空心光纤
- 格式:doc
- 大小:24.00 KB
- 文档页数:3
Optical humidity sensor based on hollow core fiberM.Y. Mohd Noor*a, N. Khalili b , G.D. Peng a,a School of Electrical Engineering & Telecommunications, The University of New South Wales,Sydney, 2052 Australiab School of Civil & Environmental Engineering, The University of New South Wales,Sydney, 2052 AustraliaABSTRACTWe propose a novel relative humidity (RH) sensor based on hollow core fiber using direct absorption spectroscopic method in this paper. The wavelength scanning around water vapor absorption peak around 1368.59 nm is realized by injecting saw-tooth modulated current to a DFB laser diode. A reference signal is used as a zero absorption baseline and to help reduce the interference from DFB laser source and probed region. The humidity level is determined by the normalized voltage difference between reference signal and sensor signal at the peak of water vapor absorption. We demonstrate that a length of 5 cm hollow core fiber with a fixed small air gap between SMF and hollow core fiber as an opening achieves a humidity detection resolution of around 0.02%RH over the range 0 to 50%RH which does not require the use of any hygroscopic material.Keywords: hollow core fiber, humidity sensing, direct absorption, wavelength scanning1.INTRODUCTIONThe measurement of humidity is required in a range of areas, including meteorology, agriculture, clinical medicine, manufacturing and civil engineering. Optical humidity fiber sensor offer specific advantages compared with their conventional counterparts such as small size and weight, immunity to electromagnetic interference, multi-sensors and remote operation. A wide range of optical fiber humidity sensors have been reported in the literature review. Most of these fiber optic humidity sensors work on the basis of hygroscopic sensing material coated over the optical fiber for modulation1. There are also fiber optic humidity sensor that do not used any hygroscopic material as shown by Lauer2 with a direct spectroscopic technique in open path which the humidity sensing is based on the light attenuation at certain wavelength by using VCSEL light source at 1.84 um band. This humidity sensor is capable to measure wide range of relative humidity variations but required the laser beam alignment and constraint of fiber components in that wavelength emission. Recently, holey fiber has generated much interest in exploiting such fibers for sensing and spectroscopic analysis of gases3, 4. A holey fiber based on interferometer has been adapted for humidity sensing without the use of hygroscopic coating too5 but the range of detection does not cover for low humidity region.In this paper we present a novel fiber optic humidity sensor based on hollow core fiber with direct absorption technique at 1369 nm band to measure relative humidity. A scanning saw-tooth DFB light source is goes through hollow core fiber. One end of the hollow core fiber spliced to standard SMF. A fix small gap on the other end of hollow core fiber is used as an opening for a diffusion hole. A reference signal that act as a zero absorption baseline is used to reduce the interferences from DFB source and probed region. The voltage difference between both signals at peak of water vapor absorption is changes to the variation of the humidity level.The choice of DFB laser emitting at 1369 nm are highly suited for sensitive detection of humidity cause by the strong absorption at this near infrared band and takes advantage of the mature telecommunication technology where fiber coupled lasers and fiber components are readily available. To the best of our knowledge such hollow core fiber based on spectroscopic technique at 1369 nm light emission to measure relative humidity which does not require any hygroscopic material is reported for the first time.2.TARGET ABSORPTION WAVELENGTH SELECTIONA critical important step in the design of an optical absorption sensor is the selection of line absorption. Proper absorption line selection can significantly improve the accuracy and performance of the sensor. There are number ofThird Asia Pacific Optical Sensors Conference, edited by John Canning, Gangding Peng,Proc. of SPIE Vol. 8351, 83510R · © 2012 SPIE · CCC code: 0277-786X/12/$18 · doi: 10.1117/12.915809water vapor absorption bands that have been considered for study, all of which are listed in the HITRAN database 6. Theband of water vapor transitions over the range of wavelengths from 1 and 10 um is shown in figure 1. These water vaporspectrums are extracted from the latest update of HITRAN database for water vapor which is HITRAN 2008 molecularspectroscopic database. Wavelength that have the higher line strength (S) represent relatively stronger absorption featureat that specific wavelength. The strongest absorption band of water vapor is in the mid-infrared region above 5 umwavelength followed by near infrared region absorption band between 2 to 3 µm, 1.8 µm and 1.4 µm band. Althoughmid-infrared transitions in the fundamental vibration bands are ten times stronger than the combination and overtonevibrational transitions in the near infrared, laser and fiber technology is less mature in the mid-infrared than in the mid-infrared. Accordingly, we limit the choice of transitions to the 1.3 to 1.6 µm region where laser and fiber opticstechnology are well developed and readily available.00.511.522.533.5x 10-19Wav elength (µm)S (c m /m o l e c u l e )Figure 1. Water vapor absorption spectra in the 1 to 10 µm region based on the HITRAN database00.20.40.60.811.21.41.61.8x 10-20Wav elength (nm)S (c m /m o l e c u l e )Figure 2. The chosen water vapor line absorption at 1368.59 nmSpecifically, we have chosen to probe the 1368.59 nm water vapor absorption feature to measure relative humidity whicharises from the 212 ←313 rotational line within v 3 + v 2 vibrational band. This is because the reported linestrength value forthe 1368.59 nm absorption feature in the HITRAN database is 1.8 x 10-20 cm/molecule as shown in figure 2 which is oneof the highest in the region 1.3 to 1.6 µm and includes only one transition around this band to avoid transition overlapwith the neighboring transitions when the pressure broadening 7 that could cause complicated absorption measurement.This is the first time absorption line of water vapor around 1369 nm band is used to measure relative humidity.3. WORKING PRINCIPLEA common way to relate the amount of water vapor present in the environment is to take the ratio of the actual watervapor pressure and the saturation water vapor pressure at a specific temperature. The resultant term, known as therelative humidity(RH), simply represents the ratio of the amount of water vapor present in the atmosphere to themaximum amount the atmosphere can hold and if often expressed as a percentage using the following equation 1,Relative Humidity (RH) = %100×wsv P P (1) where P w is the partial pressure of the water vapor and P ws is the saturation water vapor pressure.In this optical absorption humidity sensor, the presence of water vapor is determined according to the Beer-Lambert lawwhere the amount of water vapor is related to the power output 8 asCL o e P P α−= (2) where P is the output signal power, P o the received signal power, α is the absorption coefficient of the water vapor, C isthe amount of water vapor and L is the absorption path length. The power output will decrease when the relativehumidity is increased and vice versa with fix temperature condition. The holey fiber is used as a sensing element. Thetransmissions light that going through the holey fiber will be attenuated or absorb at certain wavelength cause by thewater vapor inside the holey fiber. The use of holey fiber to detect water vapor using direct absorption method isreported for the first time. A small gap between SMF and holey fiber is exposed to atmosphere to allow gas in and out ofthe holey fiber. By using a wide range of scanning wavelength scheme, a narrow-linewidth of DFB laser is tuned notonly the entire absorption feature but also non-absorption feature of water vapor as shown in figure 3 using saw-toothmodulation. A reference signal is constructed by using a reference point of non-absorption of water vapor at both side ofWavelength (nm)O p t i c a l p o w e r (d B m )Voltage (V)Figure 3. Example of a DFB saw-tooth modulation in one scanning periodof the absorption feature in one scanning period. The voltage changing at the peak absorption of water vapor absorptionwavelength is vary when the humidity level changes and defined as∆V = signal Sensor -signal Reference (3)The advantage of using this reference signal as zero absorption baseline is that the resulting ∆V signal is immune to the outside affection such as noise of laser source, fiber loss and unwanted attenuation in the probed region. This is because all these interferences will both affect the sensor and reference signal and therefore the ∆V signal intensity indicates the amount of water vapor independently of the received laser power.4.EXPERIMENTFigure 4. System design and hollow core fiber cross sectionFig. 4 shows the setup to detect relative humidity in atmospheric pressure and room temperature. The water vapor absorption band centered around 1368 nm is one of the strongest in the near infrared region based on the HITRAN database therefore a wavelength scan of the water vapor absorption peak around 1368.59 nm is chosen and realized by saw-tooth modulation current at 200Hz which is injected into distributed-feedback (DFB) laser and the output light from the hollow core fiber detected at photo-detector (Optiphase V500 The signal generation and acquisition, as well as the signal processing is done using a PC equipped with data acquisition (DAQ) card (model: NI-6215) at 50 kHz sampling rate. The scanning range of the absorption feature is around 0.25 nm. The ∆V signal intensity is used to gain a meaningful humidity measurement. In this work, hollow core fiber is picked as the holey fiber as this hollow core fiber can guide over the 98% of the light in the holey regions of the fiber9. The detection of humidity can be realized in bettersensitivity even at low humidity region as almost all the transmission light of hollow core fiber overlap with the air. The hollow core fiber consist of 8 rings of air holes arranged in a hexagonal pattern and one hollow core as depicted in figure 4 and guides light by a photonic bandgap effect. The cladding diameter is around 50 µm. One end of hollow core fiber is spliced to a standard optical fiber (SMF-28) using a fusion splicing machine with splice loss around 1 dB. A default program for splicing single mode fibers with optimized parameters was used to ensure repeatability of theprocess. On the other end, a small gap was adjusted to ~50 µm 10 for efficient filling while keeping good signal coupling efficiency using 3D stages and fixed to the V-groove for a permanent gap between the fibers. This gap is open to ambient atmospheres that act as a diffusion holes. The absorption path is equal to the length of the hollow core fiber that is 5 cm. The humidity response of the sensor is studied at room temperature and normal atmospheric pressure by placing it in an airtight enclosure. The humidity in the tight enclosure is varied by using a silica gel that can absorb the water vapor. An electronic relative humidity sensor was used to monitor the temperature and humidity internally for calibration. The maximum humidity that can be achieved in the enclosure is limit to 50%RH (room humidity) as no generation of water vapor involved in the experimental setup.5. RESULTSThe scanning sensor signal is averaging for 4s to reduce the noise and smooth the signals as shown in Fig. 2. The dip of the absorption at 1368.59 nm can be seen clearly in one scanning period.11.522.533.544.5Wavelength (nm)V o l t a g e (V )Figure 5. Sensor and reference signal The absorption in the sensor signal in this figure is caused by the room humidity and a reference signal is constructed based on both wings of absorption feature where there is no absorption of water vapor in these points of region by using combinations of waveform measurement and generation function in the LabVIEW. By analyzing the voltage difference between sensor signal and reference signal at peak absorption of water vapor (∆V) around 1368.59 nm wavelength using a LabVIEW peak-detector function, a meaningful relative humidity reading can be recorded in a normalized value. In this way, the real time measurement can be achieved without any further of the data processing. In figure 6, the sensor is calibrated with electronic sensor down to 20%RH only as this electronic sensor could not detect humidity level below than 20%RH. The reading of the relative humidity below than that is extrapolated based on calibrated relative humidity reading. The extrapolation data shows that the sensor can measure the low humidity level down to around 1%RH. In order to estimate the minimum detection of humidity level, a measurement of the fix humidity at 40%RH was performed for 300 s inside the airtight enclosure as shown in figure 7 and the statistical fluctuation over time is calculated. The mean voltage (μ) and standard deviation (σ) were found to be 0.87 and 425µ. The signal to noise ratio (SNR) was then calculated to be 2047 by dividing between the μ and σ value to estimate the sensitivity of the sensor 11. The sensitivity in term of the minimum detection of relative humidity for a SNR of unity is then estimated to be 0.02%RH. Practically, the wavelength scanning modulation at 200Hz applied to the DFB laser would help to reduce interferometric noises caused by multiple reflections but there appeared fringes that can shift when the fiber is moving and could not eliminated. Hence, external disturbances such as fiber bend would cause shift of the fringes and induce error in measurement.However, the results presented here were obtained in control laboratory environment to minimize the environmental disturbance.0.850.870.890.910.930.950.970.991%RH N o r m a l i z e d ΔV Figure 6. Range detection of the sensor0501001502002503000.80.820.840.860.880.9Time (s)N o r m a l i z e d ΔVFigure 7. Normalized ∆V signal for a fix humidity level at 40%RH for 5 minutes6. CONCLUSIONWe have demonstrated a novel relative humidity optical fiber sensor based on direct absorption spectroscopic technique at 1369 nm band using hollow core fiber and therefore does not require the use of a hygroscopic material. A saw-tooth scanning wavelength scheme is applied for humidity sensing and the relative humidity level is based on the normalized value of voltage difference between reference signal and sensor signal at the peak of the water vapor absorption. A 5 cm hollow core fiber with a small gap as a diffusion hole demonstrated a high humidity resolution or sensitivity of around 0.02%RH in the low humidity measurement condition from 0 to 50%RH. Although no measurement is done in the region of high humidity between 50 and 100%RH due to limited of experimental facility, it is expected that the sensor will work properly in the high humidity level based on the current sensitivity performance of the sensor.REFERENCES[1]Yeo, T.L., T.Sun and K.T.V Grattan, "Fibre-optic sensor technologies for humidity and moisture measurement," Sensors and Actuators A: Physical 144(2), 280-295 (2008).[2]Lauer, C., Szalay, S., Bohm, G., Lin, C., Kohler, F. and Amann, M.-C., "Laser hygrometer using a vertical-cavity surface-emitting laser (VCSEL) with an emission wavelength of 1.84 µm," Instrumentation and Measurement, IEEE Transactions 54(3), 1214-1218 (2005).[3]Jin, W., Xuan, H.F. and Ho, H.L., "Sensing with hollow-core photonic bandgap fibers," Meas. Sci. Technol. 21 094014, 1-12 (2010).[4]Hoo, Y.L., Liu, S., Ho, H.L. and Jin,W., "Fast response Microstructured Optical Fiber Methane Sensor With Multiple side-Openings,"Photonic Technology Letters, IEEE 22(5), 296-298 (2010).[5]Mathew, J., Semenova, Y., Rajan, G. and Farrell, G., "Humidity sensor based on photonic crystal fibre interferometer," Electronic Letters 46(19), 1341-1343 (2010).[6]Rothman, L.S., et al., "The HITRAN DATABASE 2008 molecular spectroscopic database," Journal of Quatitative Spectroscopy and Radiative Transfer 110(2), 533-572 (2009).[7] A. Ray, A. Bandyopadhyay, B. Ray, D. Biswas, and P. N. Ghosh, “Line-shape study of water vapor by tunable diode laser spectrometer in the 822-832 nm wavelength region,” Appl. Phys. B 79(7), 915-921 (2004)[8]Wang, H., Wang, Q., Chang, J., Zhang, X., Zhang, S. and Ni, J., "Measurement technique for methane concentration by wavelength scanning of a distributed-feedback laser," Laser Physics 18(4), 491-494 (2008).[9]Cubillas, A.M, et al., "High sensitive methane sensor based on a photonic bandgap fiber," Third European Workshop on Optical Fibre Sensors, 1-4 (2007).[10]Ritari, T., et al., "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express 12(17), 4080-4087 (2004).[11]Demtroder, W., [Laser Spectroscopy: Basic Concepts and Instrumentation], Springer, New York, 369-372 (2003).。
空心光纤工作原理一、空心光纤的定义和特点空心光纤,又称为气芯光纤,是一种用于光通信传输的特殊类型的光纤。
与传统的实心光纤不同,空心光纤中心是一个空气或真空芯,而不是玻璃或其他材料。
因此,它具有很多独特的特点:1. 低损耗:由于中心是空气或真空,所以在波长较大时(如1550nm),其损耗比实心光纤低得多。
2. 宽带:由于中心是空气或真空,所以其模式分散(Modal Dispersion)比实心光纤小得多。
因此,在高速数据传输方面具有更好的性能。
3. 大孔径:由于中心是空气或真空,所以其孔径比实心光纤大得多。
这使得它可以容易地与其他设备进行连接。
4. 灵活性:由于中心是空气或真空,所以其弯曲半径可以非常小。
这使得它适用于需要弯曲和形状复杂的应用。
二、基本结构1. 线芯:线芯是指光在传输时经过的中央区域。
在空心光纤中,线芯是一个空气或真空的圆形管道。
2. 包层:包层是指覆盖在线芯周围的材料。
它通常由高折射率的材料制成,以防止光波从线芯中逃逸,从而提高传输效率。
3. 外壳:外壳是指覆盖在包层周围的材料。
它通常由低折射率的材料制成,以防止光波从包层中逃逸,从而提高传输效率。
三、工作原理1. 入射角度当光线通过空心光纤时,它们会被反射回来,并沿着管道向前传播。
这种反射发生的角度取决于光线入射时的角度。
2. 反射当入射角度小于临界角时,光线将被反射回来,并沿着管道向前传播。
这种反射称为全内反射(Total Internal Reflection)。
3. 传输当入射角度大于临界角时,光线将无法被全内反射,并会从空心中心逃离。
因此,在空心光纤中传输的光波必须保持小于临界角的入射角度。
4. 谐振当光线在空心光纤中传输时,它们会与管道的内壁相互作用,并形成一种谐振(Resonance)模式。
这种谐振模式决定了光线在空心光纤中传输时的波长和频率。
四、应用1. 光通信由于其低损耗和宽带特性,空心光纤被广泛应用于光通信领域。
空心光纤安全操作及保养规程1. 前言空心光纤是一种用于数据传输的高速光纤通信线路。
作为现代通信领域的重要设备,空心光纤需要得到妥善的使用和保养,以确保其稳定性和可靠性,同时应当重视安全问题,避免因操作失误造成意外伤害。
为此,制定空心光纤安全操作及保养规程非常必要。
2. 安全操作2.1 环境要求在操作空心光纤时,应当保持操作环境清洁、干燥、宜人,并且避免尘埃、水汽等杂物进入光纤通道,影响通信质量。
同时,在操作前应当检查设备是否正常工作,以确保安全。
2.2 操作流程在操作空心光纤时,应当按照以下步骤进行:•步骤一:将光纤芯线端面磨平,去除表面氧化物和杂质。
•步骤二:将熔接机接通电源,预热至适当温度。
•步骤三:将光纤置于熔接“V型”槽中,对准预定方位。
•步骤四:按下“熔接”按钮,等待熔接完成。
•步骤五:检查熔接点质量是否符合标准,如满足要求则可继续进行下一道工序,否则需要重新进行熔接。
2.3 安全预防措施在操作空心光纤时,应当注意以下安全预防措施:•操作人员应当具备充分的技能和经验,并且全程戴好手套、口罩、护目镜等个人防护装备。
•熔接机应当放置在平稳的工作台面上,并且完好无损。
•操作前应当对设备进行彻底检查,确保设备正常工作。
•操作中应当注意安全,避免把手放入熔接机内部或接触机器的动作部分。
•操作完成后应当将设备清洗干净,并且归位存放。
3. 保养规程空心光纤应当定期进行维护和保养,以确保其正常工作。
下面是一些常见的保养规程:3.1 清洁光缆链光缆链是空心光纤通信系统的重要部分,经常需要清洗和保养。
具体步骤如下:•步骤一:取下连接器和光缆链,提取光缆链内部的光纤。
•步骤二:用纱布或干净的棉花轻轻擦拭光缆链的外部和连接器,将污垢和灰尘清除干净。
•步骤三:将光纤缠绕在固定的支架上,清除表面的氧化物和杂质,保持光滑。
3.2 检查熔接质量间歇性地检查熔接质量,以确保通信质量和稳定性。
具体步骤如下:•步骤一:使用光学显微镜检查熔点的清洁度和缺陷。
空心光纤工作原理介绍空心光纤是一种特殊的光纤结构,其核心区域为空心的,而光信号是通过空气或真空传输的。
相比于传统的实心光纤,空心光纤具有更低的传输损耗和更高的非线性效应,因此在光通信、光传感等领域有着广泛的应用。
本文将详细介绍空心光纤的工作原理。
空心光纤的结构空心光纤的结构由内到外可以分为三个区域:核心区、包层区和外包层区。
核心区核心区是空心光纤中最内部的区域,其直径通常为几个微米。
核心区是空心的,其中光信号通过空气或真空传输。
由于核心区是空心的,所以光信号的模式场分布与实心光纤有很大的差异。
包层区包层区是核心区的外部,其作用是包围核心区并保持光信号在核心区中传输。
通常,包层区由多个环形的玻璃或聚合物层组成,这些层具有不同的折射率。
包层区的设计可以使光信号在核心区中保持单模传输,从而减小传输损耗。
外包层区外包层区是空心光纤最外部的区域,通常由聚合物材料制成。
外包层区的主要作用是保护光纤的结构,防止其受到外部环境的损害。
空心光纤的工作原理空心光纤的工作原理可以通过两个方面来解释:空气光子晶体效应和空气通道效应。
空气光子晶体效应空心光纤的核心区由空气或真空组成,形成了一种光子晶体结构。
在这种结构中,光信号受到了光子晶体的周期性折射率变化的影响。
这种折射率变化可以通过调整空气压力或纤芯直径来实现。
当光信号传输到空气光子晶体结构中时,会发生布拉格散射现象,使得光信号在特定波长范围内被反射回来。
这种效应可以用于制造光纤滤波器、光纤放大器等光学器件。
空气通道效应空心光纤中的空气通道效应是指光信号在空心光纤中的传输特性。
由于核心区为空心的,光信号可以在空气中自由传播。
与实心光纤相比,空心光纤中的光信号传输损耗更低,这是因为光信号与固体材料的相互作用较小。
此外,由于核心区为空心的,空心光纤具有更高的非线性效应,可以用于光通信中的波长转换、光时钟等应用。
空心光纤的应用空心光纤由于其独特的结构和优越的性能,在光通信、光传感等领域有着广泛的应用。
光子晶体光纤空心光纤
光子晶体光纤是一种新型的光纤传输介质,其内部的光子晶体结构能够有效地控制光的传输和传播,提供了更高的传输速率和更低的传输损耗。
空心光纤是另一种特殊的光纤结构,与传统的实心光纤相比,其内部存在空气或真空的空腔,使光能够在空腔内传输,从而减少了光的传播损耗。
光子晶体光纤和空心光纤都具有独特的优势和应用领域。
光子晶体光纤的光子晶体结构可以通过改变晶格常数或填充材料来调控光的传输特性,从而实现对光的波长、偏振和模式等参数的控制。
这使得光子晶体光纤在光通信、光传感和光波导等领域具有广阔的应用前景。
空心光纤的空腔结构使得光能够在空气或真空中传输,减少了光与固体材料之间的相互作用,从而大大降低了传输损耗。
此外,空气或真空的介质使得光在空腔中的传播速度更快,进一步提高了传输效率。
因此,空心光纤在高功率激光传输、光纤传感和气体检测等领域有着广泛的应用。
光子晶体光纤和空心光纤的结合将会进一步扩展光纤传输的应用领域。
通过在空心光纤内部填充光子晶体结构,可以实现对光的更精细的控制和调控。
这种结合将使光纤传输在光通信、光传感和激光
加工等领域发挥更大的作用。
光子晶体光纤和空心光纤作为两种新型的光纤传输介质,分别具有独特的优势和应用领域。
它们的结合将会进一步推动光纤技术的发展,为光通信、光传感和光波导等领域提供更加高效和可靠的解决方案。
光子晶体光纤简介及原理中文摘要: 光子晶体光纤又被称为微结构光纤,近年来引起广泛关注,它的横截面上有较复杂的折射率分布,通常含有不同排列形式的气孔,这些气孔的尺度与光波波长大致在同一量级且贯穿器件的整个长度,光波可以被限制在光纤芯区传播。
光子晶体光纤有很多奇特的性质。
例如,可以在很宽的带宽范围内只支持一个模式传输;包层区气孔的排列方式能够极大地影响模式性质;排列不对称的气孔也可以产生很大的双折射效应,这为我们设计高性能的偏振器件提供了可能。
中文关键字:光子晶体光纤PCF导光机理PCF的特性英文摘要: In 1991, the emerging field of photonic crystals led to the development of photonic-crystal fiber which guides light by means of diffraction from a periodic structure, rather than total internal reflection. The first photonic crystal fibers became commercially available in 2000.[8] Photonic crystal fibers can be designed to carry higher power than conventional fiber, and their wavelength dependent properties can be manipulated to improve their performance in certain applications.英文关键字: photonic-crystal fiber光子晶体(PC)是一种介电常数随空间周期性变化的新型光学微结构材料,其概念是1987年分别由S. Jo n和E. Yablonovitch提出来的,就是将不同介电常数的介质材料在一维、二维或者三维空间组成具有光波长量级的折射率周期性变化的结构材料。
一、空芯光子带隙的概念空芯光子带隙是一种在光子晶体中出现的现象,它是指在光子带隙中心波长处,光在光子晶体中无法传播的现象。
这种现象是由于在光子带隙中心波长处,光子晶体的禁带宽度大于光的波长,导致光无法穿透光子晶体的内部,只能沿着光子晶体的表面传播。
空芯光子带隙具有许多优异的光学特性,如超大的模式面积、低损耗、高非线性等特点,因此在光通信、传感、激光器等领域具有广阔的应用前景。
二、空芯光子带隙光纤的设计原理1. 空芯光子带隙光纤的结构空芯光子带隙光纤是利用光子带隙效应设计制备的一种新型光纤,其结构是在光子晶体中形成一个空心的凹槽结构,使得光在凹槽中无法传播,只能沿着光子晶体的表面传播。
这种结构使得空芯光子带隙光纤具有极低的损耗和超大的模式面积,适用于传输波长范围非常广泛的光信号。
2. 空芯光子带隙光纤的设计原理空芯光子带隙光纤的设计原理是利用光子带隙效应限制光在光子晶体中的传播,形成一个空心结构,使得光只能沿着空芯光子带隙光纤的表面传播。
通过合理设计光子晶体的结构参数,可以实现对空芯光子带隙光纤的光学性能进行调控,使其适用于不同波长范围的光信号传输和操控。
三、空芯光子带隙光纤的制备技术1. 光子晶体的制备空芯光子带隙光纤的关键在于光子晶体的制备,通常采用的制备技术包括光子晶体的自组装、光子晶体的纳米加工等方法。
通过这些方法可以制备出具有特定结构参数的光子晶体,用于制备空芯光子带隙光纤。
2. 空芯光子带隙光纤的制备空芯光子带隙光纤的制备通常采用微纳加工技术,通过对光子晶体进行纳米加工,形成空心的凹槽结构,从而实现空芯光子带隙光纤的制备。
制备出的空芯光子带隙光纤具有均匀的结构和优异的光学性能。
四、空芯光子带隙光纤的应用前景1. 光通信领域空芯光子带隙光纤由于具有超大的模式面积和低损耗的优异光学性能,因此在光通信领域具有广泛的应用前景。
它可以应用于长距离、高速率的光通信系统中,实现可靠的光信号传输和操控。
空心光纤应用场景咱今儿就来唠唠这空心光纤的应用场景,嘿,可真是个有趣的玩意儿。
我记得头一回听说空心光纤的时候,心里还犯嘀咕呢,光纤不都是实心的嘛,这空心的能有啥用啊?后来一了解,嘿,不得了啊!先说说通信领域吧。
咱都知道,现在这信息时代,通信那是老重要啦。
以前那实心光纤就像一个挤满人的小胡同,信息在里头挤着走,有时候难免就慢点儿。
可这空心光纤就不一样啦,它就像一条宽敞的大马路,信息能在里头撒欢儿跑。
比如说在一些大城市,像北京、上海这种地方,人口密集,对通信的要求那是相当高啊。
要是用上空心光纤,那打电话、上网啥的,速度都快得跟飞似的,再也不用担心视频卡顿、电话掉线这些糟心事啦。
还有医疗这块儿。
医院那可是个救死扶伤的地儿,对医疗器械的要求那也是相当严格。
空心光纤在这儿可就派上大用场啦。
比如说在做一些微创手术的时候,医生需要把一些仪器伸进人体里去检查或者治疗。
这空心光纤就像一个小小的管道,它又细又软,能轻松地进到人体里头。
而且啊,它还能把光传进去,就像给医生装了一双“透视眼”,能清楚地看到身体里头的情况。
我有个朋友在医院工作,他跟我讲啊,有了这空心光纤,好多手术都变得更精准、更安全啦,病人也少受不少罪。
再讲讲工业生产吧。
在工厂里头,那是一片热火朝天的景象。
各种机器轰隆隆地响着,工人们忙得不可开交。
这空心光纤在这儿也能发挥大作用。
比如说在一些高温、高压的环境下,普通的光纤可能受不了,就像人在大太阳底下晒久了会中暑一样。
可空心光纤就不怕,它能在这种恶劣的环境下正常工作,把信息准确地传出来。
就好比一个勇敢的小战士,不怕苦不怕累,坚守在自己的岗位上。
还有啊,在传感领域,空心光纤也是一把好手。
比如说在一些大型建筑里,为了保证安全,需要时刻监测建筑的结构变化。
这空心光纤就能像一个灵敏的小耳朵,一点点风吹草动都逃不过它的“耳朵”。
要是建筑哪儿出现了裂缝或者变形,它马上就能察觉到,然后把信息传出去,让人们及时采取措施。
空心光子晶体光纤能够通过空气而不是玻璃导光,因此在很多应用领域它比传统的光纤更有优势并将最终取代传统的光纤。
光学物理学家探索的光子晶体材料应用中,光纤无疑是最具有前景的一项应用。
光子晶体光纤(PCF)是一种新型光波导,具有与普通光纤截然不同的特性。
这种新型光纤可以分为两个基本类型——折射率波导和带隙波导。
由于横向折射率分布有很大的自由度,所以折射率波导型光子晶体光纤可以设计成具有高度反常色散、非线性以及双折射等特性的光纤。
但是,在这些类型光纤中,大部分光线仍然在玻璃中传播。
带隙波导型与空心光纤公认是光子晶体光纤技术中最具革命性创新,在这类光子晶体光纤中,通过在光纤包层中产生光子带隙可以将光限制在中央的空心核中传播。
采用空心,而不是传统掺杂高纯度硅纤芯,其优点是光纤性能不受纤芯的材料特性限制。
传统光纤的损伤阈值、衰减、非线性效应和群速度色散等参数都要受到硅材料相应参数的影响。
通过合理设计,空心光纤可以实现超过99%的光在空气中而不是在玻璃中传播,从而大大降低了光纤材料特性对光学性质和光纤性能的影响。
因此在很多重要领域,空心光子晶体光纤(HC-PCF)比传统光纤更有优势。
与传统光纤不同,光子晶体光纤不是通过全内反射导光。
相反,光子晶体光纤导引光的原理与多层镜的反射原理非常类似。
多层镜是
通过众多介质面的同相反射达到全反射的效果。
在空心光子晶体光纤中,二维微小空气孔阵列贯穿整根光纤,它们的作用就相当于多层镜的各个介质层。
要将光限制在纤芯中,纤芯周围的小孔必须排成非常均匀的有规则的格子,同时,它们必须接近以至快要接触为止。
这样,包层的横截面就类似一个由硅细丝网组成蜂巢,有时候细丝小到
100nm粗。
这种网格相当于理想的反射镜,把光限制在纤芯中,但是网格的反射作用会受传播常数限制。
因此,空心光子晶体光纤的光谱响应范围与传统光纤差异较大,它只能在一定频率范围内导光,典型值是在中心频率20%左右的范围。
尽管这样,空心光子晶体光纤中的模式分布还是与传统单模光纤非常类似。
目前,通信光缆所用的光纤,基本上都是采用石英系光纤,由高纯度二氧化硅SO2(俗称石英玻璃)加入适量掺杂组成的。
近年来,还逐步开发出塑料光纤(POF),它是用一种透光聚合物制成的光纤。
因为可以利用聚合物成熟的简单拉制工艺,故成本比较低,且比较柔软,坚固,结构较粗(约达1mm),接续损耗较低。
目前,制作POF主要的材料有两类:一类是聚甲基丙烯酸甲脂聚合物(Polymer Polymethylmethacrylate);另一类是全氟树脂(Perfluorinated)。
前者主要适用于可见光650nm波段,每公里损
耗值约为数百分贝;后者可用于可见光波段,也可用于红外波段,但损耗也较大,只适用于100m左右的距离,带宽在GB级。
随着不断地研究开发,有可能进一步降低其损耗值。
不同的材料具有不同的光衰减性能和温度应用范围。
塑料光纤不但可用于接入网的最后100~1000米,也可以用于各种汽车、飞机、等运载工具上,是优异的短距离数据传输介质。