大学概率论随机事件与概率
- 格式:ppt
- 大小:2.04 MB
- 文档页数:68
大学概率论与数理统计公式全集一、随机事件和概率1、随机事件及其概率2、概率的定义及其计算二、随机变量及其分布1、分布函数性质P(X 乞b) =F(b) P(a :: X 冬b) = F(b) _ F(a)2、离散型随机变量3、连续型随机变量三、多维随机变量及其分布1、离散型二维随机变量边缘分布 P i =P(X =X i )二% P(X = xi ,丫二 yj ) = ' pij pj =P( Y=yj )=' P(X 二 X j , 丫二 yj )=' pij j j离散型二维随机变量条件分布P(X =X j ,Y =yj )pij…= P(X =X j Y =y j ),i=1,2jP(丫 =yj )P j P(X=X j ,Y=y j )p j2、 P i j P ji3、x yf(u,v)dvdu4、连续型二维随机变量边缘分布函数与边缘密度函数 边缘分布函数: F x (x) = [「f(u,v)dvdu 边缘密度函数:f x (x)二.-^o a-bof(u,y)du*^0.■bof (x, v)y ■:: F y (y)f (u,v)dudv f Y (y)二 5、二维随机变量的条件分布fYx (yx)二■■■■■y < fxY (xy)二<x ::: ■::x Y四、随机变量的数字特征1、数学期望离散型随机变量:E(X)=.;「X k P k连续型随机变量:E(X)二=xf(x)dx2、数学期望的性质(1)E(C) =C,C为常数E[E(X)] =E(X) E(CX) =CE(X)(2)E(X _Y) =E(X) _E(Y) E(aX _b) =aE(X) _b E(C^X^ ■ C n X n^C1E(X1^ ■ C n E(X n) ⑶ 若GY相互独立则:E(XY) =E(X)E(Y)(4) [E(XY)]2 <E2(X)E2(Y)3、万差:D(x) =E(X2) —E2(x)4、方差的性质(1) D(C) =0 D[D(X)] =0 D(aX _b) =a2D(X) D(X) :::E(X -C)2⑵ D(X _Y)二D(X) • D(Y) _2Cov(X,Y)若 GY相互独立则:D(X _Y)二D(X) • D(Y)5、协方差:Cov(X,Y)二E(X,Y) _E(X)E(Y)若 GY相互独立则:Cov(X,Y)=06、相关系数:认「(X,Y)〜Cov(X,丫)若GY相互独立则:认=0即GY不相关J D(X)阿石7、协方差和相关系数的性质(1)Cov(X,X) =D(X) Cov(X,Y)二Cov(Y, X)(2)Cov(X1 X2,Y) =Cov(X1,Y) Cov(X2,Y) Cov(aX c, bY • d)二abCov(X,Y)&常见数学分布的期望和方差五、大数定律和中心极限定理1、 切比雪夫不等式若 E(X)-」.,D(X)=:;2,对于任意'.0 有 P{X _E(X) _ }空里^2 或 P{X _E(X) ::: }n n2、 大数定律:若X i …X n 相互独立且「时,—、• X i —D r-7 E(X i )ni 4ni二nn(1)若 X i X n 相互独立,E(X i ) =A i , D(X i ) =52且 O i 2兰M 贝y : -Z X i — 1瓦 E(X i ),(n T ©nyny1n⑵若X i …X n 相互独立同分布,且E(X j )=n 则当n 时:―、X, P> Jn y3、 中心极限定理(1) 独立同分布的中心极限定理:均值为 」,方差为C 20的独立同分布时,当n 充分 大时有:n' X k —n ・iY n = ------------------- 二 N(0,1)U n cr(2) 拉普拉斯定理:随机变量n (n =1,2 )~B( n, p)则对任意G 有:xt 2lim P { :n np兰x} = f -j^e 2dt =Q (x) x -°p(1-p) - : .2 二六、数理统计1、总体和样本n _(5) 样本 k 阶中心距:B k =Mk(X i -X)k ,^2,3'nm(1)样本平均值: n n n2X 」、X i (2)样本方差:S 2匚、(X i -X)2L' (X i 2-nx )n-1y n -1(3)样本标准差:,彳 n ns= 1v(X i-X)2(4)样本 k 阶原点距:A k X i k,k=1,2 … ,n -1^(X 1,X 2 X n )的联合分布为 F(X 1,X 2 X n )F (X k )心(3)近似计算:nP(a 乞、X k Eb) =P(生' X k -n 」■k'.nc<^n 1才一门.」:泸- nc、、..总体X 的分布函数F(X)样本 2、统计量(6)次序统计量:设样本(X1,X2…X n)的观察值凶七和,将为,X?…X.按照由小到大的次,记取值为X(i)的样本分量为X(i),则称X(1宀(2)「乞x(n) 序重新排列,得到X(1)乞X(2) <X(n)为样本(X1,X2…X n)的次序统计量。
一、教学目标1. 知识与技能:(1)理解随机事件的概念,掌握必然事件、不可能事件、随机事件的分类;(2)理解概率的定义,掌握概率的基本性质;(3)学会运用概率知识解决实际问题。
2. 过程与方法:(1)通过实例引导学生理解随机事件与概率的关系;(2)通过小组讨论、合作学习,提高学生的探究能力和团队协作能力。
3. 情感态度与价值观:(1)培养学生对概率论的兴趣,激发学生的学习热情;(2)使学生认识到概率论在现实生活中的应用价值。
二、教学重点与难点1. 教学重点:(1)随机事件的概念及分类;(2)概率的定义及基本性质。
2. 教学难点:(1)概率的定义及基本性质的运用;(2)概率在实际问题中的应用。
三、教学过程(一)导入新课1. 展示生活中常见的随机事件,如掷骰子、抛硬币、抽奖等,引导学生思考这些事件的特点;2. 引入随机事件的概念,解释必然事件、不可能事件、随机事件的区别。
(二)新课讲授1. 随机事件的概念及分类:(1)必然事件:在一定条件下,必然会发生的事件;(2)不可能事件:在一定条件下,不可能发生的事件;(3)随机事件:在一定条件下,可能发生也可能不发生的事件。
2. 概率的定义及基本性质:(1)概率的定义:在一定条件下,某个事件发生的可能性大小;(2)概率的基本性质:① 非负性:任何事件的概率不小于0;② 稳定性:当试验次数足够多时,某个事件发生的频率将趋近于其概率;③ 稳定性:对于任意两个事件A和B,有0≤P(A)≤1,0≤P(B)≤1;④ 加法公式:对于任意两个互斥事件A和B,有P(A∪B) = P(A) + P(B);⑤ 对立事件概率之和为1:对于任意两个对立事件A和B,有P(A) + P(B) = 1。
(三)巩固练习1. 完成课本上的例题,巩固所学知识;2. 小组讨论,互相解答问题。
(四)课堂小结1. 回顾本节课所学内容,强调重点和难点;2. 引导学生思考概率论在现实生活中的应用。
(五)布置作业1. 完成课后习题,巩固所学知识;2. 收集生活中与概率相关的事例,下节课分享。
随机事件与概率知识点随机事件和概率是概率论中的基本概念,它们揭示了不确定性现象背后的规律性。
本文将介绍随机事件的定义及性质,以及概率的概念、性质和计算方法。
一、随机事件的定义随机事件是指在一定条件下,具有不确定性的事件。
简单来说,就是不知道会发生什么的事件。
一个事件发生与否,可以用0或1表示,其中0代表事件不发生,1代表事件发生。
这种不确定性使得我们需要运用概率论的知识来描述和研究。
对于一个随机试验,其样本空间为Ω,由所有可能出现的结果组成。
样本空间中的每一个元素称为一个样本点,记作ω。
而样本空间中的子集,称为事件。
简单来说,事件就是样本空间的一个子集,用来描述某些结果的集合。
二、随机事件的性质1. 必然事件和不可能事件:必然事件是指在所有可能的结果中,一定会发生的事件。
记作Ω,其对应的概率为1。
例如,在一次掷骰子的实验中,必然事件就是出现的点数在1至6之间。
不可能事件是指在所有可能的结果中,一定不会发生的事件。
记作∅,其对应的概率为0。
例如,在一次掷骰子的实验中,不可能事件就是出现的点数为7。
2. 事件的互斥与对立:互斥事件是指两个事件不能同时发生的情况。
例如,掷骰子出现的点数为奇数和出现的点数为偶数就是互斥事件,因为在一次实验中,掷出奇数的点数和掷出偶数的点数不可能同时发生。
对立事件是指两个事件必定有一个发生,但不能同时发生的情况。
例如,掷骰子出现的点数为奇数和出现的点数为偶数就是对立事件。
三、概率的概念与性质概率是描述随机事件发生可能性大小的数值,通常用P(A)表示。
概率的取值范围在0到1之间,其中0代表不可能事件,1代表必然事件。
1. 古典概型:古典概型是指所有样本点出现的概率相等的情况。
例如,在一次掷骰子的实验中,每个点数出现的概率都是1/6。
2. 几何概型:几何概型是指样本空间是一个有限的几何图形的情况。
例如,在一个正方形平面内随机选择一个点,那么点落在正方形的某个子区域中的概率就可以通过计算子区域面积与正方形面积的比值得到。
大学概率论知识点总结概率论是研究随机现象数量规律的数学分支,在大学数学中占据着重要的地位。
以下是对大学概率论中一些重要知识点的总结。
一、随机事件与概率1、随机事件随机事件是指在一定条件下,可能出现也可能不出现的事件。
例如,抛一枚硬币,正面朝上就是一个随机事件。
2、样本空间样本空间是随机试验的所有可能结果组成的集合。
3、事件的关系与运算包括包含、相等、并、交、差、互斥(互不相容)和对立等关系。
4、概率的定义概率是对随机事件发生可能性大小的度量。
古典概型中,概率等于有利事件的个数除以总事件的个数;几何概型中,概率等于几何度量(如长度、面积、体积等)的比值。
5、概率的性质包括非负性、规范性和可加性等。
二、条件概率与乘法公式1、条件概率在已知某个事件发生的条件下,另一个事件发生的概率称为条件概率,记作 P(B|A)。
2、乘法公式P(AB) = P(A)P(B|A)三、全概率公式与贝叶斯公式1、全概率公式如果事件组 B1,B2,,Bn 是样本空间的一个划分,且 P(Bi) > 0(i = 1, 2,, n),则对任意事件 A 有 P(A) =ΣP(Bi)P(A|Bi)2、贝叶斯公式在全概率公式的基础上,如果已知 P(A),P(Bi) 和 P(A|Bi),可以计算在事件 A 发生的条件下,事件 Bi 发生的概率 P(Bi|A)四、随机变量及其分布1、随机变量是定义在样本空间上的实值函数。
2、离散型随机变量其取值为有限个或可列个。
常见的离散型随机变量分布有:二项分布、泊松分布等。
3、连续型随机变量其取值可以是某个区间内的任意实数。
常见的连续型随机变量分布有:均匀分布、正态分布、指数分布等。
4、随机变量的分布函数F(x) = P(X <= x),具有单调不减、右连续等性质。
五、多维随机变量及其分布1、二维随机变量由两个随机变量组成。
2、联合分布函数F(x, y) = P(X <= x, Y <= y)3、边缘分布包括边缘分布函数和边缘概率密度(离散型为边缘概率分布)。
概率论与数理统计教案-随机事件与概率一、教学目标1. 理解随机事件的定义及其分类。
2. 掌握概率的基本性质和计算方法。
3. 能够运用概率论解决实际问题。
二、教学内容1. 随机事件的定义与分类1.1 随机事件的定义1.2 随机事件的分类1.3 事件的运算2. 概率的基本性质2.1 概率的定义2.2 概率的取值范围2.3 概率的基本性质3. 概率的计算方法3.1 古典概型3.2 条件概率3.3 独立事件的概率3.4 互斥事件的概率4. 随机事件的排列与组合4.1 排列的定义与计算4.2 组合的定义与计算5. 概率论在实际问题中的应用5.1 概率论在社会科学中的应用5.2 概率论在自然科学中的应用三、教学方法1. 讲授法:讲解随机事件的定义、分类及概率的基本性质。
2. 案例分析法:分析实际问题,引导学生运用概率论解决。
3. 互动教学法:提问、讨论,提高学生对知识点的理解和掌握。
四、教学准备1. 教案、教材、课件等教学资源。
2. 计算器、黑板、粉笔等教学工具。
3. 实际问题案例库。
五、教学评价1. 课堂问答:检查学生对随机事件定义、分类和概率基本性质的理解。
2. 课后作业:布置有关概率计算和方法的应用题,检验学生掌握程度。
3. 课程报告:让学生选择一个实际问题,运用概率论进行分析,评价其应用能力。
4. 期末考试:设置有关概率论与数理统计的综合题,全面评估学生学习效果。
六、教学内容6. 大数定律与中心极限定理6.1 大数定律6.2 中心极限定理7. 随机变量及其分布7.1 随机变量的概念7.2 离散型随机变量7.3 连续型随机变量7.4 随机变量分布函数8. 随机变量的数字特征8.1 数学期望8.2 方差8.3 协方差与相关系数9. 抽样分布与抽样误差9.1 抽样分布的概念9.2 抽样误差的估计9.3 抽样方案的设计10. 估计量的性质与假设检验10.1 估计量的性质10.2 假设检验的基本概念10.3 常用的假设检验方法七、教学方法1. 讲授法:讲解大数定律、中心极限定理、随机变量及其分布等概念。
概率论中的随机事件及概率的定义及计算在概率论中,随机事件是指一个结果是不确定的事件,例如掷骰子的结果、抽奖的结果、病人是否能成功治愈等。
通过对随机事件的概率进行计算,我们可以预测它们发生的可能性大小,从而对未来的结果进行预测和控制。
随机事件的概率定义在概率论中,随机事件的概率定义为该事件在所有可能结果中出现的比例。
例如,在掷一次骰子时,获得6面的概率为1/6,因为6面是6个可能结果中的一个。
概率的计算方法一般来说,概率的计算方法有两种:相对频率方法和古典概型方法。
1. 相对频率方法相对频率方法是指通过实验来计算概率。
具体来说,我们可以对随机事件进行多次实验,然后统计该事件发生的次数与实验总次数之比。
例如,如果我们想要计算投掷骰子获得6面的概率,我们可以对骰子进行大量实验,并记录6面出现的次数。
然后,我们可以计算该事件发生的次数与实验总次数之比,即得到6面出现的概率。
2. 古典概型方法古典概型方法是指对于已知的固定有限集合,每个结果的概率相等时,对随机事件进行计算。
例如,对于投掷一枚骰子的情况,我们可以通过以下公式计算获得特定面的概率:P(E) = n(E) / n(S)其中,n(E)是事件E中有利结果的数量,n(S)是样本空间中的所有结果数。
概率的性质在概率论中,概率具有以下几个重要的性质:1. 非负性:概率是非负的,即概率不会小于零。
2. 正则性:所有可能事件的概率之和等于1。
3. 加法性:对于两个不相交事件A和B,它们的概率之和等于它们的并集的概率。
4. 乘法性:对于两个事件A和B,它们的联合概率等于它们各自的概率的积。
总结概率论是应用广泛的一门学科,在许多领域都有着重要的应用,例如统计学、经济学、金融学等。
随机事件及概率的定义和计算方法是概率论中最基础的概念,建立了整个概率论体系的基础。
了解概率论的基本概念和方法,可以帮助我们更好地理解和应用它们,在实际应用中更加准确地估计未来的结果和降低风险。
第一章随机事件及其概率自然界和社会上发生的现象可以分为两大类:一类是,事先可以预言其必然会发生某种结果,即在保持条件不变的情况下重复实验或观察,它的结果总是确定的。
这类现象称为确定性现象,另一类是,事先不能预言其会出现哪种结果,即在保持条件不变的情况下重复实验或观察,或出现这种结果或出现那种结果。
这类现象称为随机现象.随机现象虽然对某次实验或观察来说,无法预言其会出现哪种结果,但在相同条件下重复进行大量的实验或观察,其结果却又呈现出某种规律性。
随机现象所呈现出的这种规律性,称为随机现象的统计规律性。
概率论与数理统计就是研究随机现象统计规律性的一门数学学科。
§1随机事件一、随机试验与样本空间我们把对随机现象进行的一次实验或观察统称为一次随机试验,简称试验,通常用大写字母E表示。
举例如下:E\:抛一枚硬币,观察正面〃、反面卩出现的情况;£:将一枚硬币抛掷两次,观察正面〃、反面7出现的情况;£:将一枚硬币抛掷两次,观察正面〃出现的次数;£.:投掷一颗骰子,观察它出现的点数;£:记录某超市一天内进入的顾客人数;&:在一批灯泡里,任取一只,测试它的寿命。
随机试验具有以下三个特点:(1)每次试验的结果具有多种可能性,并且能事先明确知道试验的所有可能结果;(2)每次试验前,不能确定哪种结果会出现;%(3)试验可以在相同的条件下重复进行。
随机试验£的所有可能结果的集合称为£的样本空间,记作0。
样本空间的元素,即£的每个结果,称为样本点,一般用e表示,可记C = {e}。
上面试验对应的样本空间:n, ={w,T};D.2={HH、HT、TH、TT};o, ={0,1,2};也={123,4,5,6};={0,1234 …};o6 = {/|/>o}o注意,试验的目的决定试验所对应的样本空间。
二、随机事件试验£样本空间。
大学数学概率论概率论是一门研究随机事件及其规律性的数学学科,它是现代数学的一个重要分支,也是应用数学中广泛使用的一种数学工具。
概率论用于描述和分析不确定性的现象和过程,通过概率的计算和推导,可以帮助我们预测、评估和决策。
一、概率论的基本概念概率论的研究对象是随机事件,随机事件是指在一定条件下不确定性地出现的事件。
概率是一个介于0到1之间的数,它描述了随机事件发生的可能性大小。
在概率论中,常用的描述方式包括频率概率和古典概率。
频率概率是通过大量的实验统计得到的概率值,而古典概率是通过对事件的理性分析得到的概率值。
二、概率的计算方法在概率论中,有多种方式可以计算概率。
其中,常见的方法有古典概率计算、条件概率计算和贝叶斯概率计算。
古典概率计算适用于等可能性事件的概率计算,条件概率计算则是在已知某个事件发生的条件下,计算其他事件发生的概率,贝叶斯概率计算则是在已知某个事件发生的条件下,反推事件的概率。
三、概率的基本性质概率具有相加性、相乘性和对立事件性质等基本性质。
相加性表示当两个事件互不相容时,它们的概率可以通过相加得到;相乘性表示当两个事件相互独立时,它们的概率可以通过相乘得到;对立事件性质表示事件A和其对立事件A'的发生概率之和为1。
四、概率分布函数概率分布函数是描述随机变量的概率分布情况的函数。
常见的概率分布函数有离散型概率分布函数和连续型概率分布函数。
在离散型概率分布函数中,随机变量只能取有限个或可数个值,例如二项分布、泊松分布等;而在连续型概率分布函数中,随机变量可以取连续的任意值,例如正态分布、指数分布等。
五、随机变量与概率密度函数随机变量是概率论中的一个重要概念,它用来描述随机现象中的某个数量特征。
随机变量可以分为离散型随机变量和连续型随机变量。
概率密度函数是用来描述连续型随机变量的概率分布情况的函数,它可以用来计算随机变量在某个区间内取值的概率。
六、大数定律和中心极限定理大数定律是概率论中的一个重要定理,它表明随着试验次数的增加,随机事件发生的频率会趋于其概率。
第一章 随机事件与概率(一)随机事件知识点1、称试验E 的样本空间的子集为随机事件,用A 、B 、C …表示。
事件A 的元素是样本点,它在一次试验中,可能出现,也可能不出现。
A 中的某个样本点出现了,事件A 发生,否则,A 不发生。
因此,在一次试验中,可能发生也可能不发生的事情,就是随机事件。
样本空间S 有两个特殊的子集;S 自身和空集φ。
S 含所有的样本点,每次试验,必然发生;φ不含样本点,每次试验一定不发生。
在一定条件下,每次试验一定发生的事情,称为必然事件。
每次试验一定不发生的事情,称为不可能事件。
必然事件S ,不可能事件φ是事先就能明确是否会发生,属于确定性现象,但在概率统计中,为了研究问题的需要,仍将其作为特殊的随机事件处理,使得事件间有着完整的关系,S A ⊂⊂φ。
此外,在样本空间的子集中,只含一个样本点的事件,称为基本事件。
样本点的个数超过一个的事件,称为复合事件。
2、事件之间的关系和运算由于事件是样本点的集合,因此,事件之间的关系和运算可借助集合之间的关系与运算来定义。
其运算规律也同集合间的运算规律。
(1)事件的包含与相等若事件A 发生必然导致事件B 发生,则称A 包含于B (或B 包含A ),记B A ⊂(或A B ⊃)。
若B A ⊂且A B ⊃,则称事件A 与事件B 相等,记B A =。
(2)事件的和事件A 与事件B 至少有一个发生的事件,记作B A ,称为A 与B 的和事件,有{}B e A e e B A ∈∈=或 。
同样地有限个事件n A A A ,,,21 至少有一个发生的事件,记作 ni i A 1=,称为有限个事件的和事件。
可列多个事件 ,,,,21i A A A 至少有一个发生的事件,记作 ∞=1i i A ,称为可列多个事件的和事件。
(3)事件的积事件A 与事件B 同时发生的事件,记作B A (或AB ),称为A 与B 的积事件,{}B e A e e AB ∈∈=且 类似地,有限个多个事件n A A A ,,,21 同时发生的事件,记作 ni i A 1=。
《概率论与数理统计》复习提要第一章随机事件与概率1.事件的关系 2.运算规则(1)(2)(3)(4)3.概率满足的三条公理及性质:(1)(2)(3)对互不相容的事件,有(可以取)(4)(5)(6),若,则,(7)(8) 4.古典概型:基本事件有限且等可能5.几何概率 6.条件概率(1)定义:若,则(2)乘法公式:若为完备事件组,,则有(3)全概率公式:(4) Bayes公式: 7.事件的独立性:独立(注意独立性的应用)第二章随机变量与概率分布 1.离散随机变量:取有限或可列个值,满足(1),(2)(3)对任意, 2.连续随机变量:具有概率密度函数,满足(1)(2);(3)对任意,4.分布函数,具有以下性质(1);(2)单调非降;(3)右连续;(4),特别;(5)对离散随机变量,;(6)为连续函数,且在连续点上, 5.正态分布的概率计算以记标准正态分布的分布函数,则有(1);(2);(3)若,则;(4)以记标准正态分布的上侧分位数,则 6.随机变量的函数(1)离散时,求的值,将相同的概率相加;(2)连续,在的取值范围内严格单调,且有一阶连续导数,,若不单调,先求分布函数,再求导。
第三章随机向量1.二维离散随机向量,联合分布列,边缘分布,有(1);(2 (3), 2.二维连续随机向量,联合密度,边缘密度,有(1);(2)(4)(3);,3.二维均匀分布,其中为的面积 4.二维正态分布且; 5.二维随机向量的分布函数有(1)关于单调非降;(2)关于右连续;(3);(4),,;(5);(6)对二维连续随机向量, 6.随机变量的独立性独立(1)离散时独立(2)连续时独立(3)二维正态分布独立,且7.随机变量的函数分布(1)和的分布的密度(2)最大最小分布第四章随机变量的数字特征 1.期望 (1) 离散时 (2) 连续时,;,; (3) 二维时, (4);(5);(6);(7)独立时, 2.方差(1)方差,标准差(2);(3);(4)独立时, 3.协方差(1);;;(2)(3);(4)时,称不相关,独立不相关,反之不成立,但正态时等价;(5)4.相关系数;有, 5.阶原点矩,阶中心矩第五章大数定律与中心极限定理 1.Chebyshev不等式 2.大数定律3.中心极限定理(1)设随机变量独立同分布,或,或或,(2)设是次独立重复试验中发生的次数,,则对任意,或理解为若,则第六章样本及抽样分布 1.总体、样本(1)简单随机样本:即独立同分布于总体的分布(注意样本分布的求法);(2)样本数字特征:样本均值(,);样本方差)样本标准样本阶原点矩,样本阶中心矩 2.统计量:样本的函数且不包含任何未知数 3.三个常用分布(注意它们的密度函数形状及分位点定义)(1)分布,其中标准正态分布,若且独立,则;(2)分布,其中且独立;(3)分布,其中性质 4.正态总体的抽样分布(1);(2 ;(3 且与独立;(4);,(5)(6)第七章参数估计 1.矩估计:(1)根据参数个数求总体的矩;(2)令总体的矩等于样本的矩;(3)解方程求出矩估计 2.极大似然估计:(1)写出极大似然函数;(2)求对数极大似然函数(3)求导数或偏导数;(4)令导数或偏导数为0,解出极大似然估计(如无解回到(1)直接求最大值,一般为min或max) 3.估计量的评选原则,则为无偏;(2) 有效性:两个无偏估计中方差小的有效; (1)无偏性:若《概率论与数理统计》期末试题(2)与解答一、填空题(每小题3分,共15分) 1.设事件仅发生一个的概率为0.3,且,则生的概率为 2.设随机变量服从泊松分布,且,则______.3.设随机变量在区间上服从均匀分布,则随机变量在区间密度为4.设随机变量相互独立,且均服从参数为的指数分布,_________,5.设总体的概率密度为是来自的样本,则未知参数的极大似然估计量为解:1.即所以 .2.由知即解得,故 . 3.设的分布函数为的分布函数为,密度为则因为,所以,即故另解在上函数严格单调,反函数为所以4.,故 .5.似然函数为解似然方程得的极大似然估计为二、单项选择题(每小题3分,共15分) 1.设为三个事件,且相互独立,则以下结论中不正确的是(A)若,则与也独立. (B)若,则(C)若,则与也独立. 与也独立(D)若,则与也独立.() 2.设随机变量的分布函数为,则的值为(A).(B)(C). (D). ()3.设随机变量和不相关,则下列结论中正确的是(A)与独立. (B)(C). (D). () 4.设离散型随机变量和的联合概率分布为若独立,则的值为(A). (A). . ()(C)(D) 5.设总体的数学期望为为来自的样本,则下列结论中正确的是(A)X1是的无偏估计量. (B)X1是的极大似然估计量. (C)X1是的相合(一致)估计量. (D)X1不是的估计量.()解:1.因为概率为1的事件和概率为0的事件与任何事件独立,所以(A),(B),(C)都是正确的,只能选(D)事实上由图可见A与C不独立2.所以 3.由不相关的等价条件知应选(B). 4.若独立则有应选(A). 2 , 9 故应选(A) 5.,所以X1是的无偏估计,应选(A). 三、(7分)已知一批产品中90% 0.05,一个次品被误认为是合格品的概率为0.02,求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率. 解:设‘任取一产品,经检验认为是合格品’ ‘任取一产品确是合格品’则(1)(2) .四、(12分)从学校乘汽车到火车站的途中有3 件是相互独立的,并且概率都是2/5. 设为途中遇到红灯的次数,求的分布列、分布函数、数学期望和方差. 解:的概率分布为即的分布函数为五、(10分)设二维随机变量在区域匀分布. 求(1)关于的边缘概率密度;(2)的分布函数与概率密(1)的概率密度为(2)利用公式其中当或时时故的概率密度为的分布函数为或利用分布函数法六、(10分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标和纵坐标互独立,且均服从分布. 求(1)命中环形区域的概率;(2)命中点到目标中心距离1);(2). 七、(11分)设某机器生产的零件长度(单位:cm),今抽取容量为16 样本,测得样本均值,样本方差. (1)求的置信度为0.95 区间;(2)检验假设(显著性水平为0.05). (附注)解:(1)的置信度为下的置信区间为所以的置信度为0.95的置信区间为(9.7868,10.2132)(2)的拒绝域为,因为,所以接受《概率论与数理统计》期末试题(3)与解答一、填空题(每小题3分,共15分)(1)设事件与相互独立,事件与互不相容,事件与互不相容,,,则事件、、中仅发生或仅概率为(2)甲盒中有2个白球和3个黑球,乙盒中有3个白球和2个黑球,今从每个盒中各取个球,发现它们是同一颜色的,则这颜色是黑色的概率为(3)设随机变量的概率密度为现对察,用表示观察值不大于0.5的次数,则___________. (4)设二维离散型随机变量的分布列为若,则(5)设是总体的样本,是样本方差,若,(注:, , , )解:(1)因为与不相容,与不相容,所以,故同理 . . (2)设‘四个球是同一颜色的’,‘四个球都是白球’,‘四个球都是黑球’则 . 所求概率为所以(3)其中,,(4)的分布为这是因为,由得,故(5)即,亦即 . 二、单项选择题(每小题3分,共15分)(1)设、、为三个事件,且,则有(A)(B)(C)(D)(2)设随机变量的概率密度为且,则在下列各组数中应取(A)(B)(C).(D)(3)设随机变量与相互独立,其概率分布分别为则有())(A)(B)(C)(D)()(4)对任意随机变量,若存在,则等于(A)(B)(C)(D)()(5)设为正态总体的一个样本,表示样本均值,则的置信度为的置信区间为(B)(C)()(D)解(1)由知,故(A)应选C. (2)即时故当应选(3)应选(4)应选(5)因为方差已知,所以的置信区间为应选D. 三、(8分)装有10件某产品(其中一等品5件,二等品3件,三等品2件)的箱子中丢失一件产品,但不知是几等品,今从箱中任取2件产品,结果都是一等品,求丢失的也是一等品的概率。
大学概率论知识点总结越是临考试,大家一定要稳定自己的情绪,不能乱了脚步。
里头大学是大学概率论知识点总结,为大家提供参考。
第一章随机事件和概率1、随机惨案的关系与运算2、随机事件的运算律3、特殊随机事件(必然事件、不可能事件、互不相容事件和敌对事件)4、概率的基本性质5、随机事件的条件概率与独立性6、五大概率计算公式(加法、减法、乘法、全概率公式和贝叶斯公式)7、全概率公式的思想8、概型的计算(古典概型和几何概型)第二章随机变量及其分布1、分布函数的定义2、分布函数的开映射3、分布函数的性质4、离散型随机变量的分布律及分布函数5、概率密度的充要条件6、连续型随机变量的性质7、常见分布(0-1分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、指数分布、正态分布)8、特征值函数的分布(离散型、连续型)布季夫第三章多维随机变量及其分布1、二维离散型随机变量的三大分布(联合、边缘、条件)2、二维连续型随机变量的三大分布(联合、边缘和条件)3、随机变量的独立性(判断和性质)4、二维常见分布的性质(二维均匀分布、二维正态分布)5、概率分布函数的分布(离散型、连续型)第四章随机变量的数字特征1、期望公式(一个随机变量的期望及随机变量的期望)4、常见分布的期望期望和方差公式第五章大数定律和中心极限定理1、切比雪夫不等式2、大数定律(切比雪夫大数定律、辛钦大数定律、伯努利大数定律)3、中心极限定理(列维—林德伯格定理、棣莫弗—拉普拉斯定理)第六章形式系统数理统计的基本概念1、常见统计量(定义、数字特征公式)2、统计分布3、一维正态总体下的统计量具有的性质4、估计量的评选统一标准(数学一)5、上侧分位数(数学一)第七章参数估计1、矩估计法2、最大似然估计法3、区间估计(数学一)第八章假设检验(数学一)1、显著性检验2、洛佐韦的两类错误3、单个及两个正态总体的均值和方差的假设检验。
在备考投资过程中提醒大家:要学着思考,学着"记忆",最重要是要会举一反三,这样,我们才能脱离题海的浮沉,能够做到有效做题,高效提升!。