人教版九年级上册数学 24章复习题含答案。
- 格式:docx
- 大小:1.07 MB
- 文档页数:41
人教版九年级数学上册第24章《圆》单元练习题(含答案)一、单选题1.已知点P 在半径为8的O 外,则( )A .8OP >B .8OP =C .8OP <D .8OP ≥ 2.在O 中,AB ,CD 为两条弦,下列说法:①若AB CD =,则AB CD =;②若AB CD =,则2AB CD =;③若2AB CD =,则弧AB=2弧CD ;④若2AOB COD ∠=∠,则2AB CD =.其中正确的有( )A .1个B .2个C .3个D .4个 3.O 的半径为10cm ,弦//AB CD .若12cm,16cm AB CD ==,则AB 和CD 的距离为( ) A .2cm B .14cm C .2cm 或14cm D .2cm 或10cm 4.如图,正五边形ABCDE 和正三角形AMN 都是O 的内接多边形,则BOM ∠的度数是( )A .36︒B .45︒C .48︒D .60︒5.如图,,OA OB 是O 的两条半径,点C 在O 上,若80AOB ∠=︒,则C ∠的度数为( )A .30︒B .40︒C .50︒D .60︒ 6.如图1是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O 为圆心,OA ,OB 长分别为半径,圆心角120O ∠=︒形成的扇面,若3m OA =,1.5m OB =,则阴影部分的面积为( )A .24.25m πB .23.25m πC .23m πD .22.25m π 7.如图,点,,,,A B C DE 在O 上,,42AB CD AOB =∠=︒,则CED ∠=( )A .48︒B .24︒C .22︒D .21︒8.如图,ABC 内接于O ,CD 是O 的直径,40ACD ∠=︒,则B ∠=( )A .70°B .60°C .50°D .40°9.如图,△ABC 内接于⊙O ,∠A =50°.E 是边BC 的中点,连接OE 并延长,交⊙O 于点D ,连接BD ,则∠D 的大小为( )A .55°B .65°C .60°D .75°10.已知圆锥的母线长8cm ,底面圆的直径6cm ,则这个圆锥的侧面积是( )A .96πcm 2B .48πcm 2C .33πcm 2D .24πcm 211.将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上.点A ,B 的读数分别为86°,30°,则∠ACB 的度数是( )A .28°B .30°C .36°D .56°12.如图,点A ,B 的坐标分别为(2,0),(0,2)A B ,点C 为坐标平面内一点,1BC =,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( )A .21+B .122+C .221+D .1222- 二、填空题13.如图,在Rt ABC △甲,90ABC ︒∠=,2AB =,23BC =,以点B 为圆心,AB 的长为半径作圆,交AC 于点E ,交BC 于点F ,阴影部分的面积为__________(结果保留π).14.如图,在Rt AOB 中,23,30,OB A O =∠=︒的半径为1,点P 是AB 边上的动点,过点P 作O 的一条切线PQ (其中点Q 为切点),则线段PQ 长度的最小值为____.15.如图,将半径为10cm 的圆形纸片沿一条弦AB 折叠,折叠后弧AB 的中点C 与圆心O 重叠,则弦AB 的长度为________cm .16.如图,A 、B 是⊙O 上的两点,AC 是过A 点的一条直线,如果∠AOB =120°,那么当∠CAB 的度数等于________度时,AC 才能成为⊙O 的切线.17.如图,ABC 是O 的内接三角形.若=45ABC ∠︒,2AC =,则O 的半径是______.18.如图,在正五边形ABCDE 中,连结AC ,以点A 为圆心,AB 为半径画圆弧交AC 于点F ,连接DF .则∠FDC 的度数是 _____.三、解答题19.如图,AD ,BD 是O 的弦,AD BD ⊥,且28BD AD ==,点C 是BD 的延长线上的一CD=,求证:AC是O的切线.点,220.请用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,Rt△ABC中,∠C=90°.求作:一个⊙O,使⊙O与AB、BC所在直线都相切,且圆心O在边AC上.21.如图,四边形ABCD内接于120,,,求证:ABC是等边三角形.O AB AC ADC=∠=︒22.如图,AB 是O 的直径,过点A 作O 的切线AC ,点P 是射线AC 上的动点,连接OP ,过点B 作BD //OP ,交O 于点D ,连接PD .(1)求证:PD 是O 的切线;(2)当APO ∠的度数为______时,四边形POBD 是平行四边形.23.如图,Rt ABC △中,90C ∠=︒,点O 在AC 上,以OA 为半径的半圆O 分别交AB ,AC 于点D ,E ,过点D 作半圆O 的切线DF ,交BC 于点F .(1)求证:BF DF =;(2)若4AO CE ==,1CF =,求BF 的长.24.如图,AB 是⊙O 的直径,CD 是⊙O 的一条弦,AB ⊥CD ,连接AC ,OD .(1)求证:∠BOD =2∠A ;(2)连接DB ,过点C 作CE ⊥DB ,交DB 的延长线于点E ,延长DO ,交AC 于点F .若F 为AC 的中点,求证:直线CE 为⊙O 的切线.25.如图,AB 是O 的直径,CD 是O 的一条弦,,AB CD ⊥连接,.AC OD(1)求证:2;BOD A ∠=∠(2)连接DB ,过点C 作,CE DB ⊥交DB 的延长线于点E ,延长,DO 交AC 于点F ,若F 为AC 的中点,求证:直线CE 为O 的切线.26.石拱桥是我国古代人民勤劳和智慧的结晶(如图1),隋代建造的赵州桥距今约有1400年历史,是我国古代石拱桥的代表.如图2是根据某石拱桥的实物图画出的几何图形,桥的主桥拱是圆弧形,表示为AB .桥的跨度(弧所对的弦长)26m AB =,设AB 所在圆的圆心为O ,半径OC AB ⊥,垂足为D .拱高(弧的中点到弦的距离)5m CD =.连接OB .(1)直接判断AD 与BD 的数量关系;(2)求这座石拱桥主桥拱的半径(精确到1m )参考答案1.A2.A3.C4.C5.B6.D7.D8.C9.B10.D11.A12.B13.π33+ 14.2215.10316.6017.118.3619.证明:连接AB ,∵AD BD ⊥,且28BD AD ==∴AB 为直径,AB 2=82+42=80,∵CD =2,AD =4∴AC 2=22+42=20∵CD =2,BD =8,∴BC 2=102=100∴222AC AB CB +=,∴90BAC ∠=︒∴AC 是O 的切线.20.解:作∠ABC 的平分线交AC 于O 点,以O 点为圆心,OC 为半径作圆,则O 为所求作的圆.21.证明:∵四边形ABCD 内接于O , ∴180ADC ABC ∠+∠=︒,又∵120ADC ∠=︒,∴180********ABC ADC ∠=︒-∠=︒-︒=︒, ∵AB AC =,∴AB AC =,∴ABC 是等边三角形.22.解:证明:连接OD ,∵P A 切⊙O 于A ,∴P A ⊥AB ,即∠P AO =90°,∵OP ∥BD ,∴∠DBO =∠AOP ,∠BDO =∠DOP , ∵OD =OB ,∴∠BDO =∠DBO ,∴∠DOP =∠AOP ,在△AOP 和△DOP 中,AO DO AOP DOP PO PO =⎧⎪∠=∠⎨⎪=⎩,∴△AOP ≌△DOP (SAS ),∴∠PDO =∠P AO ,∵∠P AO =90°,∴∠PDO =90°,即OD ⊥PD ,∵OD 过O ,∴PD 是⊙O 的切线;(2)由(1)知:△AOP ≌△DOP ,∴P A =PD ,∵四边形POBD 是平行四边形,∴PD =OB ,∵OB =OA ,∴P A =OA ,∴∠APO =∠AOP ,∵∠P AO =90°,∴∠APO =∠AOP =45°.23.(1)证明:连接OD ,如图,∵半圆O 的切线DF ,∴90ODF ∠=︒.∴90ADO BDF ∠+∠=︒.∵90C ∠=︒,∴90OAD B ∠+∠=︒.∵OA OD =,∴OAD ADO ∠=∠.∴B BDF ∠=∠.∴BF DF =.(2)解:连接OF .∵4AO CE ==,AO OE =,∴8OC =.∵9090C ODF ∠=︒=∠=︒,1CF =,∴2222265OF OC CF OD DF =+=+=.又∵4OD =,∴7DF BF ==.24.(1)证明:如图,连接AD ,∵AB 是⊙O 的直径,AB ⊥CD ,∴BC BD =,∴∠CAB =∠BAD ,∵∠BOD =2∠BAD ,∴∠BOD =2∠CAB ;(2)证明:如图,连接OC ,AD ,∵F为AC的中点,∴DF⊥AC,∴AD=CD,∴∠ADF=∠CDF,∵BC BD=,∴∠CAB=∠DAB,∵OA=OD,∴∠OAD=∠ODA,∴∠CDF=∠CAB,∵OC=OD,∴∠CDF=∠OCD,∴∠OCD=∠CAB,∵BC BC=,∴∠CAB=∠CDE,∴∠CDE=∠OCD,∵∠E=90︒,∴∠CDE+∠DCE=90︒,∴∠OCD+∠DCE=90︒,即OC⊥CE,∵OC为半径,∴直线CE为⊙O的切线.25.(1)证明:设AB交CD于点H,连接OC,由题可知,∴=,90OC OD∠=∠=︒,OHC OHD()Rt Rt HL COH DOH ≅∴,COH DOH ∴∠=∠,BC BD ∴=,COB BOD ∴∠=∠,2COB A ∠=∠,2BOD A ∴∠=∠;(2)证明:连接AD ,OA OD =,OAD ODA ∠=∠∴,同理可得:OAC OCA ∠=∠,OCD ODC ∠=∠, ∵点H 是CD 的中点,点F 是AC 的中点,OAD ODA OAC OCA OCD ODC ∴∠=∠=∠=∠=∠=∠, 180OAD ODA OAC OCA OCD ODC ∠+∠+∠+∠+∠+∠=︒, 30OAD ODA OAC OCA OCD ODC ∴∠=∠=∠=∠=∠=∠=︒, 223060COB CAO ∴∠=∠=⨯︒=︒, AB 为O 的直径,90ADB ∴∠=︒,90903060ABD DAO ∴∠=-∠=︒-︒=︒,60ABD COB ∴∠=∠=︒,OC DE ∴∥,CE BE ⊥,∴直线CE 为O 的切线. 26.解:∵半径OC AB ⊥, ∴AD BD =.故答案为:AD BD =.(2)设主桥拱半径为R ,由题意可知26AB =,5CD =, ∴11261322BD AB ==⨯=,5OD OC CD R =-=-, 在Rt OBD △中,由勾股定理,得222OB BD OD =+, 即22213(5)R R =+-, 解得19.4R =,∴19R ≈,因此,这座石拱桥主桥拱半径约为19m。
九上数学24复习题答案一、选择题1. 下列哪个选项是正确的?A. 2x + 3 = 5x - 1B. 3x - 2 = 2x + 1C. 4x - 5 = 2x + 3D. 5x + 1 = 3x - 2答案:B2. 哪个方程的解是x = 2?A. 2x - 4 = 0B. 3x + 6 = 0C. 4x - 8 = 0D. 5x + 10 = 0答案:A3. 以下哪个表达式可以被简化为x + 3?A. 2x - 5 + 8B. 3x + 2 - 5C. 4x + 6 - 2D. 5x - 1 + 4答案:D二、填空题1. 如果一个数的三倍加上5等于15,那么这个数是______。
答案:22. 一个两位数,十位数字是x,个位数字是y,这个两位数可以表示为______。
答案:10x + y3. 如果一个三角形的两边长分别为3和4,那么第三边的长度x满足的条件是______。
答案:1 < x < 7三、解答题1. 解方程:3x - 7 = 2x + 8。
答案:首先将方程两边的x项合并,得到x = 15。
2. 一个工厂生产了x个零件,其中10%是次品。
如果次品数量是5个,那么总共生产了多少个零件?答案:首先根据次品率建立方程0.1x = 5,解得x = 50。
所以工厂总共生产了50个零件。
3. 一个长方形的长是宽的两倍,如果宽是4厘米,那么这个长方形的周长是多少?答案:首先根据题意,长是8厘米。
然后根据周长公式2(长+宽)计算,得到周长是24厘米。
第二十四章圆一、选择题1. 已知⊙O的半径为3 cm,OP=4 cm,则点P与⊙O的位置关系是( )A.点P在圆内B.点P在圆上C.点P在圆外D.无法确定2. 已知圆锥的底面半径为3 cm,母线长为4 cm,则圆锥的全面积是( )A.15π cm2B.21π cm2C.20π cm2D.24π cm23. 下列说法:①平分弦的直径垂直于弦;②三点确定一个圆;③相等的圆心角所对的弧相等;④垂直于半径的直线是圆的切线;⑤三角形的内心到三条边的距离相等.其中不正确的有( )个.A.1B.2C.3D.44. 如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35∘,则∠CAB的度数为( )A.35∘B.45∘C.55∘D.65∘5. 如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,连接AD,若∠C=22∘,则∠CDA的大小为( )A.112∘B.124∘C.129∘D.136∘6. 如图,在⊙O中,OC⊥AB,∠ADC=32∘,则∠OBA的度数是( )A.64∘B.58∘C.32∘D.26∘7. 在截面为半圆形的水槽内装有一些水,如图,水面宽AB为6分米,如果再注入一些水后,水面上升1分米,此时水面宽变为8分米,则该水槽面半径为( )A.3分米B.4分米C.5分米D.10分米8. 设P为⊙O外一点,若点P到⊙O的最短距离为3,最长距离为7,则⊙O的半径为( )A.3B.2C.4或10D.2或59. 如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若的值为( )QP=QO,则QCQAA.23−1B.23C.3+2D.3+210. 如图,在Rt△AOB中,OA=OB=4,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ,Q为切点,则线段PQ长度的最小值为( )A.5B.7C.23D.32二、填空题11. 如图,AB是⊙O的直径,C,D,E都是⊙O上的点,则∠1+∠2=.12. 如图:四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=n∘,则∠DCE=.13. 如图,CD是⊙O的直径,弦AB⊥CD于点E,若AB=6,CE:ED=1:9,则⊙O的半径是.14. 如图,菱形OABC的边长为2,且点A,B,C在⊙O上,则劣弧BC的长度为.15. 如图,AB是⊙O的直径,AC与⊙O相切于点A,CE∥AB交⊙O于点D,E,CD=2,AB=8.则AD=.16. 如图,矩形ABCD中,AB=2,BC=2,以B为圆心,BC为半径画弧,交AD于点E,则图中阴影部分的面积是.17. 如图所示,边长为2的正方形ABCD的顶点A,B在一个半径为2的圆上,顶点C,D在该圆内,将正方形ABCD绕点A逆时针旋转,当点D第一次落在圆上时,点C运动的路线长为.18. 在⊙O中,AB是⊙O的直径,AB=8 cm,AC=CD=BD,M是AB上一动点,CM+DM的最小值是cm.三、解答题19. 如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1) 请画出△ABC绕点O逆时针旋转90∘后的△A1B1C1;并写出A1,B1,C1三点的坐标.(2) 求出(1)中C点旋转到C1点所经过的路径长(结果保留π).20. 已知AB是半圆O的直径,OD⊥弦AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F,若AC=2,求OF的长.21. 如图,点O为Rt△ABC斜边AB上一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.(1) 求证:AD平分∠BAC.(2) 若∠BAC=60∘,OA=2,求阴影部分的面积(结果保留π).22. 如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连接BC.(1) 求证:AE=ED;(2) 若AB=10,∠CBD=36∘,求AC的长.23. 如图,半圆O的直径DE=12 cm,△ABC中,∠ACB=90∘,∠ABC=30∘,BC=12 cm,半圆O以2 cm/s的速度从左向右运动,在运动的过程中,点D,E始终在直线BC上,设运动时间为t(s),当t=0 s时,半圆O在△ABC的左侧,OC=8 cm.(1) 当t=8(s)时,试判断点A与半圆O的位置关系;(2) 当t为何值时,直线AB与半圆O所在的圆相切.24. 如图,点A是半径为12cm的⊙O上的一点,动点P从点A出发,以2πcm/s的速度沿圆周逆时针运动,当点P回到A点立即停止运动.(1) 在点P运动过程中,当∠POA=90∘时,求点P的运动时间.(2) 如图,点B是OA延长线上一点,AB=OA,当点P运动的时间为2s时,试判断直线BP与⊙O的位置关系,并说明理由.25. 已知四边形ABCD内接于⊙O,BC=CD,连接AC,BD.(1) 如图①,若∠CBD=36∘,求∠BAD的大小.(2) 如图②,若点E在对角线AC上,且EC=BC,∠EBD=24∘,求∠ABE的大小.答案一、选择题1. C2. B3. D4. C5. B6. D7. C8. B9. D10. B二、填空题11. 90∘12. n13. 514. 23π15. 416. 22−1−π217. 2π318. 8三、解答题19.(1) 如图,△A1B1C1为所作,A1,B1,C1三点的坐标分别为(−4,2),(−1,1),(−3,4);(2) OC=32+42=5,所以C点旋转到C1点所经过的路径长=90×π×5180=52π.20. ∵OD⊥AC,AC=2,∴AD=CD=1,∵OD⊥AC,EF⊥AB,∴∠ADO=∠OFE=90∘,∵OE∥AC,∴∠DOE=∠ADO=90∘,∴∠DAO+∠DOA=90∘,∠DOA+∠EOF=90∘,∴∠DAO=∠EOF,在△ADO和△OFE中,{∠DAO=∠EFO,∠DAO=∠FOE,OA=OE,∴△ADO≌△OFE(AAS),∴OF=AD=1.21.(1) ∵⊙O切BC于D,∴OD⊥BC,∵AC⊥BC,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠OAD=∠ADO,∴∠OAD=∠CAD,即AD平分∠CAB.(2) 设EO与AD交于点M,连接ED.∵∠BAC=60∘,OA=OE,∴△AEO是等边三角形,∴AE=OA,∠AOE=60∘,∴AE=AO=OD,又由(1)知,AC∥OD,即AE∥OD,∴四边形AEDO是菱形,则△AEM≌△DMO,∠EOD=60∘,∴S△AEM=S△DMO,∴S阴影=S扇形EOD=60π×22360=2π3.22.(1) ∵AB是⊙O的直径,∴∠ADB=90∘,∵OC∥BD,∴∠AEO=∠ADB=90∘,即OC⊥AD,∴AE=ED.(2) ∵OC⊥AD,∴AC=CD,∴∠ABC=∠CBD=36∘,∴∠AOC=2∠ABC=2×36∘=72∘,∴AC=72π×5180=2π.23.(1) ∵△ABC中,∠ACB=90∘,∠ABC=30∘,BC=12 cm,∴AC=tan30∘BC=43,当t=8时,如图,此时OC=8,在Rt△ACO中,AC=43,∴AO=AC2+OC2=47,∵半圆O的直径DE=12 cm,47>6,∴点A在半圆外;(2) ①如图1,过C点作CF⊥AB,交AB于F点;∵∠ABC=30∘,BC=12 cm,∴FO=6 cm;当半圆O与△ABC的边AB相切时,又∵圆心O到AB的距离等于6 cm,且圆心O又在直线BC上,∴O与C重合,即当O点运动到C点时,半圆O与△ABC的边AB相切;此时点O运动了8 cm,所求运动时间为t=82=4(s),②当点O运动到B点的右侧,且OB=12 cm时,如图2,过点O作OQ⊥直线AB,垂足为Q.在Rt△QOB中,∠OBQ=30,则OQ=6 cm,即OQ与半圆O所在的圆相切.此时点O运动了32 cm.所求运动时间为:t=32÷2=16 s,综上可知当t=4 s或16 s时,AB与半圆O所在的圆相切.24.(1) 当∠POA=90∘时,根据弧长公式可知点P运动的路程为⊙O周长的14或34,设点P运动的时间为t s,当点P运动的路程为⊙O周长的14时,2π⋅t=14⋅2π⋅12,解得t=3,当点P运动的路程为⊙O周长的34时,2π⋅t=34⋅2π⋅12,解得t=9,∴当∠POA=90∘时,点P运动的时间为3s或9s.(2) 如图,当点P运动的时间为2s时,直线BP与⊙O相切.理由如下:当点P运动的时间为2s时,点P运动的路程为4πcm,连接OP,PA,∵半径AO=12cm,∴⊙O的周长为24πcm,∴AP的长为⊙O周长的16,∴∠POA=60∘,∵OP=OA,∴△OAP是等边三角形,∴OP=OA=AP,∠OAP=60∘,∵AB=OA,∴AP=AB,∵∠OAP=∠APB+∠B,∴∠APB=∠B=30∘,∴∠OPB=∠OPA+∠APB=90∘,∴OP⊥BP,∴直线BP与⊙O相切.25.(1) ∵BC=CD,∴∠BDC=∠CBD=36∘,∴∠BAC=∠BDC=36∘,∵BC=CD,∴BC=CD,∴∠CAD=∠CBD=36∘,∠BAD=∠BAC+∠CAD=36∘+36∘=72∘.(2) ∠CEB=∠EAB+∠ABE(外角的应用),∵CE=CB,∴∠CEB=∠CBE=∠CBD+∠EBD,∴∠EAB+∠ABE=∠CBD+∠EBD,∵BC=CD,∴BC=CD,∴∠EAB=∠CBD,∴∠ABE=∠EBD=24∘.。
24.1垂直于弦的直径1. 在⊙O 中,AB 为弦,AB OC ⊥于点C ,交⊙O 于点D ,若5=AO ,2=CD ,则弦AB 的长为( )A.4B.6C.8D.102.如图,⊙O 的弦AB 垂直平分半径OC ,则四边形OACB ( ) A.是正方形 B.是长方形 C.是菱形 D.以上答案都不对3.设P 为半径6cm 的圆内的一点,它到圆心的距离为3.6cm,则经过点P 的最短弦的长度是 ( ).A .4.8cmB .7.2cmC .6.4cmD .9.6cm4.在直径是20cm 的⊙O 中,∠AOB 是60°,那么弦AB 的弦心距是( )5.若圆的半径3,圆中一条弦为52,则此弦中点到弦所对劣弧的中点的距离为 .6.兴隆蔬菜基地建圆弧形蔬菜大棚的剖面如右图所示,已知AB =16m ,半径OA =10m ,高度CD 为_____m.7.圆中一弦把和它垂直的直径分成3 cm 和4 cm 两部分,则这条弦长为________. 8.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm ,测得钢珠顶端离零件表面的距离为8mm ,如图所示, 则这个小孔的直径是 mm.9.已知:如图,AB 是⊙O 的弦,半径OC ,OD 分别交AB 于点E ,F ,且BF AE =.求证:OF OE =.10.已知:如图, ⊙O 的直径CD 垂直弦AB 于P , 且PA =4cm, PD =2cm .AB 第2题图第6题图DBAO CBA 8mm第8题图求:⊙O的半径长.11.如图,已知:⊙O中,弦AB与弦CD互相垂直,垂足为E,又AE=3,EB=7,求O点到CD的距离.12.已知:如图,AB,CD是⊙O的弦,且AB⊥CD于H,A H=4,B H=6,C H=3,D H=8.求:⊙O 的半径.13. 如图弓形的弦AB=6cm,弓形的高是1cm,求其所在圆的半径.14.某机械传动装置在静止时如图所示,连杆PB与B的运动所形成的⊙O交于点A,测量得PA=4cm,AB=8cm,⊙O的半径是5cm,求点P到圆心O 的距离.人教版九年级数学 24.2 点和圆、直线和圆的位置关系一、选择题1. 如图,AB为☉O的切线.切点为A,连接AO,BO,BO与☉O交于点C,延长BO与☉O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°2. 2018·眉山如图所示,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C,连接BC,若∠P=36°,则∠B等于( )A.27° B.32° C.36° D.54°3. 在数轴上,点A所表示的实数为5,点B所表示的实数为a,⊙A的半径为3,要使点B 在⊙A内,则实数a的取值范围是( )A.a>2 B.a>8C.2<a<8 D.a<2或a>84. (2019•益阳)如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D,下列结论不一定成立的是A.PA=PB B.∠BPD=∠APDC.AB⊥PD D.AB平分PD5. 选择用反证法证明“已知:在△ABC中,∠C=90°.求证:∠A,∠B中至少有一个角不大于45°.”时,应先假设( )A.∠A>45°,∠B>45° B.∠A≥45°,∠B≥45°C.∠A<45°,∠B<45° D.∠A≤45°,∠B≤45°6. 《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题:“今有勾八步,股十五步,问勾中容圆径几何.”其意思是:“今有直角三角形(如图),勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)的直径是多少.”答案是 ( )A.3步B.5步C.6步D.8步7. 已知⊙O的半径为2,点P在⊙O内,则OP的长可能是( )A.1 B.2C.3 D.48. 2020·武汉模拟在平面直角坐标系中,圆心为坐标原点,⊙O的半径为10,则P(-10,1)与⊙O的位置关系为( )A.点P在⊙O上B.点P在⊙O外C.点P在⊙O内D.无法确定二、填空题9. 如图,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A,B在x轴上,且OA=OB.P为⊙C上的动点,∠APB=90°,则AB长的最大值为________.10. 已知在△ABC中,AB=AC=5,BC=6,以点A为圆心,4为半径作⊙A,则直线BC与⊙A 的位置关系是________.11. 如图,菱形ABOC的边AB,AC分别与☉O相切于点D,E,若点D是AB的中点,则∠DOE= .12. 如图,边长为1的正方形ABCD的对角线相交于点O,以点A为圆心,以1为半径画圆,则点O,B,C,D中,点________在⊙A内,点________在⊙A上,点________在⊙A外.13. (2019•河池)如图,PA、PB是的切线,A、B为切点,∠OAB=38°,则∠P=_______ ___.14. 如图,在矩形ABCD中,AB=8,AD=12,过A,D两点的⊙O与BC边相切于点E.则⊙O 的半径为________.15. 如图,在扇形ABC中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,则∠AEB的度数为________.O16. 在Rt△ABC中,∠C=90°,AC=6,BC=8.若以C为圆心,R为半径所作的圆与斜边AB 只有一个公共点,则R的取值范围是______________.三、解答题17. 2020·凉山州模拟如图,⊙O的直径AB=10 cm,弦BC=6 cm,∠ACB的平分线交⊙O 于点D,交AB于点E,P是AB延长线上一点,且PC=PE.(1)求证:PC是⊙O的切线;(2)求AC,AD的长.18. 已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,求证:AC平分∠DAB;(2)如图②,当直线l与⊙O相交于点E,F时,求证:∠BAF=∠DAE.19. 已知:如图,在Rt△ABC中,∠C=90°,AC=8,AB=10.点P在AC上,AP=2.若⊙O的圆心在线段BP上,且⊙O与AB,AC分别切于点D,E.求:(1)△BAP的面积S;(2)⊙O的半径.人教版九年级数学 24.2 点和圆、直线和圆的位置关系课时训练-答案一、选择题1. 【答案】D[解析]∵AB为☉O的切线,∴∠OAB=90°.∵∠ABO=36°,∴∠AOB=90°-∠ABO=54°.∵OA=OD,∴∠ADC=∠OAD,∵∠AOB=∠ADC+∠OAD,∴∠ADC=∠AOB=27°,故选D.2. 【答案】A3. 【答案】C4. 【答案】D【解析】∵PA,PB是⊙O的切线,∴PA=PB,所以A成立;∠BPD=∠APD,所以B成立;∴AB⊥PD,所以C成立;∵PA,PB是⊙O的切线,∴AB⊥PD,且AC=BC,只有当AD∥PB,BD∥PA时,AB平分PD,所以D不一定成立,故选D.5. 【答案】A6. 【答案】C7. 【答案】A8. 【答案】B二、填空题9. 【答案】1610. 【答案】相切11. 【答案】60°[解析]连接OA,∵四边形ABOC是菱形,∴BA=BO,∵AB与☉O相切于点D,∴OD⊥AB.∵D是AB的中点,∴OD是AB的垂直平分线,∴OA=OB,∴△AOB是等边三角形,∴∠AOD=∠AOB=30°,同理∠AOE=30°,∴∠DOE=∠AOD+∠AOE=60°,故答案为60°.112. 【答案】O B,D C [解析] ∵四边形ABCD为正方形,∴AC⊥BD,AO=BO=CO=DO. 设AO=BO=x.由勾股定理,得AO2+BO2=AB2,即x2+x2=12,解得x=22(负值已舍去),∴AO =22<1,AC =2>1,∴点O 在⊙A 内,点B ,D 在⊙A 上,点C 在⊙A 外.13. 【答案】76【解析】∵是的切线,∴, ∴,∴,∴,故答案为:76.14. 【答案】254【解析】如解图,连接EO 并延长交AD 于点F ,连接OD 、OA ,则OD =OA.∵BC与⊙O 相切于点E ,∴OE ⊥BC ,∵四边形ABCD 是矩形,∴AD ∥BC ,∴EF ⊥AD ,∴DF =AF =12AD =6,在Rt △ODF 中,设OD =r ,则OF =EF -OE =AB -OE =8-r ,在Rt △ODF 中,由勾股定理得DF 2+OF 2=OD 2,即62+(8-r)2=r 2,解得r =254.∴⊙O 的半径为254.解图15. 【答案】135° [解析] 连接CE.∵∠ADC =90°,∴∠DAC +∠DCA =90°.∵⊙E 内切于△ADC ,∴∠EAC +∠ECA =45°,∴∠AEC =135°.由“边角边”可知△AEC ≌△AEB ,∴∠AEB =∠AEC =135°.16. 【答案】R =4.8或6<R ≤8 [解析] 当⊙C 与AB 相切时,如图①,过点C 作CD ⊥AB 于点D .根据勾股定理,得AB =AC 2+BC 2=62+82=10.根据三角形的面积公式,得12AB ·CD=12AC ·BC ,解得CD =4.8,所以R =4.8;当⊙C 与AB 相交时,如图②,此时R 大于AC 的长,而小于或等于BC 的长,即6<R ≤8.PA PB 、O PA PB PA OA =⊥,90PAB PBA OAP ∠=∠∠=︒,90903852PBA PAB OAB ∠=∠=︒-∠=︒-︒=︒180525276P ∠=︒-︒-︒=︒三、解答题17. 【答案】解:(1)证明:连接OC,如图所示.∵AB是⊙O的直径,∴∠ACB=90°.∵CD平分∠ACB,∴∠ACD=∠BCD=45°.∵PC=PE,∴∠PCE=∠PEC.∵∠PEC=∠EAC+∠ACE=∠EAC+45°,而∠EAC=90°-∠ABC,∠ABC=∠OCB,∴∠PCE=90°-∠OCB+45°=90°-(∠OCE+45°)+45°,∴∠OCE+∠PCE=90°,即∠PCO=90°,∴OC⊥PC,∴PC为⊙O的切线.(2)连接BD,如图所示.在Rt△ACB中,AB=10 cm,BC=6 cm,∴AC=AB2-BC2=102-62=8(cm).∵∠ACD=∠BCD=45°,∴∠DAB=∠DBA=45°,∴△ADB为等腰直角三角形,∴AD=22AB=5 2(cm).18. 【答案】证明:(1)如图①,连接OC.∵直线l与⊙O相切于点C,∴OC⊥l.又∵AD ⊥l ,∴AD ∥OC ,∴∠DAC =∠ACO.∵OA =OC ,∴∠ACO =∠CAO ,∴∠DAC =∠CAO ,即AC 平分∠DAB.(2)如图②,连接BF.∵AB 是⊙O 的直径,∴∠AFB =90°,∴∠BAF =90°-∠B.∵∠AEF =∠ADE +∠DAE =90°+∠DAE ,又由圆内接四边形的性质,得∠AEF +∠B =180°,∴90°+∠DAE +∠B =180°, ∴∠DAE =90°-∠B ,∴∠BAF =∠DAE.19. 【答案】解:(1)∵∠C =90°,AC =8,AB =10,∴在Rt △ABC 中,由勾股定理,得BC =6,∴△BAP 的面积S =12AP ·BC =12×2×6=6. (2)连接OD ,OE ,OA.设⊙O 的半径为r ,则S △BAP =12AB ·r +12AP ·r =6r , ∴6r =6,解得r =1.故⊙O 的半径是1.24.3 正多边形和圆(满分120分;时间:120分钟)一、选择题(本题共计 9 小题,每题 3 分,共计27分,)1. 如图,要拧开一个边长为a=6cm的正六边形螺帽,扳手张开的开口b至少为()A.6√2cmB.12cmC.6√3cmD.4√3cm2. 已知△ABC是⊙O的内接正三角形,△ABC的面积等于a,DEFG是半圆O的内接正方形,面积等于b,ab的值为()A.2B.√62C.3√35D.15√3163. 如图,已知四边形ABCD内接于⊙O,∠ABC=70∘,则∠ADC的度数是( )A.70∘B.110∘C.130∘D.140∘4. 已知正多边形的边心距与边长的比是√3:2,则此正多边形是()A.正三角形B.正方形C.正六边形D.正十二边形5. 四边形ABCD内接于⊙O.如果∠D=80∘,那么∠B等于()A.80∘B.100∘C.120∘D.160∘6. 若一个正九边形的边长为a,则这个正九边形的半径是()A.acos20B.asin20C.a2cos20D.a2sin207. 如图,四边形ABCD为⊙O的内接四边形,若∠BCD=110∘,则∠BAD为()A.140∘B.110∘C.90∘D.70∘8. 如图,把正△ABC的外接圆对折,使点A与劣弧的中点M重合,若BC=5,则折痕在△ABC 内的部分DE的长为()A.5√33B.10√33C.103D.529. 如图,某学校欲建一个喷泉水池,底面是半径为4m的正六边形,池底是水磨石地面,所要用的磨光机是半径为2dm的圆形砂轮,磨池底时,磨头磨不到的正六边形的部分为(单位:dm2)()A.2400√3−1200πB.8√3−400πC.8√3−23π D.24√3−23π二、填空题(本题共计 10 小题,每题 3 分,共计30分,)10. 圆内接正六边形的半径为2cm,则其边长等于________.11. 如图,四边形ABCD内接于⊙O,∠A=62∘,则∠C=________∘.12. 如图,四边形ABCD是⊙O的内接四边形,∠CBE是它的外角,若∠D=120∘,则∠CBE的度数是________.13. 如图,ABCDEF是⊙O的内接正六边形,若△BCF的面积为18√3cm2,则六边形ABCDEF的面积为________cm2.14 半径为1的圆的内接正三角形的边长为________.15 如图,四边形ABCD外切于⊙O,且AB=16,CD=10,则四边形的周长是________.16. 已知四边形ABCD内接于圆,且弧AB、BC的度数分别为140∘和100∘,若弧AD=2•弧DC,则∠BCD=________.17. 已知AB,AC分别是同一圆的内接正方形和内接正六边形的边,那么∠ACB度数为________ .18. 如图,四边形ABCD是⊙O的内接四边形,∠DCE=60∘,则∠BAD=________度.19. 小刚要在边长为10的正方形内设计一个有共同中心O的正多边形,使其边长最大且能在正方形内自由旋转.如图1,若这个正多边形为正六边形,此时EF=________;若这个正多边形为正三角形,如图2,当正△EFG可以绕着点O在正方形内自由旋转时,EF的取值范围为_________.三、解答题(本题共计 6 小题,共计63分,)20. (1)请你用直尺和圆规作出△ABC的外接圆(保留作图痕迹);(2)当AB=AC=4√5,BC=16,求△ABC的外接圆半径.21. 延长圆内接四边形ABCD的边AD和边BC,相交于点E,求证:△ABE∽△CDE.22. 如图,圆内接四边形ABCD,两组对边的延长线分别相交于点E、F,且∠E=40∘,∠F= 60∘,求∠A的度数.23. 如图,在等腰△PAD中,PA=PD,B是边AD上的一点,以AB为直径的⊙O经过点P,C是⊙O上一动点,连接AC,PC,PC交AB于点E,且∠ACP=60∘.(1)求证:PD是⊙O的切线.(2)连结OP,PB,BC,OC,若⊙O的直径是4,则:①当四边形APBC是矩形时,求DE的长;②当DE=________时,四边形OPBC是菱形.24 如图,四边形ABCD是⊙O的内接四边形,∠CBE是它的一个外角.求证:∠D=∠CBE.25. 问题提出(1)如图①,在⊙O中,点M、N分别是⊙O上的点,若OM=4,则MN的最大值为________.问题探究(2)如图②,在△ABC中,AB=BC,∠ABC=120∘,AC=6,求△ABC外接圆的半径及AB+BC 的长;问题解决(3)如图③.某旅游区有一个形状为四边形ABCD的人工湖,已知AD//BC,AD⊥AB,AB= 180m,BC=300m,AD>BC,为了营造更加优美的旅游环境,旅游区管委员会决定在四边形ABCD内建一个湖心小岛P,并分别修建观光长廊PB和PC,且PB和PC相互垂直.为了容纳更多的游客,要使线段PB、PC之和尽可能的大.试问PB+PC是否存在最大值?若存在,请求出PB+PC的最大值,若不存在,请说明理由.(观光长廊的宽度忽略不计)24.3 正多边形和圆(满分120分;时间:120分钟)一、选择题(本题共计 9 小题,每题 3 分,共计27分,)1. 如图,要拧开一个边长为a=6cm的正六边形螺帽,扳手张开的开口b至少为()A.6√2cmB.12cmC.6√3cmD.4√3cm2. 已知△ABC是⊙O的内接正三角形,△ABC的面积等于a,DEFG是半圆O的内接正方形,的值为()面积等于b,abA.2B.√62C.3√35D.15√3163. 如图,已知四边形ABCD内接于⊙O,∠ABC=70∘,则∠ADC的度数是( )A.70∘B.110∘C.130∘D.140∘4. 已知正多边形的边心距与边长的比是√3:2,则此正多边形是()A.正三角形B.正方形C.正六边形D.正十二边形5. 四边形ABCD内接于⊙O.如果∠D=80∘,那么∠B等于()A.80∘B.100∘C.120∘D.160∘6. 若一个正九边形的边长为a,则这个正九边形的半径是()A.acos20B.asin20C.a2cos20D.a2sin207. 如图,四边形ABCD为⊙O的内接四边形,若∠BCD=110∘,则∠BAD为()A.140∘B.110∘C.90∘D.70∘8. 如图,把正△ABC的外接圆对折,使点A与劣弧的中点M重合,若BC=5,则折痕在△ABC内的部分DE的长为()A.5√33B.10√33C.103D.529. 如图,某学校欲建一个喷泉水池,底面是半径为4m的正六边形,池底是水磨石地面,所要用的磨光机是半径为2dm的圆形砂轮,磨池底时,磨头磨不到的正六边形的部分为(单位:dm2)()A.2400√3−1200πB.8√3−400πC.8√3−23π D.24√3−23π二、填空题(本题共计 10 小题,每题 3 分,共计30分,)10. 圆内接正六边形的半径为2cm,则其边长等于________.11. 如图,四边形ABCD内接于⊙O,∠A=62∘,则∠C=________∘.12. 如图,四边形ABCD是⊙O的内接四边形,∠CBE是它的外角,若∠D=120∘,则∠CBE的度数是________.13. 如图,ABCDEF是⊙O的内接正六边形,若△BCF的面积为18√3cm2,则六边形ABCDEF的面积为________cm2.14 半径为1的圆的内接正三角形的边长为________.15 如图,四边形ABCD外切于⊙O,且AB=16,CD=10,则四边形的周长是________.16. 已知四边形ABCD内接于圆,且弧AB、BC的度数分别为140∘和100∘,若弧AD=2•弧DC,则∠BCD=________.17. 已知AB,AC分别是同一圆的内接正方形和内接正六边形的边,那么∠ACB度数为________ .18. 如图,四边形ABCD是⊙O的内接四边形,∠DCE=60∘,则∠BAD=________度.19. 小刚要在边长为10的正方形内设计一个有共同中心O的正多边形,使其边长最大且能在正方形内自由旋转.如图1,若这个正多边形为正六边形,此时EF=________;若这个正多边形为正三角形,如图2,当正△EFG可以绕着点O在正方形内自由旋转时,EF的取值范围为_________.三、解答题(本题共计 6 小题,共计63分,)20. (1)请你用直尺和圆规作出△ABC的外接圆(保留作图痕迹);(2)当AB=AC=4√5,BC=16,求△ABC的外接圆半径.21. 延长圆内接四边形ABCD的边AD和边BC,相交于点E,求证:△ABE∽△CDE.22. 如图,圆内接四边形ABCD,两组对边的延长线分别相交于点E、F,且∠E=40∘,∠F= 60∘,求∠A的度数.23. 如图,在等腰△PAD中,PA=PD,B是边AD上的一点,以AB为直径的⊙O经过点P,C是⊙O上一动点,连接AC,PC,PC交AB于点E,且∠ACP=60∘.(1)求证:PD是⊙O的切线.(2)连结OP,PB,BC,OC,若⊙O的直径是4,则:①当四边形APBC是矩形时,求DE的长;②当DE=________时,四边形OPBC是菱形.24 如图,四边形ABCD是⊙O的内接四边形,∠CBE是它的一个外角.求证:∠D=∠CBE.25. 问题提出(1)如图①,在⊙O中,点M、N分别是⊙O上的点,若OM=4,则MN的最大值为________.问题探究 (2)如图②,在△ABC 中,AB =BC,∠ABC =120∘,AC =6,求△ABC 外接圆的半径及AB +BC 的长;问题解决(3)如图③.某旅游区有一个形状为四边形ABCD 的人工湖,已知AD//BC ,AD ⊥AB ,AB =180m ,BC =300m ,AD >BC ,为了营造更加优美的旅游环境,旅游区管委员会决定在四边形ABCD 内建一个湖心小岛P ,并分别修建观光长廊PB 和PC ,且PB 和PC 相互垂直.为了容纳更多的游客,要使线段PB 、PC 之和尽可能的大.试问PB +PC 是否存在最大值?若存在,请求出PB +PC 的最大值,若不存在,请说明理由.(观光长廊的宽度忽略不计)人教版 九年级数学 24.4 弧长和扇形面积一、选择题1. 如图在等边三角形ABC 中,将边AC 逐渐变成以BA 为半径的AC ︵,其他两边的长度不变,则∠ABC 的度数由60°变为( )图A .(180π)°B .(120π)°C .(90π)°D .(60π)°2. 一个扇形的半径为6,圆心角为120°,则该扇形的面积是( )A .2πB .4πC .12πD .24π3. (2020·聊城)如图,有一块半径为1m ,圆心角为90°的扇形铁皮,要把它做成一个圆锥形容器(接缝忽略不计),那么这个圆锥形容器的高为( )A .41m B .43m C .415m D .23m 4. (2020·聊城)如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为点M ,连接OC ,DB ,如果OC∥DB ,OC =23,那么图中阴影部分的面积是( )A .πB .2πC .3πD .4π5. 2019·天水模拟 一个圆锥的轴截面是一个正三角形,则圆锥侧面展开图形的圆心角是( ) A .60° B .90° C .120° D .180°6. 用圆心角为120°,半径为6 cm 的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是( )A. 2 cm B .3 2 cm C .4 2 cm D .4 cm7. (2020·苏州)如图,在扇形OAB 中,已知90AOB ∠=︒,2OA =,过AB 的中点C作CD OA ⊥,CE OB ⊥,垂足分别为D 、E ,则图中阴影部分的面积为( )AM CBDA.1π-B.12π- C.12π-D.122π-8. 2018·黑龙江 如图在△ABC 中,AB =5,AC =3,BC =4,将△ABC 绕点A 按逆时针方向旋转40°得到△ADE ,点B 经过的路径为弧BD ,则图阴影部分的面积为( )图A.143π-6B.259π C.338π-3D.33+π二、填空题9. (2020·湘潭)如图,在半径为6的⊙O 中,圆心角60AOB ︒∠=,则阴影部分面积为________.10. (2020·绥化)已知圆锥的底面圆的半径是2.5,母线长是9,其侧面展开图的圆心角是______度.11. 如图所示,在△ABC 中,AB =BC =2,∠ABC =90°,则图中阴影部分的面积是________.12. 如图,以点O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,点P 为切点,AB =123,OP =6,则劣弧AB ︵的长为________.(结果保留π)13. 如图所示,有一直径是 2 米的圆形铁皮,现从中剪出一个圆心角是90°的最大扇形ABC ,则:(1)AB 的长为________米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为________米.14. 已知一个圆心角为270°,半径为3 m 的扇形工件未搬动前如图示,A ,B 两点触地放置,搬动时,先将扇形以点B 为圆心,做如图示的无滑动翻转,再使它紧贴地面滚动,当A ,B 两点再次触地时停止,则圆心O 所经过的路线长为________m .(结果用含π的式子表示)15. (2020·新疆)如图,⊙O 的半径是2,扇形BAC 的圆心角为60°,若将扇形BAC 剪下转成一个圆锥,则此圆锥的底面圆的半径为____________.16. 如图中的小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”(阴影部分)图案的面积为________.三、解答题17. 如图,AB 是半圆O 的直径,C 是半圆O 上的一点,AC 平分∠DAB ,AD ⊥CD ,垂足为D ,AD 交半圆O 于点E ,连接CE.(1)判断CD 与半圆O 的位置关系,并证明你的结论;(2)若E 是AC ︵的中点,半圆O 的半径为1,求图中阴影部分的面积.18. (2020·内江)如图,AB 是⊙O 的直径,C 是⊙O 上一点,ODBC 于点D ,过点C 作⊙O 的切线,交OD 的延长线于点E ,连结BE . (1)求证:BE 是⊙O 的切线;(2)设OE 交⊙O 于点F ,若2DF BC ==,EF 的长; (3)在(2)的条件下,求阴影部分的面积.19. 如图,在正方形ABCD 中,AD =2,E 是AB 的中点,将△BEC 绕点B 逆时针旋转90°后,点E 落在CB 的延长线上的点F 处,点C 落在点A 处,再将线段AF 绕点F 顺时针旋转90°得线段FG ,连接EF ,CG. (1)求证:EF ∥CG ;(2)求点C ,A 在旋转过程中形成的AC ︵,AG ︵与线段CG 所围成的阴影部分的面积.人教版 九年级数学 24.4 弧长和扇形面积 课时训练-答案一、选择题1. 【答案】A [解析] 设变形后的∠B =n °,AB =AC ︵的长=a .由题意可得n180π·a =a ,解得n =180π.2. 【答案】C [解析] 根据扇形的面积公式,S =120×π×62360=12π.故选C.3. 【答案】C 【解析】先利用弧长公式求得圆锥的底面半径,再利用勾股定理求圆锥的高.设圆锥形容器底面圆的半径为r ,则有2πr=180190⋅π,解得r =41,则圆锥的高为22)41(1-=415(m).4. 【答案】B【解析】借助圆的性质,利用等积转化求解阴影部分的面积.由垂径定理,得CM =DM ,∵OC ∥DB ,∴∠C =∠D ,又∵∠OMC =∠BMD ,∴△OMC ≌△BMD(ASA),∴OM =BM =21OB =21OC ,∴cos ∠COM =OC OM =21,∴∠COM =60°.∴S 阴影=S 扇形BOC =360)32(602⋅π=2π.5. 【答案】D6. 【答案】C [解析] 设纸帽底面圆的半径为r cm ,则2πr =120×π×6180,解得r =2.设圆锥的高为h cm ,由勾股定理得h2+r2=62,所以h2+22=62,解得h =4 2.7. 【答案】B【解析】本题考查了不规则图形面积的计算,连接OC ,由题意得∠DOC=∠BOC=45°,四边形OECD 为正方形,OC=2,由特殊角的三角函数得OE=OD=1,S 阴影=S 扇形OAB -S 正方形CEOD =290(2)360π⨯-12=2π-1,因此本题选B .8. 【答案】B [解析] ∵AB =5,AC =3,BC =4,∴AC 2+BC 2=25=AB 2,∴△ABC 为直角三角形.由旋转的性质得,△ADE 的面积=△ABC 的面积,由图可知,阴影部分的面积=△ADE 的面积+扇形ADB 的面积-△ABC 的面积, ∴阴影部分的面积=扇形ADB 的面积=40π×52360=259π.二、填空题9. 【答案】6π【解析】本题考查了扇形面积的计算,解题的关键是熟记扇形面积的计算公式.阴影部分面积为26066360ππ⨯=,故答案为:6π.10. 【答案】100【解析】设圆心角的度数是n ,则2π×2.5=9180n π.解得n =100.11. 【答案】π-2 [解析] ∵在△ABC 中,AB =BC =2,∠ABC =90°,∴△ABC 是等腰直角三角形,∴S 阴影=S 半圆AB +S 半圆BC -S △ABC=12π×(22)2+12π×(22)2-12×2×2 =π-2.12. 【答案】 8π 【解析】∵AB 是小圆的切线,∴OP ⊥AB ,∴AP =12AB =6 3.如解图,连接OA ,OB ,∵OA =OB ,∴∠AOB =2∠AOP.在Rt △AOP 中,OA =OP 2+AP 2=12,tan ∠AOP =AP OP =636=3,∴∠AOP =60°.∴∠AOB =120°,∴劣弧AB 的长为120π·12180=8π.13. 【答案】(1)1 (2)14[解析] (1)如图,连接BC.∵∠BAC =90°,∴BC 为⊙O 的直径,即BC = 2. ∵AB =AC ,AB2+AC2=BC2=2, ∴AB =1(米).(2)设所得圆锥的底面圆的半径为r 米. 根据题意,得2πr =90·π·1180,解得r =14.14. 【答案】6π [解析] 由题意易知∠AOB =90°,OA =OB ,∴∠ABO =45°,圆心O 旋转的长度为2×45π×3180=3π2(m),圆心O 平移的距离为270π×3180=9π2(m),则圆心O 经过的路线长为3π2+9π2=6π(m).15.【解析】本题考查了垂径定理,弧长公式,圆锥的侧面展开图.连接OA ,OB ,OC ,过点O 作OD ⊥AC 于点D .∵AB =AC ,OB =OC ,OA =OA ,所以△OAB ≌△OAC ,所以∠OAB =∠OAC =12∠BAC =12×60°=30°.在Rt △OAD 中,因为∠OAC =30°,OA =2,所以OD =1,AD 因为OD ⊥AC ,所以AC =2AD =BC l =60180×π×π.设此圆锥的底面圆的半径为r ,则r .16. 【答案】2π-4 [解析] 如图所示,由题意,得阴影部分的面积=2(S 扇形OAB -S △OAB)=2(90π×22360-12×2×2)=2π-4. 故答案为2π-4.三、解答题17. 【答案】解:(1)CD 与半圆O 相切.证明:∵AC 平分∠DAB ,∴∠DAC =∠BAC.∵OA =OC ,∴∠BAC =∠OCA ,∴∠DAC =∠OCA ,∴OC ∥AD.∵AD ⊥CD ,∴OC ⊥CD.又∵OC 为半圆O 的半径,∴CD 与半圆O 相切.(2)连接OE.∵AC 平分∠DAB ,∴∠DAC =∠BAC ,∴EC ︵=BC ︵.又∵E 是AC ︵的中点,∴AE ︵=EC ︵=BC ︵,S 弓形AE =S 弓形CE ,∴∠BOC =∠EOC =60°.又∵OE =OC ,∴△OEC 是等边三角形,∴∠ECO =60°,CE =OC =1.由(1)得OC ⊥CD ,∴∠OCD =90°,∴∠DCE =30°,∴DE =12,DC =32, ∴S 阴影=S △DEC =12×12×32=38.18. 【答案】(1)证明:连接OC ,如图,∵OD ⊥BC ,∴CD=BD ,∴OE 为BC 的垂直平分线,∴EB=EC ,∴∠EBC=∠ECB ,∵OB=OC ,∴∠OBC=∠OCB ,∴∠OBC+∠EBC=∠OCB+∠ECB ,即∠OBE=∠OCE ,∵CE 为⊙O 的切线,∴OC ⊥CE ,∴∠OCE=90°, ∴∠OBE=90°,∴OB ⊥BE ,∴BE 与⊙O 相切.(2)设⊙O 的半径为R ,则OD=R-DF=R-2,OB=R ,在Rt △OBD 中,BD=12BC=∵OD2+BD2=OB2,∴222(2)R R -+=,解得R=4,∴OD=2,OB=4,∴∠OBD=30°,∴∠BOD=60°,∴在Rt △OBE 中,∠BEO=30º,OE=2OB=8,∴EF=OE-OF=8-4=4,即EF=4;(3)由∠OCD=∠OBD=30º和OD ⊥BC 知:∠COD=∠BOD=60º,∴∠BOC=120º,又BC=OE=8,∴=S OBEC S S -阴影四边形扇形OBC =21120482360π⨯⨯ 163π=,【解析】本题考查了切线的判定与性质、垂径定理、扇形面积的计算、含30º角的直角三角形边角关系、勾股定理等知识,熟练掌握每个知识点是解答的关键.(1)连接OC ,如图,根据垂径定理由OD ⊥BC 得到CD=BD ,则OE 为BC 的垂直平分线,所以EB=EC ,根据等腰三角形的性质得∠EBC=∠ECB ,加上∠OBC=∠OCB ,则∠OBE=∠OCE ;再根据切线的性质得∠OCE=90°,所以∠OBE=90°,然后根据切线的判定定理得BE 与⊙O 相切;(2)设⊙O 的半径为R ,则OD=R-DF=R-2,OB=R ,在Rt △OBD ,利用勾股定理解得R=4,再利用含30º角的直角三角形边角关系可求得OE ,利用EF=OE-OF 即可解答;(3)利用(2)中可求得∠BOC=120º,然后利用=S OBEC S S 阴影四边形扇形OBC 代入数值即可求解.19. 【答案】解:(1)证明:∵四边形ABCD 是正方形,∴AB =BC =AD =2,∠ABC =90°.∵△BEC 绕点B 逆时针旋转90°得△BFA ,∴△BFA ≌△BEC ,∴∠FAB =∠ECB ,∠ABF =∠CBE =90°,AF =CE ,∴∠AFB +∠FAB =90°.∵线段AF 绕点F 顺时针旋转90°得线段FG ,∴∠AFB +∠CFG =∠AFG =90°,AF =FG ,∴∠CFG =∠FAB =∠ECB ,CE =FG ,∴CE 綊FG ,∴四边形EFGC 是平行四边形,∴EF ∥CG.(2)∵E 是AB 的中点,∴AE =BE =12AB. ∵△BFA ≌△BEC ,∴BF =BE =12AB =1, ∴AF =AB2+BF2= 5.由(1)知四边形EFGC 是平行四边形,FC 为其对角线,∴点G 到FC 的距离等于点E 到FC 的距离,即BE 的长,∴S 阴影=S 扇形BAC +S △ABF +S △FGC -S 扇形FAG =90π·22360+12×2×1+12×(1+2)×1-90π·(5)2360=52-π4.。
【期末专项复习】第24章:圆压轴题专项训练1.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB,连接DO并延长交CB的延长线于点E.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.2.如图,AB是⊙O的直径,AC平分∠DAB交⊙O于点C,过点C的直线垂直于AD 交AB的延长线于点P,弦CE交AB于点F,连接BE.(1)求证:PD是⊙O的切线;(2)若PC=PF,试证明CE平分∠ACB.3.如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以A为直径的⊙O上.(1)求证:BC是⊙O的切线;(2)若DC=4,AC=6,求圆心O到AD的距离.4.在直角三角形ABC中,∠C=90°,∠BAC的角平分线AD交BC于D,作AD的中垂线交AB于O,以O为圆心,OA为半径画圆,则BC与⊙O的位置关系为证明你的猜想.5.如图,AB为⊙O的直径,直线BM⊥AB于点B,点C在⊙O上,分别连接BC,AC,且AC的延长线交BM于点D,CF为⊙O的切线交BM于点F.(1)求证:CF=DF;(2)连接OF,若AB=10,BC=6,求线段OF的长.6.如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,∠D =2∠A.(1)求证:CD是⊙O的切线;(2)求证:DE=DC;(3)若OD=5,CD=3,求AC的长.7.如图,直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣1),点D在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CBO.(1)请直接写出⊙M的直径,并求证BD平分∠ABO;(2)在线段BD的延长线上寻找一点E,使得直线AE恰好与⊙M相切,求此时点E 的坐标.8.如图,在△ABC中,BA=BC,以AB为直径作⊙O,交AC于点D,连接DB,过点D作DE⊥BC,垂足为E.(1)求证:AD=CD.(2)求证:DE为⊙O的切线.(3)若∠C=60°,DE=,求⊙O半径的长.9.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于点D、E,过点D作DF⊥AC于点F.(1)若⊙O的半径为3,∠CDF=15°,求阴影部分的面积;(2)求证:DF是⊙O的切线;(3)求证:∠EDF=∠DAC.10.已知:△ABC内接于⊙O,AB是⊙O的直径,作EG⊥AB于H,交BC于F,延长GE交直线MC于D,且∠MCA=∠B,求证:(1)MC是⊙O的切线;(2)△DCF是等腰三角形.11.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连接AC,过上一点E作EG∥AC交CD的延长线于点G,连接AE交CD于点F,且EG=FG,连接CE.(1)求证:EG是⊙O的切线;(2)延长AB交GE的延长线于点M,若AH=3,CH=4,求EM的值.12.如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB 的延长线交于点P,且PC=PB.(1)求证:BG∥CD;(2)设△ABC外接圆的圆心为O,若AB=DH,∠OHD=80°,求∠BDE的大小.13.已知:AB为⊙O的直径,AB=AC,BC交⊙O于点D,DE⊥AC于E.(1)求证:DE为⊙O的切线;(2)连接BE交圆于F,连AF并延长ED于G,若GE=2,AF=3,求∠EAF的度数.14.如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O 的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.15.如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.16.已知BC是⊙O的直径,点D是BC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.(1)求证:直线AD是⊙O的切线;(2)若AE⊥BC,垂足为M,⊙O的半径为4,求AE的长.17.如图,以△ABC的边AC为直径的⊙O恰为△ABC的外接圆,∠ABC的平分线交⊙O于点D,过点D作DE∥AC交BC的延长线于点E.(1)求证: DE是⊙O的切线;(2)若AB=2,BC=,求DE的长.18.如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是OA的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.参考答案1.(1)证明:连接OC.∵CB=CD,CO=CO,OB=OD,∴△OCB≌△OCD,∴∠ODC=∠OBC=90°,∴OD⊥DC,∴DC是⊙O的切线.(2)解:设⊙O的半径为r.在Rt△OBE中,∵OE2=EB2+OB2,∴(8﹣r)2=r2+42,∴r=3,∵tan∠E==,∴=,∴CD=BC=6,在Rt△ABC中,AC===6.2.证明:(1)连接OC,如图,∵AC平分∠DAB,∴∠1=∠2,∵OA=OC,∴∠1=∠3,∴∠2=∠3,∴OC∥AD,∵AD⊥CD,∴OC⊥CD,∴PD是⊙O的切线;(2)∵OC⊥PC,∴∠PCB+∠BCO=90°,∵AB为直径,∴∠ACB=90°,即∠3+∠BCO,∴∠3=∠PCB,而∠1=∠3,∴∠1=∠PCB,∵PC=PF,∴∠PCF=∠PFC,而∠PCF=∠PCB+∠BCF,∠PFC=∠1+∠ACF,∴∠BCF=∠ACF,即CE平分∠ACB.3.(1)证明:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,又∵∠C=90°,∴∠ODB=∠C=90°,∴OD⊥BC,(2)过O作OF⊥AD于F,由勾股定理得:AD==2,∴DF=AD=,∵∠OFD=∠C=90°,∠ODA=∠CAD,∴△ACD∽△DFO,∴,∴,∴FO=,即圆心O到AD的距离是.4.解:BC与⊙O相切.理由如下:连接OD,如图,∵AD平分∠CAB,∴∠1=∠2,∵AD的中垂线交AB于O,∴OA=OD,∴∠2=∠3,∴∠1=∠3,∴OD∥AC,∵AC⊥BC,∴OD⊥BC,故答案为相切.5.(1)证明:连接OC,如图,∵CF为切线,∴OC⊥CF,∴∠1+∠3=90°,∵BM⊥AB,∴∠2+∠4=90°,∵OC=OB,∴∠1=∠2,∴∠3=∠4,∵AB为直径,∴∠ACB=90°,∴∠3+∠5=90°,∠4+∠BDC=90°,∴∠BDC=∠5,∴CF=DF;(2)解:在Rt△ABC中,AC==8,∵∠BAC=∠DAB,∴△ABC∽△ABD,∴=,即=,∴AD=,∵∠3=∠4,∴FC=FB,而FC=FD,而BO=AO,∴OF为△ABD的中位线,∴OF=AD=.6.(1)证明:连接OC,如图,∵OA=OC,∴∠ACO=∠A,∴∠COB=∠A+∠ACO=2∠A,又∵∠D=2∠A,∴∠D=∠COB.又∵OD⊥AB,∴∠COB+∠COD=90°.∴∠D+∠COD=90°.即∠DCO=90°,∴OC⊥DC,又点C在⊙O上,∴CD是⊙O的切线;(2)证明:∵∠DCO=90°,∴∠DCE+∠ACO=90°.又∵OD⊥AB,∴∠AEO+∠A=90°,又∵∠A=∠ACO,∠DEC=∠AEO,∴∠DEC=∠DCE,∴DE=DC;(3)解:∵∠DCO=90°,OD=5,DC=3,∴AB=2OC=8,又DE=DC=3,∴OE=OD﹣DE=2,∵∠A=∠A,∠AOE=∠ACB=90°,∴△AOE∽△ACB,∴=,即===,∴BC=AC,在△ABC中,∵AC2+BC2=AB2,∴AC2+AC2=82,∴AC=.7.解:∵点A(,0)与点B(0,﹣1),∴OA=,OB=1,∴AB==2,∵AB是⊙M的直径,∴⊙M的直径为2,∵∠COD=∠CBO,∠COD=∠CBA,∴∠CBO=∠CBA,即BD平分∠ABO;(2)如图,过点A作AE⊥AB于E,交BD的延长线于点E,过E作EF⊥OA于F,即AE是切线,∵在Rt△ACB中,tan∠OAB===,∴∠OAB=30°,∵∠ABO=90°,∴∠OBA=60°,∴∠ABC=∠OBC==30°,∴OC=OB•tan30°=1×=,∴AC=OA﹣OC=,∴∠ACE=∠ABC+∠OAB=60°,∴∠EAC=60°,∴△ACE是等边三角形,∴AE=AC=,∴AF=AE=,EF==1,∴OF=OA﹣AF=,∴点E的坐标为(,1).8.(1)证明:∵AB为直径,∴∠ADB=90°,∵BA=BC,∴AD=CD;(2)证明:连接OD,如图,∵AD=CD,AO=OB,∴OD为△BAC的中位线,∴OD∥BC,∴DE⊥BC,∴OD⊥DE,∴DE为⊙O的切线;(3)解:在Rt△CDE中,∠C=60°,DE=,∴CE=DE=×2=2,∴CD=2CE=4,∵∠A=∠C=60°,AD=CD=4,在Rt△ADB中,AB=2AD=8,即⊙O半径的长为4.9.(1)解:连接OE,过O作OM⊥AC于M,则∠AMO=90°,∵DF⊥AC,∴∠DFC=90°,∵∠FDC=15°,∴∠C=180°﹣90°﹣15°=75°,∵AB=AC,∴∠ABC=∠C=75°,∴∠BAC=180°﹣∠ABC﹣∠C=30°,∴OM=OA==,AM=OM=,∵OA=OE,OM⊥AC,∴AE=2AM=3,∴∠BAC=∠AEO=30°,∴∠AOE=180°﹣30°﹣30°=120°,∴阴影部分的面积S=S扇形AOE﹣S△AOE=﹣=3π﹣;(2)证明:连接OD,∵AB=AC,OB=OD,∴∠ABC=∠C,∠ABC=∠ODB,∴∠ODB=∠C,∴AC∥OD,∵DF⊥AC,∴DF⊥OD,∵OD过O,∴DF是⊙O的切线;(3)证明:连接BE,∵AB为⊙O的直径,∴∠AEB=90°,∴BE⊥AC,∵DF⊥AC,∴BE∥DF,∴∠FDC=∠EBC,∵∠EBC=∠DAC,∴∠FDC=∠DAC,∵A、B、D、E四点共圆,∴∠DEF=∠ABC,∵∠ABC=∠C,∴∠DEC=∠C,∵DF⊥AC,∴∠EDF=∠FDC,∴∠EDF=∠DAC.10.证明:(1)连接OC,如图,∵AB是⊙O的直径,∴∠ACB=90°,即∠2+∠3=90°,∵OB=OC,∴∠B=∠3,而∠1=∠B,∴∠1=∠3,∴∠1+∠2=90°,即∠OCM=90°,∴OC⊥CM,∴MC是⊙O的切线;(2)∵EG⊥AB,∴∠B+∠BFH=90°,而∠BFH=∠4,∴∠4+∠B=90°,∵MD为切线,∴OC⊥CD,∴∠5+∠3=90°,而∠3=∠B,∴∠4=∠5,∴△DCF是等腰三角形.11.解:(1)如图,连接OE,∵FG=EG,∴∠GEF=∠GFE=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵CD⊥AB,∴∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线;(2)连接OC,设⊙O的半径为r,∵AH=3、CH=4,∴OH=r﹣3,OC=r,则(r﹣3)2+42=r2,解得:r=,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴=,即=,解得:EM=.12.(1)证明:如图1,∵PC=PB,∴∠PCB=∠PBC,∵四边形ABCD内接于圆,∴∠BAD+∠BCD=180°,∵∠BCD+∠PCB=180°,∴∠BAD=∠PCB,∵∠BAD=∠BFD,∴∠BFD=∠PCB=∠PBC,∴BC∥DF,∵DE⊥AB,∴∠DEB=90°,∴∠ABC=90°,∴AC是⊙O的直径,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥CD;(2)由(1)得:BC∥DF,BG∥CD,∴四边形BCDH是平行四边形,∴BC=DH,在Rt△ABC中,∵AB=DH,∴tan∠ACB==,∴∠ACB=60°,∠BAC=30°,∴∠ADB=60°,BC=AC,∴DH=AC,①当点O在DE的左侧时,如图2,作直径DM,连接AM、OH,则∠DAM=90°,∴∠AMD+∠ADM=90°∵DE⊥AB,∴∠BED=90°,∴∠BDE+∠ABD=90°,∵∠AMD=∠ABD,∴∠ADM=∠BDE,∵DH=AC,∴DH=OD,∴∠DOH=∠OHD=80°,∴∠ODH=20°∵∠ADB=60°,∴∠ADM+∠BDE=40°,∴∠BDE=∠ADM=20°,②当点O在DE的右侧时,如图3,作直径DN,连接BN,由①得:∠ADE=∠BDN=20°,∠ODH=20°,∴∠BDE=∠BDN+∠ODH=40°,综上所述,∠BDE的度数为20°或40°.13.(1)证明:连接OD,如图,∵OB=OD,∴∠OBD=∠ODB,∵AB=AC,∴∠ABC=∠C,∴∠ODB=∠C,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE为⊙O的切线;(2)解:∵AB为直径,∴∠AFB=90°,∵∠EGF=∠AGF,∴Rt△GEF∽△Rt△GAE,∴=,即=,整理得GF2+3GF﹣4=0,解得GF=1或GF=﹣4(舍去),在Rt△AEG中,sin∠EAG===,∴∠EAG=30°,即∠EAF的度数为30°.14.(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而AB为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°﹣67。
圆的概念及弧、弦、圆心角和圆周角专题练习(含答案)例1. 如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°例2. 如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE CE=1.则弧BD 的长是()B C D例3.如图,已知A,B,C在⊙O上,ACB为优弧,下列选项中与∠AOB相等的是()A.2∠C B.4∠B C.4∠A D.∠B+∠C例4. 如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.3巩固练习1.如下图,(1)若点O为⊙O的圆心,则线段__________是圆O的半径;线段________是圆O的弦,其中最长的弦是______;______是劣弧;______是半圆.(2)若∠A=40°,则∠ABO=______,∠C=______,∠ABC=______.2.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为________.3.⊙O中,∠AOB=100°,若C是AB上一点,则∠ACB等于( ).A.80°B.100°C.120°D.130°4.已知:如图,在同心圆中,大圆的弦AB交小圆于C,D两点.(1)求证:∠AOC=∠BOD;(2)试确定AC与BD两线段之间的大小关系,并证明你的结论.5. 已知:如图,AB为⊙O的直径,C,D为⊙O上的两点,且C为AD的中点,若∠BAD=20°,求∠ACO的度数6.如图,以ABCD的顶点A为圆心,AB为半径作⊙A,分别交BC、AD于E、F,交BA的延长线于G,试说明弧EF和弧FG相等.7. ⊙O中,M为AB的中点,则下列结论正确的是( ).A.AB>2AM B.AB=2AM C.AB<2AM D.AB与2AM的大小不能确定8. 如图,⊙O中,AB为直径,弦CD交AB于P,且OP=PC,试猜想AD与CB之间的关系,并证明你的猜想.9. 如图,⊙O中,直径AB=15cm,有一条长为9cm的动弦CD在ANB上滑动(点C与A,点D与B不重合),CF⊥CD交AB于F,DE⊥CD交AB于E.(1)求证:AE=BF;(2)在动弦CD滑动的过程中,四边形CDEF的面积是否为定值?若是定值,请给出证明并求这个定值;若不是,请说明理由.10.如图,若五边形ABCDE是⊙O的内接正五边形,则∠BOC=______,∠ABE=______,∠ADC=______,∠ABC=______.10题图11题图12题图11.如图,若六边形ABCDEF是⊙O的内接正六边形,则∠AED=______,∠FAE=______,∠DAB=______,∠EFA=______.12.如图,ΔABC是⊙O的内接正三角形,若P是AB上一点,则∠BPC=______;若M是BC上一点,则∠BMC=______.13.在⊙O中,若圆心角∠AOB=100°,C是AB上一点,则∠ACB等于( ).A.80°B.100°C.130°D.140°14.在圆中,弦AB,CD相交于E.若∠ADC=46°,∠BCD=33°,则∠DEB等于( ).A.13°B.79°C.38.5°D.101°15.如图,AC 是⊙O 的直径,弦AB ∥CD ,若∠BAC =32°,则∠AOD 等于( ).A .64°B .48°C .32°D .76°16.如图,弦AB ,CD 相交于E 点,若∠BAC =27°,∠BEC =64°,则∠AOD 等于( ).A .37°B .74°C .54°D .64°17.如图,四边形ABCD 内接于⊙O ,则x = 。
人教版九年级上册数学第二十四章圆含答案一、单选题(共15题,共计45分)1、正六边形的半径与边心距之比为()A.1:B. :1C. :2D.2:2、如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D。
若AC=BD=2 ,∠A=30°,则的长度为( )A.πB. πC. πD.2π3、若圆的内接正六边形的半径为R,则该正六边形的内切圆的半径为()A.RB.C. RD. R4、如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为()A. B.2 ﹣2 C.2 ﹣2 D.45、如图,已知正五边形 ABCDE内接于⊙O,连结BD,则∠ABD的度数是()A.60°B.70°C.72°D.144°6、用反证法证明“若a⊥c,b⊥c,则a∥b”时,应假设()A.a不垂直于cB.a,b都不垂直于cC.a与b相交D.a⊥b7、如图,将含60°角的直角三角板ABC绕顶点A顺时针旋转45°度后得到△AB′C′,点B经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是()A. B. C. D.π8、如图,是正六边形的外接圆,是弧上一点,则的度数是()A. B. C. D.9、如图,在⊙O中,CD为⊙O的切线,切点为C,已知∠B=25°,那么∠D为()A.30°B.40°C.50°D.60°10、已知正三角形的边长为12,则这个正三角形外接圆的半径是()A.2B.C.4D.311、如图,在直角坐标系中,以点O为圆心,半径为4的圆与y轴交于点B,点A(8,4)是圆外一点,直线AC与⊙O切于点C,与x轴交于点D,则点C的坐标为()A.(2 ,﹣2 )B.(,﹣)C.(,﹣) D.(2 ,﹣2)12、若⊙P的半径为5,圆心P的坐标为(-3,4),则平面直角坐标系的原点O 与⊙P的位置关系是( )A.在⊙P内B.在⊙P上C.在⊙P外D.无法确定13、已知扇形的半径为2,圆心角为60°,则扇形的弧长为( )A. B. C. D.14、如图,在Rt△ABC中,BC 2,∠BAC 30°,斜边AB的两个端点分别在相互垂直的射线OM,ON上滑动,下列结论:①若C,O两点关于AB对称,则OA ;②C,O两点距离的最大值为4;③若AB平分CO,则AB⊥CO;④斜边AB的中点D运动路径的长为.其中正确的是()A.①②B.①②③C.①③④D.①②④15、下列各图中,∠1=∠2的图形的个数有()A.3B.4C.5D.6二、填空题(共10题,共计30分)16、如图,正六边形内接于⊙O,小明向圆内投掷飞镖一次,则飞镖落在阴影部分的概率是________.17、已知扇形的半径为3,圆心角为120°,它的弧长为________18、如图,A,B,C,D是⊙O上的四个点,∠C=110°,则∠BOD=________度.19、如图,AB是圆O的直径,弧=弧=弧,∠COD=48°,则∠AOE 的度数为________.20、如图,AB为△ADC的外接圆⊙O的直径,若∠BAD=50°,则∠ACD=________°.21、如图,点,,在上,顺次连接,,,.若四边形为平行四边形,则________ .22、在⊙O中,弦AB等于⊙O的半径,OC⊥AB交⊙O于点C,则∠AOC=________°.23、如图,点A、B、C都在⊙O上,OC⊥OB,点A在劣弧BC上,且OA=AB,则∠ABC=________.24、如图,⊙O是△ABC的外接圆,BC=2,∠BAC=30°,则劣弧的长为________(保留π)25、如图,在△ABC中,AB=CB,以AB为直径的⊙O交AC于点D,过点C作CF∥AB,在CF上取一点E,使DE=CD,连接AE,对于下列结论:①AD=DC;②△CBA∽△CDE;③ = ;④AE为⊙O的切线,一定正确的结论选项是________.三、解答题(共5题,共计25分)26、圆锥的底面半径为3cm,侧面展开图是圆心角为120º的扇形,求圆锥的全面积。
一、选择题1.在ABC 中,90,4,3C AC BC ∠=︒==,把它绕AC 旋转一周得一几何体,该几何体的表面积为( )A .24πB .21πC .16.8πD .36π 2.如图,AB 、AC 是⊙O 的切线,B 、C 为切点,∠A =50°,点P 是圆上异于B 、C 的点,则∠BPC 的度数是( )A .65°B .115°C .115°或65°D .130°或65° 3.如图,在三角形ABC 中,AB=22,∠B=30°,∠C=45°,以A 为圆心,以AC 长为半径作弧与AB 相交于点E ,与BC 相交于点F ,则弧EF 的长为( )A .6πB .2πC .23πD .π4.已知△ABC 的外心为O ,连结BO ,若∠OBA=18°,则∠C 的度数为( )A .60°B .68°C .70°D .72°5.如图,在ABC 中,90C ∠=︒,7AB =,4AC =,以点C 为圆心、CA 为半径的圆交AB 于点D ,求弦AD 的长为( )A 433B .327C .337D .1676.如图,正方形ABCD 内接于O ,直径//MN AD ,则阴影部分的面积占圆面积的( )A .12B .16C .13D .147.若圆锥的底面半径为5cm ,侧面积为265cm π,则该圆锥的高是( ) A .13cm B .12cm C .11cm D .10cm 8.如图,ABC 的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将ABC 绕点B 顺时针旋转到A B C '''的位置,且点A '、C '仍落在格点上,则线段AB 扫过的图形的面积是( )平方单位(结果保留)A .254πB .134πC .132πD .136π 9.如图,在⊙O 中,AB 是直径,弦AC=5,∠BAC=∠D .则AB 的长为( )A .5B .10C .52D .10210.如图,AB 是⊙O 的直径,C ,D 是⊙O 上的点,28CDB ∠=︒,过点C 作⊙O 的切线交AB 的延长线于点E ,则E ∠等于( )A .28︒B .34︒C .44︒D .56︒ 11.如图,⊙O 的半径为1,点 O 到直线 a 的距离为2,点 P 是直线a 上的一个动点,PA 切⊙O 于点 A ,则 PA 的最小值是( )A .1B .3C .2D .5 12.如图,ABC 的顶点A 是O 上的一个动点,90ACB ∠=︒,30BAC ∠=︒,边AC ,AB 分别交O 于点E ,D ,分别过点E ,D 作O 的切线交于点F ,且点F 恰好在边BC 上,连接OC ,若O 的半径为6,则OC 的最大值为( )A .393+B .2103+C .353+D .53 13.如图,点M 是矩形ABCD 的边BC 、CD 上的点,过点B 作BN ⊥AM 于点P ,交矩形ABCD 的边于点N ,连接DP ,若AB=6,AD=4,则DP 的长的最小值为( )A .2B .121313C .4D .514.如图,在平行四边形ABCO 中,45C ∠=︒,点A ,B 在O 上,点D 在ADB 上,DA DB =,则AOD ∠的度数为( )A.112.5°B.120°C.135°D.150°15.在△ABC中,∠ACB为锐角,分别以AB,AC为直径作半圆,过点B,A,C作弧BAC,如图所示.若AB=4,AC=2,图中两个新月形面积分别为S1,S2,两个弓形面积分别为S3,S4,S1-S2=14π,则S3-S4的值是( )A.294πB.234πC.114πD.54π二、填空题16.如图,⊙O是△ABC的内切圆,若∠A=70°,则∠BOC=________°.17.如图,四边形ABCD是O的内接四边形,对角线AC,BD交于点E,且AC BD AB==,若70AEB∠=︒,则AOB∠等于______︒.18.已知半径为5的圆O中,弦AB=8,则以AB为底边的等腰三角形腰长为___________.19.如图,PA,PB分别与O相切于A、B两点,点C为劣弧AB上任意一点,过点C的切线分别交AP,BP于D,E两点.若8AP=,则PDE△的周长为______.20.如图,O 的半径为6,AB 、CD 是互相垂直的两条直径,点P 是O 上任意一点,过点P 作PM AB ⊥于M ,PN CD ⊥于N ,点Q 是MN 的中点,当点P 沿着圆周从点D 逆时针方向运动到点C 的过程中,当∠QCN 度数取最大值时,线段CQ 的长为______.21.如图,已知正方形ABCD 的边长为2,点M 和N 分别从B 、C 同时出发,以相同的速度沿BC 、CD 方向向终点C 和D 运动.连接AM ,BN 交于点P ,则PC 长的最小值为____________.22.如图,直线AB 、CD 相交于点,30O AOC ∠=︒,半径为1cm 的⊙P 的圆心在直线AB 上,且与点O 的距离为8cm ,如果⊙P 以2cm/s 的速度,由A 向B 的方向运动,那么_________秒后⊙P 与直线CD 相切.23.在矩形ABCD 中,43AB =6BC =,若点P 是矩形ABCD 上一动点,要使得60APB ∠=︒,则AP 的长为__________.24.小明用一张扇形纸片做一个圆锥的侧面,已知该扇形的半径是10cm ,弧长是12πcm 2,那么这个圆锥的高是________cm .参考答案25.如图,在⊙O 中,弦AC 、BD 相交于点E ,且AB BC CD ==,若∠BEC=130°,则∠ACD 的度数为_____26.如图,已知空间站A 与星球B 距离为a ,信号飞船C 在星球B 附近沿圆形轨道行驶,B ,C 之间的距离为b .数据S 表示飞船C 与空间站A 的实时距离,那么S 的最小值________.三、解答题27.如图,AB 是O 的弦,CD 是O 的直径,CD AB ⊥,垂足为E .1CE =,3ED =.(1)求O 的半径.(2)求AB 的长.28.如图,在Rt △ABC 中,∠C =90°,以BC 为直径的圆O 交AB 于点D ,切线DE 交AC 于点E .(1)求证:∠A =∠ADE ;(2)若AD =8,DE =5,求BC 的长.29.如图,一条公路的转弯处是一段圆弧CD ,点O 是CD 的圆心,E 为 CD 上一点,OE ⊥CD ,垂足为F .已知CD=300m ,EF=50m ,求这段弯路的半径.30.如图,半径为2的⊙O与正五边形ABCDE的边AB、AE相切于点M、N,求劣弧MN 的长度.。
人教版 九年级数学上册 第24章 24.4弧长和扇形面积 专题练习(含答案)基础巩固1.⊙的内接多边形周长为3 ,⊙的外切多边形周长为3.4, 则下列各数中与此圆的周长最接近的是( )AB. D2.如图已知扇形的半径为6cm ,圆心角的度数为,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为( )A .B .C .D .3.若一个圆锥的底面圆的周长是4πcm ,母线长是6cm ,则该圆锥的侧面展开图的圆心角的度数是A .40°B .80°C .120°D .150°4.艳军中学学术报告厅门的上沿是圆弧形,这条弧所在圆的半径为1.8 米,所对的圆心角为100°,则弧长是 米.(π≈3) 【参考答案】 1. C 2. D 3. C 4. 3O O 10AOB 120°24πcm 26πcm 29πcm 212πcm 120 BOA6cm能力提高 一、选择题1.如图,已知的半径,,则所对的弧的长为( ) A .B .C .D .2.将直径为60cm 的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为 ( )A .10cmB .30cmC .40cmD .300cm3.若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是( ) A .1.5B .2C .3D .64.有30%圆周的一个扇形彩纸片,该扇形的半径为40cm ,小红同学为了在“六一”儿童节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为10cm 的圆锥形纸帽(接缝处不重叠),那么剪去的扇形纸片的圆心角为( ).A.9°B.18°C.63°D.72°5.已知圆锥的底面半径为5cm ,侧面积为65πcm 2,设圆锥的母线与高的夹角为θ(如图所示),则sin θ的值为( )A.B. C. D. O ⊙6OA =90AOB ∠=°AOB ∠AB 2π3π6π12π125135131013126.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径高则这个圆锥漏斗的侧面积是( ) A . B . C . D .二、填空题1.,圆心角等于450的扇形AOB 内部作一个正方形CDEF ,使点C 在OA上,点D .E 在OB 上,点F 在上,则阴影部分的面积为(结果保留) .2.如图,方格纸中4个小正方形的边长均为1,则图中阴影部分三个小扇形的面积和为 (结果保留).3.将一块含30°角的三角尺绕较长直角边旋转一周得一圆锥,这个圆锥的高是3,则圆锥的侧面积是____.4.如图,三角板中,,,.三角板绕直角顶点逆时针旋转,当点的对应点落在边的起始位置上时即停止转动,则点转过的路径长为 .6cm OB =,8cm OC =.230cm 230cm π260cm π2120cm AB ππABC ︒=∠90ACB ︒=∠30B 6=BC C A 'A AB B 第2题图5.已知正六边形的边长为1cm ,分别以它的三个不相邻的顶点为圆心,1cm 长为半径画弧(如图),则所得到的三条弧的长度之和为 cm (结果保留).6.矩形ABCD的边AB =8,AD =6,现将矩形ABCD 放在直线l 上且沿着l 向右作无滑动地翻滚,当它翻滚至类似开始的位置时(如图所示),则顶点A 所经过的路线长是_________.7.已知在△ABC 中,AB=6,AC=8,∠A=90°,把Rt△ABC 绕直线AC 旋转一周得到一个圆锥,其表面积为,把Rt△ABC 绕直线AB 旋转一周得到另一个圆锥,其表面积为,则:等于_________ 三、解答题1.如图,有一个圆O 和两个正六边形,.的6个顶点都在圆周上,的6条边都和圆O 相切(我们称,分别为圆O 的内接正六边形和外切正六边形).(1)设,的边长分别为,,圆O 的半径为,求及的值; (2)求正六边形,的面积比的值.π1111A B C D 1S 2S 1S 2S 1T 2T 1T 2T 1T 2T 1T 2T a b r a r :b r :1T 2T 21:S SB 'A CAB 第4题2.如图,圆心角都是90º的扇形OAB 与扇形OCD 叠放在一起,连结AC ,BD .(1)求证:AC=BD ; (2)若图中阴影部分的面积是,OA=2cm ,求OC 的长.3.如图,已知菱形的边长为,两点在扇形的上,求的长度及扇形的面积.2 43cm ABCD 1.5cm B C ,AEF ABCBCD AEF【参考答案】 选择题 1. B 2. A3. C4. B5. A6. C 填空题 1.2. 3. 18π 4. 5. 6. 7. 2∶3 解答题1.解:(1)连接圆心O 和T 的6个顶点可得6个全等的正三角形 .所以r∶a=1∶1;连接圆心O 和T 相邻的两个顶点,得以圆O 半径为高的正三角形, 所以r∶b=∶2;(2) T ∶T 的连长比是∶2,所以S ∶S = . 2. (1)证明:2385-π∏83π22ππ24123123124:3):(2=b a(2)根据题意得:;∴ 解得:OC =1cm .3. 解:四边形是菱形且边长为1.5,.又两点在扇形的上,,是等边三角形..的长(cm )BDAC BOD AOC DO CO BO AB BOD AOC AODBOD AOD AOC COD AOB =⇒∆≅∆⇒⎪⎭⎪⎬⎫==∠=∠⇒∠+∠=∠+∠⇒∠∠ 900==360)(9036090360902222OC OA OC OA S -=-=πππ阴影360)2(904322OC -=ππABCD 1.5AB BC ∴==B C 、AEF 1.5AB BC AC ∴===ABC ∴△60BAC ∴∠=°21805.160ππ=∙=ππ835.122121=∙∙==lR S ABC 扇形)(2cm。
加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!第二十四章综合测试一、选择题(每小题4分,共28分)1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( ) A .4个B .3个C .2个D .1个2.如图所示,AB 是O 的直径,AC 是O 的切线,A 为切点,连接BC 交O 于点D ,连接AD .若45ABC ∠=︒,则下列结论正确的是( )A .12AD BC =B .12AD AC =C .AB AC >D .DC AD >3.如图所示,AB 是O 的直径,C 是O 上的一点,若8AC =,10AB =,OD BC ⊥于点D ,则BD 的长为( )A .1.5B .3C .5D .64.如图所示,AB 是O 的弦,半径OC AB ⊥于点D ,且6AB =cm ,4OD =cm ,则DC 的长为( )A .5 cmB .2.5 cmC .2 cmD .1 cm5.如图所示,圆锥侧面展开图的扇形面积为265 cm π,扇形的弧长为10πcm ,则圆锥的母线长是( )A .5 cmB .10 cmC .12 cmD .13 cm6.如图所示,O 的外切正六边形ABCDEF 的边长为2,则图中阴影部分的面积为( )A 2π-B 23π-C .2π-D .23π-7.如图所示,有一长为4 cm ,宽为3 cm 的长方形木板在桌面上无滑动翻滚(顺时针方向),木板上的顶点A 的位置变化为12A A A →→,其中第二次翻滚被桌面上一小木块挡住,使木板边沿2A C 与桌面成30︒角,则点A 翻滚到2A 时,共走过的路径长为( )A .10πcmB .3.5πcmC .4.5πcmD .2.5πcm二、填空题(每空5分,共30分)8.在半径为1的弦所对的圆心角是________度. 9.如图所示,PB 为O 的切线,A 为切点,2cm OB =,30B ∠=︒,则AB =_____________.10.如图所示,AB 是O 的直径,点D 在O 上,130AOD ∠=︒,BC OD ∥交O 于点C ,则A ∠=________.11.在边长为3 cm ,4 cm ,5 cm 的三角形白铁皮上剪下一个最大圆,则此圆的半径为________cm . 12.过圆上一点引两条互相垂直的弦,若圆心到两条弦的距离分别是2和3,则这两条弦的长分别是________.13.如图所示,三角尺ABC 中,90ACB ∠=︒,30ABC ∠=︒,6BC =,三角尺绕直角顶点C 逆时针旋转,当点A 的对应点A '落在AB 边上时即停止转动,则点B 转过的路径长为________.三、解答题(共42分)14.(10分)如图所示,AB 是O 的一条弦,OD AB ⊥于点C ,交O 于点D ,点E 在O 上. (1)若52AOD ∠=︒,求DEB ∠的度数. (2)若3OC =,5OA =,求AB 的长.15.(10分)如图所示,在ABC △中,D 是AB 边上一点,O 过D ,B ,C 三点,290DOC ACD ∠=∠=︒. (1)求证:直线AC 是O 的切线;(2)如果75ACB ∠=︒,O 的半径为2,求BD 的长.16.(10分)如图所示,线段AB 与O 相切于点C ,连接OA ,OB ,OB 交O 于点D ,已知6OA OB ==,A B =.(1)求O 的半径; (2)求图中阴影部分的面积.17.(12分)如图所示,PA ,PB 分别与O 相切于点A ,B ,点M 在PB 上,且OM AP ∥,MN AP ⊥,垂足为N .(1)求证:OM AN =;(2)若O 的半径3R =,9PA =,求OM 的长.第二十四章综合测试答案解析一、 1.【答案】B【解析】①③④正确.三点共线时过三点不能作圆,故②错误. 2.【答案】A【解析】因为AC 是O 的切线,所以BA AC ⊥.又因为45B ∠=︒,所以45C ∠=︒,所以AB AC =.又因为AB 是直径,所以AD BC ⊥.所以BD CD =(三线合一),所以12AD BC =. 3.【答案】B【解析】因为AB 是直径,所以90ACB ∠=︒.在Rt ACB △中,6BC ==.因为OD BC ⊥,所以132BD BC ==(垂径定理). 4.【答案】D【解析】连接AO (图略),由垂径定理知132AD AB ==cm ,所以在Rt AOD △中,5AO ===(cm ),所以541DC OC OD OA OD =-=-=-=(cm ). 5.【答案】D【解析】圆锥的母线长l 即为圆锥侧面展开图扇形的半径.由圆锥的侧面积公式,得110652l ππ⨯⨯=,所以13l =cm . 6.【答案】A【解析】因为六边形ABCDEF 是正六边形,所以60AOB ∠=︒.又因为OA OB =,所以OAB △是等边三角形,02OA B AB ===.设点G 为AB 与O 的切点,OA ,OB 分别交O 于M ,N 两点,连接OG (图略),则OG AB ⊥.在Rt OAG △中,2OA =,1AG =,根据勾股定理得OG ==.()2601223602OAB OMN S S S ππ⨯⨯=-=⨯-=-△阴影扇形.7.【答案】B【解析】整条路径分两部分,从A 到1A 是以BA 长为半径,绕B 点旋转90︒;从1A 到2A 是以1CA 长为半径,绕C 点旋转60︒.总路径长为9056033.5180180πππ⨯⨯⨯⨯+=(cm ).二、 8.【答案】909cm【解析】因为AB 是O 的切线,所以OA AB ⊥.又因为30B ∠=︒,所以112OA OB == cm 在Rt AOB △中,由勾股定理得AB ==(cm ). 10.【答案】40︒【解析】18013050BOD ∠=︒-︒=︒,由BC OD ∥得50B BOD ∠=∠=︒.由AB 是O 的直径可得90ACB ∠=︒,所以90905040A B ∠=︒-∠=︒-︒=︒. 11.【答案】1【解析】由勾股定理的逆定理可得,边长为 3 cm ,4 cm ,5 cm 的三角形是直角三角形,其内切圆半径3+4512r -==(cm ). 12.【答案】6,4【解析】因为两垂直弦的夹角为90︒,所以两弦的非公共端点的连线是直径.由垂径定理和三角形中位线的性质定理,可得两弦长分别为6,4. 13.【答案】2π【解析】由题意得60BCB ∠=︒, '6062180B Bl ππ⨯==. 三、14.【答案】(1)因为OD AB ⊥,所以AC BC =, AD BD=.所以11522622DEB AOD ∠=∠=⨯︒=︒.(2)在Rt OAC △中,4AC ===,所以28AB AC ==.15.【答案】(1)证明:因为OD OC =,90DOC ∠=︒,所以45ODC OCD ∠=∠=︒.因为290DOC ACD ∠=∠=︒,所以45ACD ∠=︒.所以90ACD OCD OCA ∠+∠=∠=︒.因为点C 在O 上,所以直线AC 是O 的切线.(2)解:因为2OD OC ==,90DOC ∠=︒,所以CD =.因为75ACB ∠=︒,45ACD ∠=︒,所以30BCD ∠=︒.如图所示,过点D 作DE BC ⊥于点E ,则90DEC ∠=︒.所以12DE CD ==.因为45B ACD ∠=∠=︒,所以2BD ==.16.【答案】解:(1)连接OC (图略).因为AB 切O 于点C ,所以OC AB ⊥.因为OA OB =,所以12AC BC AB ===.在Rt AOC △中,3OC =,所以O 的半径为3.(2)因为在Rt OCB △中,12OC OB =,所以60COD ∠=︒,所以26033==3602OCD S ππ⨯⨯扇形,所以133=222OCB OCD S S S OC CB ππ=--=- △阴影扇形.【解析】(1)连接OC ,在Rt AOC △中,利用勾股定理求得OC ;(2)OCB OCD S S S =-△阴影扇形.17.【答案】(1)证明:如图所示,连接OA ,则OA AP ⊥.因为MN AP ⊥,所以MN OA ∥.因为OM AP ∥,所以四边形ANMO 是矩形.所以OM AN =.(2)解:连接OB ,则OB BP ⊥.因为OA MN =,OA OB =,OM AP ∥,所以OB MN =,OMB NPM ∠=∠.所以Rt Rt OBM MNP △≌△,所以OM MP =.设OM x =,则9NP x =-.在Rt MNP △中,有()22239x x =+-,所以5x =,即5OM =.【解析】(1)连接OA ,证四边形ANMO 是矩形,得OM AN =;(2)连接OB ,可证OM MP =,设OM x =,则9NP x =-,在Rt MNP △中利用勾股定理列方程求x .。
人教版九年级上册数学单元练习题:第二十四章圆(含解析答案)一.选择题1.如图,AB是⊙O直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠A=25°,则∠C的度数是()A.40°B.50°C.65°D.25°2.如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙O与AC相切于点D,BD平分∠ABC,AD=OD,AB=12,CD的长是()A.2B.2 C.3D.43.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是()A.20°B.35°C.40°D.55°4.等边三角形的内切圆半径、外接圆半径和高的比为()A.3:2:1 B.1:2:3 C.2:3:1 D.3:1:25.下列说法中,正确的是()A.正n边形有n条对称轴B.相等的圆心角所所对的弦相等C.三角形的外心到三条边的距离相等D.同一个平面上的三个点确定一个圆6.如图,AB,BC是⊙O的两条弦,AO⊥BC,垂足为D,若⊙O的半径为5,BC=8,则AB的长为()A.8 B.10 C.D.7.如图,⊙O的弦AB=8,半径ON交AB于点M,M是AB的中点,且OM=3,则MN的长为()A.2 B.3 C.4 D.58.如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠BAO的度数是()A.40°B.45°C.50°D.55°9.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则BC的长为()A.5B.3C.2D.10.如图,AB是⊙O的直径,C、D是⊙O上两点,∠AOC=130°,则∠D等于()A.65°B.35°C.25°D.15°11.如图,⊙O的半径为4,A、B、C、D是⊙O上的四点,过点C,D的切线CH,D G相交于点M,点P在弦AB上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH=30°时,PE+PF的值是()A.4 B.2C.4D.值不确定12.如图,在△ABC中,∠C=90°,BC=3cm,AC=2cm,把△ABC绕点A顺时针旋转90°后,得到△AB1C1,则线段BC所扫过的面积为()A.πcm2B.πcm2C.πcm2D.5πcm2二.填空题13.如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,连接DE,过点D作DF⊥AC 于点F.若AB=6,∠CDF=15°,则阴影部分的面积是.14.如图,已知AB是⊙O的弦,C是的中点,联结OA,AC,如果∠OAB=20°,那么∠CAB的度数是.15.如图,△ABC是圆O的内接三角形,则∠ABC﹣∠OAC=.16.如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=.17.如图,⊙O的半径为10cm,AB是⊙O的弦,OC⊥AB于D,交⊙O于点C,且CD=4cm,弦AB的长为c m.18.如图,在坐标系中以原点为圆心,半径为2的圆,直线y=kx﹣(k+1)与⊙O有两个交点A、B,则AB 的最短长度是.三.解答题19.如图,△ACB内接于圆O,AB为直径,CD⊥AB与点D,E为圆外一点,EO⊥AB,与BC交于点G,与圆O 交于点F,连接EC,且EG=EC.(1)求证:EC是圆O的切线;(2)当∠ABC=22.5°时,连接CF,①求证:AC=CF;②若AD=1,求线段FG的长.20.如图,OA、OB是⊙O的两条半径,OA⊥OB,点C在⊙O上,AC与OB交点D,点E在OB的延长线上,且CE=DE.(1)求证:CE是⊙O的切线;(2)当∠A=30°,OA=6时,则CD的长为.21.(1)如图1,在△ABC中,∠BAC=120°,AB=3,AC=6,以BC为边作等边三角形BCD,连接AD,求AD的值.(2)如图2,四边形ABCD中.△ABM,△CDN是分别以AB,CD为一条边的等边三角形,E,F分别在这两个三角形的外接圆上,试问AE+EB+EF+FD+FC是否存在最小值?若存在最小值,则E,F两点的位置在什么地方?井说明理由.若不存在最小值,亦说明理由.22.如图,已知⊙O是△ABC的外接圆,连接OC,过点A作AD∥OC,交BC的延长线于D,AB交OC于E,∠ABC=45°.(1)求证:AD是⊙O的切线;(2)若AE=,CE=3.①求⊙O的半径;②求图中阴影部分的面积.23.如图,⊙O是四边形ABCD的外接圆.AC、BD是四边形ABCD的对角线,BD经过圆心O,点E在BD的延长线上,BA与CD的延长线交于点F,DF平分∠ADE.(1)求证:AC=BC;(2)若AB=AF,求∠F的度数;(3)若,⊙O半径为5,求DF的长.24.如图,点A在数轴上对应的数为20,以原点O为圆心,OA为半径作优弧,使点B在O右下方,且tan∠AOB=,在优弧上任取一点P,且能过P作直线l∥OB交数轴于点Q,设Q在数轴上对应的数为x,连接OP.(1)若优弧上一段的长为10π,求∠AOP度数及x的值.(2)若线段PQ的长为10,求这时x的值.参考答案一.选择题1.解:连接OD,∵AO=OD,∴∠A=∠ODA=25°,∵∠COD=∠A+∠ADO,∴∠COD=50°,∵CD与⊙O相切于点D,∴∠ODC=90°,∵∠C+∠COD=90°,∴∠C=40°,故选:A.2.解:∵⊙O与AC相切于点D,∴AC⊥OD,∴∠ADO=90°,∵AD=OD,∴tan A==,∴∠A=30°,∵BD平分∠ABC,∴∠OBD=∠CBD,∵OB=OD,∴∠OBD=∠ODB,∴∠ODB=∠CBD,∴OD∥BC,∴∠C=∠ADO=90°,∴∠ABC=60°,BC=AB=6,AC=BC=6,∴∠CBD=30°,∴CD=BC=×6=2;故选:A.3.解:连接FB.∵∠AOF=40°,∴∠FOB=180°﹣40°=140°,∴∠FEB=∠FOB=70°∵EF=EB∴∠EFB=∠EBF=55°,∵FO=BO,∴∠OFB=∠OBF=20°,∴∠EFO=∠EBO,∠EFO=∠EFB﹣∠OFB=35°,故选:B.4.解:如图,⊙O为△ABC的内切圆,设⊙O的半径为r,作AH⊥BC于H,∵△ABC为等边三角形,∴AH平分∠BAC,即∠BAH=30°,∴点O在AH上,∴OH=r,连接OB,∵⊙O为△ABC的内切圆,∴∠ABO=∠CBO=30°,∴OA=OB,在Rt△OBH中,OB=2OH=2r,∴AH=2r+r=3r,∴OH:OA:AH=1:2:3,即等边三角形的内切圆半径、外接圆半径和高的比为1:2:3.故选:B.5.解:A、正n边形有n条对称轴,故本选项正确;B、如图,圆心角相等,但是弦AB和弦CD不相等,故本选项错误;C、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三角形三边的距离相等,故本选项错误;D、在同一直线上的三个点不能作一个圆,故本选项错误;故选:A.6.解:连接OB,∵AO⊥BC,AO过O,BC=8,∴BD=CD=4,∠BDO=90°,由勾股定理得:OD===3,∴AD=OA+OD=5+3=8,在Rt△ADB中,由勾股定理得:AB==4,故选:D.7.解:连接OA,∵在圆O中,M为AB的中点,AB=8,∴OM⊥AB,AM=AB=4,在Rt△OAM中,OM=3,AM=4,根据勾股定理得:OA==5.∴MN=5﹣3=2故选:A.8.解:∵AB是⊙O的弦,OC⊥AB,OC过O,∴=,∴∠AOC=∠BOC,即∠AOB=2∠AOC,∵∠ABC=20°,∴∠AOC=2∠ABC=40°,∴∠AOB=40°+40°=80°,∵OA=OB,∴∠BAO=∠ABO=(180°﹣∠AOB)=50°,故选:C.9.解:连接OB,作OD⊥BC于点D.∵AB与⊙O相切于点B,∴∠ABO=90°,∴∠OBD=∠ABC﹣∠ABO=120°﹣90°=30°,在直角△OBD中,BD=OB•cos30°=3×=,则BC=2BD=3.故选:B.10.解:∵∠BOC=180°﹣∠AOC,∠AOC=130°,∴∠BOC=50°,∴∠D=∠BOC=25°,故选:C.11.解:当∠ADG=∠BCH=30°时,PE+PF是定值.理由:连接OA、OB、OC、OD,如图:∵DG与⊙O相切,∴∠GDA=∠ABD.∵∠ADG=30°,∴∠ABD=30°.∴∠AOD=2∠ABD=60°.∵OA=OD,∴△AOD是等边三角形.∴AD=OA=4.同理可得:BC=4.∵PE∥BC,PF∥AD,∴△AEP∽△ACB,△BFP∽△BDA.∴=,=.∴+=+=1.∴+=1.∴PE+PF=4.∴当∠ADG =∠BCH =30°时,PE +PF =4.故选:A .12.解:∵∠C =90°,BC =3cm ,AC =2cm ,∴AB =cm ,如图,由旋转知,∠BAB 1=∠CAC 1=90°,△ABC ≌△AB 1C 1,则线段BC 所扫过的面积S =+﹣S △ABC ﹣=﹣=﹣=π(cm 2),故选:A .二.填空题(共6小题)13.解:连接OE ,∵∠CDF =15°,∠C =75°,∴∠OAE =30°=∠OEA ,∴∠AOE =120°,S △OAE =AE ×OE sin ∠OEA =×2×OE ×cos ∠OEA ×OE sin ∠OEA =,S阴影部分=S 扇形OAE ﹣S △OAE =×π×32﹣=3π﹣.故答案3π﹣.14.解:连接OC 交AB 于E .∵C 是的中点,∴OC ⊥AB ,∴∠AEO =90°,∵∠BAO =20°,∴∠AOE =70°,∵OA =OC ,∴∠OAC =∠C =55°,∴∠CAB =∠OAC ﹣∠OAB =35°,故答案为35°.15.解:作直径AD ,连接CD ,如图所示:∵AD 是圆O 的直径,∴∠ACD =90°,∴∠OAC +∠D =90°,∵∠ABC +∠D =180°,∴∠ABC ﹣∠OAC =180°﹣90°=90°;故答案为:90°.16.解:连接BD.∵AB是直径,∴∠C=∠D=90°,∵∠CAB=60°,AD平分∠CAB,∴∠DAB=30°,∴AB=AD÷cos30°=4,∴AC=AB•cos60°=2,故答案为2.17.解:连接OA,∵OA=OC=10cm,CD=4cm,∴OD=10﹣4=6cm,在Rt△OAD中,有勾股定理得:AD==8cm,∵OC⊥AB,OC过O,∴AB=2AD=16cm.故答案为16.18.解:∵直线y=kx﹣(k+1)可化为y=(x﹣1)k﹣1,∴此直线恒过点(1,﹣1).过点D作DH⊥x轴于点H,∵OH=1,DH=1,OD===.∵OB=2,∴BD===,∴AB=2.故答案为:2.三.解答题(共6小题)19.(1)证明:连接OC,∵OC=OB,∴∠OCB=∠B,∵EO⊥AB,∴∠OGB+∠B=90°,∵EG=EC,∴∠ECG=∠EGC,∵∠EGC=∠OGB,∴∠OCB+∠ECG=∠B+∠OGB=90°,∴OC⊥CE,∴EC是圆O的切线;(2)①证明:∵∠ABC=22.5°,∠OCB=∠B,∴∠AOC=45°,∵EO⊥AB,∴∠COF=45°,∴=,∴AC=CF;②解:作CM⊥OE于M,∵AB为直径,∴∠ACB=90°∵∠ABC=22.5°,∠GOB=90°,∴∠A=∠OGB=∠67.5°,∴∠FGC=67.5°,∵∠COF=45°,OC=OF,∴∠OFC=∠OCF=67.5°,∴∠GFC=∠FGC,∴CF=CG,∴FM=GM,∵∠AOC=∠COF,CD⊥OA,CM⊥OF,∴CD=DM,在Rt△ACD和Rt△FCM中∴Rt△ACD≌Rt△FCM(HL),∴FM=AD=1,∴FG=2FM=2.20.(1)证明:如图连接OC.∵OA=OC,∴∠A=∠OCA,∵OA⊥OB,∴∠AOB=90°,∴∠A+∠ADO=90°,∵ED=EC,∴∠EDC=∠ECD=∠ADO,∴∠OCD+∠DCE=90°,∴OC⊥CE,∴CE是⊙O的切线.(2)解:在Rt△AOD中,∵OA=6,∠A=30°,∴OD=,∵OA=OC,∴∠OCA=∠A=30°,∠COA=120°,∠DOC=30°,∴∠DOC=∠OCD=30°,∴CD=OD=2.故答案为:2.21.(1)证明:在AD上截取AP=AB,连结PB,如图,∵△DBC为等边三角形,∴∠DBC=∠DCB=∠BDC=60°,DB=CB,∵∠BAC=120°∴∠BAC+BDC=180°,∴A、B、D、C四点共圆,∴∠BAP=∠DCB=60°,∴△PAB为等边三角形,∴∠ABP=60°,BP=BA,∴∠DBC﹣∠PBC=∠ABP﹣∠PBC,即∠DBP=∠CBA,∴△DBP≌△CBA(SAS),∴PD=AC,∴AD=DP+AP=AC+AB=9.(2)当点E、F为直线MN与两圆的交点时,AE+EB+EF+FC+FD的值最小.证明:连结ME、NF,如图,由(1)的结论得EA+EB=ME,FC+FD=FN,∴AE+EB+EF+FC+FD=ME+EF+FN,∴当点M、E、F、N共线时,ME+EF+FN的值最小,此时点E、F为直线MN与两圆的交点.22.解:(1)证明:连接OA,∵∠ABC=45°,∴∠AOC=2∠ABC=90°,∵AD∥OC,∴∠DAO=∠COA=90°,∵OA是⊙O的半径,∴AD是⊙O的切线;(2)①设OE=x,∵OC=OA,∴OA=x+3,由于AE=,在Rt△AOE中,由勾股定理可知:x2+(x+3)2=17,∴x2+3x﹣4=0,∴x=1,∴OC=x+3=4,∴⊙O的半径为4,;②S==4π,扇形OACS=×4×4=8,△AOC∴图中阴影部分的面积=4π﹣8.23.(1)证明:∵DF平分∠ADE,∴∠EDF=∠ADF,∵∠EDF=∠ABC,∠BAC∠BDC,∠EDF=∠BDC,∴∠BAC=∠ABC,∴AC=BC;(2)解:∵BD是⊙O的直径,∴AD⊥BF,∵AF=AB,∴DF=DB,∴∠FDA=∠BDA,∴∠ADB=∠CAB=∠ACB,∴△ACB是等边三角形,∴∠ADB=∠ACB=60°,∴∠ABD=90°﹣60°=30°,∴∠F=∠ABD=30°;(3)解:∵,∴=,设CD=k,BC=2k,∴BD==k=10,∴k=2,∴CD=2,BC=AC=4,∵∠ADF=∠BAC,∴∠FAC=∠ADC,∵∠ACF=∠DCA,∴△ACF∽△DCA,∴=,∴CF=8,∴DF=CF﹣CD=6.24.解:(1)如图1,由=10π,解得n=90°,∴∠POQ=90°,∵PQ∥OB,∴∠PQO=∠BOQ,∴tan∠PQO=tan∠QOB==∴OQ=∴x=;(2)分三种情况:①如图2,作OH⊥PQ于H,设OH=k,QH=k.在Rt△OPH中,∵OP2=OH2+PH2,∴202=(k)2+(10﹣k)2,整理得:k2﹣5k﹣75=0,解得k=或k=(舍弃),∴OQ=2k=此时x的值为②如图3,作OH⊥PQ交PQ的延长线于H.设OH=k,QH=k.在Rt△在Rt△OPH中,∵OP2=OH2+PH2,∴202=(k)2+(10+k)2,整理得:k2+5k﹣75=0,解得k=(舍弃)或k=(舍弃),∴OQ=2k=,此时x的值为﹣+5③如图4,作OH⊥PQ于H,设OH=k,QH=k.在Rt△OPH中,∵OP2=OH2+PH2,∴202=(k)2+(10﹣k)2,整理得:k2﹣5k﹣75=0,解得k=或(舍弃),∴OQ=2k=此时x的值为.综上所述,满足条件的x的值为或﹣+5或.。
人教版 九年级数学 第24章24.1 ---24.4复习题(含答案) 24.1 圆的有关性质一、选择题(本大题共10道小题)1. 如图,已知直径MN ⊥弦AB ,垂足为C ,有下列结论:①AC =BC ;②AN ︵=BN ︵;③AM ︵=BM ︵;④AM =BM .其中正确的个数为( )A .1B .2C .3D .42. 小红不小心把家里的一块圆形玻璃镜打碎了,需要配制一块同样大小的玻璃镜,工人师傅在一块如图所示的玻璃镜残片的边缘描出了点A ,B ,C ,给出三角形ABC ,则这块玻璃镜的圆心是 ( )A .AB ,AC 边上的中线的交点 B .AB ,AC 边上的垂直平分线的交点 C .AB ,AC 边上的高所在直线的交点D .∠BAC 与∠ABC 的角平分线的交点3.如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是( )A .50°B .60°C .80°D .100°4. 如图,AB ,AC分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为A.5B.4C.13D.4.85.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF.若∠AOF=40°,则∠F的度数是( )A.20°B.35°C.40°D.55°6. 如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为P,则OP的长为() A.3 B.2.5 C.4 D.3.57. 如图,AB为⊙O的直径,C,D为⊙O上两点.若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°8. 如图,四边形ABCD是菱形,⊙O经过点A,C,D,与BC相交于点E,连接AC ,AE .若∠D =80°,则∠EAC 的度数为( )A .20°B .25°C .30°D .35°9. 如图,在半径为5的⊙O 中,AB ,CD 是互相垂直的两条弦,垂足为P ,且AB =CD =8,则OP 的长为( )A .3B .4C .3 2D .4 210. 如图,⊙P与x 轴交于点A(—5,0),B(1,0),与y 轴的正半轴交于点C.若∠ACB =60°,则点C 的纵坐标为( )A.13+ 3B .2 2+ 3C .4 2D .2 2+2二、填空题(本大题共8道小题)11. 如图所示,AB 为☉O 的直径,点C 在☉O 上,且OC ⊥AB ,过点C 的弦CD 与线段OB 相交于点E ,满足∠AEC=65°,连接AD ,则∠BAD= 度.12. (2019•娄底)如图,C 、D 两点在以AB 为直径的圆上,2AB =,30ACD ∠=︒,则AD __________.13. 如图,以△ABC的边BC为直径的⊙O分别交AB,AC于点D,E,连接OD,OE.若∠A=65°,则∠DOE=________°.14. 如图,在⊙O中,BD为⊙O的直径,弦AD的长为3,AB的长为4,AC平分∠DAB,则弦CD的长为________.15. 如图,在⊙O中,半径OA垂直于弦BC,点D在圆上,且∠ADC=30°,则∠AOB的度数为________.16. 如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E 在边BC上,连接AE.若∠ABC=64°,则∠BAE的度数为________.17. 当宽为3 cm 的刻度尺的一边与⊙O 相切于点A 时,另一边与⊙O 的两个交点B ,C 处的读数如图所示(单位: cm),那么该圆的半径为________cm.18. 如图,△ABC 内接于⊙O ,若∠OAB =32°,则∠C =________°.三、解答题(本大题共4道小题)19. 如图,在⊙O 中,M ,N 分别是半径OA ,OB 的中点,且CM ⊥OA 交⊙O 于点C ,DN ⊥OB 交⊙O 于点D .求证:AC ︵=BD ︵.20. 如图,AB 为O 的直径,点C 在O 上.(1)尺规作图:作BAC 的平分线,与O 交于点D ;连接OD ,交BC 于点E (不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑); (2)探究OE 与AC 的位置及数量关系,并证明你的结论.21. 如图,直线AB经过⊙O的圆心,与⊙O相交于点A,B,点C在⊙O上,且∠AOC=30°,P是直线AB上的一个动点(与点O不重合),直线PC与⊙O相交于点Q.在直线AB上使QP=QO成立的点P共有几个?请相应地求出∠OCP的度数.22. 如图,点E是△ABC的内心,线段AE的延长线交BC于点F(∠AFC≠90°),交△ABC的外接圆于点D.(1)求点F与△ABC的内切圆⊙E的位置关系;(2)求证:ED=BD;(3)若∠BAC=90°,△ABC的外接圆的直径是6,求BD的长;(4)B,C,E三点可以确定一个圆吗?若可以,则它们确定的圆的圆心和半径分别是什么?若不可以,请说明理由.人教版 九年级数学 24.1 圆的有关性质 课后训练-答案一、选择题(本大题共10道小题) 1. 【答案】D2. 【答案】B[解析]本题实质上是要确定三角形外接圆的圆心,三角形外接圆的圆心是三边垂直平分线的交点,故选B .3. 【答案】D[解析] 由同弧所对的圆周角等于圆心角的一半, 可知∠α=2∠BCD =260°. 而∠α+∠BOD =360°, 所以∠BOD =100°.4. 【答案】C【解析】∵AB 为直径,∴90ACB ∠=︒,∴6BC ===, ∵OD AC ⊥,∴142CD AD AC ===,在Rt CBD △中,BD ==C .5. 【答案】B6. 【答案】C7. 【答案】B[解析] 如图,连接AD.∵AB 为⊙O 的直径,∴∠ADB =90°.∵∠A 和∠BCD 都是BD ︵所对的圆周角,∴∠A =∠BCD =40°,∴∠ABD =90°-40°=50°.故选B.8. 【答案】C9. 【答案】C[解析] 如图,过点O 作OE ⊥AB ,OF ⊥CD ,垂足分别为E ,F ,连接AO.∵OE ⊥AB ,∴AE =12AB =4.在Rt △OAE 中,OA =5,由勾股定理可得OE =3,同理得OF =3.又∵AB ⊥CD ,∴四边形OEPF 是正方形,∴PE =OE = 3.在Rt △OPE 中,由勾股定理可得OP =3 2.10. 【答案】B[解析] 如图,连接PA ,PB ,PC ,过点P 作PD ⊥AB 于点D ,PE⊥OC 于点E.∵∠ACB =60°,∴∠APB =120°. ∵PA =PB ,∴∠PAB =∠PBA =30°. ∵A(-5,0),B(1,0), ∴AB =6, ∴AD =BD =3,∴PD =3,PA =PB =PC =2 3. ∵PD ⊥AB ,PE ⊥OC ,∠AOC =90°,∴四边形PEOD 是矩形,∴OE =PD =3,PE =OD =3-1=2, ∴CE =PC2-PE2=12-4=2 2, ∴OC =CE +OE =2 2+3, ∴点C 的纵坐标为2 2+ 3. 故选B.二、填空题(本大题共8道小题)11. 【答案】20 [解析]如图,连接DO ,∵CO ⊥AB , ∴∠COB=90°,∵∠AEC=65°,∴∠C=25°,∵OD=OC ,∴∠ODC=∠C=25°,∴∠DOC=130°,∴∠DOB=40°,∵2∠BAD=∠DOB , ∴∠BAD=20°.12. 【答案】1【解析】∵AB 为直径,∴90ADB ∠=︒,∵30B ACD ∠=∠=︒,∴112122AD AB ==⨯=. 故答案为:1.13. 【答案】50[解析] 由三角形的内角和定理,得∠B +∠C =180°-∠A .再由OB =OD =OC =OE ,得到∠BDO =∠B ,∠CEO =∠C .在等腰三角形BOD 和等腰三角形COE 中,∠DOB +∠EOC =180°-2∠B +180°-2∠C =360°-2(∠B +∠C )=360°-2(180°-∠A )=2∠A ,所以∠DOE =180°-2∠A =50°.14. 【答案】52 2 [解析] ∵BD 为⊙O 的直径,∴∠DAB =∠DCB =90°. ∵AD =3,AB =4,∴BD =5.又∵AC 平分∠DAB ,∴∠DAC =∠BAC =45°, ∴∠DBC =∠DAC =45°,∠CDB =∠BAC =45°, 从而CD =CB ,∴CD =52 2.15. 【答案】60°[解析] ∵OA ⊥BC ,∴AB ︵=AC ︵,∴∠AOB =2∠ADC.∵∠ADC=30°,∴∠AOB =60°.16. 【答案】52°[解析] ∵四边形ABCD 是圆内接四边形,∴∠B +∠D =180°.∵∠B =64°,∴∠D =116°.又∵点D 关于AC 的对称点是点E , ∴∠AEC =∠D =116°.又∵∠AEC =∠B +∠BAE ,∴∠BAE =52°.17. 【答案】25618. 【答案】58[解析] 方法一:如图①,连接OB.∵在△OAB 中,OA =OB ,∴∠OAB =∠OBA.又∵∠OAB =32°,∴∠OBA =32°,∴∠AOB =180°-2×32°=116°.又∵∠C =12∠AOB(一条弧所对的圆周角是它所对的圆心角的一半), ∴∠C =58°.方法二:如图②,过点A 作直径AD ,连接BD ,则∠ABD =90°,∴∠C =∠D =90°-32°=58°(同弧所对的圆周角相等).三、解答题(本大题共4道小题)19. 【答案】证明:如图,连接OC ,OD ,则OC =OD .∵M ,N 分别是半径OA ,OB 的中点, ∴OM =ON .∵CM ⊥OA ,DN ⊥OB ,∴∠OMC =∠OND =90°. 在Rt △OMC 和Rt △OND 中,⎩⎨⎧OC =OD ,OM =ON ,∴Rt △OMC ≌Rt △OND (HL), ∴∠MOC =∠NOD ,∴AC ︵=BD ︵.20. 【答案】(1)如图所示:(2)OE AC ∥,12OE AC =. 理由如下:∵AD 平分BAC ∠, ∴12BAD BAC ∠=∠, ∵12BAD BOD ∠=∠,∴BOD BAC ∠=∠, ∴OE AC ∥,∵OA OB =,∴OE 为ABC △的中位线, ∴OE AC ∥,12OE AC =.21. 【答案】解:在直线AB 上使QP =QO 成立的点P 共有3个. (1)如图①.在△QOC 中,OC =OQ ,∴∠OQC =∠OCQ . 在△OPQ 中,QP =QO ,∴∠QOP =∠QPO .又∵∠QPO =∠OCQ +∠AOC ,且∠AOC =30°,∠QOP +∠QPO +∠OQC =180°,∴3∠OCQ =120°, ∴∠OCQ =40°. 即∠OCP =40°.(2)如图②. ∵QO =QP , ∴∠QPO =∠QOP .设∠QPO =x ,则∠OQC =∠QPO +∠QOP =2x .又∵OC =OQ , ∴∠OCQ =∠OQC =2x ,∴∠AOC =∠OPC +∠OCP =x +2x =3x . ∵∠AOC =30°,∴3x =30°,解得x =10°, ∴∠OCP =2x =20°. (3)如图③.∵QO =QP ,∴∠QOP =∠QPO . ∵OC =OQ ,∴∠OQC =∠OCQ .设∠QPO =y ,则∠OQC =∠OCQ =∠QPO +∠AOC =y +30°,∴在△OPQ中,有y+y+y+30°=180°,解得y=50°,∴∠OCP=180°-50°-30°=100°.综上所述,在直线AB上使QP=QO成立的点P共有3个,∠OCP的度数分别为40°,20°,100°.22. 【答案】解:(1)设⊙E切BC于点M,连接EM,则EM⊥BC.又线段AE的延长线交BC 于点F,∠AFC≠90°,∴EF>EM,∴点F在△ABC的内切圆⊙E外.(2)证明:∵点E是△ABC的内心,∴∠BAD=∠CAD,∠ABE=∠CBE.∵∠CBD=∠CAD,∴∠BAD=∠CBD.∵∠BED=∠ABE+∠BAD,∠EBD=∠CBE+∠CBD,∴∠BED=∠EBD,∴ED=BD.(3)如图①,连接CD.设△ABC的外接圆为⊙O.∵∠BAC=90°,∴BC是⊙O的直径,∴∠BDC=90°.∵⊙O的直径是6,∴BC=6.∵E为△ABC的内切圆的圆心,∴∠BAD=∠CAD,∴BD=CD.又∵BD2+CD2=BC2,∴BD=CD=3 2.(4)B,C,E三点可以确定一个圆.如图②,连接CD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴BD=CD.又由(2)可知ED=BD,∴BD=CD=ED,∴B,C,E三点确定的圆的圆心为点D,半径为BD(或ED,CD)的长度.24.2 点和圆、直线和圆的位置关系一、选择题(本大题共8道小题)1. 已知⊙O的半径为5 cm,圆心O到直线l的距离为5 cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定2. 2019·武汉江岸区期中点P到直线l的距离为3,以点P为圆心,以下列长度为半径画圆,能使直线l与⊙P相交的是()A.1 B.2 C.3 D.43. 2020·武汉模拟在Rt△ABC中,∠BAC=90°,AB=8,AC=6,以点A为圆心,4.8为半径的圆与直线BC的公共点的个数为()A.0 B.1 C.2 D.不能确定4. 如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与图中7×4方格中的格点相连,连线能够与该圆弧相切的格点有()A.1个B.2个C.3个D.4个5.如图,AP为⊙O的切线,P为切点,若∠A=20°,C、D为圆周上两点,且∠PD C=60°,则∠OBC等于( )A. 55°B. 65°C. 70°D. 75°6. 如图,在△MBC中,∠MBC=90°,∠C=60°,MB=2 3,点A在MB上,以AB为直径作⊙O与MC相切于点D,则CD的长为()A. 2B. 3 C.2 D.37. 如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ的最小值为()A.5 B.4 2 C.4.75 D.4.88. 一把直尺、含60°角的三角尺和光盘如图所示摆放,A为60°角与直尺的交点,AB=3,则光盘的直径是()A.3 B.3 3 C.6 D.6 3二、填空题(本大题共8道小题)9. 直角三角形的两条直角边分别是5和12,则它的内切圆半径为.10. 如图,P A,PB是☉O的切线,A,B为切点,点C,D在☉O上.若∠P=102°,则∠A+∠C=.11. 设⊙O 的半径为3,点O 到直线l 的距离为d ,若直线l 与⊙O 至少有一个公共点,则d 的取值范围是________.12. 如图,AB是⊙O 的直径,⊙O 交BC 于点D ,DE ⊥AC ,垂足为E ,要使DE是⊙O 的切线,则图中的线段应满足的条件是____________.13. 如图,在△ABC 中,∠A =60°,BC =5 cm.能够将△ABC 完全覆盖的最小圆形纸片的直径是________cm.14. 已知l 1∥l 2,l 1,l 2之间的距离是3 cm ,圆心O 到直线l 1的距离是1 cm ,如果圆O 与直线l 1,l 2有三个公共点,那么圆O 的半径为________cm.15. 如图,AB 是⊙O的直径,OA =1,AC 是⊙O 的弦,过点C 的切线交AB 的延长线于点D.若BD =2-1,则∠ACD =________°.16. 如图所示,在半圆O 中,AB 是直径,D是半圆O 上一点,C 是AD ︵的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE,CB于点P,Q,连接AC,有下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心.其中正确的结论是________(只需填写序号).三、解答题(本大题共4道小题)17. 在△ABC中,AB=AC=10,BC=16,⊙A的半径为7,判断⊙A与直线BC 的位置关系,并说明理由.18. 如图,AC是⊙O的直径,PA切⊙O于点A,PB切⊙O于点B,且∠APB=60°.(1)求∠BAC的度数;(2)若PA=1,求点O到弦AB的距离.19. 已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,求证:AC平分∠DAB;(2)如图②,当直线l与⊙O相交于点E,F时,求证:∠BAF=∠DAE.20. 如图,直线AB经过⊙O上的点C,直线AO与⊙O交于点E和点D,OB与⊙O交于点F,连接DF,DC.已知OA=OB,CA=CB.(1)求证:直线AB是⊙O的切线;(2)求证:∠CDF=∠EDC;(3)若DE=10,DF=8,求CD的长.人教版九年级数学24.2 点和圆、直线和圆的位置关系培优训练-答案一、选择题(本大题共8道小题)1. 【答案】B2. 【答案】D3. 【答案】B4. 【答案】C[解析] 如图,连接AB,BC,作AB,BC的垂直平分线,可得点A,B,C所在的圆的圆心为O′(2,0).只有当∠O′BF=∠O′BD+∠DBF=90°时,BF与圆相切,此时△BO′D≌△FBE,EF=DB=2,此时点F的坐标为(5,1).作过点B,F的直线,直线BF经过格点(1,3),(7,0),此两点亦符合要求.即与点B的连线,能够与该圆弧相切的格点是(5,1)或(1,3)或(7,0),共3个.5. 【答案】B【解析】连接OP ,如解图,则OP ⊥AP .∵∠D =60°,∴∠COP =120°,∵∠A =20°,∠APO =90°,∴∠AOP =70°,∴∠AOC =50°,∵OB =OC ,∴∠OBC =180°-50°2=65°.解图6. 【答案】C[解析] 在Rt △BCM 中,∠MBC =90°,∠C =60°,∴∠BMC =30°,∴BC =12MC ,即MC =2BC.由勾股定理,得MC2=BC2+MB2.∵MB =2 3, ∴(2BC)2=BC2+12,∴BC =2.∵AB 为⊙O 的直径,且AB ⊥BC ,∴BC 为⊙O 的切线.又∵CD 也为⊙O 的切线,∴CD =BC =2.7. 【答案】D[解析] 如图,设PQ 的中点为F ,⊙F 与AB 的切点为D ,连接FD ,FC ,CD .∵AB =10,AC =8,BC =6, ∴∠ACB =90°, ∴PQ 为⊙F 的直径.∵⊙F 与AB 相切,∴FD ⊥AB ,FC +FD =PQ ,而FC +FD ≥CD ,∴当CD 为Rt △ABC 的斜边AB 上的高且点F 在CD 上时,PQ 有最小值,为CD 的长,即CD 为⊙F 的直径.∵S △ABC =12BC ·AC =12CD ·AB ,∴CD =4.8.故PQ 的最小值为4.8.8. 【答案】D[解析] 设光盘的圆心为O ,连接OA ,OB ,则OB⊥AB ,∠OAB =12×(180°-60°)=60°. ∵AB =3,∴OA =6,OB =3 3, ∴光盘的直径是6 3.故选 D.二、填空题(本大题共8道小题)9. 【答案】2 [解析]直角三角形的斜边==13,所以它的内切圆半径==2.10. 【答案】219°[解析]连接AB ,∵P A ,PB 是☉O 的切线, ∴P A=PB. ∵∠P=102°,∴∠P AB=∠PBA=(180°-102°)=39°. ∵∠DAB +∠C=180°,∴∠P AD +∠C=∠P AB +∠DAB +∠C=180°+39°=219°.11. 【答案】0≤d≤312. 【答案】BD =CD或AB =AC (答案不唯一)[解析] (1)连接OD .要使DE 是⊙O 的切线,结合DE ⊥AC ,只需OD ∥AC ,根据O 是AB 的中点,只需BD =CD 即可;(2)根据(1)中探求的条件,要使BD =CD ,则连接AD ,由于∠ADB =90°,只需AB =AC ,根据等腰三角形的三线合一即可.13. 【答案】10 33 如图,能够将△ABC 完全覆盖的最小圆形纸片是△ABC 的外接圆⊙O.连接OB ,OC ,则∠BOC =2∠A =120°.过点O 作OD ⊥BC 于点D ,则∠BOD =12∠BOC =60°.∴∠OBD =30°,∴OB =2OD.由垂径定理,得BD =12BC =52 cm ,在Rt △BOD 中,由勾股定理,得OB2=OD2+BD2,即(2OD)2=OD2+(52)2,解得OD =56 3 cm.∴OB =5 33cm ,∴能够将△ABC 完全覆盖的最小圆形纸片的直径是10 33 cm.14. 【答案】2或4 [解析] 设圆O 的半径为r cm 如图①所示,r -1=3,得r =4;如图②所示,r +1=3,得r =2.15. 【答案】112.5 [解析] 如图,连接OC.∵CD 是⊙O 的切线,∴OC ⊥CD.∵BD =2-1,OA =OB =OC =1,∴OD =2,∴CD =OD2-OC2=(2)2-12=1,∴OC =CD ,∴∠DOC =45°.∵OA =OC ,∴∠OAC =∠OCA ,∴∠OCA =12∠DOC =22.5°,∴∠ACD =∠OCA +∠OCD =22.5°+90°=112.5°.16. 【答案】②③ [解析] ∵在半圆O 中,AB 是直径,D 是半圆O 上一点,C 是AD ︵的中点,∴AC ︵=DC ︵,但不一定等于DB ︵,∴∠BAD 与∠ABC 不一定相等,故①错误.如图,连接OD ,则OD ⊥GD ,∠OAD =∠ODA .∵∠ODA +∠GDP =90°,∠OAD +∠GPD =∠OAD +∠APE =90°, ∴∠GPD =∠GDP ,∴GP =GD ,故②正确.补全⊙O ,延长CE 交⊙O 于点F .∵CE ⊥AB ,∴A 为FC ︵的中点,即AF ︵=AC ︵.又∵C 为AD ︵的中点,∴CD ︵=AC ︵,∴AF ︵=CD ︵,∴∠CAP =∠ACP ,∴AP =CP .∵AB 为⊙O 的直径,∴∠ACQ =90°,∴∠ACP +∠PCQ =90°,∠CAP +∠PQC =90°,∴∠PCQ =∠PQC ,∴PC =PQ ,∴AP =PQ ,即P 为Rt △ACQ 的斜边AQ 的中点,∴点P 为Rt △ACQ 的外心,故③正确.三、解答题(本大题共4道小题)17. 【答案】解:⊙A 与直线BC 相交.理由:过点A 作AD ⊥BC 于点D ,则BD =CD =8.∵AB =AC =10,∴AD =6.∵6<7,∴⊙A 与直线BC 相交.18. 【答案】解:(1)∵PA 切⊙O 于点A ,PB 切⊙O 于点B ,∴PA =PB ,∠PAC =90°.∵∠APB =60°,∴△APB 是等边三角形,∴∠BAP =60°,∴∠BAC =90°-∠BAP =30°.(2)过点O 作OD ⊥AB 于点D ,如图所示,则AD =BD =12AB.由(1)得△APB是等边三角形,∴AB=PA=1,∴AD=1 2.在Rt△AOD中,∵∠BAC=30°,∴OD=12OA.由勾股定理,得OA2=OD2+AD2,即(2OD)2=OD2+(1 2)2,∴OD=36,即点O到弦AB的距离为36.19. 【答案】证明:(1)如图①,连接OC.∵直线l与⊙O相切于点C,∴OC⊥l.又∵AD⊥l,∴AD∥OC,∴∠DAC=∠ACO.∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB.(2)如图②,连接BF.∵AB是⊙O的直径,∴∠AFB=90°,∴∠BAF=90°-∠B.∵∠AEF=∠ADE+∠DAE=90°+∠DAE,又由圆内接四边形的性质,得∠AEF+∠B=180°,∴90°+∠DAE+∠B=180°,∴∠DAE=90°-∠B,∴∠BAF=∠DAE.20. 【答案】解:(1)证明:如图,连接OC.∵OA=OB,AC=CB,∴OC⊥AB.又∵点C在⊙O上,∴直线AB是⊙O的切线.(2)证明:∵OA=OB,AC=CB,∴∠AOC=∠BOC.∵OD=OF,∴∠ODF=∠OFD.∵∠AOB=∠ODF+∠OFD=∠AOC+∠BOC,∴∠BOC=∠OFD,∴OC∥DF,∴∠CDF=∠OCD.∵OD=OC,∴∠ODC=∠OCD,∴∠CDF=∠EDC.(3)如图,过点O作ON⊥DF于点N,延长DF交AB于点M. ∵ON⊥DF,∴DN=NF=4.在Rt△ODN中,∵∠OND=90°,OD=5,DN=4,∴ON=OD2-DN2=3.由(2)知OC∥DF,∴∠OCM+∠CMN=180°.由(1)知∠OCM=90°,∴∠CMN=90°=∠OCM=∠MNO,∴四边形OCMN是矩形,∴CM=ON=3,MN=OC=5.在Rt△CDM中,∵∠DMC=90°,CM=3,DM=DN+MN=9,∴CD=DM2+CM2=92+32=310.24.3正多边形和圆一、选择题1.如图,四边形ABCD是⊙O的内接四边形,AB为⊙0直径,点C为劣弧BD 的中点,若∠DAB=40°,则∠ABC=().A.140°B.40°C.70°D.50°2.如图,圆O是△ABC的外接圆,连接OA、OC,∠OAC=20°,则∠ABC的度数为()A.140°B.110°C.70°D.40°3.如图,已知△ABC为⊙O的内接三角形,AB>AC.E为BAC的中点,过E 作EF⊥AB于F.若AF=1,AC=4,∠C=60°,则⊙O的面积是()A.8πB.10πC.12πD.18π4.如图,四边形ABCD 内接于O ,9AB =,15AD =,120BCD ∠=︒,弦AC 平分BAD ∠,则AC 的长是( )A .73B .83C .12D .135.如图,AB 为⊙O 的直径,点C 为圆上一点,∠BAC =20°,将劣弧AC 沿弦AC 所在的直线翻折,交AB 于点D ,则弧AD 的度数等于( )A .40°B .50C .80°D .1006.如图,等边△ABD 与等边△ACE ,连接BE 、CD ,BE 的延长线与CD 交于点F ,下列结论:(1)BE=CD ;(2)AF 平分∠EAC ; (3)∠BFD=60°;(4)AF+FD=BF 其中正确的有( )A .1个B .2个C .3个D .4个7.正方形ABCD 中,对角线AC 、BD 交于O ,Q 为CD 上任意一点,AQ 交BD 于M ,过M作MN ⊥AM 交BC 于N ,连AN 、QN .下列结论:①MA=MN ;②∠AQD=∠AQN ; ③S △AQN =12S 五边形ABNQD ;④QN 是以A 为圆心,以AB 为半径的圆的切线.其中正确的结论有( )A .①②③④B .只有①③④C .只有②③④D .只有①② 8.如图,在菱形ABCD 中,点P 是BC 边上一动点,连结AP ,AP 的垂直平分线交BD 于点G ,交 AP 于点E ,在P 点由B 点到C 点的运动过程中,∠APG 的大小变化情况是( )A .变大B .先变大后变小C .先变小后变大D .不变9.如图,矩形ABCD 为⊙O 的内接四边形,AB =2,BC =3,点E 为BC 上一点,且BE =1,延长AE 交⊙O 于点F ,则线段AF 的长为( )A .755B .5C .5+1D .35210.在四边形ABCD 中,M 、N 分别是CD 、BC 的中点, 且AM ⊥CD ,AN ⊥BC ,已知∠MAN=74°,∠DBC=41°,则∠ADB 度数为( ).A .15°B .17°C .16°D .32°二、填空题11.如图,C 为半圆O 上一点,AB 为直径,且AB 2a =,COA 60∠=.延长AB 到P ,使1BP AB 2=,连CP 交半圆于D ,过P 作AP 的垂线交AD 的延长线于H ,则PH 的长度为________.12.如图,边长为4的正方形ABCD内接于⊙O,点E是弧AB上的一动点(不与点A、B重合),点F是弧BC上的一点,连接OE,OF,分别与交AB,BC于点G,H,且∠EOF=90°,连接GH,有下列结论:①弧AE=弧BF;②△OGH是等腰直角三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为4+22.其中正确的是_____.(把你认为正确结论的序号都填上)13.如图,在Rt△ABC中,∠BAC=90°,BC=5,AB=3,点D是线段BC上一动点,连接AD,以AD为边作△ADE∽△ABC,点N是AC的中点,连接NE,当线段NE最短时,线段CD的长为_____.14.如图,四边形ABCD内接于⊙O,∠1+∠2=64°,∠3+∠4=__________°.15.如图,边长一定的正方形ABCD,Q为CD上一个动点,AQ交BD于点M,过M作MN⊥AQ交BC于点N,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;②MP=12BD;③BN+DQ=NQ;④AB BNBM2是_____.三、解答题16.如图,四边形ABCD 是O 的内接四边形,42BC =,45BAC ∠=,75ABC ∠=,求AB 的长.17.如图,已知∠MON=120°,点A ,B 分别在OM ,ON 上,且OA =OB =a ,将射线OM 绕点O 逆时针旋转得到OM′,旋转角为α(0120α≤<︒︒且60α≠︒),作点A 关于直线OM′的对称点C ,画直线BC 交于OM′与点D ,连接AC ,AD .有下列结论:有下列结论:①∠BDO + ∠ACD = 90°;②∠ACB 的大小不会随着a 的变化而变化;③当 30︒=α时,四边形OADC 为正方形;④ACD ∆23a .其中正确的是________________.(把你认为正确结论的序号都填上) 18.我们定义:有一组邻边相等且有一组对角互补的凸四边形叫做等补四边形 (1)概念理解①根据上述定义举一个等补四边形的例子:②如图1,四边形ABCD 中,对角线BD 平分∠ABC ,∠A +∠C =180°,求证:四边形ABCD是等补四边形(2)性质探究:③小明在探究时发现,由于等补四边形有一组对角互补,可得等补四边形的四个顶点共圆,如图2,等补四边形ABCD内接于⊙O,AB=AD,则∠ACD∠ACB(填“>”“<”或“=“);④若将两条相等的邻边叫做等补四边形的“等边”,等边所夹的角叫做“等边角”,它所对的角叫做“等边补角”连接它们顶点的对角线叫做“等补对角线”,请用语言表述③中结论:(3)问题解决在等补四边形ABCD中,AB=BC=2,等边角∠ABC=120°,等补对角线BD 与等边垂直,求CD的长.19.定义:在凸四边形中,我们把两组对边乘积的和等于对角线的乘积的四边形称为“完美四边形”(1)在正方形、矩形、菱形中,一定是“完美四边形”的是______.(2)如图1,在△ABC中,AB=2,BC=52,AC=3,D为平面内一点,以A、B、C、D四点为顶点构成的四边形为“完美四边形”,若DA,DC的长是关于x的一元二次方程x2-(m+3)x+14(5m2-2m+13)=0(其中m为常数)的两个根,求线段BD的长度.(3)如图2,在“完美四边形”EFGH中,∠F=90°,EF=6,FG=8,求“完美四边形”EFGH面积的最大值.20.如图,O 是ABC 的外接圆,ABC 的外角DAC ∠的平分线交O 于点E ,连接CE 、BE .(1)求证:BE CE =;(2)若60CAB ∠=︒,23BC =,求劣弧BC 的长度.21.(1)已知:如图1,AB 是O 的直径,点P 为O 上一点(且点P 不与A 、B 重合)连接PA ,PB ,APB ∠的角平分线PC 交O 于点C . ①若86PA PB ==,,求AB 的长 ②求证:2PA PB PC +=(2)如图2,在正方形ABCD 中,52AB 2=,若点P 满足3PC =,且90APC ∠=︒,请直接写出点B 到AP 的距离.22.如图(1) ,折叠平行四边形ABCD ,使得,B D 分别落在,BC CD 边上的,B D ''点,,AE AF 为折痕(1)若AE AF =,证明:平行四边形ABCD 是菱形; (2)若110BCD ︒∠= ,求B AD ''∠的大小;(3)如图(2) ,以,AE AF 为邻边作平行四边形AEGF ,若AE EC =,求CGE ∠的大小23.在平面直角坐标系xOy 中,已知(0,2)A ,动点P 在3y x =的图像上运动(不与O 重合),连接AP ,过点P 作PQ AP ⊥,交x 轴于点Q ,连接AQ .(1)求线段AP 长度的取值范围;(2)试问:点P 运动过程中,QAP ∠是否问定值?如果是,求出该值;如果不是,请说明理由.(3)当OPQ ∆为等腰三角形时,求点Q 的坐标.【参考答案】1.C 2.B 3.C 4.B 5.D 6.C 7.A 8.D 9.A 10.C 113 12.①②④ 13.411014.64 15.①②③④ 16.317.①②④18.(1)①正方形;②略;(2)③=;④等补四边形的“等补对角线”平分“等边补角”;(3)CD 的值为2或4. 19.(1)正方形、矩形;(2)3;(3)49. 20.(1)略;(2)43π21.(1)①10AB =,②略;(2)72或12 22.(1)略;(2)30°;(3)45°.23.(1)3AP ≥;(2)QAP ∠为定值,QAP ∠=30°;(3)1(234,0)Q +,2(234,0)Q -,3(23,0)Q -,423(,0)3Q24.4 弧长和扇形面积一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , ) 1. 如图是一圆锥的侧面展开图,其弧长为,则该圆锥的全面积为A.B.C.D.2. 一扇形面积是,半径为,则该扇形圆心角度数是( ) A.B.C.D.3. 圆锥的底面半径为,母线长为,则该圆锥的侧面积为( ) A.B.C.D.4. 如图,在边长为的正方形内部,以各边为直径画四个半圆,则图中阴影部分的面积是( )A. B. C. D.5. 如果圆柱的底面直径为,母线长为,那么圆柱的侧面展开图的面积等于()A. B. C. D.6. 一个扇形占其所在圆的面积的,则该扇形圆心角是()A. B. C. D.无法计算7. 如图,圆锥的底面半径,高,则这个圆锥的侧面展开图的圆心角是()A. B. C. D.8. 一个圆锥的底面圆的周长是,母线长是,它的侧面展开图的圆心角的度数是()A. B. C. D.9. 已知一个圆锥的侧面积是,它的侧面展开图圆心角为,则这个圆锥的底面半径为A. B. C. D.10. 如图,边长为米的正方形池塘的周围是草地,池塘边、、、处各有一棵树,且米.现用长米的绳子将一头羊拴在其中的一棵树上.为了使羊在草地上活动区域的面积最大,应将绳子拴在()A.处B.处C.处D.处二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 如果圆柱的母线长为,底面半径为,那么这个圆柱的侧面积是________.12. 一个圆锥的侧面展开图是一个圆心角为,面积为的扇形,则这个圆锥的高是________.13. 一个圆柱体底面积直径是高的倍,如果底面积半径是分米,则它的表面积是________平方分米.14. 一个扇形的圆心角是,面积为,那么这个扇形的弧长为________.15. 用一个圆心角为的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于,则这个圆锥的母线长为________.16. 已知圆锥的底面周长为,母线长为,那么这个圆锥的侧面积是________(结果保留).17. 如图,已知的半径,弦,且,点在上,则图中的阴影部分的面积是________.18. 如图,为的弦,点为的中点,,当点、在上运动一周时,点所走过的路径与围成的图形面积是________.19. 如图所示,已知的半径,,则所对的弧的长为________.20. 现有圆周的一个扇形彩纸片,该扇形的半径为,小红同学为了在“六一”儿童节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为的圆锥形纸帽(接缝处不重叠),那么剪去的扇形纸片的圆心角为________.三、解答题(本题共计6 小题,共计60分,)21. 如图,扇形的圆心角,半径,若将此扇形围成一个圆锥的侧面,求圆锥的底面面积的半径.22. 如图,圆锥的底面半径为,高为,求这个圆锥的侧面积和表面积.23. 如图,圆锥的底面半径,高.求这个圆锥的表面积.取24. 如图,在中,,,以腰为直径作半圆,分别交,于点,.求,的长.25. 有一直径为圆形纸片,从中剪出一个圆心角是的最大扇形(如图所示).(1)求阴影部分的面积(2)用所剪的扇形纸片围城一个圆锥,该圆锥的底面圆的半径是多少?26. 如图,一个圆锥的高为,侧面展开图是半圆.求圆锥的母线长与底面半径之比;求的度数;求圆锥的侧面积(结果保留).参考答案与试题解析一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】B【解答】解:设圆锥的底面圆的半径为,扇形的半径为,根据题意得,解得,,解得,所以该圆锥的全面积.故选.2.【答案】A【解答】解:设扇形圆心角的度数为,∴,∴.即扇形圆心角度数为.故选.3.【答案】C【解答】圆锥的侧面展开图为扇形,由扇形面积公式可以得出此圆锥侧面积为:=.4.【答案】D【解答】解:如图所示,.故选.5.【答案】A【解答】解:圆柱的侧面积,故选.6.【答案】B【解答】解:∵一个扇形占其所在圆的面积的,∴该扇形的圆心角占它所在圆的圆心角的,即.故选.7.【答案】C【解答】解:圆锥的母线长,设这个圆锥的侧面展开图的圆心角为,根据题意得,解得,即这个圆锥的侧面展开图的圆心角为.故选.8.【答案】C【解答】解:圆锥侧面展开图的扇形面积半径为,弧长为,代入扇形弧长公式,即,解得,即扇形圆心角为度.故选.9.【答案】【解答】此题暂无解答10.【答案】B【解答】解:①;②;③;④,故选二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】【解答】解:这个圆柱的侧面积.故答案为:.12.【答案】【解答】解:设母线长为,底面圆的半径为,,解得:,底面圆的周长为:,解得:,∴这个圆锥的高是:.故答案为:.13.【答案】【解答】解:∵一个圆柱体底面直径是高的倍,如果底面半径是分米,∴高为分米,底面周长为:(分米),则其侧面积为:(平方分米),上下两底面积为:(平方分米).故它的表面积是:平方分米.14.【答案】【解答】解:设这个扇形的半径是.根据扇形面积公式,得,解得(负值舍去).故半径为.弧长是:.故答案为.15.【答案】【解答】解:设圆锥的母线长为,根据题意得:,解得:.故答案为:.16.【答案】【解答】解:圆锥的侧面积.17.【答案】【解答】解:连接,,∵,∴,∵,∴是等边三角形,∴,,∴,故答案为:.18.【答案】【解答】解:如图,连接、,点所走过的路径为小圆,∵点为的中点,,∴,且,∴点所走过的路径与围成的图形面积是,故答案为:.19.【答案】【解答】解:所对的弧的长,故答案为:.20.【答案】【解答】解:解得:,∵扇形彩纸片是圆周,因而圆心角是∴剪去的扇形纸片的圆心角为.剪去的扇形纸片的圆心角为.故答案为.三、解答题(本题共计 6 小题,每题10 分,共计60分)21.【答案】圆锥的底面圆的半径为.【解答】解:设圆锥的底面圆的半径为,根据题意得,解得.22.【答案】解:∵圆锥的底面半径为,高为,∴圆锥的母线长为,∴.∵圆锥的底面积,∴.【解答】解:∵圆锥的底面半径为,高为,∴圆锥的母线长为,∴.∵圆锥的底面积,∴.23.【答案】解:在中,,,由勾股定理知,侧面积,底面积,∴圆锥的表面积.【解答】解:在中,,,由勾股定理知,侧面积,底面积,∴圆锥的表面积.24.【答案】解:连接,∵,,∴,∴的长,连接、,∵为圆的直径,∴,又,∴,∴,∴的长.【解答】解:连接,∵,,∴,∴的长,连接、,∵为圆的直径,∴,又,∴,∴,∴的长.25.【答案】解:(1)连接,,∵,,∴是圆的直径,,∵圆的直径为,则,故.∴阴影;(2)的长,则,解得:.故该圆锥的底面圆的半径是.【解答】解:(1)连接,,∵,,∴是圆的直径,,∵圆的直径为,则,故.∴阴影;(2)的长,则,解得:.故该圆锥的底面圆的半径是.26.【答案】解:设此圆锥的高为,底面半径为,母线长,∵,∴;由中图所示,∵,,∴,,∴,同理,则;由中图可知,,∴,即,解得,∴,∴圆锥的侧面积为.【解答】解:设此圆锥的高为,底面半径为,母线长,∵,∴;由中图所示,∵,,∴,,∴,同理,则;由中图可知,,∴,即,解得,∴,∴圆锥的侧面积为.。
第二十四章 圆一、填空题(每题3分,共18分)1.如图24-Z -1所示,在⊙O 中,若∠A =60°,AB =3 cm ,则OB =________ cm.图24-Z -12.如图24-Z -2,AB 是⊙O 的直径,∠AOC =130°,则∠D =________°.图24-Z -23.如图24-Z -3所示,一个宽为2厘米的刻度尺(刻度单位:厘米)放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是3和9,那么玻璃杯的杯口外沿的半径为________厘米.图24-Z -34.如图24-Z -4,P A ,PB 分别切⊙O 于A ,B 两点,C 是AB ︵上的一点,∠P =40°,则∠ACB 的度数为________.图24-Z-45.如图24-Z-5,把半径为4 cm的半圆围成一个圆锥的侧面,使半圆圆心为圆锥的顶点,那么这个圆锥的高是________cm(结果保留根号).图24-Z-56.如图24-Z-6,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A,B,C,如果AB=1,那么曲线CDEF的长为________.图24-Z-6二、选择题(每题4分,共32分)7.如图24-Z-7,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()图24-Z-7A.40°B.50°C.80°D.100°8.已知⊙O的半径为3,圆心O到直线l的距离为2,则直线l与⊙O的位置关系是() A.相交B.相切C.相离D.不能确定9.如图24-Z -8,在⊙O 中,AB 为直径,BC 为弦,CD 为切线,连接OC .若∠BCD =50°,则∠AOC 的度数为( )图24-Z -8A .40°B .50°C .80°D .100°10.一个扇形的半径为2,扇形的圆心角为48°,则它的面积为( ) A.8π15 B.4π15 C.16π15 D.π211.已知圆锥的底面积为9π cm 2,母线长为6 cm ,则圆锥的侧面积是( ) A .18π cm 2 B .27π cm 2 C .18 cm 2 D .27 cm 212.一元钱硬币的直径约为24 mm ,则用它能完全覆盖住的正六边形的边长最大不能超过( )A .12 mmB .12 3 mmC .6 mmD .6 3 mm13.如图24-Z -9,半圆的直径BC 恰与等腰直角三角形ABC 的一条直角边完全重合,若BC =4,则图中阴影部分的面积是( )图24-Z -9A .2+πB .2+2πC .4+πD .2+4π12.如图24-Z -10,矩形ABCD 中,AB =5,AD =12,将矩形ABCD 按如图所示的方式在直线l 上进行两次旋转,则点B 在两次旋转过程中经过的路径的长是( )图24-Z -10A.252π B .13π C .25π D .25 2 三、解答题(共50分)15.(10分)如图24-Z -11,在⊙O 中,AB ︵=AC ︵,∠ACB =60°.求证:∠AOB =∠BOC =∠AOC .图24-Z -1116.(12分)如图24-Z-12,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.图24-Z-1217.(12分)已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=50°,BT交⊙O于点C,E是AB上一点,延长CE交⊙O于点D.(1)如图24-Z-13①,求∠T和∠CDB的大小;(2)如图②,当BE=BC时,求∠CDO的大小.图24-Z -1318.(16分)如图24-Z -14,AB 是以BC 为直径的半圆O 的切线,D 为半圆上一点,AD =AB ,AD ,BC 的延长线相交于点E .(1)求证:AD 是半圆O 的切线; (2)连接CD ,求证:∠A =2∠CDE ; (3)若∠CDE =27°,OB =2,求BD ︵的长.图24-Z -14教师详解详析【作者说卷】本试卷的重点是圆的基本概念、与圆有关的位置关系及应用.难点是如何构建垂径定理模型解决问题,切线的判定与性质的综合应用,亮点是既注重解决生活中的实际问题,又培养学生认真读题的习惯.知识与 技能圆的相 关性质 垂径定理 及其应用与圆有关的 位置关系题号1,2,4,7,9,153,168知识与技能 扇形、弧长、圆锥 综合运用 题号 5,6,10,11,13,1417,181.32.25 [解析] ∵AB 是⊙O 的直径,∠AOC =130°, ∴∠BOC =180°-∠AOC =50°, ∴∠D =12∠BOC =25°.故答案为25. 3.134[解析] 如图所示,设该圆的半径为x 厘米,已知弦长为6厘米,根据垂径定理,得AB =3厘米.根据勾股定理,得OA 2-OB 2=AB 2,即x 2-(x -2)2=32,解得x =134.4.110° [解析] 如图所示,连接OA ,OB ,∵PA ,PB 是切线, ∴∠OAP =∠OBP =90°,∴∠AOB =360°-90°-90°-40°= 140°, ∴∠ADB =70°.又∵圆内接四边形的对角互补,∴∠ACB =180°-∠ADB =180°-70°=110°.5.2 3 [解析] 设圆锥的底面圆半径为r cm ,高为h cm ,则2πr =4π,r =2,根据勾股定理,得h =16-4=2 3.故答案是2 3.6.4π [解析] lCD ︵=120π×1180=2π3,lDE ︵=120π×2180=4π3,lEF ︵=120π×3180=2π,所以曲线CDEF 的长=2π3+4π3+2π=4π.7.D8.A [解析] ∵⊙O 的半径为3,圆心O 到直线l 的距离为2, 又∵3>2,即d <r ,∴直线l 与⊙O 的位置关系是相交.9.C [解析] ∵CD 为⊙O 的切线,∴∠OCD =90°. ∵∠BCD =50°,∴∠OCB =40°. ∵OB =OC ,∴∠OBC =∠OCB =40°, ∴∠AOC =2∠OBC =80°.故选C .10.A [解析] 根据扇形面积公式:S =n πr 2360=48π×4360=8π15.故选A .11.A [解析] 因为圆锥的底面积为9π cm 2,所以圆锥的底面圆的半径为3 cm ,圆锥的底面周长为6π cm ,根据扇形面积公式得S =12lR =12×6π×6=18π(cm 2).12.A [解析] 如图,已知圆的半径r 为12 mm ,△OBC 是等边三角形,所以BC =12 mm ,所以正六边形的边长最大不超过12 mm .故选A .13.A [解析] 如图,连接DO.∵△ABC 为等腰直角三角形,∴∠CBA =45°,∴∠DOC =90°.利用分割的方法,得到阴影部分的面积等于三角形BOD 的面积加扇形COD 的面积,所以阴影部分的面积=12×2×2+90360π×22=2+π.14.A [解析] 如图,连接BD ,B ′D.∵AB =5,AD =12, ∴BD =52+122=13, ∴BB′︵的长l =90×π×13180=132π.∵BB″︵的长l′=90×π×12180=6π,∴点B 在两次旋转过程中经过的路径的长是132π+6π=252π.故选A . 15.证明:∵AB ︵=AC ︵,∴AB =AC ,∴△ABC 是等腰三角形.∵∠ACB =60°,∴△ABC 是等边三角形,∴AB =BC =CA ,∴∠AOB =∠BOC =∠AOC.16.解:(1)∵AB 是⊙O 的直径,弦CD ⊥AB ,CD =16,∴DE =12CD =8. ∵BE =4,∴OE =OB -BE =OD -4.在Rt △OED 中,OE 2+DE 2=OD 2,即(OD -4)2+82=OD 2,解得OD =10.∴⊙O 的直径是20.(2)∵弦CD ⊥AB ,∴∠OED =90°,∴∠EOD +∠D =90°.∵∠M =∠D ,∠EOD =2∠M ,∴∠EOD +∠D =2∠M +∠D =3∠D =90°,∴∠D =30°.17.解:(1)如图①,连接AC ,∵AB 是⊙O 的直径,AT 是⊙O 的切线,∴AT ⊥AB ,即∠TAB =90°.∴∠T=90°-∠ABT=40°.∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠ABT=40°,∴∠CDB=∠CAB=40°.(2)如图②,连接AD,在△BCE中,BE=BC,∠EBC=50°,∴∠BCE=∠BEC=65°,∴∠BAD=∠BCD=65°.∵OA=OD,∴∠ODA=∠OAD=65°.∵∠ADC=∠ABC=50°,∴∠CDO=∠ODA-∠ADC=15°.18.解:(1)证明:连接OD,BD.∵AB是以BC为直径的半圆O的切线,∴AB⊥BC,即∠ABO=90°.∵AB=AD,∴∠ABD=∠ADB.∵OB=OD,∴∠ABD +∠DBO =∠ADB +∠BDO ,即∠ABO =∠ADO =90°.又∵OD 是半圆O 的半径,∴AD 是半圆O 的切线. (2)证明:由(1)知∠ADO =∠ABO =90°,∴∠A =360°-∠ADO -∠ABO -∠BOD =180°-∠BOD =∠DOC. ∵AD 是半圆O 的切线,∴∠ODE =90°,∴∠ODC +∠CDE =90°.∵BC 是⊙O 的直径,∴∠ODC +∠BDO =90°,∴∠BDO =∠CDE.∵∠BDO =∠OBD ,∴∠DOC =2∠BDO ,∴∠DOC =2∠CDE ,∴∠A =2∠CDE.(3)∵∠CDE =27°,∴∠DOC =2∠CDE =54°,∴∠BOD =180°-54°=126°.∵OB =2,∴BD ︵的长=126×π×2180=75π.。
人教版九年级上册数学第二十四章测试题一、单选题1.下列说法正确的是( )A .同圆或等圆中弧相等,则它们所对的圆心角也相等B .90°的圆心角所对的弦是直径C .平分弦的直径垂直于这条弦D .三点确定一个圆2.已知⊙O 的直径为4cm ,点P 与圆心O 之间的距离为4cm ,那么点P 与⊙O 的位置关系为( )A .在圆上B .在圆内C .在圆外D .不能确定 3.四边形ABCD 内接于⊙O ,则∠A ∶∠B ∶∠C ∶∠D 的值可以是( )A .2∶3∶4∶5B .2∶4∶3∶5C .2∶5∶3∶4D .2∶3∶5∶44.如图,已知⊙O 的半径是4,点A,B,C 在⊙O 上,若四边形OABC 为菱形,则图中阴影部分面积为( )A .83π-B .163π-C .163π-D .83π-5.如图,王大伯家屋后有一块长12m 、宽8m 的长方形空地,他在以较长边BC 为直径的半圆内种菜,他家养的一只羊平时拴在A 处的一棵树上,为了不让羊吃到菜,拴羊的绳长最长不超过( )A .3mB .4mC .5mD .6m6.如图,AB 、CD 是O 的两条弦,且AB CD =.OM AB ⊥,ON CD ⊥,垂足分别为点M 、N ,BA 、DC 的延长线交于点P ,连接OP .下列结论正确的个数是( ) ①AB CD =;②OM ON =;③PA PC =;④BPO DPO ∠=∠A.1个B.2个C.3个D.4个7.如图,⊙O过点B、C,圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A B.C D.8.在截面为半圆形的水槽内装有一些水,如图水面宽AB为6分米,如果再注入一些水后,水面上升1分米,此时水面宽度变为8分米.则该水槽截面半径为()A.3分米B.4分米C.5分米D.10分米9.如图,已知圆周角∠BAC=40°,那么圆心角∠BOC的度数是()A.40B.60C.80D.10010.已知如图,在⊙O中,OA⊥OB,∠A=35°,则弧CD的度数为()A.20°B.25°C.30°D.35°二、填空题11.如图,小明做实验时发现,当三角板中30°角的顶点A在⊙O上移动,三角板的两边与⊙O相交于点P、Q时,PQ的长度不变.若⊙O的半径为9,则PQ长为________.12.如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于D.若AC=6,BD=5BC的长为_____.13.如图,边长相等的正五边形和正六边形拼接在一起,则∠ABC的度数为________.14.如图,在矩形ABCD中,AB=3,AD=4,若以点A为圆心,以4为半径作⊙A,则点A,点B,点C,点D四点中在⊙A外的是________.15.如图,⊙O是△ABC的外接圆,∠OCB=30°,则∠A的度数等于____.三、解答题16.已知:如图,A,B,C,D是⊙O上的点,且AB=CD,求证:∠AOC=∠BOD.17.如图,点A,B,C,D在⊙O上,连结AB,CD,BD,若AB=CD.求证:∠ABD=∠CDB.18.已知在△ABC中,AB=AC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED.(1)求证:ED=EC;(2)若CD=3,AB的长.19.如图,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上任意一点(不与点A、B 重合),连接CO并延长CO交⊙O于点D,连接AD.(1)弦长AB等于________(结果保留根号);(2)当∠D=20°时,求∠BOD的度数.20.已知等边三角形ABC.(1)用尺规作图找出△ABC外心O.(2)记外心O到三角形三边的距离和为d,到三角形三个顶点的距离和为D,求dD的值21.如图,四边形ABCD内接于⊙O,AC平分∠BAD,延长DC交AB的延长线于点E.(1)若∠ADC=86°,求∠CBE的度数;(2)若AC=EC,求证:AD=BE22.已知:如图,AB为半圆O的直径,C、D是半圆O上的两点,若直径AB的长为4,且BC=2,∠DAC=15°.(1)求∠DAB的度数;(2)求图中阴影部分的面积(结果保留π)23.如图,AB是⊙O的直径,弦CD⊥AB于点E,在上取点G,连结CG,DG,AC.求证:∠DGC=2∠BAC.24.如图,△ABC中,⊙O经过A、B两点,且交AC于点D,连接BD,∠DBC=∠BAC.(1)证明BC与⊙O相切;(2)若⊙O的半径为6,∠BAC=30°,求图中阴影部分的面积.25.已知AB是⊙O的直径,弦CD与AB相交,∠BAC=40°.(1)如图1,若D为弧AB的中点,求∠ABC和∠ABD的度数;(2)如图2,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD的度数.参考答案1.A【分析】利用等弧和弦的概念,垂径定理以及弧,弦与圆心角之间的关系进行判断.【详解】A选项:弧的度数与所对圆心角的度数相等,所以同圆或等圆中弧相等,则它们所对的圆心角也相等,故本选项正确;B选项:90°的圆周角所对的弦是直径,故本选项错误;C选项:应强调这条弦不是直径,故本选项错误;D选项:不在同一直线上的三点确定一个圆,故本选项错误.故选A.【点睛】考查了圆周角定理,垂径定理以及确定圆的条件.熟练掌握相关概念是解题的关键.2.C【分析】直接根据点与圆的位置关系进行解答即可.【详解】∵⊙O的半径为2cm,点P与圆心O的距离为4cm,4cm>2cm,∴点P在圆外.故选C.【点睛】考查的是点与圆的位置关系,熟知设⊙O的半径为r,点P到圆心的距离OP=d,当d<r时,点P在圆内是解答此题的关键.3.D【分析】利用圆内接四边形的对角互补判断即可.【详解】∵四边形ABCD内接于⊙O,∴∠A+∠C=180°=∠B+∠D,故选D .【点睛】考查了圆内接四边形的性质,关键是根据内接四边形的对角互补的性质解答.4.B【分析】连接OB 和AC 交于点D ,根据菱形及直角三角形的性质先求出AC 的长及∠AOC 的度数,然后求出菱形ABCO 及扇形AOC 的面积,则由S 扇形AOC -S 菱形ABCO 可得答案.【详解】连接OB 和AC 交于点D ,如图所示:∵圆的半径为4,∴OB=OA=OC=4,又四边形OABC 是菱形,∴OB ⊥AC ,OD=12OB=2, 在Rt △COD 中利用勾股定理可知:CD=224223,243AC CD -===,∵sin ∠COD=CD OC = ∴∠COD=60°,∠AOC=2∠COD=120°,∴S 菱形ABCO =11422OB AC ⨯=⨯⨯∴S 扇形=21204163603ππ⨯⨯=,则图中阴影部分面积为S 扇形AOC -S 菱形ABCO =163π-故选B.【点睛】 考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=12a•b (a 、b 是两条对角线的长度);扇形的面积=2360n r π.5.B【详解】连接OA,交O于E点,在Rt△OAB中,OB=6m,BA=8m,所以;又因为OE=OB=6m,所以AE=OA−OE=4m.因此拴羊的绳长最长不超过4m.故选B.6.D【分析】如图连接OB、OD,只要证明Rt△OMB≌Rt△OND,Rt△OPM≌Rt△OPN即可解决问题.【详解】解:如图连接OB、OD;∵AB=CD,∴AB CD=,故①正确∵OM⊥AB,ON⊥CD,∴AM=MB,CN=ND,∴BM=DN,∵OB=OD,∴Rt△OMB≌Rt△OND,∴OM=ON,故②正确,∵OP=OP,∴Rt△OPM≌Rt△OPN,∴PM=PN,∠OPB=∠OPD,故④正确,∵AM=CN,∴PA=PC ,故③正确,故选:D .【点睛】本题考查垂径定理、圆心角、弧、弦的关系、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线构造全等三角形解决问题,属于中考常考题型.7.C【详解】试题分析:过A 作AD ⊥BC ,由题意可知AD 必过点O ,连接OB ,∵△BAC 是等腰直角三角形,AD ⊥BC ,∴BD=CD=AD=3,∴OD=AD ﹣OA=2,Rt △OBD 中,根据勾股定理,得:C .考点:1.垂径定理;2.勾股定理;3.等腰直角三角形.8.C【分析】如图,油面AB 上升1分米得到油面CD,依题意得AB=6,CD=8,过O 点作AB 的垂线,垂足为E,交CD 于F 点,连接OA,OC,由垂径定理,得132AE AB ==,142CF CD ==,设OE=x,则OF=x-1,在Rt OAE ∆中和Rt OCF ∆中,根据勾股定理求得OA 、OC 的长度,然后由OA OC =,列方程求x 即可求半径OA,得出直径MN.【详解】:如图,依题意得AB=6,CD=8,过O 点作AB 的垂线,垂足为E,交CD 于F 点,连接OA,OC, 由垂径定理,得132AE AB ==,142CF CD ==,设OE=x,则OF=x-1, 在Rt OAE ∆中, 222OA AE OE =+,在Rt OCF ∆中, 222OC CF OF =+,OA OC =,()2222341x x ∴+=+-, 解得x=4,∴半径OA =5分米,故选C.【点睛】本题考查了垂径定理的运用.关键是利用垂径定理得出两个直角三角形,根据勾股定理表示半径的平方,根据半径相等列方程求解.9.C【分析】根据圆周角定理∠BOC=2∠BAC 即可解决问题.【详解】解:∵∠BOC=2∠BAC ,∠BAC=40°,∴∠BOC=80°,故选C .【点睛】本题考查圆周角定理、圆心角、弧、弦之间的关系解题的关键是熟练掌握基本知识,属于中考基础题.10.A【解析】【分析】连接OC ,根据三角形内角和定理可得∠AOB=90°和∠OBC 的度数,又得∠DOC 的度数,根据弧的度数等于所对圆心角的度数,可得结论.【详解】解:连接OC,∵OA⊥OB,∴∠AOB=90°,∵∠A=35°,∴∠OBC=90°﹣35°=55°,∴OB=OC,∴∠OBC=∠OCB=55°,∴∠COB=70°,∴∠COD=90°﹣70°=20°,∴弧CD的度数为20°,故选:A.【点睛】本题考查了圆心角、弧、弦之间的关系,等腰三角形性质,三角形内角和定理,正确作出辅助线是解题的关键.11.3π.【详解】试题分析:连结OP、OQ,根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,得出∠POQ=2∠A=60°,再根据弧长公式列式计算即可.解:如图,连结OP、OQ,则∠POQ=2∠A=60°.∵⊙O的半径为9,∴的长==3π.故答案为3π.考点:弧长的计算.12.8【分析】连接AD,根据CD是∠ACB的平分线可知∠ACD=∠BCD=45°,故可得出AD=BD,再由AB是⊙O的直径可知△ABD是等腰直角三角形,利用勾股定理求出AB的长,在Rt△ABC 中,利用勾股定理可得出BC的长.【详解】连接AD,∵∠ACB=90°,∴AB是⊙O的直径.∵∠ACB的角平分线交⊙O于D,∴∠ACD=∠BCD=45°,∴∵AB是⊙O的直径,∴△ABD是等腰直角三角形,∴.∵AC=6,∴.故答案为:8.【点睛】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.13.24°【分析】根据正五边形的内角和和正六边形的内角和公式求得正五边形的每个内角为108°和正六边形的每个内角为120°,然后根据周角的定义和等腰三角形性质可得结论.【详解】解:由题意得:正六边形的每个内角都等于120°,正五边形的每个内角都等于108°∴∠BAC=360°-120°-108°=132°∵AB=AC∴∠ACB=∠ABC=(180132)242-︒=︒故答案是:24︒.【点睛】考查了正多边形的内角与外角、等腰三角形的性质,熟练掌握正五边形的内角和正六边形的内角求法是解题的关键.14.C【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;本题可由勾股定理等性质算出点与圆心的距离d,当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【详解】∵CA>4,∴点C在⊙A外.∵AD═4,∴点D在⊙A上外;AB=3<4,∴点B在⊙A内.故答案为C.【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.15.60 º【分析】根据等腰三角形的性质由OB=OC得∠OBC=∠OCB=30°,再根据三角形内角和定理计算出∠BOC=120°,然后根据圆周角定理求解.【详解】∵OB=OC,∴∠OBC=∠OCB=30°,∴∠BOC=180°−30°−30°=120°∠BOC=60°.∴∠A=12【点睛】本题考查了圆周角定理,解题的关键是掌握圆周角定理的用法.16.由AB=CD可得弧AB=弧CD,则可得弧AC=弧BD,从而证得结论.【详解】试题分析:∵AB=CD∴弧AB=弧CD∴弧AC=弧BD∴∠AOC=∠BOD.考点:圆周角定理点评:圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.17.详见解析.【分析】欲证明∠ABD=∠CDB,只要证明AD BC=即可.【详解】证明:∵AB=CD,∴AB CD=,∴AB AC CD AC-=-,∴,AD BC=,∴∠ABD=∠CDB.【点睛】考查圆周角定理,圆心角、弧、弦之间的关系等知识,解题的关键是学会用转化的思想思考问题.18.(1)证明见解析(2)8【分析】()1根据180,180.EDC EDA B EDA ∠+∠=︒∠+∠=︒得到,B EDC ∠=∠因为,AB AC =根据等边对等角得到,B C ∠=∠根据等量代换得到,EDC C ∠=∠根据等角对等边即可证明. ()2连接,AE 根据等腰三角形三线合一的性质得到2BC EC ==证,ABC EDC ∽根据相似三角形的性质即可求出AB 的长.【详解】(1)证明: 180,180.EDC EDA B EDA ∠+∠=︒∠+∠=︒∴,B EDC ∠=∠又∵,AB AC =∴,B C ∠=∠∴,EDC C ∠=∠∴ .ED EC =(2)连接,AE∵AB 是直径,∴,AE BC ⊥又∵,AB AC =∴2BC EC ==∵,.B EDC C C ∠=∠∠=∠∴,ABC EDC ∽∴::,AB EC BC CD =又∵3,EC BC CD ===∴8.AB =【点睛】考查了圆周角定理,等腰三角形的判定和性质,勾股定理,相似三角形的判定与性质等,正确的作出辅助线是解题的关键.19.(1)(2)100°【详解】试题分析:(1)如图,过O作OE⊥AB于E,根据垂径定理知道E是AB的中点,然后在Rt△OEB中利用已知条件即可求解;(2)首先根据三角形的外角和内角的故选得到可以得到∠BOD=∠B+∠A+∠D,接着利用圆周角和圆心角的关系和已知条件即可求出∠BOD的度数.试题解析:(1)如图,过O作OE⊥AB于E,∴E是AB的中点,在Rt△OEB中,OB=2,∠B=30°,∴OE=1,∴∴(2)解法一:∵∠BOD=∠B+∠BCO,∠BCO=∠A+∠D.∴∠BOD=∠B+∠A+∠D.…又∵∠BOD=2∠A,∠B=30°,∠D=20°,∴2∠A=∠B+∠A+∠D=∠A+50°,∠A=50°,…∴∠BOD=2∠A=100°.…解法二:如图,连接OA.∵OA=OB,OA=OD,∴∠BAO=∠B,∠DAO=∠D,∴∠DAB=∠BAO+∠DAO=∠B+∠D.…又∵∠B=30°,∠D=20°,∴∠DAB=50°,…∴∠BOD=2∠DAB=100°考点:1.垂径定理;2.圆周角定理.20.(1)详见解析;(2)12.【分析】(1)作AB,AB的垂直平分线交于点O,则点O即为所求;(2)求出AO.OD,即可得到结论.【详解】(1)用直尺和圆规分别作线段AB、BC的垂直平分线CF、AE,两条垂直平分线相较于点O,点O即为△ABC的外心;(2)设△ABC的外接圆的半径为R,∵三角形ABC是等边三角形,∴∠OCB= 30 °,则OE=12 R,∴外心O到三角形三边的距离和d=32 R,外心O到三角形三个顶点的距离和D=3R,∴dD=31232RR.【点睛】考查了三角形的外接圆与外心,三角形的内接圆与内心,等边三角形的性质,熟练掌握等边三角形的性质是解题的关键.21.(1)∠CBE=86°;(2)证明见解析.【详解】试题分析:(1)根据圆内接四边形的性质计算即可;(2)证明△ADC≌△EBC即可.试题解析:(1)∵四边形ABCD内接于⊙O,∴∠ADC+ ∠ABC= 180°.又∵∠ADC= 86°,∴∠ABC= 94°,∴∠CBE=180° - 94°=86°.(2)∵ AC=EC,∴∠E=∠CAE ,∵ AC平分∠BAD,∴∠DAC=∠CAB ,∴∠DAC= ∠E.∵四边形ABCD内接于⊙O,∴∠ADC+ ∠ABC= 180°,又∵∠CBE+∠ABC = 180°, ,∴∠ADC= ∠CBE,∴△ADC ≌△EBC ,∴ AD=BE .22.(1)45°;(2)π-2.【分析】(1)根据含30°角的直角三角形性质求出∠CAB,即可得出答案;(2)连接OD,求出∠DOA,分别求出扇形AOD和△AOD面积,即可得出答案.【详解】(1)解:∵AB 是直径∴∠ACB=90°,又∵BC=2,AB=4,∴ BC= 12 AB,∴∠BAC=30°,∴∠DAB=∠DAC+∠BAC=15°+30°=45°;(2)解:连接OD,∵直径AB=4,∴半径OD=OA=2,∵OA=OD,∠DAB=45°,∴∠ADO=∠DAB=45°,∴∠AOD=90°,∴阴影部分的面积S=S扇形AOD-S△AOD=290213622022ππ⨯⨯-⨯⨯=-.【点睛】考查了含30°角的直角三角形性质,扇形的面积计算,圆周角定理等知识点,能求出∠CAB=30°和∠AOD=90°是解此题的关键.23.证明见解析.【解析】【分析】由AB是⊙O的直径,CD⊥AB,根据垂径定理的即可求得弧BC=弧BD=12弧CD,从而求得2∠BAC=2∠BAD=∠DAC,由圆周角定理易证得:∠DGC=2∠BAC;【详解】证明:连结AD,∵弦CD⊥直径AB,∴2∠BAC=2∠BAD=∠DAC(垂径定理),又∵∠DGC=∠DAC(圆周角定理),∴∠BAC=∠DGC,∴∠DGC =2∠BAC .【点睛】此题考查垂径定理、圆周角定理.此题难度不大,注意掌握辅助线的作法与数形结合思想的应用.24.(1)证明见解析;(2)6π-【分析】(1)连接BO 并延长交⊙O 于点E ,连接DE .由圆周角定理得出∠BDE=90°,再求出∠EBD+∠DBC=90°,根据切线的判定定理即可得出BC 是⊙O 的切线;(2)分别求出等边三角形DOB 的面积和扇形DOB 的面积,即可求出答案.【详解】(1)证明:连接BO 并延长交⊙O 于点E ,连接DE,∵BE 是直径,∴∠EDB =90°,∴∠E +∠EBD =90°∵=,∴∠E =∠A又∵∠DBC =∠BAC ,∴∠DBC =∠E∴∠DBC +∠EBD =90°,∴∠EBC =90°,∴BC ⊥EB.又∵OB 是半径(B 在⊙O 上),∴BC 与⊙O 相切.(2)∵=,∴∠BOD =2∠A =60°S 阴影= S 扇形OBD -S △OBD =π36×60360-6π-【点睛】本题考查了切线的判定,圆周角定理,扇形面积,等边三角形的性质和判定的应用,关键是求出∠EBD+∠DBC=90°和分别求出扇形DOB 和三角形DOB 的面积.25.(1)45°;(2)26°.【分析】(1)根据圆周角和圆心角的关系和图形可以求得∠ABC和∠ABD的大小;(2)根据题意和平行线的性质、切线的性质可以求得∠OCD的大小.【详解】(1)∵AB是⊙O的直径,∠BAC=38°,∴∠ACB=90°,∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,∵D为弧AB的中点,∠AOB=180°,∴∠AOD=90°,∴∠ABD=45°;(2)连接OD,∵DP切⊙O于点D,∴OD⊥DP,即∠ODP=90°,∵DP∥AC,∠BAC=38°,∴∠P=∠BAC=38°,∵∠AOD是△ODP的一个外角,∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,∵OC=OA,∠BAC=38°,∴∠OCA=∠BAC=38°,∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.【点睛】本题考查切线的性质、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.。
人教版九年级上册数学第24章测试题(附答案)一、单选题(共12题;共24分)1.下列图形中,是正多边形的是()A. 直角三角形B. 等腰三角形C. 长方形D. 正方形2.如图,圆O中,弦AB、CD互相垂直且相交于点P,∠A=35°,则∠B的大小是( )A. 35°B. 55°C. 65°D. 70°3.已知一个扇形的半径为12,圆心角为150°,则此扇形的弧长是()A. 5πB. 6πC. 8πD. 10π4.若⊙O的半径等于10cm,圆心O到直线l的距离是6cm,则直线l与⊙O位置关系是()A. 相交B. 相切C. 相离D. 相切或相交5.给定下列图形可以确定一个圆的是()A. 已知圆心B. 已知半径C. 已知直径D. 不在同一直线上的三个点6.如图,AB,CD是⊙O的两条弦,连接AD,BC,若∠BAD=60°,则∠BCD的度数为()A. 40°B. 50°C. 60°D. 70°7.如图,点I和O分别是△ABC的内心和外心,则∠AIB和∠AOB的关系为( )A. ∠AIB=∠AOBB. ∠AIB≠∠AOBC. 4∠AIB-∠AOB=360°D. 2∠AOB-∠AIB=180°8.如图△ABC的内接圆于⊙O,∠C=45°,AB=4,则⊙O的半径为()A. 2B. 4C. 2D. 49.如图,两个同心圆的半径分别为3cm和5cm,弦AB与小圆相切于点C,则AB的长为()A. 4cmB. 5cmC. 6cmD. 8cm10.如图,△ABC内接于⊙O,若∠OAB=28°,则∠C= ( )A. 56°B. 62°C. 67°D. 64°11.如图,一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是()A. 4B. 5C. 6D. 1012.如图,在矩形ABCD中,AB=3,AD=4,以BC为斜边在矩形的外部作直角三角形BEC,点F是CD的中点,则EF的最大值为( )A. B. 4 C. 5 D.二、填空题(共6题;共12分)13.如图,已知圆周角∠ACB=130°,则圆心角∠AOB=________.14.在矩形ABCD中,BC=6,CD=8,以A为圆心画圆,且点D在⊙A内,点B在⊙A外,则⊙A半径r的取值范围是________.15.如图,过⊙O外一点P作⊙O的两条切线PA,PB,切点分别为A,B,作直线BC,连接AB,AC,若∠P =80°,则∠C=________°.16.如图,在⊙O中,直径AB与弦CD的交点为E,AC∥OD.若∠BEC=72°,则∠B=________°.17.如图,⊙O的半径为1cm,正六边形内接于⊙O,则图中阴影部分面积为________.18.如图,四边形ABCD是⊙O的内接四边形,点D是的中点,点E是上的一点,若∠CED=40°,则∠ADC=________度.三、解答题(共4题;共25分)19.如图,在⊙O中,AB、CD是两条弦,⊙O的半径长为rcm,弧AB的长度为cm,弧CD的长度为cm(温馨提醒:弧的度数相等,弧的长度相等,弧相等,有联系也有区别) 当= 时,求证:AB=CD20.如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,求线段OM的最小值.21.如图,水平放置的一个油管的截面半径为13cm,其中有油部分油面宽AB为24cm,求截面上有油部分油面高CD(单位:cm).22.如图,正方形ABCD的外接圆为⊙O,点P在劣弧上(不与C点重合).(1)求∠BPC的度数;(2)若⊙O的半径为8,求正方形ABCD的边长.四、作图题(共1题;共9分)23.已知点在⊙上,,仅使用无刻度的直尺作图(保留痕迹)(1)在图①中画一个含的直角三角形;(2)点在弦上,在图②中画一个含的直角三角形.五、综合题(共4题;共40分)24.如图,在△中,,为斜边上的中点,连接,以为直径作⊙,分别与、交于点、.过点作⊥,垂足为点.(1)求证:为⊙的切线;(2)连接,若,,求的长.25.如图,△ABC 中,AB=AC,以AB为直径作⊙O,与BC交于点D,过D作AC的垂线,垂足为E.证明:(1)BD=DC;(2)DE是⊙O切线.26.对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若⊙C上存在一个点M,使得MP=MC,则称点P为⊙C的“等径点”,已知点D(,),E(0,2 ),F(﹣2,0).(1)当⊙O的半径为1时,①在点D,E,F中,⊙O的“等径点”是哪几个点;②作直线EF,若直线EF上的点T(m,n)是⊙O的“等径点”,求m的取值范围.(2)过点E作EG⊥EF交x轴于点G,若△EFG各边上所有的点都是某个圆的“等径点”,求这个圆的半径r 的取值范围.27.如图,已知三角形ABC的边AB是0的切线,切点为B.AC经过圆心0并与圆相交于点D,C,过C作直线CE丄AB,交AB的延长线于点E,(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求O的半径.答案一、单选题1. D2. B3. D4. A5. D6. C7. C8. A9. D 10. B 11. C 12.D二、填空题13. 100゜14. 6<r<8 15. 50 16. 42 17. 18. 100三、解答题19. 解:令∠AOB=α,∠COD=β.∵= ∴∵AB和CD在同圆中,r1=r2 ∴α=β∴AB=CD20. 解:设OP与O交于点N,连结MN,OQ,如图,∵OP=4,ON=2,∴N是OP的中点,∵M为PQ的中点,∴MN为△POQ的中位线,∴MN= OQ= ×2=1,∴点M在以N为圆心,1为半径的圆上,当点M在ON上时,OM最小,最小值为1,∴线段OM的最小值为1.21. 解:如图;连接OA;根据垂径定理,得AC=BC=12cm;Rt△OAC中,OA=13cm,AC=12cm;根据勾股定理,得:OC=""=5cm;∴CD=OD﹣OC=8cm;∴油面高为8cm.22.(1)解:连接OB,OC,∵四边形ABCD为正方形,∴∠BOC=90°,∴∠BPC= ∠BOC=45°;(2)解:过点O作OE⊥BC于点E,∵OB=OC,∠BOC=90°,∴∠OBE=45°,∴OE=BE,∵OE2+BE2=OB2,∴BE= ∴BC=2BE=2×四、作图题23. (1)解:如图:即为所求(2)解:如图:∆AMN即为所求五、综合题24. (1)证明:连接ON.∵∠ACB=90°,D为斜边的中点,∴CD=DA=DB AB,∴∠BCD=∠B.∵OC=ON,∴∠BCD=∠ONC,∴∠ONC=∠B,∴ON∥AB.∵NE⊥AB,∴ON⊥NE,∴NE为⊙O的切线.(2)解:由(1)得到:∠BCD=∠B,∴sin∠BCD=sin∠B .∵NE=3,∴BN=5.连接DN.∵CD是⊙O的直径,∴∠CND=90°,∴DN⊥BC,∴CN=BN=5,易证四边形DMCN是矩形,∴MD=CN=BN=5.25. (1)证明:如右图所示,连接AD,∵AB是直径,∴∠ADB=90°,又∵AB=AC,∴BD=CD(2)连接OD,∵∠BAC=2∠BAD,∠BOD=2∠BAD,∴∠BAC=∠BOD,∴OD∥AC,又∵DE⊥AC,∴∠AED=90°,∴∠ODB=∠AED=90°,∴DE是⊙O的切线.26. (1)解:根据“等径点”的定义可知,“等径点”到圆心的距离小于等于圆的半径的2倍.即半径为1的⊙O的“等径点”在以O为圆心2为半径的圆内或圆上.如图1中,观察图象可知:在点D,E,F中,⊙O的“等径点”是D,E②如图2中,设直线EF交半径为2的⊙O于点K,连接OK,作KM⊥OF于M.∵OF=2,OE=2 ,∴tan∠EFO== ,∴∠OFK=60°,∵OF=OK,∴△OFK是等边三角形,∴OF=OK=FK=2,∵KM⊥OF,∴FM=OM=1,KM==,∴K(﹣1,),∵当点T在线段FK上时,点T是“等径点”,∴﹣2≤m≤﹣1.(2)解:如图3中,∵△EFG是直角三角形,∠FEG=90°,∠EFG=60°,∴EF=2OF=4,FG=2EF=8,∴OG=6,由题意△EFG各边上所有的点都是某个圆的“等径点”,这个圆的圆心Q是线段FG的中点,Q(2,0),设这个圆的半径为r.由题意:QG≤2r∴4≤2r,∴r≥2,即这个圆的半径r的取值范围为r≥2.27. (1)证明:如图1,连接OB,∵AB是⊙0的切线,∴OB⊥AB,∵CE丄AB,∴OB∥CE,∴∠1=∠3,∵OB=OC,∴∠1=∠2,∴∠2=∠3,∴CB平分∠ACE;(2)解:如图2,连接BD,∵CE丄AB,∴∠E=90°,∴BC= = =5,∵CD是⊙O的直径,∴∠DBC=90°,∴∠E=∠DBC,∴△DBC∽△CBE,∴,∴BC2=CD•CE,∴CD= = ,∴OC= = ,∴⊙O的半径= .。
24.1垂直于弦的直径1. 在⊙O 中,AB 为弦,AB OC ⊥于点C ,交⊙O 于点D ,若5=AO ,2=CD ,则弦AB 的长为( )A.4B.6C.8D.102.如图,⊙O 的弦AB 垂直平分半径OC ,则四边形OACB ( ) A.是正方形 B.是长方形 C.是菱形 D.以上答案都不对3.设P 为半径6cm 的圆内的一点,它到圆心的距离为3.6cm,则经过点P 的最短弦的长度是 ( ).A .4.8cmB .7.2cmC .6.4cmD .9.6cm 4.在直径是20cm 的⊙O 中,∠AOB 是60°,那么弦AB 的弦心距是( )5.若圆的半径3,圆中一条弦为52,则此弦中点到弦所对劣弧的中点的距离为 .6.兴隆蔬菜基地建圆弧形蔬菜大棚的剖面如右图所示,已知AB =16m ,半径OA =10m ,高度CD 为_____m.7.圆中一弦把和它垂直的直径分成3 cm 和4 cm 两部分,则这条弦长为________. 8.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm ,测得钢珠顶端离零件表面的距离为8mm ,如图所示, 则这个小孔的直径是 mm.AB 第2题图第6题图DBAOC BA 8mm第8题图AE=.9.已知:如图,AB是⊙O的弦,半径OC,OD分别交AB于点E,F,且BFOE=.求证:OF10.已知:如图, ⊙O的直径CD垂直弦AB于P, 且PA=4cm, PD=2cm.求:⊙O的半径长.11.如图,已知:⊙O中,弦AB与弦CD互相垂直,垂足为E,又AE=3,EB=7,求O点到CD的距离.12.已知:如图,AB,CD是⊙O的弦,且AB⊥CD于H,A H=4,B H=6,C H=3,D H=8.求:⊙O 的半径.13. 如图弓形的弦AB=6cm,弓形的高是1cm,求其所在圆的半径.14.某机械传动装置在静止时如图所示,连杆PB与B的运动所形成的⊙O交于点A,测量得PA=4cm,AB=8cm,⊙O的半径是5cm,求点P到圆心O 的距离.人教版九年级数学 24.2 点和圆、直线和圆的位置关系一、选择题1. 如图,AB为☉O的切线.切点为A,连接AO,BO,BO与☉O交于点C,延长BO与☉O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°2. 2018·眉山如图所示,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C,连接BC,若∠P=36°,则∠B等于( )A.27° B.32° C.36° D.54°3. 在数轴上,点A所表示的实数为5,点B所表示的实数为a,⊙A的半径为3,要使点B 在⊙A内,则实数a的取值范围是( )A.a>2 B.a>8C.2<a<8 D.a<2或a>84. (2019•益阳)如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D,下列结论不一定成立的是A.PA=PB B.∠BPD=∠APDC.AB⊥PD D.AB平分PD5. 选择用反证法证明“已知:在△ABC中,∠C=90°.求证:∠A,∠B中至少有一个角不大于45°.”时,应先假设( )A.∠A>45°,∠B>45° B.∠A≥45°,∠B≥45°C.∠A<45°,∠B<45° D.∠A≤45°,∠B≤45°6. 《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题:“今有勾八步,股十五步,问勾中容圆径几何.”其意思是:“今有直角三角形(如图),勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)的直径是多少.”答案是 ( )A.3步B.5步C.6步D.8步7. 已知⊙O的半径为2,点P在⊙O内,则OP的长可能是( )A.1 B.2C.3 D.48. 2020·武汉模拟在平面直角坐标系中,圆心为坐标原点,⊙O的半径为10,则P(-10,1)与⊙O的位置关系为( )A.点P在⊙O上B.点P在⊙O外C.点P在⊙O内D.无法确定二、填空题9. 如图,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A,B在x 轴上,且OA =OB.P 为⊙C 上的动点,∠APB =90°,则AB 长的最大值为________.10. 已知在△ABC 中,AB =AC =5,BC=6,以点A 为圆心,4为半径作⊙A ,则直线BC 与⊙A的位置关系是________.11. 如图,菱形ABOC 的边AB ,AC 分别与☉O 相切于点D ,E ,若点D 是AB 的中点,则∠DOE= .12. 如图,边长为1的正方形ABCD 的对角线相交于点O ,以点A 为圆心,以1为半径画圆,则点O ,B ,C ,D 中,点________在⊙A 内,点________在⊙A 上,点________在⊙A 外.13. (2019•河池)如图,PA 、PB 是的切线,A 、B 为切点,∠OAB=38°,则∠P=__________.O14. 如图,在矩形ABCD中,AB=8,AD=12,过A,D两点的⊙O与BC边相切于点E.则⊙O 的半径为________.15. 如图,在扇形ABC中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,则∠AEB的度数为________.16. 在Rt△ABC中,∠C=90°,AC=6,BC=8.若以C为圆心,R为半径所作的圆与斜边AB 只有一个公共点,则R的取值范围是______________.三、解答题17. 2020·凉山州模拟如图,⊙O的直径AB=10 cm,弦BC=6 cm,∠ACB的平分线交⊙O 于点D,交AB于点E,P是AB延长线上一点,且PC=PE.(1)求证:PC是⊙O的切线;(2)求AC,AD的长.18. 已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,求证:AC平分∠DAB;(2)如图②,当直线l与⊙O相交于点E,F时,求证:∠BAF=∠DAE.19. 已知:如图,在Rt△ABC中,∠C=90°,AC=8,AB=10.点P在AC上,AP=2.若⊙O 的圆心在线段BP上,且⊙O与AB,AC分别切于点D,E.求:(1)△BAP的面积S;(2)⊙O的半径.人教版九年级数学 24.2 点和圆、直线和圆的位置关系课时训练-答案一、选择题1. 【答案】D[解析]∵AB为☉O的切线,∴∠OAB=90°.∵∠ABO=36°,∴∠AOB=90°-∠ABO=54°.∵OA=OD,∴∠ADC=∠OAD,∵∠AOB=∠ADC+∠OAD,∴∠ADC=∠AOB=27°,故选D.2. 【答案】A3. 【答案】C4. 【答案】D【解析】∵PA,PB是⊙O的切线,∴PA=PB,所以A成立;∠BPD=∠APD,所以B成立;∴AB⊥PD,所以C成立;∵PA,PB是⊙O的切线,∴AB⊥PD,且AC=BC,只有当AD∥PB,BD∥PA时,AB平分PD,所以D不一定成立,故选D.5. 【答案】A6. 【答案】C7. 【答案】A8. 【答案】B二、填空题9. 【答案】1610. 【答案】相切11. 【答案】60°[解析]连接OA,∵四边形ABOC是菱形,∴BA=BO ,∵AB 与☉O 相切于点D , ∴OD ⊥AB. ∵D 是AB 的中点,∴OD 是AB 的垂直平分线,∴OA=OB , ∴△AOB 是等边三角形,∴∠AOD=∠AOB=30°, 同理∠AOE=30°,∴∠DOE=∠AOD +∠AOE=60°, 故答案为60°. 112. 【答案】O B ,D C [解析] ∵四边形ABCD 为正方形,∴AC ⊥BD ,AO =BO =CO =DO.设AO =BO =x.由勾股定理,得AO2+BO2=AB2,即x2+x2=12,解得x =22(负值已舍去), ∴AO =22<1,AC =2>1,∴点O 在⊙A 内,点B ,D 在⊙A 上,点C 在⊙A 外.13. 【答案】76【解析】∵是的切线,∴, ∴,∴,∴,故答案为:76.PA PB 、O PA PB PA OA =⊥,90PAB PBA OAP ∠=∠∠=︒,90903852PBA PAB OAB ∠=∠=︒-∠=︒-︒=︒180525276P ∠=︒-︒-︒=︒14. 【答案】254【解析】如解图,连接EO 并延长交AD 于点F ,连接OD 、OA ,则OD =OA.∵BC与⊙O 相切于点E ,∴OE ⊥BC ,∵四边形ABCD 是矩形,∴AD ∥BC ,∴EF ⊥AD ,∴DF =AF =12AD =6,在Rt △ODF 中,设OD =r ,则OF =EF -OE =AB -OE =8-r ,在Rt △ODF 中,由勾股定理得DF 2+OF 2=OD 2,即62+(8-r)2=r 2,解得r =254.∴⊙O 的半径为254.解图15. 【答案】135° [解析] 连接CE.∵∠ADC =90°,∴∠DAC +∠DCA =90°.∵⊙E 内切于△ADC ,∴∠EAC +∠ECA =45°,∴∠AEC =135°.由“边角边”可知△AEC ≌△AEB ,∴∠AEB =∠AEC =135°.16. 【答案】R =4.8或6<R ≤8 [解析] 当⊙C 与AB 相切时,如图①,过点C 作CD ⊥AB 于点D .根据勾股定理,得AB =AC 2+BC 2=62+82=10.根据三角形的面积公式,得12AB ·CD=12AC ·BC ,解得CD =4.8,所以R =4.8;当⊙C 与AB 相交时,如图②,此时R 大于AC 的长,而小于或等于BC 的长,即6<R ≤8.三、解答题17. 【答案】解:(1)证明:连接OC,如图所示.∵AB是⊙O的直径,∴∠ACB=90°.∵CD平分∠ACB,∴∠ACD=∠BCD=45°.∵PC=PE,∴∠PCE=∠PEC.∵∠PEC=∠EAC+∠ACE=∠EAC+45°,而∠EAC=90°-∠ABC,∠ABC=∠OCB,∴∠PCE=90°-∠OCB+45°=90°-(∠OCE+45°)+45°,∴∠OCE+∠PCE=90°,即∠PCO=90°,∴OC⊥PC,∴PC为⊙O的切线.(2)连接BD,如图所示.在Rt△ACB中,AB=10 cm,BC=6 cm,∴AC=AB2-BC2=102-62=8(cm).∵∠ACD=∠BCD=45°,∴∠DAB=∠DBA=45°,∴△ADB为等腰直角三角形,∴AD=22AB=5 2(cm).18. 【答案】证明:(1)如图①,连接OC.∵直线l与⊙O相切于点C,∴OC⊥l. 又∵AD⊥l,∴AD∥OC,∴∠DAC=∠ACO.∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB.(2)如图②,连接BF.∵AB是⊙O的直径,∴∠AFB=90°,∴∠BAF=90°-∠B.∵∠AEF=∠ADE+∠DAE=90°+∠DAE,又由圆内接四边形的性质,得∠AEF +∠B =180°,∴90°+∠DAE +∠B =180°, ∴∠DAE =90°-∠B , ∴∠BAF =∠DAE.19. 【答案】解:(1)∵∠C =90°,AC =8,AB =10, ∴在Rt △ABC 中,由勾股定理,得BC =6, ∴△BAP 的面积S =12AP ·BC =12×2×6=6.(2)连接OD ,OE ,OA.设⊙O 的半径为r , 则S △BAP =12AB ·r +12AP ·r =6r ,∴6r =6,解得r =1. 故⊙O 的半径是1.24.3 正多边形和圆(满分120分;时间:120分钟)一、 选择题 (本题共计 9 小题 ,每题 3 分 ,共计27分 , )1. 如图,要拧开一个边长为a =6cm 的正六边形螺帽,扳手张开的开口b 至少为( )A.6√2cmB.12cmC.6√3cmD.4√3cm2. 已知△ABC 是⊙O 的内接正三角形,△ABC 的面积等于a ,DEFG 是半圆O 的内接正方形,面积等于b,ab的值为()A.2B.√62C.3√35D.15√3163. 如图,已知四边形ABCD内接于⊙O,∠ABC=70∘,则∠ADC的度数是( )A.70∘B.110∘C.130∘D.140∘4. 已知正多边形的边心距与边长的比是√3:2,则此正多边形是()A.正三角形B.正方形C.正六边形D.正十二边形5. 四边形ABCD内接于⊙O.如果∠D=80∘,那么∠B等于()A.80∘B.100∘C.120∘D.160∘6. 若一个正九边形的边长为a,则这个正九边形的半径是()A.acos20B.asin20C.a2cos20D.a2sin207. 如图,四边形ABCD为⊙O的内接四边形,若∠BCD=110∘,则∠BAD为()A.140∘B.110∘C.90∘D.70∘8. 如图,把正△ABC的外接圆对折,使点A与劣弧的中点M重合,若BC=5,则折痕在△ABC内的部分DE的长为()A.5√33B.10√33C.103D.529. 如图,某学校欲建一个喷泉水池,底面是半径为4m的正六边形,池底是水磨石地面,所要用的磨光机是半径为2dm的圆形砂轮,磨池底时,磨头磨不到的正六边形的部分为(单位:dm2)()A.2400√3−1200πB.8√3−400πC.8√3−23π D.24√3−23π二、填空题(本题共计 10 小题,每题 3 分,共计30分,)10. 圆内接正六边形的半径为2cm,则其边长等于________.11. 如图,四边形ABCD内接于⊙O,∠A=62∘,则∠C=________∘.12. 如图,四边形ABCD是⊙O的内接四边形,∠CBE是它的外角,若∠D=120∘,则∠CBE的度数是________.13. 如图,ABCDEF是⊙O的内接正六边形,若△BCF的面积为18√3cm2,则六边形ABCDEF的面积为________cm2.14 半径为1的圆的内接正三角形的边长为________.15 如图,四边形ABCD外切于⊙O,且AB=16,CD=10,则四边形的周长是________.16. 已知四边形ABCD内接于圆,且弧AB、BC的度数分别为140∘和100∘,若弧AD=2•弧DC,则∠BCD=________.17. 已知AB,AC分别是同一圆的内接正方形和内接正六边形的边,那么∠ACB度数为________ .18. 如图,四边形ABCD是⊙O的内接四边形,∠DCE=60∘,则∠BAD=________度.19. 小刚要在边长为10的正方形内设计一个有共同中心O的正多边形,使其边长最大且能在正方形内自由旋转.如图1,若这个正多边形为正六边形,此时EF=________;若这个正多边形为正三角形,如图2,当正△EFG可以绕着点O在正方形内自由旋转时,EF的取值范围为_________.三、解答题(本题共计 6 小题,共计63分,)20. (1)请你用直尺和圆规作出△ABC的外接圆(保留作图痕迹);(2)当AB=AC=4√5,BC=16,求△ABC的外接圆半径.21. 延长圆内接四边形ABCD的边AD和边BC,相交于点E,求证:△ABE∽△CDE.22. 如图,圆内接四边形ABCD,两组对边的延长线分别相交于点E、F,且∠E=40∘,∠F= 60∘,求∠A的度数.23. 如图,在等腰△PAD中,PA=PD,B是边AD上的一点,以AB为直径的⊙O经过点P,C是⊙O上一动点,连接AC,PC,PC交AB于点E,且∠ACP=60∘.(1)求证:PD是⊙O的切线.(2)连结OP,PB,BC,OC,若⊙O的直径是4,则:①当四边形APBC是矩形时,求DE的长;②当DE=________时,四边形OPBC是菱形.24 如图,四边形ABCD是⊙O的内接四边形,∠CBE是它的一个外角.求证:∠D=∠CBE.25. 问题提出(1)如图①,在⊙O中,点M、N分别是⊙O上的点,若OM=4,则MN的最大值为________.问题探究(2)如图②,在△ABC中,AB=BC,∠ABC=120∘,AC=6,求△ABC外接圆的半径及AB+BC 的长;问题解决(3)如图③.某旅游区有一个形状为四边形ABCD的人工湖,已知AD//BC,AD⊥AB,AB= 180m,BC=300m,AD>BC,为了营造更加优美的旅游环境,旅游区管委员会决定在四边形ABCD内建一个湖心小岛P,并分别修建观光长廊PB和PC,且PB和PC相互垂直.为了容纳更多的游客,要使线段PB、PC之和尽可能的大.试问PB+PC是否存在最大值?若存在,请求出PB+PC的最大值,若不存在,请说明理由.(观光长廊的宽度忽略不计)24.3 正多边形和圆(满分120分;时间:120分钟)一、选择题(本题共计 9 小题,每题 3 分,共计27分,)1. 如图,要拧开一个边长为a=6cm的正六边形螺帽,扳手张开的开口b至少为()A.6√2cmB.12cmC.6√3cmD.4√3cm2. 已知△ABC是⊙O的内接正三角形,△ABC的面积等于a,DEFG是半圆O的内接正方形,面积等于b,ab的值为()A.2B.√62C.3√35D.15√3163. 如图,已知四边形ABCD内接于⊙O,∠ABC=70∘,则∠ADC的度数是( )A.70∘B.110∘C.130∘D.140∘4. 已知正多边形的边心距与边长的比是√3:2,则此正多边形是()A.正三角形B.正方形C.正六边形D.正十二边形5. 四边形ABCD内接于⊙O.如果∠D=80∘,那么∠B等于()A.80∘B.100∘C.120∘D.160∘6. 若一个正九边形的边长为a,则这个正九边形的半径是()A.acos20B.asin20C.a2cos20D.a2sin207. 如图,四边形ABCD为⊙O的内接四边形,若∠BCD=110∘,则∠BAD为()A.140∘B.110∘C.90∘D.70∘8. 如图,把正△ABC的外接圆对折,使点A与劣弧的中点M重合,若BC=5,则折痕在△ABC内的部分DE的长为()A.5√33B.10√33C.103D.529. 如图,某学校欲建一个喷泉水池,底面是半径为4m的正六边形,池底是水磨石地面,所要用的磨光机是半径为2dm的圆形砂轮,磨池底时,磨头磨不到的正六边形的部分为(单位:dm2)()A.2400√3−1200πB.8√3−400πC.8√3−23π D.24√3−23π二、填空题(本题共计 10 小题,每题 3 分,共计30分,)10. 圆内接正六边形的半径为2cm,则其边长等于________.11. 如图,四边形ABCD内接于⊙O,∠A=62∘,则∠C=________∘.12. 如图,四边形ABCD是⊙O的内接四边形,∠CBE是它的外角,若∠D=120∘,则∠CBE的度数是________.13. 如图,ABCDEF是⊙O的内接正六边形,若△BCF的面积为18√3cm2,则六边形ABCDEF的面积为________cm2.14 半径为1的圆的内接正三角形的边长为________.15 如图,四边形ABCD外切于⊙O,且AB=16,CD=10,则四边形的周长是________.16. 已知四边形ABCD内接于圆,且弧AB、BC的度数分别为140∘和100∘,若弧AD=2•弧DC,则∠BCD=________.17. 已知AB,AC分别是同一圆的内接正方形和内接正六边形的边,那么∠ACB度数为________ .18. 如图,四边形ABCD是⊙O的内接四边形,∠DCE=60∘,则∠BAD=________度.19. 小刚要在边长为10的正方形内设计一个有共同中心O的正多边形,使其边长最大且能在正方形内自由旋转.如图1,若这个正多边形为正六边形,此时EF=________;若这个正多边形为正三角形,如图2,当正△EFG可以绕着点O在正方形内自由旋转时,EF的取值范围为_________.三、解答题(本题共计 6 小题,共计63分,)20. (1)请你用直尺和圆规作出△ABC的外接圆(保留作图痕迹);(2)当AB=AC=4√5,BC=16,求△ABC的外接圆半径.21. 延长圆内接四边形ABCD的边AD和边BC,相交于点E,求证:△ABE∽△CDE.22. 如图,圆内接四边形ABCD,两组对边的延长线分别相交于点E、F,且∠E=40∘,∠F= 60∘,求∠A的度数.23. 如图,在等腰△PAD中,PA=PD,B是边AD上的一点,以AB为直径的⊙O经过点P,C是⊙O上一动点,连接AC,PC,PC交AB于点E,且∠ACP=60∘.(1)求证:PD是⊙O的切线.(2)连结OP,PB,BC,OC,若⊙O的直径是4,则:①当四边形APBC是矩形时,求DE的长;②当DE=________时,四边形OPBC是菱形.24 如图,四边形ABCD是⊙O的内接四边形,∠CBE是它的一个外角.求证:∠D=∠CBE.25. 问题提出(1)如图①,在⊙O中,点M、N分别是⊙O上的点,若OM=4,则MN的最大值为________.问题探究(2)如图②,在△ABC 中,AB =BC,∠ABC =120∘,AC =6,求△ABC 外接圆的半径及AB +BC 的长;问题解决(3)如图③.某旅游区有一个形状为四边形ABCD 的人工湖,已知AD//BC ,AD ⊥AB ,AB =180m ,BC =300m ,AD >BC ,为了营造更加优美的旅游环境,旅游区管委员会决定在四边形ABCD 内建一个湖心小岛P ,并分别修建观光长廊PB 和PC ,且PB 和PC 相互垂直.为了容纳更多的游客,要使线段PB 、PC 之和尽可能的大.试问PB +PC 是否存在最大值?若存在,请求出PB +PC 的最大值,若不存在,请说明理由.(观光长廊的宽度忽略不计)人教版 九年级数学 24.4 弧长和扇形面积一、选择题1. 如图在等边三角形ABC 中,将边AC 逐渐变成以BA 为半径的AC ︵,其他两边的长度不变,则∠ABC 的度数由60°变为( )图A .(180π)° B .(120π)° C .(90π)°D .(60π)° 2. 一个扇形的半径为6,圆心角为120°,则该扇形的面积是( )A .2πB .4πC .12πD .24π3. (2020·聊城)如图,有一块半径为1m ,圆心角为90°的扇形铁皮,要把它做成一个圆锥形容器(接缝忽略不计),那么这个圆锥形容器的高为( )A .41mB .43mC .415m D .23m 4. (2020·聊城)如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为点M ,连接OC ,DB ,如果OC ∥DB ,OC =23,那么图中阴影部分的面积是( )A .πB .2πC .3πD .4πA CD5. 2019·天水模拟 一个圆锥的轴截面是一个正三角形,则圆锥侧面展开图形的圆心角是( )A .60°B .90°C .120°D .180°6. 用圆心角为120°,半径为6 cm 的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是( )A. 2 cmB .3 2 cmC .4 2 cmD .4 cm7. (2020·苏州)如图,在扇形OAB 中,已知90AOB ∠=︒,OA =过AB 的中点C 作CD OA ⊥,CE OB ⊥,垂足分别为D 、E ,则图中阴影部分的面积为( )A.1π- B.12π- C.12π- D.122π-8. 2018·黑龙江 如图在△ABC 中,AB =5,AC =3,BC =4,将△ABC 绕点A 按逆时针方向旋转40°得到△ADE ,点B 经过的路径为弧BD ,则图阴影部分的面积为( )图A.143π-6 B.259πC.338π-3 D.33+π二、填空题 9. (2020·湘潭)如图,在半径为6的⊙O 中,圆心角60AOB ︒∠=,则阴影部分面积为________.10. (2020·绥化)已知圆锥的底面圆的半径是2.5,母线长是9,其侧面展开图的圆心角是______度.11. 如图所示,在△ABC 中,AB =BC =2,∠ABC =90°,则图中阴影部分的面积是________.12. 如图,以点O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,点P 为切点,AB =123,OP =6,则劣弧AB ︵的长为________.(结果保留π)13. 如图所示,有一直径是 2 米的圆形铁皮,现从中剪出一个圆心角是90°的最大扇形ABC,则:(1)AB的长为________米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为________米.14. 已知一个圆心角为270°,半径为3 m的扇形工件未搬动前如图示,A,B两点触地放置,搬动时,先将扇形以点B为圆心,做如图示的无滑动翻转,再使它紧贴地面滚动,当A,B 两点再次触地时停止,则圆心O所经过的路线长为________m.(结果用含π的式子表示)15. (2020·新疆)如图,⊙O的半径是2,扇形BAC的圆心角为60°,若将扇形BAC剪下转成一个圆锥,则此圆锥的底面圆的半径为____________.16. 如图中的小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”(阴影部分)图案的面积为________.三、解答题17. 如图,AB 是半圆O 的直径,C 是半圆O 上的一点,AC 平分∠DAB ,AD ⊥CD ,垂足为D ,AD 交半圆O 于点E ,连接CE.(1)判断CD 与半圆O 的位置关系,并证明你的结论;(2)若E 是AC ︵的中点,半圆O 的半径为1,求图中阴影部分的面积.18. (2020·内江)如图,AB 是⊙O 的直径,C 是⊙O 上一点,ODBC 于点D ,过点C 作⊙O 的切线,交OD 的延长线于点E ,连结BE . (1)求证:BE 是⊙O 的切线;(2)设OE 交⊙O 于点F ,若2DF BC ==,EF 的长; (3)在(2)的条件下,求阴影部分的面积.19. 如图,在正方形ABCD 中,AD =2,E 是AB 的中点,将△BEC 绕点B 逆时针旋转90°后,点E 落在CB 的延长线上的点F 处,点C 落在点A 处,再将线段AF 绕点F 顺时针旋转90°得线段FG ,连接EF ,CG. (1)求证:EF ∥CG ;(2)求点C ,A 在旋转过程中形成的AC ︵,AG ︵与线段CG 所围成的阴影部分的面积.人教版 九年级数学 24.4 弧长和扇形面积 课时训练-答案一、选择题1. 【答案】A [解析] 设变形后的∠B =n °,AB =AC ︵的长=a .由题意可得n180π·a =a ,解得n =180π.2. 【答案】C [解析] 根据扇形的面积公式,S =120×π×62360=12π.故选C.3. 【答案】C 【解析】先利用弧长公式求得圆锥的底面半径,再利用勾股定理求圆锥的高.设圆锥形容器底面圆的半径为r ,则有2πr=180190⋅π,解得r =41,则圆锥的高为22)41(1-=415(m).4. 【答案】B【解析】借助圆的性质,利用等积转化求解阴影部分的面积.由垂径定理,得CM =DM ,∵OC ∥DB ,∴∠C =∠D ,又∵∠OMC =∠BMD ,∴△OMC ≌△BMD(ASA),∴OM =BM =21OB =21OC ,∴cos ∠COM =OC OM =21,∴∠COM =60°.∴S 阴影=S 扇形BOC =360)32(602⋅π=2π.5. 【答案】D6. 【答案】C [解析] 设纸帽底面圆的半径为r cm ,则2πr =120×π×6180,解得r =2.设圆锥的高为h cm ,由勾股定理得h2+r2=62,所以h2+22=62,解得h =4 2.7. 【答案】B【解析】本题考查了不规则图形面积的计算,连接OC ,由题意得∠DOC=∠BOC=45°,四边形OECD 为正方形,OC=2,由特殊角的三角函数得OE=OD=1,S 阴影=S 扇形OAB -S 正方形CEOD =290(2)360π⨯-12=2π-1,因此本题选B .8. 【答案】B [解析] ∵AB =5,AC =3,BC =4,∴AC 2+BC 2=25=AB 2,∴△ABC 为直角三角形.由旋转的性质得,△ADE 的面积=△ABC 的面积,由图可知,阴影部分的面积=△ADE 的面积+扇形ADB 的面积-△ABC 的面积, ∴阴影部分的面积=扇形ADB 的面积=40π×52360=259π.二、填空题9. 【答案】6π【解析】本题考查了扇形面积的计算,解题的关键是熟记扇形面积的计算公式.阴影部分面积为26066360ππ⨯=,故答案为:6π.10. 【答案】100【解析】设圆心角的度数是n ,则2π×2.5=9180n π.解得n =100.11. 【答案】π-2 [解析] ∵在△ABC 中,AB =BC =2,∠ABC =90°,∴△ABC 是等腰直角三角形,∴S 阴影=S 半圆AB +S 半圆BC -S △ABC =12π×(22)2+12π×(22)2-12×2×2 =π-2.12. 【答案】 8π 【解析】∵AB 是小圆的切线,∴OP ⊥AB ,∴AP =12AB =6 3.如解图,连接OA ,OB ,∵OA =OB ,∴∠AOB =2∠AOP.在Rt △AOP 中,OA =OP 2+AP 2=12,tan ∠AOP =AP OP =636=3,∴∠AOP =60°.∴∠AOB =120°,∴劣弧AB 的长为120π·12180=8π.13. 【答案】(1)1 (2)14[解析] (1)如图,连接BC.∵∠BAC =90°,∴BC 为⊙O 的直径,即BC = 2. ∵AB =AC ,AB2+AC2=BC2=2, ∴AB =1(米).(2)设所得圆锥的底面圆的半径为r 米. 根据题意,得2πr =90·π·1180,解得r =14.14. 【答案】6π [解析] 由题意易知∠AOB =90°,OA =OB ,∴∠ABO =45°,圆心O 旋转的长度为2×45π×3180=3π2(m),圆心O 平移的距离为270π×3180=9π2(m),则圆心O 经过的路线长为3π2+9π2=6π(m).15.【解析】本题考查了垂径定理,弧长公式,圆锥的侧面展开图.连接OA ,OB ,OC ,过点O 作OD ⊥AC 于点D .∵AB =AC ,OB =OC ,OA =OA ,所以△OAB ≌△OAC ,所以∠OAB =∠OAC =12∠BAC =12×60°=30°.在Rt △OAD 中,因为∠OAC =30°,OA =2,所以OD =1,AD 因为OD ⊥AC ,所以AC =2AD =BC l =60180×π×π.设此圆锥的底面圆的半径为r ,则r .16. 【答案】2π-4 [解析] 如图所示,由题意,得阴影部分的面积=2(S 扇形OAB -S △OAB)=2(90π×22360-12×2×2)=2π-4.故答案为2π-4.三、解答题17. 【答案】解:(1)CD 与半圆O 相切. 证明:∵AC 平分∠DAB , ∴∠DAC =∠BAC.∵OA =OC ,∴∠BAC =∠OCA , ∴∠DAC =∠OCA ,∴OC ∥AD. ∵AD ⊥CD ,∴OC ⊥CD. 又∵OC 为半圆O 的半径, ∴CD 与半圆O 相切. (2)连接OE. ∵AC 平分∠DAB ,∴∠DAC =∠BAC ,∴EC ︵=BC ︵. 又∵E 是AC ︵的中点,∴AE ︵=EC ︵=BC ︵,S 弓形AE =S 弓形CE , ∴∠BOC =∠EOC =60°.又∵OE =OC ,∴△OEC 是等边三角形, ∴∠ECO =60°,CE =OC =1. 由(1)得OC ⊥CD ,∴∠OCD =90°, ∴∠DCE =30°, ∴DE =12,DC =32,∴S 阴影=S △DEC =12×12×32=38.18. 【答案】(1)证明:连接OC ,如图,∵OD ⊥BC ,∴CD=BD ,∴OE 为BC 的垂直平分线, ∴EB=EC ,∴∠EBC=∠ECB ,∵OB=OC ,∴∠OBC=∠OCB ,∴∠OBC+∠EBC=∠OCB+∠ECB ,即∠OBE=∠OCE ,∵CE 为⊙O 的切线,∴OC ⊥CE ,∴∠OCE=90°, ∴∠OBE=90°,∴OB ⊥BE ,∴BE 与⊙O 相切.(2)设⊙O 的半径为R ,则OD=R-DF=R-2,OB=R ,在Rt △OBD 中,BD=12BC=∵OD2+BD2=OB2,∴222(2)R R -+=,解得R=4,∴OD=2,OB=4, ∴∠OBD=30°,∴∠BOD=60°,∴在Rt △OBE 中,∠BEO=30º,OE=2OB=8, ∴EF=OE-OF=8-4=4,即EF=4;(3)由∠OCD=∠OBD=30º和OD ⊥BC 知:∠COD=∠BOD=60º,∴∠BOC=120º,又BC=OE=8,∴=S OBECS S -阴影四边形扇形OBC =21120482360π⨯⨯163π=,【解析】本题考查了切线的判定与性质、垂径定理、扇形面积的计算、含30º角的直角三角形边角关系、勾股定理等知识,熟练掌握每个知识点是解答的关键.(1)连接OC ,如图,根据垂径定理由OD ⊥BC 得到CD=BD ,则OE 为BC 的垂直平分线,所以EB=EC ,根据等腰三角形的性质得∠EBC=∠ECB ,加上∠OBC=∠OCB ,则∠OBE=∠OCE ;再根据切线的性质得∠OCE=90°,所以∠OBE=90°,然后根据切线的判定定理得BE 与⊙O 相切; (2)设⊙O 的半径为R ,则OD=R-DF=R-2,OB=R ,在Rt △OBD ,利用勾股定理解得R=4,再利用含30º角的直角三角形边角关系可求得OE ,利用EF=OE-OF 即可解答;(3)利用(2)中可求得∠BOC=120º,然后利用=S OBEC S S -阴影四边形扇形OBC 代入数值即可求解.19. 【答案】解:(1)证明:∵四边形ABCD 是正方形, ∴AB =BC =AD =2,∠ABC =90°. ∵△BEC 绕点B 逆时针旋转90°得△BFA , ∴△BFA ≌△BEC ,∴∠FAB =∠ECB ,∠ABF =∠CBE =90°, AF =CE ,∴∠AFB +∠FAB =90°.∵线段AF 绕点F 顺时针旋转90°得线段FG , ∴∠AFB +∠CFG =∠AFG =90°,AF =FG , ∴∠CFG =∠FAB =∠ECB ,CE =FG ,∴CE 綊FG ,∴四边形EFGC 是平行四边形,∴EF ∥CG.(2)∵E 是AB 的中点,∴AE =BE =12AB. ∵△BFA ≌△BEC ,∴BF =BE =12AB =1, ∴AF =AB2+BF2= 5.由(1)知四边形EFGC 是平行四边形,FC 为其对角线, ∴点G 到FC 的距离等于点E 到FC 的距离,即BE 的长,∴S 阴影=S 扇形BAC +S △ABF +S △FGC -S 扇形FAG =90π·22360+12×2×1+12×(1+2)×1-90π·(5)2360=52-π4.。