,网络在训练集上的准确率达到98%以上。
- 通过调整学习率和隐层神经元个数,可以进一步提高网络性能。
2. 实验二:卷积神经网络(CNN)(1)实验目的:掌握CNN的原理和实现方法,并在图像分类任务上应用。
(2)实验内容:- 使用Python编程实现CNN。
- 使用CIFAR-10数据集进行图像分类。
- 分析不同卷积核大小、池化层大小对网络性能的影响。
(3)实验结果:- 在CIFAR-10数据集上,网络在训练集上的准确率达到80%以上。
- 通过调整卷积核大小和池化层大小,可以进一步提高网络性能。
3. 实验三:循环神经网络(RNN)(1)实验目的:掌握RNN的原理和实现方法,并在时间序列预测任务上应用。
(2)实验内容:- 使用Python编程实现RNN。
- 使用Stock数据集进行时间序列预测。
- 分析不同隐层神经元个数、学习率对网络性能的影响。
(3)实验结果:- 在Stock数据集上,网络在训练集上的预测准确率达到80%以上。
- 通过调整隐层神经元个数和学习率,可以进一步提高网络性能。
四、实验分析1. BP神经网络:BP神经网络是一种前向传播和反向传播相结合的神经网络,适用于回归和分类问题。
神经网络实验报告一.实验目的(1)熟悉Matlab/Simulink的使用.(2)掌握BP神经网络的基本原理和基本的设计步骤.(3)了解BP神经网络在实际中的应用.(4)针对简单的实际系统, 能够建立BP神经网络控制模型.二、实验内容BP神经网络神经网络的概念、原理和设计是受生物、特别是人脑神经系统的启发提出的. 神经网络由大量简单的处理单元来模拟真实人脑神经网络的机构和功能以及若干基本特性,是一个高度复杂的非线性自适应动态处理系统.BP网络是1986年由Rinehart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一. BP网络能学习和存贮大量的输入- 输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程. 它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小. BP神经网络模型拓扑结构包括输入( input) 、隐层( hide layer)和输出层(output layer) ,如图1所示.三、基于BP神经网络的手写数字识别3.1 输入向量与目标向量首先对手写数字图像进行预处理,包括二值化、去噪、倾斜校正、归一化和特征提取,生成BP神经网络的输入向量Alphabet和目标向量Tar2get. 其中Alphabet选取40 ×10的矩阵,第1列到第10列代表0~9的数字. Target为10 ×10的单位矩阵,每个数字在其所排顺序位置输出1,其他位置输出0.3. 2 BP神经网络的构建BP算法由数据流的前向计算(正向传播)和误差信号的反向传播两个过程构成. 正向传播时,传播方向为输入层→隐层→输出层,每层神经元的状态只影响下一层神经元. 若在输出层得不到期望的输出,则转向误差信号的反向传播流程. 通过这两个过程的交替进行,在权向量空间执行误差函数梯度下降策略,动态迭代搜索一组权向量,使网络误差函数达到最小值,从而完成信息提取和记忆过程.首先考虑正向传播,设输入层有n个节点,隐层有p个节点,输出层有q个节点. 输入层与隐层之间的权值为vk i, 隐层与输出层之间的权值为w jk. 隐层的传递函数为f1 ( x) ,输出层的传递函数为f2 ( x) ,则隐层节点的输出为输出层节点的输出为通过式(1) 和(2) 可得BP神经网络完成n维到q维的映射. 其次考虑反向传播. 在反向传播中,需要对不理想的权值进行调整, B P神经网络的核心要务即在于调权. 定义误差函数, 设输入P个学习样本,用x1 , x2 , ⋯, xp 来表示. 第p个样本输入网络得到输出ypj ( j = 1, 2, ⋯, q) ,其误差为式中为期望输出. P个样本的全局误差为将式(3) 代入得输出层权值的变化采用累计误差BP算法调整wjk 使全局误差E变小,即式(5) 中η为学习率. 现定义误差信号为将式(3) 代入可得第一项为第二项为输出层传递函数f2 ( x) 的偏微分将式(7) 和(8) 代入可得误差信号为则输出层各神经元权值△wjk 调整公式将式(9)代入可定义为在得到输出层权值调整公式后, 需要定义隐层权值△vk i 调整公式根据输出层各神经元权值△wjk 调整公式推导过程,可得△vk i 为3. 3 网络的训练神经网络的训练过程是识别字符的基础, 十分重要,直接关系到识别率的高低. 输送训练样本至B P神经网络训练, 在梯度方向上反复调整权值使网络平方和误差最小. 为使网络对输入向量有一定鲁棒性,可先用无噪声的样本对网络进行训练,直到其平方和误差最小,再用含噪声的样本进行训练,保证网络对噪声不敏感. 训练完毕, 把待识别数字送BP神经网络中进行仿真测试.三、实验结果与分析权值初始化为( - 1, 1) 之间的随机数, 期望误差为0. 01, 最大训练步数5000, 动量因子为0.95,隐层和输出层均采用“logsig”函数, 手写数字的识别结果如图2 ( a) ~( e) 所示,以数字4为例给出处理过程对1000个手写数字(每个数字取100幅不同的图像) 进行识别,其识别结果如表1所示.四、结论针对传统的手写数字识别中识别率和可靠性不高的情况, 提出了将B P神经网络应用于数字识别,并通过实验,证实B P神经网络算法识别率较高,具备可行性.。
一、实验目的与要求1. 掌握神经网络的原理和基本结构;2. 学会使用Python实现神经网络模型;3. 利用神经网络对手写字符进行识别。
二、实验内容与方法1. 实验背景随着深度学习技术的不断发展,神经网络在各个领域得到了广泛应用。
在手写字符识别领域,神经网络具有较好的识别效果。
本实验旨在通过实现神经网络模型,对手写字符进行识别。
2. 神经网络原理神经网络是一种模拟人脑神经元结构的计算模型,由多个神经元组成。
每个神经元接收来自前一个神经元的输入,通过激活函数处理后,输出给下一个神经元。
神经网络通过学习大量样本,能够自动提取特征并进行分类。
3. 实验方法本实验采用Python编程语言,使用TensorFlow框架实现神经网络模型。
具体步骤如下:(1)数据预处理:从公开数据集中获取手写字符数据,对数据进行归一化处理,并将其分为训练集和测试集。
(2)构建神经网络模型:设计网络结构,包括输入层、隐藏层和输出层。
输入层用于接收输入数据,隐藏层用于提取特征,输出层用于输出分类结果。
(3)训练神经网络:使用训练集对神经网络进行训练,调整网络参数,使模型能够准确识别手写字符。
(4)测试神经网络:使用测试集对训练好的神经网络进行测试,评估模型的识别效果。
三、实验步骤与过程1. 数据预处理(1)从公开数据集中获取手写字符数据,如MNIST数据集;(2)对数据进行归一化处理,将像素值缩放到[0, 1]区间;(3)将数据分为训练集和测试集,比例约为8:2。
2. 构建神经网络模型(1)输入层:输入层节点数与数据维度相同,本实验中为28×28=784;(2)隐藏层:设计一个隐藏层,节点数为128;(3)输出层:输出层节点数为10,对应10个类别。
3. 训练神经网络(1)定义损失函数:均方误差(MSE);(2)选择优化算法:随机梯度下降(SGD);(3)设置学习率:0.001;(4)训练次数:10000;(5)在训练过程中,每100次迭代输出一次训练损失和准确率。