九年级数学圆的性质及习题
- 格式:doc
- 大小:1.74 MB
- 文档页数:18
专题24.1圆的有关性质(测试)一、单选题1.下列各角中,是圆心角的是( )A .B .C .D .【答案】D 【解析】顶点在圆心,两边和圆相交的角是圆心角,选项D 中,是圆心角, 故选D .2.一个周长是l 的半圆,它的半径是( ) A .l π÷ B .2l π÷C .()2l π÷+D .()1l π÷+【答案】C 【解析】半圆的周长为半径的π倍加上半径的2倍,所以一个周长是l 的半圆,它的半径是()2l π÷+,所以选C. 3.如图,AB ,AC 分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为( )A .B .4C .D .4.8【答案】C【解析】∵AB 为直径, ∴90ACB ︒∠=,∴6BC =, ∵OD AC ⊥, ∴142CD AD AC ===,故选C . 4.如图,AB 是O 的弦,OC AB ⊥交O 于点C ,点D 是O 上一点,30ADC ∠=︒,则BOC ∠的度数为( ).A .30°B .40°C .50°D .60°【答案】D【解析】解:如图,∵30ADC ∠=︒, ∴260AOC ADC ∠=∠=︒. ∵AB 是O 的弦,OC AB ⊥交O 于点C ,∴AC BC =.∴60AOC BOC ∠=∠=︒. 故选:D ..5.如图,有一圆形展厅,在其圆形边缘上的点A 处安装了一台监视器,它的监控角度是65°.为了监控整个展厅,最少需在圆形边缘上共安装这样的监视器( )台.A .3B .4C .5D .6【答案】A【解析】设需要安装n (n 是正整数)台同样的监控器,由题意,得:65°×2×n ≥360°, 解得n ≥3613,∴至少要安装3台这样的监控器,才能监控整个展厅.故选:A .且10CD m =,则这段弯路所在圆的半径为( )A .25mB .24mC .30mD .60m【答案】A 【解析】解:OC AB ⊥,20AD DB m ∴==,在Rt AOD ∆中,222OA OD AD =+, 设半径为r 得:()2221020r r =-+, 解得:25r m =,∴这段弯路的半径为25m故选:A .7.若AB 和CD 的度数相等,则下列命题中正确的是( ) A .AB =CDB .AB 和CD 的长度相等C .AB 所对的弦和CD 所对的弦相等D .AB 所对的圆心角与CD 所对的圆心角相等 【答案】D【解析】如图,AB 与CD 的度数相等,A 、根据度数相等,不能推出弧相等,故本选项错误;B 、根据度数相等,不能推出两弧的长度相等,故本选项错误;C 、根据度数相等,不能推出所对应的弦相等,故本选项错误;D 、根据度数相等,能推出弧所对的两个圆心角相等,故本选项正确;8.如图,C、D为半圆上三等分点,则下列说法:①AD=CD=BC;②∠AOD=∠DOC=∠BOC;③AD =CD=OC;④△AOD沿OD翻折与△COD重合.正确的有()A.4个B.3个C.2个D.1个【答案】A【解析】∵C、D为半圆上三等分点,∴»»»AD CD BC==,故①正确,∵在同圆或等圆中,等弧对的圆心角相等,等弧对的弦相,∴AD=CD=OC,∠AOD=∠DOC=∠BOC=60°,故②③正确,∵OA=OD=OC=OB,∴△AOD≌△COD≌△COB,且都是等边三角形,∴△AOD沿OD翻折与△COD重合.故④正确,∴正确的说法有:①②③④共4个,故选A.9.下列说法:①优弧一定比劣弧长;②面积相等的两个圆是等圆;③长度相等的弧是等弧;④经过圆内的一个定点可以作无数条弦;⑤经过圆内一定点可以作无数条直径.其中不正确的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】解:在同圆或等圆中,优弧一定比劣弧长,所以①错误;面积相等的两个圆半径相等,则它们是等圆,所以②正确;能完全重合的弧是等弧,所以③错误;经过圆内一个定点可以作无数条弦,所以④正确;经过圆内一定点可以作无数条直径或一条直径,所以⑤错误.10.如图所示,AB 是半圆O 的直径。
鲁教版2019-2020九年级数学第五章第一单元圆的有关性质单元综合练习题4(培优含答案)1.如图所示,AB为⊙O的直径,P点为其半圆上一点,∠POA=40°,C为另一半圆上任意一点(不含A、B),则∠PCB的度数为()A.50°B.60°C.70°D.80°2.三角形两边的长分别是8 和6,第三边的长是方程x2﹣12x+20=0 的一个实数根,则三角形的外接圆半径是( )A.4B.5C.6D.83.过A,B,C三点能确定一个圆的条件是()①AB=2,BC=3,AC=5;②AB=3,BC=3,AC=2;③AB=3,BC=4,AC= 5.A.①②B.①②③C.②③D.①③4.如图,△ABC是⊙O内接三角形,若∠C=30°,AB=3,则⊙O的半径为()A.3 D.65.已知∠ACB=90°,∠CAB=a,且sina=45,I为内心,则△ABC的内切圆半径r与△BIC的外接圆半径R之比为()6.如图1,把圆形井盖卡在角尺〔角的两边互相垂直,一边有刻度)之间,即圆与两条直角边相切,现将角尺向右平移10cm,如图2,OA边与圆的两个交点对应CD的长为40cm则可知井盖的直径是()A.25cmB.30cmC.50cmD.60cm7.下列说法中正确的是( )A .平分弦的直径垂直于弦,并且平分弦所对的两条弧B .圆是轴对称图形,每一条直径都是它的对称轴C .弦的垂直平分线过圆心D .相等的圆心角所对的弧也相等8.如图,在直径为82cm 的圆柱形油槽内装有一些油以后,油面宽80AB cm =,则油的最大深度为( )A .32cmB .31cmC .9cmD .18cm9.一个圆柱的侧面积为2120πcm ,高为10cm ,则它的底面圆的半径为________. 10.如图,AB 是O 的直径,点C 在O 上,OD //AC ,若BD 1=,则BC 的长为_______.11.如图,在Rt △ABC 中,∠BCA=900,∠BAC 的平分线交△ABC 外接圆于点D ,连接BD ,若AB=2AC=4。
九年级数学下册《第二十四章圆》练习题及答案解析一、单选题1.如图,O的半径为4,点A为O上一点,OA的垂直平分线分别交O于点B,C,则BC的长为()A.3B.4C.3D.32.下列条件中,不能确定一个圆的是()A.圆心与半径B.直径C.平面上的三个已知点D.三角形的三个顶点3.如图,在正方形网格中,点A,B,C,D,O都在格点上.下列说法正确的是()A.点O是ABC的内心B.点O是ABC的外心C.点O是ABD的内心D.点O是ABD的外心4.若⊙O的半径为5cm,点A到圆心O的距离为4cm,则点A与⊙O的位置关系是()A.点A在圆外B.点A在圆上C.点A在圆内D.不能确定5.如图,四边形ABCD内接于⊙O,AC平分∠BAD,则下列结论正确的是()A.AB=AD B.BC=CD C.=AB AD D.∠BCA=∠DCA6.有下到结论:(1)三点确定一个圆;(2)平分弦的直径垂直于弦;(3)三角形的外心到三角形各边的距离相等,其中正确的结论的个数有()A.0个B.1个C.2个D.3个7.一个点到圆的最大距离为11,最小距离为5,则圆的半径为().A.16或6 B.3或8 C.3 D.8 8.⊙O的面积是25π,点P到圆心O的距离为d,下列说法正确的是( ) A.当d≥5时,点在圆⊙O外B.当d<5时,点在圆⊙O上C.当d>5时,点在圆⊙O外D.当d≤5时,点在圆⊙O内9.如图,AB是⊙O的直径,且经过弦CD的中点H,已知cos∠CDB=45,BD=5,则OH的长为()A.23B.56C.1 D.7610.如图,AB是⊙O的直径,CD⊥AB于点E,连结CO并延长,交弦AD于点F.若AB=10,BE=2,则OF的长度是()A.5 2B.3C.25 11D5二、填空题11.若O的半径为5cm,点A到圆心O的距离为4cm,那么点A与O的位置关系是. 12.如图,⊙O的直径为10,圆心O到弦AB的距离OM=3,则弦AB的长是13.如图,将半径为2 cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB=.14.如图, AB 是圆 O 的直径, AD DC CB AC ==, 与 OD 交于点 E .如果 3AC = ,那么 DE 的长为 .三、计算题15.如图,AB 、CD 是⊙O 的直径,弦CE ∥AB , AC 的度数为70°.求∠EOC 的度数.16.如图,AB 、CD 是⊙O 的直径,弦CE ∥AB ,弧 CE 的度数为50°,求∠AOC 的度数.17.如图,A 、B 、C 、D 均为⊙O 上的点,其中A 、B 两点的连线经过圆心O ,线段AB 、CD 的延长线交于点E ,已知AB=2DE ,∠E=18°,求∠AOC 的度数.四、解答题18.如图,AB 是 O 的直径,弦 CD AB ⊥ 于点E ,若 8AB = , 6CD = ,求 OE 的长.19.已知AB,AC为弦,OM⊥AB于M,ON⊥AC于N,求证:MN∥BC且MN=12BC.20.已知:如图,AB是⊙O的弦,半径OC、OD分别交AB于点E、F,且OE=OF.求证:AE=BF.五、综合题21.如图,在Rt△ABC中,∠BAC=90°,以点A为圆心,AC长为半径作圆,交BC于点D,交AB于点E,连结DE.(1)若∠ABC=20°,求∠DEA的度数;(2)若AC=3,AB=4,求CD的长.22.如图,在平面直角坐标系中,O(0,0),A(0,-6),B(8,0)三点在⊙P上.(1)求⊙P的半径及圆心P的坐标;(2)M为劣弧OB的中点,求证:AM是∠OAB的平分线.23.定义:有两个相邻内角和等于另两个内角和的一半的四边形称为半四边形,这两个角的夹边称为对半线.(1)如图1,在对半四边形ABCD中,∠A+∠B=12(∠C+∠D),求∠A与∠B的度数之和;(2)如图2,O为锐角△ABC的外心,过点O的直线交AC,BC于点D,E,∠OAB=30°,求证:四边形ABED是对半四边形;(3)如图3,在△ABC中,D,E分别是AC,BC上一点,CD=CE=3,CE=3EB,F为DE的中点,∠AFB=120°,当AB为对半四边形ABED的对半线时,求AC的长.参考答案与解析1.【答案】D【解析】【解答】解:设OA与BC相交于点D,连接OB,BC是OA的垂直平分线,2OD AD∴==,90BDO∠=︒,2BC BD∴=,在Rt BDO中,224223BD=-=22343BC∴=⨯=故答案为:D.【分析】设OA与BC相交于点D,连接OB,先利用勾股定理求出BD的长,再利用BC=2BD可得答案。
一、选择题1.如图,,AB AC 分别是O 的直径和弦,OD AC ⊥于点,D 连接,BD BC .若10,8AB AC ==,则BD 的长是( )A .25B .4C .213D .245C 解析:C【分析】 先根据圆周角定理得∠ACB=90°,则利用勾股定理计算出BC=6,再根据垂径定理得到CD=AD=12AC=4,然后利用勾股定理计算BD 的长. 【详解】解:∵AB 为直径,∴∠ACB=90°,∴22221086BC AB AC =-=-=,∵OD ⊥AC , ∴CD=AD=12AC=4, 在Rt △CBD 中,222246213BD BC CD =+=+=.故选:C .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.2.如图,四个水平放置正方形的边长都为4,顶点A 、B 、C 是圆上的点,则此圆的面积为( )A .72πB .85πC .100πD .104πB解析:B【分析】连接BC,作AB,BC的垂直平分线,交点为点O,连接OB,OC,根据垂直平分线可得AE=BE=2,DE=4×4=16,DC=4+2=6,设OD=x,则OE=16-x,再根据OB=OC即可列出方程求得x=7,最后再根据圆的面积公式计算即可.【详解】解:如图,连接BC,作AB,BC的垂直平分线,交点为点O,连接OB,OC,则OB=OC,AE=BE=2,DE=4×4=16,DC=4+2=6,设OD=x,则OE=16-x,∵OB=OC,∴OB2=OC2,∴22+(16-x) 2=62+x2,解得x=7,∴r2=OB2=22+92=85,∴圆的面积S=πr2=85π,故选:B.【点睛】本题考查了作三角形的外心,垂径定理的应用,圆的面积公式,熟练掌握垂径定理是解决本题的关键.3.如图,分别以AB,AC为直径的两个半圆,其中AC是半圆O的一条弦,E是弧AEC中点,D是半圆ADC中点.若DE=2,AB=12,且AC˃6,则AC长为()A.2B.2C.2D.2D解析:D【分析】连接OE,交AC于点F,由勾股定理结合垂径定理求出AF的长,即可得到结论.【详解】解:连接OE ,交AC 于点F ,∵E 为AEC 的中点,∴OE AC ⊥,F 为AC 的中点,∵12AB =∴6OE AO ==设EF x =,则6OF x =-∵F 为AC 的中点,D 为半圆ADC 的中点,∴DF AC ⊥,DF AF =∵2DE =,∴2DF x AF =+=在Rt △AOF 中,222OA OF AF =+即2226(6)(2)x x =-++, ∴122x =+,222x =-∴2(2)822AC x =+=+或822-∵6AC >∴822AC =+故选:D【点睛】本题考查了垂径定理,熟练掌握垂径定理,运用勾股定理求出AF 是解题的关键. 4.为落实好扶贫工作,某村驻村干部帮助村民修建了一个粮仓,该粮仓的屋顶是一个圆锥,为了合理购买、不浪费原材料,需要进行计算1个屋顶的侧面积大小,该圆锥母线长为5m ,底面圆周长为8m π,则1个屋顶的侧面积等于( )2m .(结果保留π)A .40πB .20πC .16πD .80πB解析:B【分析】 先根据底面周长可求得底面圆的半径,再根据圆锥的侧面积公式计算即可求解.【详解】解:∵2πr=8π,∴r=4,又∵母线l=5,∴圆锥的侧面积=πrl =π×4×5=20π.故选:B .【点睛】本题考查了圆锥的侧面积计算方法,牢记有关圆锥和扇形之间的对应关系是解决本题的关键.5.如图,在三角形ABC 中,AB=22,∠B=30°,∠C=45°,以A 为圆心,以AC 长为半径作弧与AB 相交于点E ,与BC 相交于点F ,则弧EF 的长为( )A .6πB .2πC .23πD .πA解析:A【分析】过A 作AD ⊥BC ,连接AF ,求出∠FAE ,再利用弧长计算公式计算EF 的长即可.【详解】解:过A 作AD 垂直BC ,连接AF ,如图,∵2,30,45AB B C =∠=︒∠=︒,可得2∴AC=2,∵AC=AF∴∠AFC=∠C=45°,∴∠FAE=∠AFC-∠B=45°-30°=15°∴EF 的长为:152180π⨯=6π 故选:A【点睛】此题主要考查了弧长的计算,关键是掌握弧长计算公式.6.已知⊙O ,如图,(1)作⊙O 的直径AB ;(2)以点A 为圆心,AO 长为半径画弧,交⊙O 于C ,D 两点;(3)连接CD 交AB 于点E ,连接AC ,BC .根据以上作图过程及所作图形,有下面三个推断:①CE DE =;②3BE AE =;③2BC CE =.其中正确的推断的个数是( )A .0个B .1个C .2个D .3个D解析:D【分析】 ①根据作图过程可得AC AD =,根据垂径定理可判断;②连接OC ,根据作图过程可证得△AOC 为等边三角形,由等边三角形的性质即可判断; ③根据直角三角形中30°角所对的直角边等于斜边的一半即可判断.【详解】解:①∵以点A 为圆心,AO 长为半径画弧,交⊙O 于C ,D 两点,∴AC AD =,根据垂径定理可知,AB ⊥CE ,CE=DE ,∴①正确;②连接OC ,∵AC=OA=OC ,∴△AOC 为直角三角形,∵AB ⊥CE ,∴AE=OE ,∴BE=BO+OE=3AE ,∴②正确;③∵AB 为直径,∴∠ACB=90°,∵∠CAB=60°,∴∠ABC=30°,∴BC=2CE ,∴③正确,故选:D .【点睛】本题考查了垂径定理、圆周角定理、等边三角形的判定与性质、含30°角的直角三角形的性质,理解基本作图知识,熟练掌握各基本性质和综合运用是解答的关键.7.如图,在⊙O 中,AB 是直径,弦AC=5,∠BAC=∠D .则AB 的长为( )A .5B .10C .52D .102解析:C【分析】 根据圆周角定理得出∠D=∠B ,得出△ABC 是等腰直角三角形,进而解答即可.【详解】∵AC=AC ,∴∠D=∠B ,∵∠BAC=∠D ,∴∠B=∠BAC ,∴△ABC 是等腰三角形,∵AB 是直径,∴△ABC 是等腰直角三角形,∵AC=5,∴AB=52故选:C .【点睛】本题考查了圆周角定理,等腰直角三角形的判定和性质,勾股定理的应用,关键是根据圆周角定理得出∠D=∠B .8.如图,AB 为O 的弦,半径OC 交AB 于点D ,AD DB =,5OC =,3OD =,则AB 的长为( )A.8 B.6 C.4 D.2A解析:A【分析】连接OB,根据⊙O的半径为5,CD=2得出OD的长,再由垂径定理的推论得出OC⊥AB,由勾股定理求出BD的长,进而可得出结论.【详解】解:连接OB,如图所示:∵⊙O的半径为5,OD=3,∵AD=DB,∴OC⊥AB,∴∠ODB=90°,∴2222=-=-=,BD OB OD.534∴AB=2BD=8.故选:A.【点睛】本题考查的是垂径定理以及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.9.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为BD的中点.若∠=︒,则B的度数是()A50A.50︒B.55︒C.60︒D.65︒D解析:D【分析】连接AC,根据圆心角、弧、弦的关系求出∠BAC,根据圆周角定理求出∠ACB=90°,根据三角形内角和定理计算即可.【详解】解:连接AC ,∵点C 为BD 的中点,∴∠BAC=12∠BAD=25°, ∵AB 为⊙O 的直径,∴∠ACB=90°,∴∠B=90°-∠BAC=65°,故选:D .【点睛】本题考查的是圆心角、弧、弦的关系、圆周角定理的应用,掌握圆心角、弧、弦的关系定理和圆周角定理是解题的关键.10.如图,在平行四边形ABCO 中,45C ∠=︒,点A ,B 在O 上,点D 在ADB 上,DA DB =,则AOD ∠的度数为( )A .112.5°B .120°C .135°D .150°C解析:C【分析】 延长DO 交AB 于点H ,连接OB ,证明△△AOD BOD ≅,OD 是AOB ∠的角平分线,求得290345∠=︒-∠=︒,进行求解即可;【详解】延长DO 交AB 于点H ,连接OB ,∵四边形ABCD 是平行四边形,45C ∠=︒,∴345∠=︒,∵DA DB =,OA OB =,∴△△AOD BOD ≅,∴OD 是AOB ∠的角平分线,又∵AO BO =,∴DH AB ⊥,∴290345∠=︒-∠=︒,又∵221∠=∠,∴18045135AOD ∠=︒-︒=︒.故选:C .【点睛】本题主要考查了与圆有关的计算,结合全等三角形的性质和角平分线的性质计算即可.二、填空题11.已知正方形MNKO 和正六边形ABCDEF 边长均为1,把正方形放在正六边形外边,使OK 边与AB 边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B 顺时针旋转,使KN 边与BC 边重合,完成第一次旋转;再绕点C 顺时针旋转,使NM 边与CD 边重合,完成第二次旋转;…在这样连续的旋转过程中,第一次点M 在图中直角坐标系中的坐标是_______,第6次点M 的坐标是_______.【分析】先将正方形旋转六次的图形画出确定六次旋转之后点的位置然后通过添加辅助线构造出直角三角形进而利用含角的直角三角形的性质求得再根据勾股定理求得再根据正六边形的性质线段的和差即可求得即可得解【详解 解析:13,12⎛+ ⎝⎭332⎛ ⎝⎭【分析】先将正方形旋转六次的图形画出,确定六次旋转之后点M 的位置,然后通过添加辅助线构造出直角三角形,进而利用30含角的直角三角形的性质求得12FH =、12CJ =,再根据勾股定理求得632JM =,再根据正六边形的性质、线段的和差即可求得32JF =,即可得解.【详解】解:经历六次旋转后点M 落在点6M 处,过M 作MH x ⊥于点H ,过6M 作6M J x ⊥于点J ,连接6IM ,如图:∵在Rt AFH 中,1AF =,60AFH ∠=︒,30FAH ∠=︒∴1122FH AF == ∵已知点M 的纵坐标是312+,即312MH =+ ∴点M 的坐标是:13,12⎛ ⎝⎭; ∵在6Rt CJM 中,61CM =,660JCM ∠=︒,630CM J ∠=︒∴61122CJ CM ==,226632JM CM CJ =-= ∵点I 是正六边形的中心∴1IC IF ==∴32JF IF IC CJ =+-=∴点6M 的坐标是:33,22⎛⎫ ⎪ ⎪⎝⎭. 故答案是:13,122⎛⎫+ ⎪ ⎪⎝⎭;33,22⎛⎫ ⎪ ⎪⎝⎭【点睛】本题考查了正多边形、旋转变换、含30角的直角三角形、勾股定理、线段的和差以及坐标系中的图形与坐标,体现了数形结合的数学思想.12.如图,在平面直角坐标系xOy 中,点,,A B C 的坐标分别是(0,),(22,0),()4,0,M是ABC ∆的外接圆,则圆心M 的坐标为__________________,M 的半径为_______________________. 【分析】M 点为BC 和AB 的垂直平分线的交点利用点ABC 坐标易得BC 的垂直平分线为直线x=3AB 的垂直平分线为直线y=x 从而得到M 点的坐标然后计算MB 得到⊙M 的半径【详解】解:∵点ABC 的坐标分别是(解析:()3,310【分析】M 点为BC 和AB 的垂直平分线的交点,利用点A 、B 、C 坐标易得BC 的垂直平分线为直线x=3,AB 的垂直平分线为直线y=x ,从而得到M 点的坐标,然后计算MB 得到⊙M 的半径.【详解】解:∵点A ,B ,C 的坐标分别是(0,2),(2,0),(4,0),∴BC 的垂直平分线为直线x=3,∵OA=OB ,∴△OAB 为等腰直角三角形,∴AB 的垂直平分线为第一、三象限的角平分线,即直线y=x ,∵直线x=3与直线y=x 的交点为M 点,∴M 点的坐标为(3,3),∵22(32)310MB =-+=∴⊙M 10.故答案为(3,3),10.【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了坐标与图形的性质.13.如图,等腰直角△ABC中,∠BAC=90°,AB=AC=4.平面内的直线l经过点A,作CE⊥l 于点E,连接BE.则当直线l绕着点A转动时,线段BE长度的最大值是________.【分析】以AC为直径作圆O连接BO并延长交圆O于点可得BO+O>B从而可得BO+OE>B即BE为最大值再由勾股定理求出BO 的长即可解决问题【详解】解:由题意知CE⊥l于点E∴以AC为直径作圆O∵CE解析:225+【分析】以AC为直径作圆O,连接BO,并延长交圆O于点E',可得BO+O E'>B E',从而可得BO+OE>B E',即BE为最大值,再由勾股定理求出BO的长即可解决问题.【详解】解:由题意知,CE⊥l于点E,∴以AC为直径作圆O,∵CE⊥AE,∴点E在圆O上运动,连接BO,并延长交圆O于点E',如图,∴BO+O E'>B E',∵OE=O E',∴BO+OE>B E',∴BE的长为最大值,∵AO=OC=OE,且AB=AC=4,∴122OE AC==又∵∠BAC=90°∴22222BO AO AB=+=+=4220∴25BO=∴BE=252+=+BO OE+故答案为:225【点睛】此题主要考查了求线段的最大值,构造出△ACE的外接贺是解答本题的关键.14.如图,点A,B,C在O上,顺次连接A,B,C,O.若四边形ABCO为平行∠=________︒.四边形,则AOC120【分析】连接OB先证明四边形ABCD是菱形然后再说明△AOB△OBC为等边三角形最后根据等边三角形的性质即可解答【详解】解:如图:连接OB∵点在上∴OA=OC=OB∵四边形为平行四边形∴四边形解析:120【分析】连接OB,先证明四边形ABCD是菱形,然后再说明△AOB、△OBC为等边三角形,最后根据等边三角形的性质即可解答.【详解】解:如图:连接OB∵点A,B,C在O上∴OA=OC=OB∵四边形ABCO为平行四边形∴四边形ABCO是菱形∴OA=OC=OB=AB=BC∴△AOB、△OBC为等边三角形∴∠AOB=∠BOC=60°∴∠AOC=120°.故答案为120.【点睛】本题主要考查了圆的性质和等边三角形的性质,根据题意证得△AOB 、△OBC 为等边三角形是解答本题的关键.15.如图,在平面直角坐标系中,点()3,4A ,()3,0B ,以A 为圆心,2为半径作A ,点P 为A 上一动点,M 为OP 的中点,连接BM ,设BM 的最大值为m ,最小值为n ,则m n -的值为_________.2【分析】方法一:在轴上取一点连接可求由可得由点在上运动可知共线时可以取得最大值或最小值最大值最小值由最大值与最小值求出即可;方法二:连接取中点连接利用三角形三边关系有可得作差计算即可【详解】解:方解析:2【分析】方法一:在x 轴上取一点()6,0E ,连接PE ,可求3OB BE ==,22345AE +=,由OM PM =,OB BE =,可得12BM PE =,由点P 在A 上运动,可知P 、A 、B 共线时,可以取得最大值或最小值,最大值'527EP ==+=,最小值''523EP =-=,由最大值与最小值求出72m =,32n =即可;方法二:连接PA 、OA ,取OA 中点N ,连接MN 、BN ,利用三角形三边关系有BN MN BM BN MN -≤≤+,可得m BN MN =+,n BN MN =-,作差计算22m n MN PA -===即可.【详解】解:方法一:在x 轴上取一点()6,0E ,连接PE ,∵()3,0B ,()3,4A ,∴3OB BE ==,22345AE =+=,∵OM PM =,OB BE =,∴12BM PE =, ∵点P 在A 上运动, ∴P 、A 、B 共线时,可以取得最大值或最小值,最大值'527EP ==+=,最小值''523EP =-=,∴72m =,32n =, ∴2m n -=, 故答案为2.方法二:连接PA 、OA ,取OA 中点N ,连接MN 、BN ,BN MN BM BN MN -≤≤+,m BN MN =+,n BN MN =-,22m n MN PA -===.故答案为:2.【点睛】本题考查三角形的中位线,勾股定理,三角形三边关系,线段和差,掌握三角形的中位线,勾股定理,三角形三边关系,线段和差,引辅助线构造准确图形是解题关键. 16.如图,已知点C 是半圆О上一点,将弧BC 沿弦BC 折叠后恰好经过点,O 若半圆O 的半径是2,则图中阴影部分的面积是________________________.【分析】过点O 作OD ⊥BC 于E 交半圆O 于D 点连接CD如图根据垂径定理由OD ⊥BC 得BE =CE 再根据折叠的性质得到ED =EO 则OE =OB 则可根据含30度的直角三角形三边的关系得∠OBC =30°即∠AB 解析:23π 【分析】过点O 作OD ⊥BC 于E ,交半圆O 于D 点,连接CD ,如图,根据垂径定理由OD ⊥BC 得BE =CE ,再根据折叠的性质得到ED =EO ,则OE =12OB ,则可根据含30度的直角三角形三边的关系得∠OBC =30°,即∠ABC =30°则∠AOC=60°,由于OC =OB ,则弓形OC 的面积=弓形OB 的面积,然后根据扇形的面积公式及S 阴影部分=S 扇形OAC 即可得到阴影部分的面积.【详解】如图:过点O 作OD ⊥BC 于E ,交半圆O 于D 点,连接CD ,∵OD ⊥BC ,∴BE =CE ,∵半圆O 沿BC 所在的直线折叠,圆弧BC 恰好过圆心O ,∴ED =EO ,∴OE =12OB , ∴∠OBC =30°,即∠ABC =30°,∴∠AOC=60°;∵OC =OB ,∴弓形OC 的面积=弓形OB 的面积,∴S 阴影部分=S 扇形OAC =260223603ππ⋅= . 【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了垂定定理、圆周角定理和扇形的面积公式.17.如图,在圆O 的内接五边形ABCDE 中,40CAD ∠=︒,则B E ∠+∠=_______°.220【分析】连接CE根据圆内接四边形对角互补可得∠B+∠AEC=180°再根据同弧所对的圆周角相等可得∠CED=∠CAD然后求解即可【详解】解析:220【分析】连接CE,根据圆内接四边形对角互补可得∠B+∠AEC=180°,再根据同弧所对的圆周角相等可得∠CED=∠CAD,然后求解即可.【详解】连接CE,∵五边形ABCDE是⊙O的内接五边形,∴四边形ABCE是⊙O的内接四边形,∴∠B+∠AEC=180°,∵∠CED=∠CAD=40°,∴∠B+∠AED=180°+40°=220°【点睛】本题考查圆内接四边形的性质,同弧所对的圆周角相等的性质,熟记性质并作辅助线构造出圆内接四边形是解题关键.BC=,若点P是矩形ABCD上一动点,要使得18.在矩形ABCD中,43AB=6∠=︒,则AP的长为__________.或4或8【分析】取CD中点P1连接60APBAP1BP1由勾股定理可求AP1=BP1=4即可证△AP1B是等边三角形可得∠AP1B =60°过点A点P1点B作圆与ADBC各有一个交点即这样的P点一共3个再运用勾解析:434或8.【分析】取CD中点P1,连接AP1,BP1,由勾股定理可求AP1=BP1=3△AP1B是等边三角形,可得∠AP1B=60°,过点A,点P1,点B作圆与AD,BC各有一个交点,即这样的P 点一共3个.再运用勾股定理求解即可.【详解】解:如图,取CD 中点P 1,连接AP 1,BP 1,如图1,∵四边形ABCD 是矩形∴AB =CD =43,AD =BC =6,∠D =∠C =90°∵点P 1是CD 中点∴CP =DP 1=23∴AP 1=221AD DP +=43, BP 1=221BC CP +=43 ∴AP 1=P 1B =AB∴△APB 是等边三角形∴∠AP 1B =60°,过点A ,点P 1,点B 作圆与AD ,BC 的相交,∴这样的P 点一共有3个当点P 2在AD 上时,如图2,∵四边形ABCD 是矩形,∴3,43,90AB A CD AD =∠===︒∵260,AP B ∠=︒∴221,2P A P B = 即222,P B P A =在2Rt P AB ∆中,22222,P B P A AB -=∴222222(43),P A P A -=∴24AP =;当点P 3在BC 上时,如图3,∵四边形ABCD 是矩形,∴∠B=90°∵∠360,AP B =︒∴∠3390906030,P AB AP B =︒-∠=︒-︒=︒ ∴331,2BP AP = 在3Rt ABP ∆中,22233,AP BP AB -=222331()(43),2AP AP -= 23348,4AP = ∴8,AP =综上所述,AP 的长为:43或4或8.故答案为:43或4或8.【点睛】本题考查了矩形的性质,勾股定理,等边三角形的判定和性质,灵活运用这些性质进行推理是本题的关键.19.如图,半径为10的扇形AOB 中,∠AOB=90°,C 为AB 上一点,CD ⊥OA ,CE ⊥OB ,垂足分别为D 、E .若∠CDE=36°,则图中阴影部分的面积为____.10π【分析】连接OC 易得△ODE ≌△ECO 所以扇形OBC 的面积就是图中阴影部分的面积因此求得扇形OBC 的面积即可【详解】解:如下图连接OC ∵∠AOB=90°CD ⊥OACE ⊥OB ∴四边形ODCE 为矩解析:10π【分析】连接OC ,易得△ODE ≌△ECO ,所以扇形OBC 的面积就是图中阴影部分的面积,因此求得扇形OBC 的面积即可.【详解】解:如下图连接OC ,∵∠AOB=90°、CD ⊥OA 、CE ⊥OB∴四边形ODCE 为矩形∴OD=CE ,OE 为公共边∴△ODE ≌△ECO∴△ODE 的面积=△ECO 的面积∴图中阴影部分的面积=2236361010360360O BC SOB πππ-==⨯=. 故答案为:10π.【点睛】本题考查扇形面积的计算和矩形的性质.其关键是用矩形性质对阴影部分进行等积变换,发现△ODE 的面积=△ECO 的面积.20.湖州南浔镇河流密如蛛网,民间有“千步一桥”之说.如图,某圆弧形桥拱的跨度AB =12米,拱高CD =4米,则该拱桥的半径为____米. 65【分析】根据垂径定理的推论此圆的圆心在CD 所在的直线上设圆心是O 连接OA 根据垂径定理和勾股定理求解【详解】根据垂径定理的推论知此圆的圆心在CD 所在的直线上设圆心是O 连接OA 拱桥的跨度AB=12m解析:6.5【分析】根据垂径定理的推论,此圆的圆心在CD 所在的直线上,设圆心是O .连接OA .根据垂径定理和勾股定理求解.【详解】根据垂径定理的推论,知此圆的圆心在CD 所在的直线上,设圆心是O ,连接OA . 拱桥的跨度AB =12m ,拱高CD =4m ,根据垂径定理,得AD=6 m ,利用勾股定理可得:()22264AO AO =--,解得:AO =6.5m .即圆弧半径为6.5米,故答案为:6.5.【点睛】本题综合运用了勾股定理以及垂径定理.注意由半径、半弦、弦心距构造的直角三角形进行有关的计算. 三、解答题21.如图,AB 是⊙O 的直径,点C 在⊙O 上,BD 平分ABC ∠交⊙O 于点D ,过点D 作DE BC ⊥,垂足为E .(1)求证:DE 与⊙O 相切;(2)若10AB =,6AD =,求DE 的长.解析:(1)见解析;(2)245 【分析】(1)连接OD ,由BD 为角平分线得到OBD CBD ∠=∠,再由OB=OD ,利用等边对等角得到ODB OBD ∠=∠,从而得出ODB CBD ∠=∠,利用内错角相等两直线平行得到OD 与BE 平行,由DE 垂直于BE 得到OD 垂直于DE ,即可得证;(2)过D 作DH AB ⊥于H ,根据HL 得出△≌△Rt ADH Rt CDE ,得出AH CE =,再根据勾股定理得出22221068BD AB AD -=-=,再利用等积法即可得出DE 的长.【详解】(1)证明:连接OD .∵OD OB =,∴ODB OBD ∠=∠.∵BD 平分ABC ∠,∴OBD CBD ∠=∠.∴ODB CBD ∠=∠,∴//OD BE .∴180BED ODE ∠+∠=︒.∵BE DE ⊥,∴90BED ∠=︒.∴90ODE ∠=︒.∴OD DE ⊥.∴DE 与O 相切;(2)过D 作DH AB ⊥于H .∵BD 平分ABC ∠,DE BE ⊥,∴DH DE =.∵AD CD =,∴AD CD =.∴()Rt ADH Rt CDE HL △≌△,∴AH CE =.∵AB 是O 的直径,∴90ADB ∠=︒. ∵10AB =,6AD =, ∴22221068BD AB AD =-=-=. ∵1122AB DH AD BD ⋅=⋅,∴245DH =. ∴245DE =. 【点睛】 此题考查了切线的判定,角平分线的性质、圆周角定理、平行线的判定与性质等知识,熟练掌握切线的判定方法是解本题的关键,属于中考常考题型.22.如图,AB 是圆的直径,且AD//OC ,求证:CD BC =.解析:证明见解析.【分析】主要是根据弧相等只需要证明弧所对的圆周角相等或者弧所对的圆心角相等即可证明.连接AC 或者OD 都可以证明.【详解】解:连接ACAD//OC∴∠DAC=∠OCAOA=OC∴∠BAC=∠ACO∴∠DAC=∠BAC∴CD BC =.【点睛】主要是考察学生对圆周角定理的内容的掌握.同时角相等和弧相等之间的转化. 23.如图,已知直线PT 与⊙O 相交于点T ,直线PO 与⊙O 相交于A 、B 两点,已知PTA B ∠=∠.(1)求证:PT 是⊙O 的切线;(2)若3PT BT ==解析:(1)证明见解析;(2)364π- 【分析】 (1)先根据圆周角定理得:∠ATB=90°,则∠B+∠OAT=90°,根据同圆的半径相等和等腰三角形的性质得:∠OAT=∠2,从而得∠PTA+∠2=90°,即∠OTP=90°,所以直线PT 与⊙O 相切;(2)利用TP=TB 得到∠P=∠B ,而∠OAT=2∠P ,所以∠OAT=2∠B ,则利用∠ATB=90°可计算出∠B=30°,∠POT=60°,利用含30度的直角三角形三边的关系得到AT=12AB ,△AOT 为等边三角形,然后根据扇形的面积公式和图中阴影部分的面积=S 扇形OAT -S △AOT 进行计算.【详解】(1)证明:连接OT ,∵AB 是⊙O 的直径,∴∠ATB=90°,∴∠B+∠OAT=90°,∵OA=OT ,∴∠OAT=∠2,∵∠PTA=∠B ,∴∠PTA+∠2=90°,即∠OTP=90°,∴直线PT 与⊙O 相切;(2)∵3PT BT ==∴∠P=∠B=∠PTA ,∵∠TAB=∠P+∠PTA ,∴∠TAB=2∠B ,∵∠TAB+∠B=90°,∴∠TAB=60°,∠B=30°,在Rt △ABT 中,设AT=a ,则AB=2AT=2a ,∴a 232=(2a)2,解得:a=1,∴AT=1,∵OA=OT ,∠TAO=60°,∴△AOT 为等边三角形, 13312AOT S ∴=⨯=. ∴阴影部分的面积2Δ 60133360464AOT AOTS S ππ⨯=-=-=-扇形. 【点睛】本题考查了切线的判定、勾股定理,此类题常与方程结合,列方程求圆的半径和线段的长,也考查了扇形的面积公式.24.如图,已知AB 是O 的直径,四边形AODE 是平行四边形,请用无刻度直尺按下列要求作图.(1)如图1,当点D 在圆上时,作BAC ∠的平分线;(2)如图2,当点D 不在圆上时,作BAC ∠的平分线.解析:(1)见解析;(2)见解析.【分析】(1)由四边形AODE 是平行四边形,结合圆的 半径相等,可知四边形AODE 是菱形,利用菱形的性质即可做出BAC ∠的平分线;(2)延长OD 交于圆一点,连接该点与点A ,由此即可作出C BA ∠的平分线.【详解】解:(1)如图①:AD 即为所求.∵四边形AODE 是平行四边形点D 在圆上∴四边形AODE 是菱形∴AD 平分BAC ∠;(2)如图②:延长OD 交于圆一点P ,连接AP ,同理可证AP 即为所求.【点睛】此题考查尺规作图,关键是掌握圆的相关知识及角平分线的判定方法.25.如图1是某人荡秋千的情形,简化成图2所示,起始状态下秋千顶端O 与座板A 的距离为2m (此时OA 垂直于地面),现一人荡秋千时,座板到达点B (OA 不弯曲).(1)当BOA 30∠=时,求AB 弧的长度(保留π);(2)当从点C 荡至点B ,且BC 与地面平行,3m BC =时,若点A 离地面0.4m ,求点B 到地面的距离(保号根号).解析:(1)3m π;(2)127()52m -. 【分析】(1)利用弧长公式计算,得到答案;(2)根据等腰三角形的性质求出BD ,根据勾股定理求出OD ,结合图形计算即可.【详解】解:(1)AB 弧线的长度=302()1803m ππ⨯=; (2)如图,∵OB=OC ,OD ⊥BC ,∴1322BD BC ==, 在Rt △OBD 中,OD 2+BD 2=OB 2, ∴2222372()2OD OB BD =-=-=, ∴点B 到地面的距离=712720.4252-+=-, 答:点B 到地面的距离为127(5m -. 【点睛】本题考查的是解直角三角形的应用、弧长的计算、勾股定理,掌握弧长公式是解题的关键.26.如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠CAE=∠ADC .(1)求证:AE 是⊙O 的切线;(2)若⊙O 的半径为2,∠B=60°,求图中阴影部分的面积.(结果保留根号和π) 解析:(1)见解析;(2)433π- 【分析】(1)根据AB 是直径得到∠ACB=90°,根据已知条件得到∠BAE =90°,即可得到结果; (2)作OM ⊥AC ,垂足为M ,求得AM=3,根据扇形的面积计算公式计算即可;【详解】(1)证明:∵AB 是⊙O 的直径,∴∠ACB=90°,∴∠B+∠BAC=90°,∵∠B=∠ADC=∠CAE ,∴∠BAE=∠BAC+∠EAC=∠BAC+∠B=90°,∴ BA ⊥AE ,∴AE 是⊙O 的切线.(2)解:作OM ⊥AC ,垂足为M .∵∠B=60°,∴∠AOC=2∠B=120°,∴∠AOM=∠COM=60°, ∴OM=12AO=1, ∴3 ∴AC=2AM=23∴S 阴=S 扇形AOC -S △AOC =120414-231336023ππ. 【点睛】本题主要考查了切线的证明和扇形的面积计算,准确分析计算是解题的关键. 27.如图,ABC 内接于O ,60BAC ∠=︒,点D 是BC 的中点.BC ,AB 边上的高AE ,CF 相交于点H .试证明:(1)FAH CAO ∠=∠;(2)四边形AHDO 是菱形.解析:(1)见详解;(2)见详解【分析】(1)连接AD ,根据题意易得,BAD CAD OD BC ∠=∠⊥,则有∠DAE=∠ODA ,∠DAO=∠ODA ,然后根据角的等量关系可求解;(2)过点O 作OM ⊥AC 于M ,由题意易得AC=2AM ,AC=2AF ,进而可证△AFH ≌△AMO ,然后可得四边形AHDO 是平行四边形,最后问题可证.【详解】证明:(1)连接AD ,如图所示:∵点D 是BC 的中点,∴,BAD CAD OD BC ∠=∠⊥,∵AE ⊥BC ,∴AE ∥OD ,∴∠DAE=∠ODA ,∵OA=OD ,∴∠DAO=∠ODA ,∴∠BAD-∠DAE=∠CAD-∠DAO ,∴∠FAH=∠CAO ;(2)过点O 作OM ⊥AC 于M ,∴AC=2AM ,∵CF ⊥AB ,∠BAC=60°,∴AC=2AF ,∴AF=AM ,∵∠AFH=∠AMO=90°,∠FAH=∠OAM ,∴△AFH ≌△AMO (ASA ),∴AH=AO ,∵OA=OD ,∴AH //CD ,∴四边形AHDO 是平行四边形,∵OA=OD ,∴四边形AHDO 是菱形.【点睛】本题主要考查圆周角定理、垂径定理及菱形的判定,熟练掌握圆周角定理、垂径定理及菱形的判定是解题的关键.28.已知PA 、PB 分别与O 相切于点A ,B 两点,76APB ∠=︒ ,C 为O 上一点. (1)如图,求ACB ∠的大小; (2)如图,AE 为O 的直径,AE 与BC 相交于点D ,若AB AD =,求EAC ∠的大小.解析:(1)52︒;(2)19︒【分析】(1)连接OA 、OB ,根据切线的性质得到90OAP OBP ∠=∠=︒,可以求出AOB ∠的度数,再根据圆周角定理得到ACB ∠的度数;(2)连接CE ,根据(1)的结论,先求出BCE ∠的度数,再由圆周角定理得到BAE BCE ∠=∠,再等腰三角形ABD 中求出底角ADB ∠的度数,再由外角和定理就可以求出EAC ∠的度数.【详解】解:(1)如图,连接OA 、OB ,∵PA 、PB 是O 的切线,∴90OAP OBP ∠=∠=︒,∴360909076104AOB ∠=︒-︒-︒-︒=︒,根据圆周角定理,1522ACB AOB ∠=∠=︒;(2)如图,连接CE , ∵AE 是O 的直径, ∴90ACE ∠=︒, ∵52ACB ∠=︒, ∴905238BCE ∠=︒-︒=︒, ∴38BAE BCE ∠=∠=︒, ∵AB AD =, ∴71ABD ADB ∠=∠=︒, ∴19EAC ADB ACB ∠=∠-∠=︒.【点睛】本题考查圆周角定理和切线的性质,解题的关键是掌握这些性质定理进行求解.。
沪科版九年级数学下册圆的有关概念及性质中考题汇编(含答案)一、 选择题1. (2019·宜昌)如图,点A ,B ,C 均在⊙O 上,当∠OBC =40°时,∠A 的度数是( )第1题A. 50°B. 55°C. 60°D. 65°2. (2019·柳州)如图,A ,B ,C ,D 是⊙O 上的点,则图中与∠A 相等的角是( )第2题A. ∠BB. ∠CC. ∠DEBD. ∠D3. (2019·兰州)如图,四边形ABCD 内接于⊙O.若∠A =40°,则∠C 的度数为( )第3题A. 110°B. 120°C. 135°D. 140°4. (2019·吉林)如图,在⊙O 中,AB ︵所对的圆周角∠ACB =50°.若P 为AB ︵上一点,∠AOP =55°,则∠POB 的度数为( )第4题A. 30°B. 45°C. 55°D. 60° 5. (2019·葫芦岛)如图,在⊙O 中,∠BAC =15°,∠ADC =20°,则∠ABO 的度数为( )第5题A. 70°B. 55°C. 45°D. 35°6. (2019·赤峰)如图,AB 是⊙O 的弦,OC ⊥AB 交⊙O 于点C ,D 是⊙O 上一点,∠ADC =30°,则∠BOC 的度数为( )第6题A. 30°B. 40°C. 50°D. 60° 7. (2019·广元)如图,AB ,AC 分别是⊙O 的直径和弦,OD ⊥AC 于点D ,连接BD ,BC ,且AB =10,AC =8,则BD 的长为( )第7题A. 2 5B. 4C. 213D. 4.88. (2019·贵港)如图,AD 是⊙O 的直径,AB ︵=CD ︵.若∠AOB =40°,则圆周角∠BPC 的度数是( )第8题A. 40°B. 50°C. 60°D. 70°9. (2019·天水)如图,四边形ABCD 是菱形,⊙O 经过点A ,C ,D ,与BC 相交于点E ,连接AC ,AE.若∠D =80°,则∠EAC 的度数为( )第9题A. 20°B. 25°C. 30°D. 35°10. (2019·聊城)如图,BC 是半圆O 的直径,D ,E 是BC ︵上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE.如果∠A =70°,那么∠DOE 的度数为( )第10题A. 35°B. 38°C. 40°D. 42°11. (2019·德州)如图,O 为线段BC 的中点,点A ,C ,D 到点O 的距离相等.若∠ABC=40°,则∠ADC 的度数是( )第11题A. 130°B. 140°C. 150°D. 160°12. (2019·陕西)如图,AB 是⊙O 的直径,EF ,EB 是⊙O 的弦,且EF =EB ,EF 与AB 交于点C ,连接OF.若∠AOF =40°,则∠F 的度数是( )第12题A. 20°B. 35°C. 40°D. 55°13. (2019·眉山)如图,⊙O 的直径AB 垂直于弦CD ,垂足是E ,∠CAO =22.5°,OC =6,则CD 的长为( )第13题A. 6 2B. 32C. 6D. 1214. (2019·襄阳)如图,AD 是⊙O 的直径,BC 是弦,四边形OBCD 是平行四边形,AC 与OB 相交于点P.下列结论错误的是( )第14题A. AP =2OPB. CD =2OPC. OB ⊥ACD. AC 平分OB15. (2019·黄冈)如图,一条公路的转弯处是一段圆弧(AB ︵),点O 是这段弧所在圆的圆心,AB =40 m ,C 是AB ︵的中点,D 是AB 的中点,且CD =10 m ,则这段弯路所在圆的半径为( )第15题A. 25 mB. 24 mC. 30 mD. 60 m16. (2019·镇江)如图,四边形ABCD 是半圆O 的内接四边形,AB 是直径,DC ︵=CB ︵.若∠C =110°,则∠ABC 的度数为( )第16题A. 55°B. 60°C. 65°D. 70°17. (2019·十堰)如图,四边形ABCD 内接于⊙O ,AE ⊥CB 交CB 的延长线于点E.若BA 平分∠DBE ,AD =5,CE =13,则AE 的长为( )第17题A. 3B. 32C. 4 3D. 2318. (2019·菏泽)如图,AB 是⊙O 的直径,C ,D 是⊙O 上的两点,且BC 平分∠ABD ,AD 分别与BC ,OC 相交于点E ,F ,则下列结论不一定成立的是( )第18题A. OC ∥BDB. AD ⊥OCC. △CEF ≌△BEDD. AF =FD19. (2019·威海)如图,⊙P 与x 轴交于点A(-5,0),B(1,0),与y 轴的正半轴交于点C. 若∠ACB =60°,则点C 的纵坐标为( )第19题A. 13+ 3B. 22+3C. 4 2D. 22+220. (2019·梧州)如图,在半径为13的⊙O 中,弦AB 与CD 交于点E ,∠DEB =75°,AB =6,AE =1,则CD 的长是( )第20题A. 2 6B. 210C. 211D. 4321. (2019·台湾)A ,B ,C ,D 四点在⊙O 上的位置如图所示,其中AD ︵=180°,且AB ︵=BD ︵,BC ︵=CD ︵.若在AB ︵上取一点P ,在BD ︵上取一点Q ,使得∠APQ =130°,则下列说法正确的是( )第21题A. 点Q 在BC ︵上,且BQ ︵>QC ︵B. 点Q 在BC ︵上,且BQ ︵<QC ︵C. 点Q 在CD ︵上,且CQ ︵>QD ︵D. 点Q 在CD ︵上,且CQ ︵<QD ︵二、 填空题22. (2019·鸡西)如图,在⊙O 中,半径OA 垂直于弦BC ,点D 在圆上,且∠ADC =30°,则∠AOB 的度数为________.第22题23. (2019·娄底)如图,C ,D 两点在以AB 为直径的圆上,AB =2,∠ACD =30°,则AD =________.第23题24. (2019·铜仁)如图,四边形ABCD 为⊙O 的内接四边形,∠A =100°,则∠DCE 的度数为________.第24题25. (2019·常州)如图,AB 是⊙O 的直径,C ,D 是⊙O 上的两点,∠AOC =120°,则∠CDB =________.第25题26. (2019·随州)如图,点A ,B ,C 在⊙O 上,点C 在AMB ︵上.若∠OBA =50°,则∠C 的度数为________.第26题27. (2019·东营)如图,AC 是⊙O 的弦,AC =5,B 是⊙O 上的一个动点,且∠ABC =45°,M ,N 分别是AC ,BC 的中点,则MN 的最大值是________.第27题28. (2019·宜宾)如图,⊙O 有两条相交弦AC ,BD ,∠ACB =∠CDB =60°,AC =23,则⊙O 的面积是________.第28题29. (2019·湖州)已知一条弧所对的圆周角的度数是15°,则它所对的圆心角的度数是________.30. (2019·连云港)如图,点A ,B ,C 在⊙O 上,BC =6,∠BAC =30°,则⊙O 的半径为________.第30题31. (2019·台州)如图,AC 是圆内接四边形ABCD 的一条对角线,点D 关于AC 的对称点E 在边BC 上,连接AE.若∠ABC =64°,则∠BAE 的度数为________.第31题32. (2019·安徽)如图,△ABC 内接于⊙O ,∠CAB =30°,∠CBA =45°,CD ⊥AB 于点D.若⊙O 的半径为2,则CD 的长为________.第32题33. (2019·凉山州)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点H ,∠A =30°,CD =23,则⊙O 的半径是________.第33题34. (2019·盐城)如图,点A ,B ,C ,D ,E 在⊙O 上,且AB ︵为50°,则∠E +∠C =________.第34题35. (2019·衡阳)已知圆的半径是6,则圆内接正三角形的边长是________.36. (2019·株洲)如图,AB 为⊙O 的直径,点C 在⊙O 上,且OC ⊥AB ,过点C 的弦CD 与线段OB 相交于点E ,满足∠AEC =65°,连接AD ,则∠BAD =________°.第36题37. (2019·嘉兴)如图,在⊙O 中,弦AB =1,点C 在AB 上移动,连接OC ,过点C 作CD ⊥OC 交⊙O 于点D ,则CD 的最大值为________.第37题38. (2019·泰州)如图,⊙O 的半径为5,点P 在⊙O 上,点A 在⊙O 内,且AP =3,过点A 作AP 的垂线交⊙O 于点B ,C.设PB =x ,PC =y ,则y 与x 之间的函数解析式为________.第38题39. (2019·绥化)半径为5的⊙O 是锐角三角形ABC 的外接圆,AB =AC ,连接OB ,OC ,延长CO 交弦AB 于点D.若△OBD 是直角三角形,则弦BC 的长为________.40. (2019·德州)如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,AB ︵=BF ︵,CE =1,AB=6,则弦AF 的长度为________.第40题41. (2019·雅安)如图,△ABC 内接于⊙O ,BD 是⊙O 的直径,∠CBD =21°,则∠A 的度数为________.第41题42. (2019·广元)如图,△ABC 是⊙O 的内接三角形,且AB 是⊙O 的直径,P 为⊙O 上的动点,且∠BPC =60°,⊙O 的半径为6,则点P 到AC 距离的最大值是________.第42题三、 解答题43. (2019·南京)如图,⊙O 的弦AB ,CD 的延长线相交于点P ,且AB =CD.求证:PA =PC.第43题44. (2019·自贡)如图,在⊙O 中,弦AB 与CD 相交于点E ,AB =CD ,连接AD ,BC.求证:(1) AD ︵=BC ︵; (2) AE =CE.第44题45. (2019·包头)如图,在⊙O 中,B 是⊙O 上的一点,∠ABC =120°,弦AC =23,弦BM 平分∠ABC 交AC 于点D ,连接MA ,MC.(1) 求⊙O 的半径;(2) 求证:AB +BC =BM.第45题46. (2019·绵阳)如图,AB 是⊙O 的直径,C 是BD ︵的中点,CF 为⊙O 的弦,且CF ⊥AB ,垂足为E ,连接BD 交CF 于点G ,连接CD ,AD ,BF.(1) 求证:△BFG ≌△CDG ;(2) 若AD =BE =2,求BF 的长.第46题47. (2019·温州)如图,在△ABC 中,∠BAC =90°,点E 在BC 边上,且CA =CE ,过A ,C ,E 三点的⊙O 交AB 于另一点F ,作直径AD ,连接DE 并延长交AB 于点G ,连接CD ,CF.(1) 求证:四边形DCFG 是平行四边形;(2) 当BE =4,CD =38AB 时,求⊙O 的直径.第47题参考答案一、 1. A 2. D 3. D 4. B 5. B 6. D 7. C 8. B 9. C 10. C 11. B 12. B 13. A 14. A 15. A 16. A 17. D 18. C 19. B 20. C 21. B二、 22. 60° 23. 1 24. 100° 25. 30° 26. 40° 27.52228. 4π 29. 30° 30. 6 31. 52° 32. 2 33. 2 34. 155° 35. 63 36. 20 37. 12 38. y =30x39. 53或52 40.48541. 69° 42. 6+33 三、 43. 如图,连接AC.∵ AB =CD ,∴ AB ︵=CD ︵.∴ AB ︵+BD ︵=BD ︵+CD ︵,即AD ︵=CB ︵.∴ ∠C =∠A.∴ PA =PC第43题44. (1) ∵ CD =AB ,∴ CD ︵=AB ︵,即AD ︵+AC ︵=BC ︵+AC ︵ .∴ AD ︵=BC ︵ (2) ∵ AD ︵=BC ︵,∴ AD =BC.又∵ ∠ADE =∠CBE ,∠DAE =∠BCE ,∴ △ADE ≌△CBE.∴ AE =CE45. (1) 如图,连接OA ,OC ,过点O 作OH ⊥AC 于点H.∵ ∠ABC =120°,∴ ∠AMC =180°-∠ABC =60°.∴ ∠AOC =2∠AMC =120°.∴ ∠AOH =12∠AOC =60°,AH =12AC =3.∴ OA =AHsin ∠AOH =2.∴ ⊙O 的半径为2 (2) 如图,在BM 上截取BE =BC ,连接CE.∵∠ABC =120°,BM 平分∠ABC ,∴ ∠ABM =∠CBM =60°.∴ ∠ACM =∠ABM =60°.∵ ∠CBM =60°,BE =BC ,∴ △EBC 是等边三角形.∴ CE =CB =BE ,∠BCE =60°.∴ ∠BCD +∠DCE =60°.∵ ∠ACM =60°,∴ ∠ECM +∠DCE =60°.∴ ∠ECM =∠BCD.在△ACB 和△MCE 中,⎩⎪⎨⎪⎧∠ACB =∠MCE ,CB =CE ,∠CAB =∠CME ,∴ △ACB ≌△MCE.∴ AB =ME.∵ ME +EB =BM ,∴ AB +11BC =BM第45题46. (1) ∵ C 是BD ︵的中点,∴ CD ︵=BC ︵.∵ AB 是⊙O 的直径,且CF ⊥AB ,∴ BC ︵=BF ︵.∴ CD ︵=BF ︵.∴ CD =BF.在△BFG 和△CDG 中,⎩⎪⎨⎪⎧∠F =∠CDG ,∠FGB =∠DGC ,BF =CD ,∴ △BFG ≌△CDG(2) 如图,过点C 作CH ⊥AD 交AD 的延长线于点H ,连接AC ,BC.∵ CD ︵=BC ︵,∴ ∠HAC=∠BAC ,CD =BC.∵ CE ⊥AB ,∴ CH =CE.∵ AC =AC ,∴ Rt △AHC ≌Rt △AEC.∴ AH =AE.∵ CH =CE ,CD =CB ,∴ Rt △CDH ≌Rt △CBE.∴ DH =BE =2.∴ AE =AH =AD +DH =2+2=4.∴ AB =AE +BE =4+2=6.∵ AB 是⊙O 的直径,∴ ∠ACB =∠CEB =90°.∵ ∠ABC =∠CBE ,∴ △ABC ∽△CBE.∴ AB CB =BC BE.∴ BC 2=AB·BE =6×2=12.∴ BC =23(负值舍去).∵ BC ︵=BF ︵,∴ BF =BC =23第46题47. (1) 如图,连接AE.∵ ∠BAC =90°,∴ CF 是⊙O 的直径.∵ CA =CE ,∴ CF ⊥AE.∵ AD 是⊙O 的直径,∴ ∠ACD =∠AED =90°,即DG ⊥AE.∴ CF ∥DG.∵ ∠ACD +∠BAC =180°,∴ AB ∥CD.∴ 四边形DCFG 是平行四边形 (2) ∵ CD =38AB ,∴ 可设CD =3x ,AB =8x.∵ 四边形DCFG 是平行四边形,∴ FG =CD =3x.∵ ∠AOF =∠COD ,∴ AF =CD =3x.∴ BG =AB -AF -FG =8x -3x -3x =2x.∵ GE ∥CF ,∴ BE EC =BG GF =23.∵ BE =4,∴ CA =CE =6.∴ BC =CE +BE =6+4=10.∴ AB =BC 2-AC 2=102-62=8.∴ 8=8x ,解得x =1.∴ AF =3.在Rt △ACF 中,由勾股定理,得CF =AF 2+AC 2=32+62=3 5.∴ ⊙O 的直径为35第47题。
2022-2023学年上学期初中数学人教版九年级期末必刷常考题之圆的有关性质一.选择题(共5小题)1.(2020秋•龙游县期末)如图,四边形ADBC内接于⊙O,∠AOB=122°,则∠ACB等于()A.131°B.119°C.122°D.58°2.(2021春•巨野县期末)下列说法:①弦是直径;②半圆是弧;③过圆心的线段是直径;④圆心相同半径相同的两个圆是同心圆,其中错误的有()A.1个B.2个C.3个D.4个3.(2021•清江浦区一模)如图,AB是⊙O的直径,点D在⊙O上,若∠AOC=120°,则∠D的度数是()A.20°B.30°C.40°D.45°4.(2020秋•西林县期末)下列说法中,正确的是()A.等弦所对的弧相等B.在同圆或等圆中,相等的弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等所对的圆心角相等5.(2021•亭湖区一模)如图,AB是⊙O的直径,点C,D在⊙O上,∠D=20°,则∠1的大小是()A.160°B.150°C.140°D.40°二.填空题(共5小题)6.(2021春•兴化市期末)如图,在⊙O中,弧AB=弧AC,∠A=30°,则∠B=°.7.(2020秋•温江区校级期末)如图,点M为⊙O的半径OA的中点,弦BC过点M且垂直于AO,若AO=4,则弦BC的长为.8.(2021春•射阳县校级期末)如图,点A、B、C、D在⊙O上,,则AC BD (填“>”“<”或“=”).9.(2020秋•南充期末)如图是一种机械传动装置示意图,⊙O的半径为50cm,点A固定在⊙O上,连杆AP定长,点P随着⊙O的转动在射线OP上运动.在一个停止状态时,AP与⊙O交于点B,测得AB=60cm,PB=70cm,此时OP长为.10.(2020秋•龙游县期末)如图,AB是⊙O的直径,四边形ACFE是平行四边形,点E,F在圆上,点C是OB上一点,且OC=CF,则∠FOC的度数是.三.解答题(共5小题)11.(2020秋•上虞区期末)如图,AB是⊙O的直径,AB=4,P是AB延长线上一点,且BP=1,过点P作一直线,分别交⊙O于C,D两点,已知∠P=30°.(1)求CD与PC的长;(2)连接BC,AD,求圆内接四边形ABCD的面积.12.(2021•上城区一模)如图,AB是⊙O的直径,弦CD⊥AB于点E,G是弧AC上任意一点,连接AD,GD,AG.(1)找出图中和∠ADC相等的角,并给出证明;(2)已知BE=2,AE=8,求CD的长.13.(2021春•昌江区校级期末)已知:在圆O内,弦AD与弦BC相交于点G,AD=CB,M、N分别是CB和AD的中点,联结MN、OG.(1)证明:OG⊥MN;(2)联结AB、AM、BN,若BN∥OG,证明:四边形ABNM为矩形.14.(2021春•亭湖区校级期末)如图,在△ABC中,AB=AC,以AB为直径的半圆O分别交AC、BC于点D、E.(1)求证:点E是BC的中点.(2)若∠BOD=75°,求∠CED的度数.15.(2020秋•南平期末)在扇形AOC中,∠AOC=60°,点B在上,且=2,点E 在半径OB上,以OE,OA为邻边作平行四边形OAFE,当点C,B,F共线时.(1)求∠CF A的度数;(2)求证:CF=OC.2022-2023学年上学期初中数学人教版九年级期末必刷常考题之圆的有关性质参考答案与试题解析一.选择题(共5小题)1.(2020秋•龙游县期末)如图,四边形ADBC内接于⊙O,∠AOB=122°,则∠ACB等于()A.131°B.119°C.122°D.58°【考点】圆心角、弧、弦的关系;圆周角定理;圆内接四边形的性质.【专题】圆的有关概念及性质;推理能力.【分析】先利用圆周角定理求出∠D=61°,然后根据圆内接四边形的性质计算∠ACB 的度数.【解答】解:∵∠AOB=122°,∴∠D=∠AOB=61°,∵四边形ADBC为⊙O内接四边形,∴∠ACB+∠D=180°,∴∠ACB=180°﹣61°=119°.故选:B.【点评】本题考查了圆内接四边形的性质:圆内接四边形的对角互补.也考查了圆周角定理.2.(2021春•巨野县期末)下列说法:①弦是直径;②半圆是弧;③过圆心的线段是直径;④圆心相同半径相同的两个圆是同心圆,其中错误的有()A.1个B.2个C.3个D.4个【考点】圆的认识.【专题】圆的有关概念及性质;推理能力.【分析】利用圆的有关定义与性质分别判断后即可确定正确的选项.【解答】解:①弦是直径,错误,符合题意;②半圆是弧,正确,不符合题意;③过圆心的弦是直径,故错误,符合题意;④圆心相同半径相同的两个圆是同圆,故错误,符合题意,错误的有3个,故选:C.【点评】主要考查圆的认识,判断命题的真假关键是要熟悉课本中的性质定理.3.(2021•清江浦区一模)如图,AB是⊙O的直径,点D在⊙O上,若∠AOC=120°,则∠D的度数是()A.20°B.30°C.40°D.45°【考点】圆心角、弧、弦的关系;圆周角定理.【专题】圆的有关概念及性质;推理能力.【分析】根据邻补角的性质求得∠BOC的度数,再根据同弧所对的圆周角是圆心角的一半即可求得∠BDC的度数,【解答】解:∵∠AOC=120°,∴∠BOC=180°﹣∠AOC=60°,∴∠BDC=∠BOC=30°.故选:B.【点评】此题考查了圆周角定理.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.4.(2020秋•西林县期末)下列说法中,正确的是()A.等弦所对的弧相等B.在同圆或等圆中,相等的弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等所对的圆心角相等【考点】圆心角、弧、弦的关系.【专题】圆的有关概念及性质;应用意识.【分析】根据题意画出符合已知条件的图形,再逐个判断即可.【解答】解:A.如图,弦AB=弦AB,但是所对的两段弧不相等,故本选项不符合题意;B.在同圆或等圆中,相等的弧所对的弦相等,故本选项符合题意;C.如图,∠AOB=∠COD,但是弦AB和弦CD不相等,故本选项不符合题意;D.如图,弦AB=弦AB,但是圆心角∠ADB和∠ACB不相等,故本选项不符合题意;故选:B.【点评】本题考查了圆心角、弧、弦之间的关系,能熟记圆心角、弧、弦之间的关系是解此题的关键,注意:在同圆或等圆中,两个圆心角、两条弧、两条弦,如果其中有一对量相等,那么其余两对量也分别相等.5.(2021•亭湖区一模)如图,AB是⊙O的直径,点C,D在⊙O上,∠D=20°,则∠1的大小是()A.160°B.150°C.140°D.40°【考点】圆周角定理.【专题】圆的有关概念及性质;推理能力.【分析】首先根据圆周角定理求得∠2=2∠D=40°,然后由邻补角的定义求∠1的大小.【解答】解:如图,=,∠D=20°,∴∠2=2∠D=40°.∴∠1=180°﹣∠2=140°.故选:C.【点评】本题考查圆周角定理,解题的关键是熟练掌握基本知识,属于中考常考题型.二.填空题(共5小题)6.(2021春•兴化市期末)如图,在⊙O中,弧AB=弧AC,∠A=30°,则∠B=75°.【考点】圆心角、弧、弦的关系;圆周角定理.【专题】圆的有关概念及性质;推理能力.【分析】先根据圆周角定理得到∠B=∠C,然后根据三角形内角和计算∠B的度数.【解答】解:∵弧AB=弧AC,∴∠B=∠C,∵∠A=30°,∴∠B=×(180°﹣30°)=75°.故答案为75.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.(2020秋•温江区校级期末)如图,点M为⊙O的半径OA的中点,弦BC过点M且垂直于AO,若AO=4,则弦BC的长为4.【考点】等边三角形的判定与性质;勾股定理;垂径定理.【专题】圆的有关概念及性质;解直角三角形及其应用;推理能力.【分析】连接OB,根据垂径定理得出BM=CM,根据直角三角形的边角关系求得∠OBM =30°,解直角三角形求得BM,进而即可求得BC.【解答】解:连接OB,∵点M为⊙O的半径OA的中点,∴OM=OB,∵弦BC过点M且垂直于AO,∴∠OBM=30°,∴BM=OB=×4=2,∵OA⊥BC,∴BM=CM,∴BC=2BM=4,故答案为4.【点评】本题考查了垂径定理以及解直角三角形等,作出辅助线构建直角三角形是解题的关键.8.(2021春•射阳县校级期末)如图,点A、B、C、D在⊙O上,,则AC=BD (填“>”“<”或“=”).【考点】圆心角、弧、弦的关系.【专题】圆的有关概念及性质;几何直观;模型思想.【分析】根据同圆与等圆中,圆心角、弦、弧的关系得出=即可.【解答】解:∵=,∴+=+,即=,∴AC=BD,故答案为:=.【点评】本题考查圆心角、弦、弧的关系,掌握在同圆与等圆中,两个圆心角、两条弦、两条弧中有一组量相等,那么其余两组量也对应相等是正确解答的前提.9.(2020秋•南充期末)如图是一种机械传动装置示意图,⊙O的半径为50cm,点A固定在⊙O上,连杆AP定长,点P随着⊙O的转动在射线OP上运动.在一个停止状态时,AP与⊙O交于点B,测得AB=60cm,PB=70cm,此时OP长为20cm.【考点】垂径定理的应用.【专题】圆的有关概念及性质;推理能力.【分析】作OD⊥AB于D,连接OB,根据垂径定理得到AD=BD=30cm,即可得到PD =100cm,利用勾股定理即可求得结果.【解答】解:作OD⊥AB于D,连接OB,∴AD=BD=AB=30cm,∴OD===40(cm),∴PD=PB+BD=70+30=100(cm),∴OP==20(cm);故答案为20cm.方法二:解:延长PO交圆于D;∵AB=60cm,PB=70cm,∴P A=130cm;由割线定理,得:PB•P A=PC•PD;设点P到圆心的距离是xcm,则有:(x﹣50)(x+50)=70×130,解得x=20cm.故OP长为20cm.故答案为20cm.【点评】本题考查了垂径定理、勾股定理的应用,作出辅助线根据直角三角形是解题的关键.10.(2020秋•龙游县期末)如图,AB是⊙O的直径,四边形ACFE是平行四边形,点E,F在圆上,点C是OB上一点,且OC=CF,则∠FOC的度数是36°.【考点】平行四边形的性质;圆心角、弧、弦的关系;圆周角定理.【专题】线段、角、相交线与平行线;等腰三角形与直角三角形;多边形与平行四边形;圆的有关概念及性质;运算能力;推理能力.【分析】连接AF、BF,根据等腰三角形的性质得出∠FOC=∠CFO=α,求出∠FCB=2α,根据平行四边形的性质得出EF∥AB,AE∥CF,根据平行线的性质得出∠A=∠FCB=2α,∠EF A=∠F AB,求出∠B=∠A=2α,根据OF=OB求出∠OFB=∠B=2α,由三角形内角和定理求出∠OFB+∠B+∠FOC=180°,得出2α+2α+α=180°,求出α即可.【解答】解:连接BF、AF,∵OC=CF,∴∠FOC=∠CFO,设∠FOC=∠CFO=α,则∠FCB=∠FOC+∠CFO=2α,∵四边形AEFC是平行四边形,∴EF∥AB,AE∥CF,∴∠A=∠FCB=2α,∠EF A=∠F AB,∴=,∴=(都加上),∴∠B=∠A=2α,∵OF=OB,∴∠OFB=∠B=2α,在△OFB中,∠OFB+∠B+∠FOC=180°,即2α+2α+α=180°,解得:α=36°,即∠FOC=36°,故答案为:36°.【点评】本题考查了平行四边形的性质,等腰三角形的性质,圆心角、弧、弦之间的关系,圆周角定理等知识点,能求出∠B=∠A是解此题的关键.三.解答题(共5小题)11.(2020秋•上虞区期末)如图,AB是⊙O的直径,AB=4,P是AB延长线上一点,且BP=1,过点P作一直线,分别交⊙O于C,D两点,已知∠P=30°.(1)求CD与PC的长;(2)连接BC,AD,求圆内接四边形ABCD的面积.【考点】垂径定理.【专题】三角形;圆的有关概念及性质;运算能力;推理能力.【分析】(1)过点O作OH⊥CD于点H,连接OC,解直角三角形求得OH,PH,然后根据勾股定理求得CH,进而即可求得CD和PC;(2)求得△APD和△PBC的面积,进而即可求得四边形ABCD的面积.【解答】解:(1)过点O作OH⊥CD于点H,连接OC,在Rt△OPH中,∠P=30°,OP=OB+BP=2+1=3,∴,PH=OP•cos30°=3×=,在Rt△OHC中,.∵CD=2CH,∴.∴.(2)由(1)知:,P A=5,∠P=30°,∴,,∴.【点评】本题考查垂径定理,解直角三角形以及勾股定理的应用,三角形的面积,通过解直角三角形其实三角形的高是解题的关键.12.(2021•上城区一模)如图,AB是⊙O的直径,弦CD⊥AB于点E,G是弧AC上任意一点,连接AD,GD,AG.(1)找出图中和∠ADC相等的角,并给出证明;(2)已知BE=2,AE=8,求CD的长.【考点】勾股定理;垂径定理;圆周角定理.【专题】圆的有关概念及性质;图形的相似;推理能力.【分析】(1)由垂径定理可得DE=CE,=,可得结论;(2)通过证明△ACE∽△CBE,由相似三角形的性质可求CE=4,即可求解.【解答】解:(1)∠AGD=∠ADC,理由如下:∵弦CD⊥AB,∴DE=CE,=,∴∠AGD=∠ADC;(2)方法一、如图,连接AC,BC,∵AB是直径,∴∠ACB=90°,∴∠ACE+∠BCE=90°=∠ACE+∠CAE,∴∠BCE=∠CAE,又∵∠AEC=∠BEC=90°,∴△ACE∽△CBE,∴,∴CE•CE=2×8=16,∴CE=4,∴CD=8.方法二、连接OC,∵BE=2,AE=8,∴BA=10,∴OC=OB=5,∴OE=3,∴CE===4,∴CD=8.【点评】本题考查了圆周角定理,垂径定理,相似三角形的判定和性质,灵活运用这些性质解决问题是本题的关键.13.(2021春•昌江区校级期末)已知:在圆O内,弦AD与弦BC相交于点G,AD=CB,M、N分别是CB和AD的中点,联结MN、OG.(1)证明:OG⊥MN;(2)联结AB、AM、BN,若BN∥OG,证明:四边形ABNM为矩形.【考点】矩形的判定;垂径定理;圆心角、弧、弦的关系.【专题】矩形菱形正方形;圆的有关概念及性质;推理能力.【分析】(1)证明Rt△OMC≌Rt△OND(HL),推出OM=ON,证明Rt△OMG≌Rt△ONG(HL),推出GM=GN,由OM=ON,推出OG垂直平分线段MN,即OG⊥MN.(2)设OG交MN于J.证明四边形ABNM是平行四边形,由AN=BM,推出四边形ABNM 是矩形.【解答】证明:(1)连接OM,ON,OD,OC.∵BM=CM,AN=ND,∴OM⊥BC,ON⊥AD,∴∠OMC=∠OND=90°,∵AD=BC,∴CM=DN,∵OD=OC,∴Rt△OMC≌Rt△OND(HL),∴OM=ON,∵OG=OG,∠OMG=∠ONG=90°,∴Rt△OMG≌Rt△ONG(HL),∴GM=GN,∵OM=ON,∴OG垂直平分线段MN,即OG⊥MN.(2)设OG交MN于J.∵OG垂直平分线段MN,∴MJ=JN,∵AN=BM.GM=GN,∴AG=BG,∵BN∥OG,MJ=JN,∴BG=GM,∴AG=BG=GN=GM,∴四边形ABNM是平行四边形,∵AN=BM,∴四边形ABNM是矩形.【点评】本题考查垂径定理,全等三角形的判定和性质,矩形的判定等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.14.(2021春•亭湖区校级期末)如图,在△ABC中,AB=AC,以AB为直径的半圆O分别交AC、BC于点D、E.(1)求证:点E是BC的中点.(2)若∠BOD=75°,求∠CED的度数.【考点】等腰三角形的性质;圆心角、弧、弦的关系;圆周角定理.【专题】圆的有关概念及性质;推理能力.【分析】(1)连接AE,根据直径所对的圆周角为直角得到∠AEB=90°,再根据等腰三角形的性质即可得到结论;(2)根据圆周角定理得到∠DAB=∠BOD=37.5°,再根据圆的内接四边形的对角互补得到∠DAB+∠DEB=180°,而CBED+∠DEB=180°,则∠CED=∠DAB.【解答】(1)证明:连接AE,∵AB为⊙O的直径,∴∠AEB=90°,即AE⊥BC,∵AB=AC,∴BE=CE,即点E为BC的中点;(2)解:∵∠BOD=75°,∴∠DAB=∠BOD=37.5°,∵∠DAB+∠DEB=180°,∠CED+∠DEB=180°,∴∠CED=∠DAB=37.5°.【点评】本题考查了在同圆或等圆中,同弧或等弧所对的圆周角的度数等于它所对的圆心角度数的一半;直径所对的圆周角为直角;圆的内接四边形的对角互补;等腰三角形的性质.15.(2020秋•南平期末)在扇形AOC中,∠AOC=60°,点B在上,且=2,点E 在半径OB上,以OE,OA为邻边作平行四边形OAFE,当点C,B,F共线时.(1)求∠CF A的度数;(2)求证:CF=OC.【考点】平行四边形的性质;圆心角、弧、弦的关系;圆周角定理.【专题】与圆有关的计算;推理能力.【分析】(1)求出∠OBC=80°,再利用平行四边形的性质求解即可.(2)想办法证明OC=CA,CF=CA,可得结论.【解答】(1)解:∵=2,∴∠AOB=2∠BOC,∵∠AOC=60°,∴∠OBC=20°,∠AOB=40°,∵OB=OC,∴∠OBC=∠OCB=80°,∵四边形OAFE是平行四边形,∴OB∥AF,∴∠OBC=∠CF A=80°.(2)证明:∵OC=OA,∠AOC=60°,∴△AOC是等边三角形,∴∠OAC=60°,OC=AC,∵四边形OAFE是平行四边形,∴OE∥AF,∴∠OAF=180°﹣∠AOB=140°,∴∠CAF=∠CF A=80°,∴CA=CF,∴CF=OC.【点评】本题考查圆周角定理,平行四边形的性质,圆心角,弧,弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.考点卡片1.等腰三角形的性质(1)等腰三角形的概念有两条边相等的三角形叫做等腰三角形.(2)等腰三角形的性质①等腰三角形的两腰相等②等腰三角形的两个底角相等.【简称:等边对等角】③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【三线合一】(3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.2.等边三角形的判定与性质(1)等边三角形是一个非常特殊的几何图形,它的角的特殊性给有关角的计算奠定了基础,它的边角性质为证明线段、角相等提供了便利条件.同是等边三角形又是特殊的等腰三角形,同样具备三线合一的性质,解题时要善于挖掘图形中的隐含条件广泛应用.(2)等边三角形的特性如:三边相等、有三条对称轴、一边上的高可以把等边三角形分成含有30°角的直角三角形、连接三边中点可以把等边三角形分成四个全等的小等边三角形等.(3)等边三角形判定最复杂,在应用时要抓住已知条件的特点,选取恰当的判定方法,一般地,若从一般三角形出发可以通过三条边相等判定、通过三个角相等判定;若从等腰三角形出发,则想法获取一个60°的角判定.3.勾股定理(1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.(2)勾股定理应用的前提条件是在直角三角形中.(3)勾股定理公式a2+b2=c2的变形有:a=,b=及c=.(4)由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.4.平行四边形的性质(1)平行四边形的概念:有两组对边分别平行的四边形叫做平行四边形.(2)平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分.(3)平行线间的距离处处相等.(4)平行四边形的面积:①平行四边形的面积等于它的底和这个底上的高的积.②同底(等底)同高(等高)的平行四边形面积相等.5.矩形的判定(1)矩形的判定:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形(或“对角线互相平分且相等的四边形是矩形”)(2)①证明一个四边形是矩形,若题设条件与这个四边形的对角线有关,通常证这个四边形的对角线相等.②题设中出现多个直角或垂直时,常采用“三个角是直角的四边形是矩形”来判定矩形.6.圆的认识(1)圆的定义定义①:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆,记作“⊙O”,读作“圆O”.定义②:圆可以看做是所有到定点O的距离等于定长r的点的集合.(2)与圆有关的概念弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等.连接圆上任意两点的线段叫弦,经过圆心的弦叫直径,圆上任意两点间的部分叫圆弧,简称弧,圆的任意一条直径的两个端点把圆分成两条弧,每条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.(3)圆的基本性质:①轴对称性.②中心对称性.7.垂径定理(1)垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)垂径定理的推论推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.8.垂径定理的应用垂径定理的应用很广泛,常见的有:(1)得到推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(2)垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.这类题中一般使用列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握.9.圆心角、弧、弦的关系(1)定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.(2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.说明:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧.(3)正确理解和使用圆心角、弧、弦三者的关系三者关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.这源于圆的旋转不变性,即:圆绕其圆心旋转任意角度,所得图形与原图形完全重合.(4)在具体应用上述定理解决问题时,可根据需要,选择其有关部分.10.圆周角定理(1)圆周角的定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角.注意:圆周角必须满足两个条件:①顶点在圆上.②角的两条边都与圆相交,二者缺一不可.(2)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.(3)在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角,这种基本技能技巧一定要掌握.(4)注意:①圆周角和圆心角的转化可通过作圆的半径构造等腰三角形.利用等腰三角形的顶点和底角的关系进行转化.②圆周角和圆周角的转化可利用其“桥梁”﹣﹣﹣圆心角转化.③定理成立的条件是“同一条弧所对的”两种角,在运用定理时不要忽略了这个条件,把不同弧所对的圆周角与圆心角错当成同一条弧所对的圆周角和圆心角.11.圆内接四边形的性质(1)圆内接四边形的性质:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).(2)圆内接四边形的性质是沟通角相等关系的重要依据,在应用此性质时,要注意与圆周角定理结合起来.在应用时要注意是对角,而不是邻角互补。
浙教版九年级上册数学第3章圆的基本性质含答案一、单选题(共15题,共计45分)1、如图,在半圆的直径上作4个正三角形,如这半圆周长为C1,这4个正三角形的周长和为C2,则C1和C2的大小关系是()A.C1>C2B.C1<C2C.C1=C2D.不能确定2、如图,⊙O1与⊙O2相交于A,B两点,经过点A的直线CD分别与⊙O1、⊙O2交于C、D,经过点B的直线EF分别与⊙O1、⊙O2交于E、F,且EF∥O1O2.下列结论:①CE∥DF;②∠D=∠F;③EF=2O1O2.必定成立的有()A.0个B.1个C.2个D.3个3、如图,AB为圆O的直径,点C为圆上一点,若∠OCA=25°,则∠BOC=()A.30°B.40°C.50°D.60°4、如图,⊙O的半径为2,△ABC是⊙O的内接三角形,连接OB,OC.若∠BAC 与∠BOC互补,则弦BC的长为()A.4B.3C.2D.5、如图,在直角坐标系中,点A(0,3)、点B(4,3)、点C(0,-1),则△ABC 外接圆的半径为( )A.2B.3C.4D.6、在⊙O中, 所对的圆心角为60°,半径为5cm,则的长为( )A. B. C. D.7、已知∠ADB,作图.步骤1:以点D为圆心,适当长为半径画弧,分别交DA、DB于点M、N;再分别以点M、N为圆心,大于MN长为半径画弧交于点E,画射线DE.步骤2:在DB上任取一点O,以点O为圆心,OD长为半径画半圆,分别交DA、DB、DE于点P、Q、C;步骤3:连结PQ、OC.则下列判断:① ;②OC∥DA;③DP=PQ;④OC 垂直平分PQ,其中正确的结论有()A.①③④B.①②④C.②③④D.①②③④8、下列四个图中,∠x是圆周角的是()A. B. C. D.9、如图,在△ABC中,∠B=90°,AB=4,BC=3,将△ABC绕点A逆时针旋转,使点B落在线段AC上的点D处,点C落在点E处,则C、E两点间的距离为()A. B.2 C.3 D.210、如图,AB是⊙O的直径,CD是弦,AB⊥CD,垂足为点E,连接OD、CB、AC,∠DOB=60°,EB=2,那么CD的长为()A. B.2 C.3 D.411、如图,I是△ABC的内心,AI的延长线与△ABC的外接圆相交于点D,与BC 交于点E,连接BI、CI、BD、DC.下列说法中正确的有()①∠CAD绕点A顺时针旋转一定的角度一定能与∠DAB重合;②I到△ABC三个顶点的距离相等;③∠BIC=90°+ ∠BAC;④线段DI是线段DE与DA的比例中项;⑤点D是△BIC的外心.A.1个B.2个C.3个D.4个12、如图,AB是⊙O的直径,点E是AB上一点,过点E作CD⊥AB,交⊙O于点C,D,以下结论正确的是()A.若⊙ O的半径是2,点E是OB的中点,则CD=B.若CD=,则⊙ O的半径是1 C.若∠ CAB=30°,则四边形OCBD是菱形 D.若四边形OCBD是平行四边形,则∠ CAB=60°13、在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.如图,若点D与圆心O不重合,∠BAC=25°,则∠DCA的度数()A.35°B.40°C.45°D.65°14、下列说法正确的个数是()①直径是圆的对称轴;②半径相等的两个半圆是等弧;③长度相等的两条弧是等弧;④和圆有一个公共点的直线是圆的切线.A.1B.2C.3D.415、一个扇形的弧长是20πcm,面积是240πcm2,则这个扇形的圆心角等于()A.160°B.150°C.120°D.60°二、填空题(共10题,共计30分)16、赵州桥是我国建筑史上的一大创举,它距今约1400年,历经无数次洪水冲击和8次地震却安然无恙.如图,若桥跨度AB约为40米,主拱高CD约10米,则桥弧AB所在圆的直径=________米.17、如图,在⊙O中,C是弦AB上一点,AC=2,CB=4.连接OC,过点C作DC⊥OC,与⊙O交于点D,DC的长为________.18、若圆内接正六边形的半径等于4,则它的面积等于________ .19、已知扇形的圆心角为120°,弧长为6π,则扇形的面积是________.20、如图,在菱形ABCD中,AB=BD,点E、F分别是线段AB、AD上的动点(不与端点重合),且AE=DF,BF与DE相交于点G.给出如下几个结论:①△AED≌△DFB;②∠BGE大小会发生变化;③CG平分∠BGD;④若AF=2DF,则BG=6GF;.其中正确的结论有________(填序号).21、为庆祝祖国华诞,某单位排练的节目需用到如图所示的扇形布扇,布扇完全打开后,外侧两竹条,夹角为,,贴布部分,则贴布部分的面积约为________ .22、如图,在半径为的中,劣弧的长为,则________度.23、如图,四边形ABCD内接于⊙O,E为直径CD延长线上一点,且AB∥CD,若∠C=70°,则∠ADE的大小为________.24、如图,A,B是上的两个点,,若点C也在上(点C不与点A,B重合),则的度数为________.25、圆是________ 图形,其对称轴是任意一条________ 的直线.三、解答题(共5题,共计25分)26、圆锥的底面半径为3cm,侧面展开图是圆心角为120º的扇形,求圆锥的全面积。
鲁教版2020九年级数学圆的有关性质课后作业题1(附答案)一.选择题(共10小题)1.下列说法正确的是()A.长度相等的弧是等弧B.相等的圆心角所对的弧相等C.面积相等的圆是等圆D.劣弧一定比优弧短2.下列判断结论正确的有()(1)直径是圆中最大的弦.(2)长度相等的两条弧一定是等弧.(3)面积相等的两个圆是等圆.(4)同一条弦所对的两条弧一定是等弧.(5)圆上任意两点间的部分是圆的弦.A.1个B.2个C.3个D.4个3.如图所示A、B、C、D四点在⊙O上的位置,其中=180°,且=,=.若阿超在上取一点P,在上取一点Q,使得∠APQ=130°,则下列叙述何者正确?()A.Q点在上,且>B.Q点在上,且<C.Q点在上,且>D.Q点在上,且<4.如图,AB为⊙O的直径,C为AB上一点,AD∥OC,AD交⊙O于点D,连接AC,CD,设∠BOC=x°,∠ACD=y°,则下列结论成立的是()A.x+y=90B.2x+y=90C.2x+y=180D.x=y5.如图,⊙O的直径CD=12cm,AB是⊙O的弦,AB⊥CD,垂足为E,OE:OC=1:3,则AB的长为()A.2cm B.4cm C.6cm D.8cm6.如图是一个隧道的截面图,为⊙O的一部分,路面AB=10米,净高CD=7米,则此圆半径长为()A.5米B.7米C.米D.米7.如图,△ABC内接于⊙O,连结OA,OB,∠ABO=40°,则∠C的度数是()A.100°B.80°C.50°D.40°8.如图,点A、B、C、D都在⊙O上,且四边形OABC是平行四边形,则∠D的度数为()A.45°B.60°C.75°D.不能确定9.如图,四边形ABCD内接于⊙O,它的一个外角∠EBC=65°,分别连接AC,BD,若AC=AD,则∠DBC的度数为()A.50°B.55°C.65°D.70°10.如图,在矩形ABCD中,AB=4,AD=3,若以点A为圆心,以4为半径作⊙A,则下列各点在⊙A外的是()A.点A B.点B C.点C D.点D二.填空题(共10小题)11.平面上到点O的距离为3cm的点的轨迹是.12.已知⊙O的半径为5cm,则圆中最长的弦长为cm.13.如图,AB是⊙O的直径,点CD在⊙O上并且在AB的同一侧,若∠C=109°,则∠AOD的度数是.14.如图,在⊙O中,=,∠1=30°,则∠2=.15.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则BD的长为.16.“圆材埋壁”是我国古代数一学著作《九章算术》中的一个问题.“今有圆材,埋壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表达是:如图所示,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=1尺,则直径CD 长为寸.17.如图,在⊙A中,弦BC、ED所对的圆心角分别是∠BAC,∠EAD,已知DE=6,BC=9,∠BAC+∠EAD=180°,则⊙A的直径等于.18.如图,AB是⊙O的一条弦,P是⊙O上一动点(不与点A,B重合),C,D分别是AB,BP的中点.若AB=4,∠APB=45°,则CD长的最大值为.19.如图,点A,B,C,D是⊙O上的四个点,已知∠BCD=110°,格据推断出∠BAD的度数为70°,则她判断的依据是点.20.已知点P为平面内一点,若点P到⊙O上的点的最长距离为5,最短距离为1,则⊙O 的半径为.三.解答题(共8小题)21.如图,从A村到E村有两条路(一条经过B、C、D村,另一条不经过),哪条路比较近呢?(两条路分别是由一个比较大的半圆和四个全等的小半圆组成的)22.如图所示,小丽家到学校有2条路线.分别以AB、BC和AC为直径的半圆弧,已知AB=8千米,BC=16千米.(1)比较①②两条路线,走哪条近;(2)如果AB=a,BC=b,那么①②两条路线的长度有什么变化呢?你得到什么样的结论?23.如图,已知AB,CG是⊙O的两条直径,AB⊥CD于点E,CG⊥AD于点F.(1)求∠AOG的度数;(2)若AB=2,求CD的长.24.如图,OA、OB、OC都是⊙O的半径,∠AOB=2∠BOC.探索∠ACB与∠BAC之间的数量关系,并说明理由.25.如图,∠C=90°,⊙C与AB相交于点D,AC=6,CB=8.求AD的长.26.如图,在△ABD中,AB=AD,以AB为直径的圆交AD于点E,交BD于点F,过点D作DC∥AB交AF的延长线于点C,连接CB.(1)求证:四边形ABCD为菱形;(2)若AE=7,BF=2,求半圆的半径和菱形ABCD的面积.27.如图,四边形ABDC内接于⊙O,∠BAC=60°,AD平分∠BAC交⊙O于点D,连接OB、OC、BD、CD.(1)求证:四边形OBDC是菱形;(2)若∠ABO=15°,OB=1,求弦AC长.28.(1)已知⊙O的直径为10cm,点A为⊙O外一定点,OA=12cm,点P为⊙O上一动点,求P A的最大值和最小值.(2)如图:=,D、E分别是半径OA和OB的中点.求证:CD=CE.参考答案与试题解析一.选择题(共10小题)1.下列说法正确的是()A.长度相等的弧是等弧B.相等的圆心角所对的弧相等C.面积相等的圆是等圆D.劣弧一定比优弧短【解答】解:A、能完全重合的弧才是等弧,故本选项错误;B、必须在同圆或等圆中,相等的圆心角所对的弧相等,故本选项错误;C、面积相等的圆是等圆;故本选项正确;D、在同圆或等圆中,劣弧一定比优弧短.故本选项错误.故选:C.2.下列判断结论正确的有()(1)直径是圆中最大的弦.(2)长度相等的两条弧一定是等弧.(3)面积相等的两个圆是等圆.(4)同一条弦所对的两条弧一定是等弧.(5)圆上任意两点间的部分是圆的弦.A.1个B.2个C.3个D.4个【解答】解:(1)直径是圆中最大的弦,说法正确;(2)长度相等的两条弧一定是等弧,说法错误,在同圆或等圆中,能够完全重合的两段弧为等弧,不但长度相等,弯曲程度也要相同;(3)面积相等的两个圆是等圆,说法正确;(4)同一条弦所对的两条弧一定是等弧,说法错误,同一条弦所对的两条弧不一定是等弧,除非这条弦为直径;(5)圆上任意两点间的部分叫弧.错误;故选:B.3.如图所示A、B、C、D四点在⊙O上的位置,其中=180°,且=,=.若阿超在上取一点P,在上取一点Q,使得∠APQ=130°,则下列叙述何者正确?()A.Q点在上,且>B.Q点在上,且<C.Q点在上,且>D.Q点在上,且<【解答】解:连接AD,OB,OC,∵=180°,且=,=,∴∠BOC=∠DOC=45°,在圆周上取一点E连接AE,CE,∴∠E=AOC=67.5°,∴∠ABC=112.5°<130°,取的中点F,连接OF,则∠AOF=∠AOB+∠BOF=90°+22.5°=112.5°,∴∠ABF=123.75°<130°,∴Q点在上,且<,故选:B.4.如图,AB为⊙O的直径,C为AB上一点,AD∥OC,AD交⊙O于点D,连接AC,CD,设∠BOC=x°,∠ACD=y°,则下列结论成立的是()A.x+y=90B.2x+y=90C.2x+y=180D.x=y【解答】解:连接BC,由圆周角定理得,∠BAC=∠BOC=x°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠B=90°﹣x°,∵四边形ABCD是⊙O的内接四边形,∴∠D=180°﹣∠B=90°+x°,∵OA=OC,∴∠OCA=∠OAC=x°,∵AD∥OC,∴∠DAC=∠OCA=x°,∴∠ACD=180°﹣∠DAC﹣∠D,即y=180°﹣x°﹣(90°+x°)=90°﹣x°,∴x+y=90,故选:A.5.如图,⊙O的直径CD=12cm,AB是⊙O的弦,AB⊥CD,垂足为E,OE:OC=1:3,则AB的长为()A.2cm B.4cm C.6cm D.8cm【解答】解:如图,连接OA,∵⊙O的直径CD=12cm,∴OD=OA=OC=6,∵OE:OC=1:3,∴OE=2,∵AB⊥CD,∴AB=2AE,∠OEA=90°,在Rt△OAE中,AE===4,∴AB=2AE=8cm.故选:D.6.如图是一个隧道的截面图,为⊙O的一部分,路面AB=10米,净高CD=7米,则此圆半径长为()A.5米B.7米C.米D.米【解答】解:∵CD⊥AB,AB=10米,由垂径定理得AD=5米,设圆的半径为r,由勾股定理得OD2+AD2=OA2,即(7﹣r)2+52=r2,解得r=米.故选:D.7.如图,△ABC内接于⊙O,连结OA,OB,∠ABO=40°,则∠C的度数是()A.100°B.80°C.50°D.40°【解答】解:∵OA=OB,∠ABO=40°,∴∠AOB=100°,∴∠C=∠AOB=50°,故选:C.8.如图,点A、B、C、D都在⊙O上,且四边形OABC是平行四边形,则∠D的度数为()A.45°B.60°C.75°D.不能确定【解答】解:∠D=∠AOC,∵四边形OABC是平行四边形,∴∠B=∠AOC,∵四边形ABCD是圆内接四边形,∴∠B+∠D=180°,3∠D=180°,∴∠D=60°,故选:B.9.如图,四边形ABCD内接于⊙O,它的一个外角∠EBC=65°,分别连接AC,BD,若AC=AD,则∠DBC的度数为()A.50°B.55°C.65°D.70°【解答】解:∵四边形ABCD内接于⊙O,∴∠ADC=∠EBC=65°.∵AC=AD,∴∠ACD=∠ADC=65°,∴∠CAD=180°﹣∠ACD﹣∠ADC=50°,∴∠DBC=∠CAD=50°,故选:A.10.如图,在矩形ABCD中,AB=4,AD=3,若以点A为圆心,以4为半径作⊙A,则下列各点在⊙A外的是()A.点A B.点B C.点C D.点D【解答】解:连接AC,∵在矩形ABCD中,AB=4,AD=3,∴BC=AD=3,∠B=90°,∴AC==5,∵AB=4=4,AC=5>4,AD=3<4,∴点B在⊙A上,点C在⊙A外,点D在⊙A内.故选:C.二.填空题(共10小题)11.平面上到点O的距离为3cm的点的轨迹是以O为圆心,3cm为半径的圆.【解答】解:平面上到点O的距离为3cm的点的轨迹是以O为圆心,3cm为半径的圆.故答案为以O为圆心,3cm为半径的圆.12.已知⊙O的半径为5cm,则圆中最长的弦长为10cm.【解答】解:∵⊙O的半径为5cm,∴⊙O的直径为10cm,即圆中最长的弦长为10cm.故答案为10.13.如图,AB是⊙O的直径,点CD在⊙O上并且在AB的同一侧,若∠C=109°,则∠AOD的度数是38°.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠A=180°﹣∠C=180°﹣109°=71°,∵OA=OD,∴∠ODA=∠A=71°,∴∠AOD=180°﹣71°×2=38°,故答案为:38°.14.如图,在⊙O中,=,∠1=30°,则∠2=30°.【解答】解:∵在⊙O中,=,∴=,∴∠1=∠2=30°.故答案是:30°.15.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则BD的长为.【解答】解:过点C作CE⊥AD于点E,则AE=DE,∵∠ACB=90°,AC=3,BC=4,∴AB===5,∵S△ABC=AC•BC=AB•CE,∴CE==,∴AE===,∴AD=2AE=,∴BD=AB﹣AD=5﹣=,故答案为:.16.“圆材埋壁”是我国古代数一学著作《九章算术》中的一个问题.“今有圆材,埋壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表达是:如图所示,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=1尺,则直径CD 长为26寸.【解答】解:连接OA,设OA=r,则OE=r﹣CE=r﹣1,∵AB⊥CD,AB=1尺,∴AE=AB=5寸,在Rt△OAE中,OA2=AE2+OE2,即r2=52+(r﹣1)2,解得r=13(寸).∴CD=2r=26寸.故答案为:26.17.如图,在⊙A中,弦BC、ED所对的圆心角分别是∠BAC,∠EAD,已知DE=6,BC =9,∠BAC+∠EAD=180°,则⊙A的直径等于3.【解答】解:作直径CF,连结BF,如图,∵∠BAC+∠EAD=180°,而∠BAC+∠BAF=180°,∴∠DAE=∠BAF,∴,∴DE=BF=6,∵CF是直径,∴∠CBF=90°,∴CF===3,故答案为:3.18.如图,AB是⊙O的一条弦,P是⊙O上一动点(不与点A,B重合),C,D分别是AB,BP的中点.若AB=4,∠APB=45°,则CD长的最大值为2.【解答】解:∵C,D分别是AB,BP的中点∴CD=AP,当AP为直径时,CD长最大,∵AP为直径,∴∠ABP=90°,且∠APB=45°,AB=4,∴AP=4∴CD长的最大值为2故答案为219.如图,点A,B,C,D是⊙O上的四个点,已知∠BCD=110°,格据推断出∠BAD的度数为70°,则她判断的依据是点圆内接四边形的对角互补.【解答】解:∵点A,B,C,D是⊙O上的四个点,∠BCD=110°,∴∠BAD=70°,判断的依据是圆内接四边形的对角互补,故答案为:圆内接四边形的对角互补.20.已知点P为平面内一点,若点P到⊙O上的点的最长距离为5,最短距离为1,则⊙O 的半径为2或3.【解答】解:当点P在圆内时,则直径=5+1=6,因而半径是3;当点P在圆外时,直径=5﹣1=4,因而半径是2.所以⊙O的半径为2或3.故答案为:2或3.三.解答题(共8小题)21.如图,从A村到E村有两条路(一条经过B、C、D村,另一条不经过),哪条路比较近呢?(两条路分别是由一个比较大的半圆和四个全等的小半圆组成的)【解答】解:设四个小半圆的半径是r,则大圆的半径是4r,则走大半圆的路长是4πr,走小半圆的路长是:4×πr=4πr.则两条道路的长度相同.22.如图所示,小丽家到学校有2条路线.分别以AB、BC和AC为直径的半圆弧,已知AB=8千米,BC=16千米.(1)比较①②两条路线,走哪条近;(2)如果AB=a,BC=b,那么①②两条路线的长度有什么变化呢?你得到什么样的结论?【解答】解:(1)∵①路线的长=AC•π=(8+16)•π=12π,②路线的长=AB•π+BC•π=(AB+BC)π=AC•π=12π,∴两条路线相等;(2)∵①路线的长=AC•π=(a+b)•π=π,②路线的长=AB•π+BC•π=(AB+BC)π=(a+b)π,∴两条路线相等;结论:不论AB,BC的长度怎么变化那么①②两条路线长度仍然相等.23.如图,已知AB,CG是⊙O的两条直径,AB⊥CD于点E,CG⊥AD于点F.(1)求∠AOG的度数;(2)若AB=2,求CD的长.【解答】解:(1)连接OD,∵AB⊥CD,∴=,∴∠BOC=∠BOD,由圆周角定理得,∠A=∠BOD,∴∠A=∠BOD,∵∠AOG=∠BOD,∴∠A=∠AOG,∵∠OF A=90°,∴∠AOG=60°;(2)∵∠AOG=60°,∴∠COE=60°,∴∠C=30°,∴OE=OC=,∴CE==,∵AB⊥CD,∴CD=2CE=.24.如图,OA、OB、OC都是⊙O的半径,∠AOB=2∠BOC.探索∠ACB与∠BAC之间的数量关系,并说明理由.【解答】解:∠ACB=2∠BAC.证明:∵∠ACB=∠AOB,∠BAC=∠BOC;又∵∠AOB=2∠BOC,∴∠ACB=2∠BAC.25.如图,∠C=90°,⊙C与AB相交于点D,AC=6,CB=8.求AD的长.【解答】解:作CE⊥AD于E,如图,∵∠C=90°,AC=6,CB=8,∴AB==10,∵CE•AB=AC•BC,∴CE==,在Rt△ACE中,AE===,∵CE⊥AD,∴AE=DE,∴AD=2AE=.26.如图,在△ABD中,AB=AD,以AB为直径的圆交AD于点E,交BD于点F,过点D 作DC∥AB交AF的延长线于点C,连接CB.(1)求证:四边形ABCD为菱形;(2)若AE=7,BF=2,求半圆的半径和菱形ABCD的面积.【解答】(1)证明:∵AB是直径,∴∠AFB=90°,∴AC⊥BD,∵AB=AD,∴BF=DF,∵DC∥AB,∴∠CDF=∠ABF,在△CFD和△AFB中,∴△CFD≌△AFB(ASA),∴CF=AF,∴四边形ABCD为菱形;(2)解:∵BF=2,∴BD=4,连接BE,则∠AEB=90°,设菱形的边长为2r,则DE=AD﹣AE=2r﹣7,∵BD2﹣DE2=AB2﹣AE2,即42﹣(2r﹣7)2=(2r)2﹣72解得r=4或r=﹣(舍去),∴BE===,∴菱形ABCD的面积为:AD•BE=8×=8.27.如图,四边形ABDC内接于⊙O,∠BAC=60°,AD平分∠BAC交⊙O于点D,连接OB、OC、BD、CD.(1)求证:四边形OBDC是菱形;(2)若∠ABO=15°,OB=1,求弦AC长.【解答】(1)证明:连接OD,由圆周角定理得,∠BOC=2∠BAC=120°,∵AD平分∠BAC,∴=,∴∠BOD=∠COD=60°,∵OB=OD,OC=OD,∴△BOD和△COD是等边三角形,∴OB=BD=DC=OC,∴四边形OBDC是菱形;(2)解:连接OA,∵OB=OA,∠ABO=15°,∴∠AOB=150°,∴∠AOC=360°﹣150°﹣120°=90°,∴AC==.28.(1)已知⊙O的直径为10cm,点A为⊙O外一定点,OA=12cm,点P为⊙O上一动点,求P A的最大值和最小值.(2)如图:=,D、E分别是半径OA和OB的中点.求证:CD=CE.【解答】(1)解:∵⊙O的直径为10cm,∴⊙O的半径为10÷2=5(cm),当点P在线段OA的延长线上时,P A取得最大值,当点P在线段OA上时,P A取得最小值∵OA=12cm,∴P A的最大值为12+5=17cm,P A的最小值为12﹣5=7cm;(2)证明:连接CO,如图所示,∵OA=OB,且D、E分别是半径OA和OB的中点,∴OD=OE,又∵=,∴∠COD=∠COE,在△COD和△COE中,,∴△COD≌△COE(SAS),∴CD=CE。
九年级数学圆专题训练题九年级数学圆专题训练题一、选择题1.如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线交于点C,∠A=30°,给出下面3个结论:①AD=CD;②BD=BC;③AB=2BC,其中正确结论的个数是()A.3B.2C.1D.0考点:切线的性质.分析:连接OD,CD是⊙O的切线,可得CD⊥OD,由∠A=30°,可以得出∠ABD=60°,△ODB是等边三角形,∠C=∠BDC=30°,再结合在直角三角形中300所对的直角边等于斜边的一半,继而得到结论①②③成立.解答:解:如图,连接OD,∵CD是⊙O的切线,∴CD⊥OD,∴∠ODC=90°,又∵∠A=30°,∴∠ABD=60°,∴△OBD是等边三角形,∴∠DOB=∠ABD=60°,AB=2OB=2OD=2BD.∴∠C=∠BDC=30°,∴BD=BC,②成立;∴AB=2BC,③成立;∴∠A=∠C,∴DA=DC,①成立;综上所述,①②③均成立,故答案选:A.点评:本题考查了圆的有关性质的综合应用,在本题中借用切线的性质,求得相应角的度数是解题的关键.2.如图,矩形ABCD的长为6,宽为3,点O1为矩形的中心,⊙O2的半径为1,O1O2⊥AB于点P,O1O2=6.若⊙O2绕点P按顺时针方向旋转360°,在旋转过程中,⊙O2与矩形的边只有一个公共点的情况一共出现()A.3次B.4次C.5次D.6次考点:直线与圆的位置关系.分析:根据题意作出图形,直接写出答案即可.解答:解:如图:,⊙O2与矩形的边只有一个公共点的情况一共出现4次,故选B.点评:本题考查了直线与圆的位置关系,解题的关键是了解当圆与直线相切时,点到圆心的距离等于圆的半径.3.如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为()(第1题图)A.1B.1或5C.3D.5考点:直线与圆的位置关系;坐标与图形性质.分析:平移分在y轴的左侧和y轴的右侧两种情况写出答案即可.解答:解:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为1;当⊙P位于y轴的右侧且与y轴相切时,平移的距离为5.故选B.点评:本题考查了直线与圆的位置关系,解题的.关键是了解当圆与直线相切时,点到圆心的距离等于圆的半径.4.如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙上一点,连接PD.已知PC=PD=BC.下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.其中正确的个数为()A.4个B.3个C.2个D.1个分析:(1)利用切线的性质得出∠PCO=90°,进而得出△PCO≌△PDO(SSS),即可得出∠PCO=∠PDO=90°,得出答案即可;(2)利用(1)所求得出:∠CPB=∠BPD,进而求出△CPB≌△DPB(SAS),即可得出答案;(3)利用全等三角形的判定得出△PCO≌△BCA(ASA),进而得出CO=PO=AB;(4)利用四边形PCBD是菱形,∠CPO=30°,则DP=DB,则∠DPB=∠DBP=30°,求出即可.解:(1)连接CO,DO,∵PC与⊙O相切,切点为C,∴∠PCO=90°,在△PCO和△PDO中,,∴△PCO≌△PDO(SSS),∴∠PCO=∠PDO=90°,∴PD与⊙O相切,故此选项正确;(2)由(1)得:∠CPB=∠BPD,在△CPB和△DPB中,,∴△CPB≌△DPB(SAS),∴BC=BD,∴PC=PD=BC=BD,∴四边形PCBD是菱形,故此选项正确;(3)连接AC,∵PC=CB,∴∠CPB=∠CBP,∵AB是⊙O直径,∴∠ACB=90°,在△PCO和△BCA中,,∴△PCO≌△BCA(ASA),∴AC=CO,∴AC=CO=AO,∴∠COA=60°,∴∠CPO=30°,∴CO=PO=AB,∴PO=AB,故此选项正确;(4)∵四边形PCBD是菱形,∠CPO=30°,∴DP=DB,则∠DPB=∠DBP=30°,∴∠PDB=120°,故此选项正确;故选:A.点评:此题主要考查了切线的判定与性质和全等三角形的判定与性质以及菱形的判定与性质等知识,熟练利用全等三角形的判定与性质是解题关键.5.(2014•武汉,第10题3分)如图,PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D.若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是()A.1B.1/2C.3/5D.2考点:切线的性质;相似三角形的判定与性质;锐角三角函数的定义分析:(1)连接OA、OB、OP,延长BO交PA的延长线于点F.利用切线求得CA=CE,DB=DE,PA=PB再得出PA=PB=.利用Rt△BFP∽RT△OAF得出AF=FB,在RT△FBP中,利用勾股定理求出BF,再求tan∠APB的值即可.解答:解:连接OA、OB、OP,延长BO交PA的延长线于点F.∵PA,PB切⊙O于A、B两点,CD切⊙O于点E∴∠OAP=∠OBP=90°,CA=CE,DB=DE,PA=PB,∵△PCD的周长=PC+CE+DE+PD=PC+AC+PD+DB=PA+PB=3r,∴PA=PB=.在Rt△BFP和Rt△OAF中,,∴Rt△BFP∽RT△OAF.∴===,∴AF=FB,在Rt△FBP中,∵PF2﹣PB2=FB2∴(PA+AF)2﹣PB2=FB2∴(r+BF)2﹣()2=BF2,解得BF=r,∴tan∠APB===,故选:B.6.如图,G为△ABC的重心.若圆G分别与AC、BC相切,且与AB 相交于两点,则关于△ABC三边长的大小关系,下列何者正确?()A.BCACC.ABAC分析:G为△ABC的重心,则△ABG面积=△BCG面积=△ACG面积,根据三角形的面积公式即可判断.解:∵G为△ABC的重心,∴△ABG面积=△BCG面积=△ACG面积,又∵GHa=GHb>GHc,∴BC=AC故选D.点评:本题考查了三角形的重心的性质以及三角形的面积公式,理解重心的性质是关键.7.如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=6;③sin∠AOB=;④四边形ABOC是菱形.其中正确结论的序号是()A.①③B.①②③④C.②③④D.①③④考点:垂径定理;菱形的判定;圆周角定理;解直角三角形.分析:分别根据垂径定理、菱形的判定定理、锐角三角函数的定义对各选项进行逐一判断即可.解答:解:∵点A是劣弧的中点,OA过圆心,∴OA⊥BC,故①正确;∵∠D=30°,∴∠ABC=∠D=30°,∴∠AOB=60°,∵点A是点A是劣弧的中点,∴BC=2CE,∵OA=OB,∴OB=OB=AB=6cm,∴BE=AB•cos30°=6×=3cm,∴BC=2BE=6cm,故B正确;∵∠AOB=60°,∴sin∠AOB=sin60°=,故③正确;∵∠AOB=60°,∴AB=OB,∵点A是劣弧的中点,∴AC=OC,∴AB=BO=OC=CA,∴四边形ABOC是菱形,故④正确.故选B.点评:本题考查了垂径定理、菱形的判定、圆周角定理、解直角三角形,综合性较强,是一道好题.8.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.4B.7C.3D.5解答:解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选B.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和等腰直角三角形的性质.。
九年级数学下练习题(圆的基本性质)一、 填空题:(21分)1、如图,在⊙O 中,弦AB ∥OC ,115AOC ∠=︒,则BOC ∠=_________2、如图,在⊙O 中,AB 是直径,15C ∠=︒,则BAD ∠=__________3、如图,点O 是ABC ∆的外心,已知40OAB ∠=︒,则ACB ∠=___________(((44、如图,AB 是⊙O 的直径,弧BC=弧BD ,25A ∠=︒,则BOD ∠= . 5、如图,⊙O 的直径为8,弦CD 垂直平分半径OA ,则弦CD = .6、已知⊙O 的半径为2cm ,弦AB =2cm ,P 点为弦AB 上一动点,则线段OP 的范围是 .7、如图,在⊙O 中,∠B=50º,∠C=20º,则∠BOC 的=____________(5题图) (6题图) (7题图) (二、解答题1题) 二、解答题(70分)1、如上图4,AB 是⊙O 的直径. (1)若OD ∥AC ,与 的大小有什么关系?为什么? (2)把(1)中的条件和结论交换一下,还能成立吗?说明理由.2、已知:如图,在⊙O 中,弦AB=CD.求证:⑴弧AC=弧BD ; ⑵∠AOC=∠BOD3、如图,已知:⊙O 中,AB 、CB 为弦,OC 交AB 于D ,求证:(1)∠ODB>∠OBD ,BBBDCA(2)∠ODB =∠OBC ;4、已知如图,AB 为⊙O 的弦,半径OE 、OF 分别交AB 于点C 、D ,且AC=BD 。
求证:CE=DF5、已知如图,,AB 、AC 为弦,OM ⊥AB 于M ,ON ⊥AC 于N ,MN 是△ABC 的中位线吗?6、已知⊙O 中,M 、N 分别是不平行的两条弦AB 和CD 的中点,且AB = CD , 求证:∠AMN=∠CNM7、已知如图,AB 、CD 是⊙O 的直径,DF 、BE 是弦,且DF=BE ,CDC求证:∠D=∠B8、已知如图,AB 是⊙O 的直径,C 是⊙O 上的一点,CD ⊥AB 于D ,CE 平分∠DCO ,交⊙O 于E , 求证:弧AE=弧EB9、已知如图,以等腰△ABC 的一腰AB 为直径的⊙O 交另一腰于F ,交底边BC 于D ,则BC 与DF 的关系,证明你的观点。
第9讲圆的基本性质[学生用书P51]对称性的启示在具有对称性的平面图形中,圆这个最简单的曲线最令人惊叹.它是唯一具有无穷多条对称轴的轴对称图形,它又是特殊的中心对称图形.同学们都知道,中心对称图形绕其对称中心旋转180°后所得到的图形跟原图形重合,而将圆绕其中心旋转任意一个角度后所得的图形跟原图形重合,这是圆的独特性质.所以圆被称为最完美的曲线.同学们也许见过这样一道智力游戏题:设有数量足够多的各种面值的硬币,让两个人轮流的在圆形桌面上摆硬币,每次摆一个,个个不能互相重叠,也不能有一部分落在桌面的边缘外.这样,经过充分多次以后,谁先摆不下硬币就算输.试证:先摆的人有办法使对方一定输.先摆的人为什么能稳操胜券呢?就因为圆形桌面是中心对称图形.“先手”只要把第一个硬币摆在桌面的中心,以后不管“后手”把硬币摆在哪里,“先手”总可以把相同面值的硬币摆在与“后手”所摆硬币(关于中心)对称的地方.这样,只要“后手”有地方摆得下,“先手”也总可以摆得下.因此“后手”准输.这里仅仅利用了圆的中心对称性质.因此,本题中把圆形桌面改成矩形桌面、椭圆形桌面或其他具有中心对称性的图形的桌面,问题的结论仍然不变.同学们大概不会不知道我国著名的“太极图”(图①)吧!实际上,它是把一个圆分成阴阳两个部分而成的,因而具有“阴”和“阳”对立统一的深刻含义.太极图的画法:如图②所示,在一个大圆内分别以同一直径的两个半径为直径,做两个小圆,然后擦掉虚线所示的两个半圆,就画成一个太极图.类型之一圆的概念例1[镇海区校级自主招生]如图,梯形ABCD中,AD∥BC,∠ABC=90°,AD=2,AB=1,BC=3.若此梯形的顶点A,B恰好在圆O的直径MN上,C,D在圆O上,则圆O的直径等于.【思路生成】首先连结OC,OD,然后设OC=OD=x,OB=y,由在Rt△OAD 中,OA2+AD2=OD2,在Rt△OBC中,OB2+BC2=OC2,可得方程组即可求得圆O的直径.答图【解析】 如答图,连结OC ,OD ,∵梯形ABCD 中,AD ∥BC ,∠ABC =90°,∴∠OAD =90°,∠OBC =90°,设OC =OD =x ,OB =y ,在Rt △OAD 中,OA 2+AD 2=OD 2,在Rt △OBC 中,OB 2+BC 2=OC 2,∵AD =2,AB =1,BC =3,∴⎩⎪⎨⎪⎧y 2+9=x 2,(y +1)2+4=x 2,解得⎩⎪⎨⎪⎧x =13,y =2,∴圆O 的直径等于213.圆的定义:1.在同一平面内,线段OP 绕着它固定的一个端点O 旋转一周,另一端点P 所经过的封闭曲线叫做圆.2.圆是到定点距离等于定长的点的集合.圆的基本性质:1.圆是轴对称图形:任何一条直径所在的直线都是它的对称轴.2.垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.3.同圆或等圆中,两个圆心角、两条弧、两条弦、两个弦心距中有一组量相等,它们所对应的其余各组量也分别相等.确定圆的条件:确定一个圆必须明确两个要素:①圆心(决定圆的位置);②半径(决定圆的大小).点和圆的位置关系:点P 在圆内⇔d <r ;点P 在圆上⇔d =r ;点P 在圆外⇔d >r .1.[龙岩校级自主招生]如图,AB ,CD 是⊙O 的两条弦,∠AOB 与∠C 互补,∠COD 与∠A 相等,则∠AOB 的度数是__108°__.【解析】 ∵∠AOB 与∠C 互补,∴∠C =∠D =180°-∠AOB ,∴∠COD =180°-2∠C =2∠AOB -180°,∵∠A =∠B =12(180°-∠AOB ),∠COD =∠A ,∴2∠AOB -180°=12(180°-∠AOB ),解得∠AOB =108°.垂径定理1.与弦有关的题目,要求解边与角时,连结半径构造等腰三角形是常用的辅助线.2.求圆中的弦长时,通常作辅助线,由半径、弦的一半以及弦心距构成直角三角形运用勾股定理进行求解.类型之二垂径定理例2[上海竞赛题]如图,正方形ABCD的顶点A,D和正方形JKLM的顶点K,L在一个以5为半径的圆O上,点J,M在线段BC上,若正方形ABCD 的边长为6,求正方形JKLM的边长.【思路生成】作ON⊥AD于N,OH⊥KL于H,连结OD,OL,根据勾股定理和垂径定理求出ON,列出方程,解方程即可.答图解:如答图,过点O作直线OP⊥BC,分别交BC,KL,AD于点P,H,N,则ON⊥AD,OH⊥KL,连结DO,LO,在Rt△NOD中,ON=OD2-DN2=52-32=4,OP=PN-ON=2.设HL=x,则PH=KL=2x,OH=OP+PH=2+2x.在Rt△HOL中,x2+(2x+2)2=52,解得x1=-3(舍去),x2=75,∴正方形JKLM的边长为14 5.2.[芜湖校级自主招生]如图,三个全等的正方形内接于圆,正方形的边长为16,则圆的半径为(D)A.333 B.16 5C.16 2 D.517【解析】如答图,设圆心为O,连结OC,OD,延长BO与正方形的边交于点A,答图设圆心与上面正方形的距离为x,则BO=16-x,AD=8,AO=16+x,在Rt△OBC与Rt△OAD中,∵OC=OD,∴BC2+OB2=AO2+AD2,即162+(16-x)2=(16+x)2+82,解得x=3,∴OB=16-3=13,∴OC=BC2+OB2=162+132=517.3.[《时代学习报》数学文化节试题](1)如图1,多边形ABDEC是由边长为2的等边三角形ABC和正方形BDEC组成,⊙O过点A,D,E三点,求⊙O的半径;(2)如图2,若多边形ABDEC是由一个等腰三角形和一个矩形组成,AB=AC=BD=2,⊙O过A,D,E三点,则⊙O的半径是否改变?答图解:(1)如答图,过A作BC的垂线交DE于F点,∵△ABC为等边三角形,∴AF平分BC,∵四边形BDEC为正方形,∴AF也垂直平分DE,∴过点A,D,E三点的圆的圆心O在AF上,连结AD,OD,则OA=OD,∴∠OAD=∠ODA,又∵BC=BD=BA,∴∠BAD=∠BDA,而AF∥BD,∴∠OAD=∠BDA,∴∠ODA=∠BAD,∴AB∥OD,∴四边形ABDO为菱形,∴AO=AB=2,即⊙O的半径为2;(2)⊙O的半径不改变.因为AB=AC=BD=2,此题的求法和(1)一样,⊙O的半径为2.圆的基本性质中常见的基本图形类型之三垂径定理的应用例3[黑龙江竞赛题]如图,半径为2的圆O中,弦AB与弦CD垂直相交于P,连结OP,若OP=1,求AB2+CD2的值.【思路生成】解互相垂直的两条弦问题,常需多次运用垂径定理.解:如答图,过O 点作OE ⊥AB 于E ,OF ⊥CD 于F ,连结OD ,OA ,则AE =BE ,CF =DF .答图∵OE 2=AO 2-AE 2=4-14AB 2,OF 2=OD 2-FD 2=4-14CD 2,∴OE 2+OF 2=⎝ ⎛⎭⎪⎫4-14AB 2+⎝ ⎛⎭⎪⎫4-14CD 2=PF 2+OF 2=OP 2=12, 即4-14AB 2+4-14CD 2=1,故AB 2+CD 2=28.对称是一种美,它展示出整体的平衡与和谐.等腰三角形,正方形,圆,抛物线,双曲线等都是轴对称图形,它们能生成从形式到结果完美的图形.4.[岳麓区自主招生]如图,圆O 中,弦AC ⊥BD ,且OE ⊥CD 于E ,若AB 的长是10,则OE 的长是__5__.答图【解析】 如答图,作直径DF ,连结CF ,则∠DCF =90°,∠1+∠2=90°, ∵AC ⊥BD ,∴∠3+∠4=90°,∵∠2=∠4,∴∠1=∠3,∴AB ︵=CF ︵,∴AB =CF =10.∴OE ⊥CD 于点E ,∴CE =DE .∵OD =OF ,∴OE =12CF =5.5.[第3届世界数学团体锦标赛试题]如图,圆O 中两条互相垂直的弦AB 和CD 的弦心距是3和2,它们将圆O 分成四部分:S 1,S 2,S 3,S 4,求(S 1+S 3)-(S 2+S 4).解:如答图,以O 为对称中心,在⊙O 内分别作与AB ,CD 对称的弦A ′B ′,C ′D ′.观察此图,由题设条件,及圆的对称性可知(S 1+S 3)-(S 2+S 4)=阴影长方形的面积=4×6=24.答图圆心角定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.1°弧的概念1°圆心角所对的弧叫做1°弧.类型之四 圆心角定理例4 [陕西竞赛题]如图,已知⊙O 的半径为R ,C ,D 是直径AB 同侧圆周上的两点,AC ︵的度数为96°,BD︵的度数为36°,动点P 在AB 上,则CP +PD 的最小值为.【解析】 如答图,作点D 关于AB 的对称点D ′,连结CD ′,由轴对称确定最短路线问题,CD ′与AB 的交点即为所求的点P ,CD ′的长度为PC +PD 的最小长度,答图∵AC ︵度数为96°,∴BC ︵的度数为180°-96°=84°,连结OD ′,∵BD ︵=36°,∴BD ′︵=36°,∴CD ′︵=84°+36°=120°,即∠COD ′=120°,过点O 作OE ⊥CD ′,则∠COE =12∠COD ′=60°,OE 垂直平分CD ′,∴CD ′=2CE =2×32R =3R ,即CP +PD 的最小值为3R .6.[余姚自主招生]如图,在三个等圆上各自有一条劣弧AB ,CD ,EF ,如果AB ︵+CD ︵=EF ︵,那么AB +CD 与EF 的大小关系是( C )A .AB +CD =EFB .AB +CD <EFC .AB +CD >EF D .大小关系不确定【解析】 如答图,在EF ︵上取一点M 使EM ︵=CD ︵,则FM ︵=AB ︵,∴AB =FM ,CD=EM,在△MEF中,FM+EM>EF,∴AB+CD>EF.答图辅助线规律已知弧的中点,连结半径,构造相等圆心角.基本概念三角形的外接圆:经过三角形各个顶点的圆叫做三角形的外接圆.三角形的外心:三角形外接圆的圆心.圆的内接三角形:这个三角形叫做圆的内接三角形.三角形外心是三角形三条边的垂直平分线的交点.三点确定一个圆:不在同一条直线上的三个点确定一个圆.7.[余姚校级自主招生]如图,⊙O的直径AB与弦EF相交于点P,交角为45°,若PE2+PF2=8,则AB等于__4__.答图【解析】如答图,作OG⊥EF于G,连结OE,根据垂径定理,可设EG=FG=x,则PE=x+PG,PF=x-PG,又∵PE2+PF2=8,∴(x+PG)2+(x-PG)2=8,整理得2x2+2PG2=8,x2+PG2=4,∵交角为45°,∴OG=PG,∴OE2=OG2+EG2=4,解得OE=2,即圆的半径是2,∴直径AB是4.类型之五三角形的外接圆例5已知,如图1,△ABC中,BA=BC,D是平面内不与A,B,C重合的任意一点,∠ABC=∠DBE,BD=BE.(1)求证:△ABD≌△CBE;(2)如图2,当点D是△ABC的外接圆圆心时,请判断四边形BDCE的形状,并证明你的结论.图1 图2解:(1)证明:∵∠ABC =∠DBE ,∴∠ABC +∠CBD =∠DBE +∠CBD ,∴∠ABD =∠CBE ,在△ABD 与△CBE 中,∵⎩⎪⎨⎪⎧BA =BC ,∠ABD =∠CBE ,BD =BE ,∴△ABD ≌△CBE ;(2)四边形BDCE 是菱形,证明如下:由(1)知△ABD ≌△CBE ,∴CE =AD ,∵点D 是△ABC 外接圆圆心,∴DA =DB =DC ,又∵BD =BE ,∴BD =BE =CE =CD ,∴四边形BDCE 是菱形.8.[四川竞赛题]已知在△ABC中,AB=AC=43,高AD=4,则△ABC的外接圆的半径为(D)A.3 B.4 C.5 D.6【解析】由于AB=AC,所以其外接圆的圆心在三角形的高上,如答图所示,答图∵AB=43,AD=4,AD⊥BC,∴BD=(43)2-42=42,可设圆的半径为x,则在Rt△BOD中,(4-x)2+(42)2=x2,解得x=6.9.[雨花区校级自主招生]如图所示,四边形ABCD中,AB∥CD,AD=DC=DB=p,BC=q,则AC=.(用p,q表示)答图 【解析】 如答图,延长CD 交半径为p 的⊙D 于点E ,连结AE .显然A ,B ,C 在⊙D 上.∵AB ∥CD ,∴BC ︵=AE ︵,∴BC =AE =q .在△ACE 中,∠CAE =90°,CE =2p ,AE =q ,故AC =CE 2-AE 2=4p 2-q 2.10.[诸暨校级自主招生]如图,△ABC 是⊙O 的内接三角形,AC =BC ,D 为AB ︵上一点,延长DA 至点E ,使CE =CD .(1)求证:AE =BD ;(2)若AC ⊥BC ,求证:AD +BD =2CD .证明:(1)∵△ABC 是⊙O 的内接三角形,AC =BC ,∴∠ABC =∠BAC , ∵CE =CD ,∴∠CDE =∠CED ,又∵∠ABC =∠CDE ,∴∠ABC =∠BAC =∠CDE =∠CED ,∴∠ACB =∠DCE ,∴∠BCD =∠ACE ,在△AEC 和△BDC 中,⎩⎪⎨⎪⎧AC =BC ,∠ACE =∠BCD ,CE =CD ,∴△AEC ≌△BDC (SAS ),∴AE =BD ;(2)∵AC ⊥BC ,∴∠ACB =90°,∴∠DCE =90°,又∵CD =CE ,∴△DCE 为等腰直角三角形,∴DE =2CD ,又∵DE =AD +AE 且AE =BD ,∴AD +BD =2CD .例6 [希望杯培训题]如图所示,在△ABC 中,AC =BC ,∠ACB =80°,在△ABC 内取一点M ,使得∠MBA =30°,∠MAB =10°,那么∠AMC 的度数是__70°__.答图【解析】如答图,作△ADB≌△AMB,连结CD,MD,∴∠MBD=∠MBA+∠DBA=2∠MBA=60°,∠AMB=∠ADB=180°-10°-30°=140°,而∠ACB=80°,AC=BC,且180°-140°=40°=12×80°,∴D就在以C为圆心,AC为半径的圆上,∴AC=DC=BC,∵△MBD为等边三角形,∴BM=DM,又CM=CM,∴△CMD≌△CMB,∴∠CMD=∠CMB.而∠CMD+∠CMB+∠BMD=360°,∠BMD=60°,∴∠CMD=∠CMB=150°,∠AMC=360°-∠CMB-∠AMB=360°-150°-140°=70°.构造圆,利用圆的基本性质解题.[学生用书P28]【思维入门】1.[潍坊中考]点A ,C 是半径为3的圆周上两点,点B 为AC ︵的中点,以线段BA ,BC 为邻边作菱形ABCD ,顶点D 恰好在该圆直径的三等分点上,则该菱形的边长为( D ) A.5或2 2 B.5或2 3 C.6或2 2 D.6或2 3【解析】 分两种情况讨论:如答图①所示,当对角线BD =2时,连结OA ,AC 交BD 于点E ,则AE ⊥BD ,BE =ED =1,OE =2,根据勾股定理,得AE 2=OA 2-OE 2=9-4=5,AD 2=AE 2+ED 2=6,∴AD =6,即菱形的边长为6;如答图②所示,当对角线BD =4时,同理,有OE =OD =1,由勾股定理,得AE 2=OA 2-OE 2=9-1=8,AD 2=AE 2+ED 2=12,∴AD =23,即菱形的边长为2 3.综上可知,该菱形的边长为6或2 3.①②答图2.[江苏竞赛题]P是圆O内一点,圆O的半径为15,P点到圆心的距离为9,通过P点、长度是整数的弦的条数是(D)A.5 B.7 C.10 D.12【解析】在⊙O中,半径是15,点P到圆心的距离为9,则过点P最长的弦是过点P的直径,长度为30.过点P最短的弦是垂直于OP的弦,这条弦长为24.最长的弦有一条,最短的弦有一条,而弦长分别是25,26,27,28,29的弦各有两条,所以过P点,长度是整数的弦一共有1+2×5+1=12条.3.[青羊区自主招生]如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=22,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连结EF,则线段EF长度的最小值为(C)A.2 B. 2 C. 3 D.3【解析】由垂线段的性质可知,当AD为△ABC的边BC上的高线时,直径AD最短,如答图,连结OE,OF,过O点作OH⊥EF,垂足为H,答图∵在Rt△ADB中,∠ABC=45°,AB=22,∴AD=BD=2,即此时圆的直径为2,由圆周角定理可知∠EOH=12∠EOF=∠BAC=60°,∴在Rt△EOH中,EH=OE·32=1×32=32,∴EF=2EH= 3.4.[黄冈中学自主招生]在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为23,则a的值是.【解析】如答图,过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连结P A.∵AB=23,∴AE=3,P A=2,∴PE=1.∵点D在直线y=x上,∴∠DOC=45°,∵∠DCO=90°,∴∠ODC=45°,∴∠PDE=∠ODC=45°,答图∴∠DPE=∠PDE=45°,∴DE=PE=1,∴PD= 2.∵⊙P的圆心是(2,a),∴点D的横坐标为2,∴OC=2,∴DC=OC=2,∴a=PD+DC=2+ 2.5.[乐清自主招生]如图,在平面直角坐标系中,点A的坐标是(10,0),点B的坐标为(8,0),点C,D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为__(1,3)__.【解析】∵四边形OCDB是平行四边形,B(8,0),∴CD∥OA,CD=OB=8,如答图,过点M作MF⊥CD于点F,则CF=12CD=4,答图过点C作CE⊥OA于点E,∵A(10,0),∴OE=OM-ME=OM-CF=5-4=1.连结MC,则MC=12OA=5,∴在Rt△CMF中,由勾股定理得MF=MC2-CF2=52-42=3. ∴点C的坐标为(1,3).6.[台州中考]如图,已知等腰直角三角形ABC,点P是斜边BC上一点(不与B,C重合),PE是△ABP的外接圆⊙O的直径.(1)求证:△APE是等腰直角三角形;(2)若⊙O的直径为2,求PC2+PB2的值.解:(1)证明:∵△ABC是等腰直角三角形,∴∠C=∠ABC=45°,∴∠PEA=∠ABC=45°.又∵PE是⊙O的直径,∴∠P AE=90°,∠PBE=90°,∴∠PEA=∠APE=45°,∴△APE是等腰直角三角形;(2)∵△ABC是等腰直角三角形,∴AC=AB,同理AP=AE,又∵∠CAB=∠P AE=90°,∴∠CAP=∠BAE,∴△CAP≌△BAE,∴CP=BE,在Rt△BPE中,∠PBE=90°,PE=2,∴PB2+BE2=PE2,∴CP2+PB2=PE2=4.【思维拓展】7.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°,公路PQ上A 处距离O点240 m,如果火车行驶时,周围200 m以内会受到噪音的影响,那么火车在铁路MN上沿MN方向以72 km/h的速度行驶时,A处受到噪音影响的时间为(B)A.12 s B.16 s C.20 s D.24 s【解析】如答图,过点A作AC⊥ON,AB=AD=200 m,∵∠QON=30°,OA=240 m,答图∴AC=120 m,当火车到B点时对A处产生噪音影响,此时AB=200 m,∵AB=200 m,AC=120 m,∴由勾股定理得BC=160 m,同理,CD=160 m,即BD=320 m,∵72 km/h=20 m/s,∴影响时间为320÷20=16(s).8.[第25届希望杯初三第1试]如图,AB 是⊙O 的弦,CD 是⊙O 的直径,且CD 与AB 相交,若m =||S △CAB -S △DAB ,n =S △OAB ,则( B )A .m >2nB .m =2nC .m <2nD .m 与2n 的大小无法确定【解析】 设AB 与CD 交于点E ,∵CO =DO ,∴S △ACE +S △AOE =S △AOD ,S △CBE+S △BOE =S △BOD ,∴S △ACB +S △ABO =12S四边形ACBD ,S △ABD +S △ACB =S 四边形ACBD ,∴|S △ABD -S △ACB |=2S △ABO ,即m =2n .9.如图,在⊙O 中,AB 是⊙O 的直径,AB =8 cm ,AC ︵=CD ︵=BD ︵,M 是AB 上一动点,CM +DM 的最小值为__8__cm.答图 【解析】 如答图,作点C 关于AB 的对称点C ′,连结C ′D 与AB 相交于点M ,此时C ′D 的长为CM +DM 的最小值.由垂径定理,得AC ︵=AC ′︵,∴BD ︵=AC ′︵,∵C ′D ︵=AB ,∴C ′D =AB =8,∴CM +DM 的最小值为8 cm.10.[海淀区自主招生]如图,AB 为⊙O 的直径,E ,F 为AB 的三等分点,M ,N 为AB ︵上两点,且∠MEB =∠NFB =60°,EM +FN =33,则直径AB 的长为__6__.答图 【解析】 如答图,延长ME 交⊙O 于G ,过点O 作OH ⊥MG 于H ,连结MO ,过O 作OP ⊥FN ,垂足为P ,∵O 为AB 的中点,E ,F 为AB 的三等分点,∴OE =OF ,又∵MG ∥FN ,∴∠MEF =∠NFB =∠OFP ,∵∠OHG =∠OPF =90°,∴△OHE ≌△OPF ,∴OH =OP ,易证△OEG ≌△OFN ,∴EG =FN ,设⊙O 的直径AB =x ,∴OE =OA -AE =12x -13x =16x ,OM =12x ,∵∠MEB =60°,∴OH =OE ·32=x 6×32=3x 12,在Rt △MOH 中,MH =OM 2-OH 2=⎝ ⎛⎭⎪⎫x 22-⎝ ⎛⎭⎪⎫3x 122=36x 2-3x 2144=33x 212, 根据垂径定理,MG =2MH =2×33x 212=33x 6,∴EM +FN =33x 6=33.∴x =6,即AB 的长为6.11.[全国竞赛]⊙O 的三个不同的内接正三角形将⊙O 分成的区域的个数是__28__.12.[涪城区校级自主招生]如图,已知等腰直角△ABC 中,∠BAC =90°,圆心O 在△ABC 内部,且⊙O 经过B ,C 两点,若BC =8,AO =1,求⊙O 的半径.答图解:如答图,连结BO,CO,延长AO交BC于D,∵△ABC是等腰直角三角形,∠BAC=90°,∴AB=AC,∵O是圆心,∴OB=OC,∴直线OA是线段BC的垂直平分线,∴AD⊥BC,且D是BC的中点,在Rt△ABC中,AD=BD=12BC,∵BC=8,∴BD=AD=4,∵AO=1,∴OD=AD-AO=3,∵AD⊥BC,∴∠BDO=90°,∴OB=OD2+BD2=32+42=5.13.[鼓楼区校级自主招生]有一批圆心角为90°,半径为1的扇形状下脚料,现利用这批材料截取尽可能大的正方形材料,如图有两种截取方法:方法1,如图1所示,正方形OPQR的顶点P,Q,R均在扇形边界上;方法2,如图2所示,正方形顶点C,D,E,F均在扇形边界上.图1、图2均为轴对称图形.试分别求这两种截取方法得到的正方形面积.并说明哪种截取方法得到的正方形面积更大?解:如答图①,连结OQ ,设正方形OPQR 的边长为x ,则在Rt △OPQ 中,OQ 2=OP 2+PQ 2,即12=x 2+x 2,解得x =22, ∴S 四边形OPQR =12;① ② 答图如答图②,过O 作OG ⊥EF ,交CD 于点H ,连结OF ,设FG =x ,∵四边形CDEF 是正方形,∴OH ⊥CD ,∴FG =CH =x ,∵∠DOC =90°,H 为CD 中点,∴CH =OH ,∴OG =OH +HG =HC +CF =x +2x =3x ,在Rt △OFG 中,OF 2=GF 2+OG 2,即12=x 2+(3x )2,解得x =1010,∴CF =2x =105.∴S 四边形CDEF =25,∵12>25,∴第一种方法截取的正方形的面积更大.14.如图1,已知⊙O 的半径为1,PQ 是⊙O 的直径,n 个相同的正三角形沿PQ 排成一列,所有正三角形都关于PQ 对称,其中第一个△A 1B 1C 1的顶点A 1与点P 重合,第二个△A 2B 2C 2的顶点A 2是B 1C 1与PQ 的交点,…,最后一个△A n B n C n 的顶点B n ,C n 在圆上.(1)如图2,当n =1时,求正三角形的边长a 1;(2)如图3,当n =2时,求正三角形的边长a 2;(3)如图1,求正三角形的边长a n (用含n 的代数式表示).解:(1)如答图①,设PQ 与B 1C 1交于点D ,连结B 1O .∵△PB 1C 1是等边三角形,∴A 1D =32a 1,在△OB 1D 中,OB 21=B 1D 2+OD 2,∵OD =A 1D -OA 1=32a 1-1,∴12=⎝ ⎛⎭⎪⎫12a 12+⎝ ⎛⎭⎪⎫32a 1-12,解得a 1=3; (2)如答图②,设PQ 与B 2C 2交于点E ,连结B 2O .∵△A 2B 2C 2是等边三角形,∴A 2E =32a 2,∵△PB 1C 1是与△A 2B 2C 2边长相等的正三角形,∴P A 2=A 2E =32a 2,OE =A 1E -OA 1=3a 2-1,在△OB 2E 中,OB 22=B 2E 2+OE 2,即12=⎝ ⎛⎭⎪⎫12a 22+(3a 2-1)2,解得a 2=8313;答图(3)设PQ 与B n C n 交于点F ,连结OB n ,则OF =32na n -1,在Rt △OB n F 中,OB 2n =B n F 2+OF 2,即12=⎝ ⎛⎭⎪⎫12a n 2+⎝ ⎛⎭⎪⎫32na n -12.解得a n =43n3n 2+1.【思维升华】15.[浙江自主招生]如图,已知圆O的圆心为O,半径为3,点M为圆O 内的一个定点,OM=5,AB,CD是圆O的两条相互垂直的弦,垂足为M.(1)当AB=4时,求四边形ADBC的面积;(2)当AB变化时,求四边形ADBC的面积的最大值.解:(1)如答图,作OE⊥CD于E,OF⊥AB于F,连结OB,OC,那么AB=29-OF2=4,答图∴OF=5,又∵OE2+OF2=OM2=5,∴OE=0,∴CD=6,∴S四边形ADBC =12AB×CD=12;(2)设OF =x ,OE =y ,则x 2+y 2=5, ∵AB =29-x 2,CD =29-y 2,∴S 四边形ADBC =12AB ·CD=29-x 2×9-y 2=2-x 4+5x 2+36=2-⎝ ⎛⎭⎪⎫x 2-522+1694, ∴当x 2=52时,四边形ADBC 的最大面积是13.。
圆圆的有关概念与性质1.圆上各点到圆心的距离都等于半径。
2.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;圆又是中心对称图形,圆心是它的对称中心。
3.垂直于弦的直径平分这条弦,并且平分弦所对的弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
4.在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量相等,那么它们所对应的其余各组量都分别相等。
5.同弧或等弧所对的圆周角相等,都等于它所对的圆心角的一半。
6.直径所对的圆周角是 90°,90°所对的弦是直径。
7.三角形的三个顶点确定 1 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫外心,是三角形三边垂直平分线的交点。
8.与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点的交点,叫做三角形的内心。
9.圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.10.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角与圆有关的位置关系1.点与圆的位置关系共有三种:①点在圆外,②点在圆上,③点在圆内;对应的点到圆心的距离d和半径r之间的数量关系分别为:①d > r,②d = r,③d < r.2.直线与圆的位置关系共有三种:①相交,②相切,③相离;对应的圆心到直线的距离d和圆的半径r之间的数量关系分别为:①d < r,②d = r,③d > r.3.圆与圆的位置关系共有五种:①内含,②相内切,③相交,④相外切,⑤外离;两圆的圆心距d和两圆的半径R、r(R≥r)之间的数量关系分别为:①d < R-r,②d = R-r,③ R-r < d < R+ r,④d = R+r,⑤d > R+r.4.圆的切线垂直于过切点的半径;经过直径的一端,并且垂直于这条直径的直线是圆的切线.5.从圆外一点可以向圆引 2 条切线,切线长相等,这点与圆心之间的连线平分这两条切线的夹角。
第3章圆的基本性质选择题复习1.如图,抛物线y=x2﹣4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段PA的中点,连结OQ.则线段OQ的最大值是()A.3B.C.D.42.如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB 与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3B.4C.6D.83.如图,O的直径垂直于弦CD,垂足为E,22.5AOC=,CD的长为()∠=︒,4A.B.4C.D.84.如图,点A、B、C都在O上,O的半径为2,30∠=︒,则AB的长是()ACBA.2πB.πC.23πD.13π5.如图,在矩形ABCD中,已知4AB=,3BC=,矩形在直线l上绕其右下角的顶点B向右旋转90︒至图①位置,再绕右下角的顶点继续向右旋转90︒至图②位置,⋯,以此类推,这样连续旋转2015次后,顶点A在整个旋转过程中所经过的路程之和是()A.2015πB.3019.5πC.3018πD.3024π6.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()A.30°B.90°C.120°D.180°7.如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()A.(10,3)B.(﹣3,10)C.(10,﹣3)D.(3,﹣10)8.如图,在半径为的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是()A.2B.2C.2D.49.如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,AB=40m,点C是的中点,点D是AB的中点,且CD=10m,则这段弯路所在圆的半径为()A.25m B.24m C.30m D.60m10.在圆中,与半径相等的弦所对的圆心角的度数为()A.30°B.45°C.60°D.90°11.如图,在Rt△ABC中,∠ACB=90°,∠A=56°.以BC为直径的⊙O交AB于点D.E是⊙O上一点,且=,连接OE.过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为()A.92°B.108°C.112°D.124°12.如图,BC是⊙O的直径,A,D是⊙O上的两点,连接AB,AD,BD,若∠ADB=70°,则∠ABC的度数是()A.20°B.70°C.30°D.90°13.如图,AB是⊙O的弦,OC⊥AB交⊙O于点C,点D是⊙O上一点,∠ADC=30°,则∠BOC的度数为()A.30°B.40°C.50°D.60°14.如图,在⊙O中,所对的圆周角∠ACB=50°,若P为上一点,∠AOP=55°,则∠POB的度数为()A.30°B.45°C.55°D.60°15.如图,四边形ABCD是半圆的内接四边形,AB是直径,=.若∠C=110°,则∠ABC的度数等于()A.55°B.60°C.65°D.70°16.如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=5,CE=,则AE=()A.3B.3C.4D.217.如图,点O为线段BC的中点,点A,C,D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是()A.130°B.140°C.150°D.160°18.如图,点A、B、C、D在⊙O上,∠AOC=140°,点B是的中点,则∠D的度数是()A.70°B.55°C.35.5°D.35°19.如图,正六边形ABCDEF内接于⊙O,连接BD.则∠CBD的度数是()A.30°B.45°C.60°D.90°20.如图,在正六边形ABCDEF中,AC=2,则它的边长是()A.1B.C.D.221.如图,已知正五边形ABCDE内接于⊙O,连结BD,则∠ABD的度数是()A.60°B.70°C.72°D.144°22.如图,⊙O是正五边形ABCDE的外接圆,点P是的一点,则∠CPD的度数是()A.30°B.36°C.45°D.72°23.如图,在扇形AOB中,AC为弦,∠AOB=140°,∠CAO=60°,OA=6,则的长为()A.B.C.2πD.2π24.如图,点A、B,C,D在⊙O上,AB=AC,∠A=40°,BD∥AC,若⊙O的半径为2.则图中阴影部分的面积是()25.如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=2,以AB的中点O为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为()26.如图,直径为2cm的圆在直线l上滚动一周,则圆所扫过的图形面积为()A.5πB.6πC.20πD.24π27.如图,⊙O中,=,∠ACB=75°,BC=2,则阴影部分的面积是()28.一个扇形的半径为6,圆心角为120°,则该扇形的面积是()A.2πB.4πC.12πD.24π29.如图,在半径为6的⊙O中,点A,B,C都在⊙O上,四边形OABC是平行四边形,则图中阴影部分的面积为()A.6πB.3πC.2πD.2π第3章圆的基本性质选择题复习参考答案与试题解析1.【分析】连接BP,如图,先解方程x2﹣4=0得A(﹣4,0),B(4,0),再判断OQ为△ABP的中位线得到OQ=BP,利用点与圆的位置关系,BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,然后计算出BP′即可得到线段OQ的最大值.【解答】解:连接BP,如图,当y=0时,x2﹣4=0,解得x 1=4,x2=﹣4,则A(﹣4,0),B(4,0),∵Q是线段PA的中点,∴OQ为△ABP的中位线,∴OQ=BP,当BP最大时,OQ最大,而BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,∴BP′=5+2=7,∴线段OQ的最大值是.故选:C.【点评】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.也考查了三角形中位线.2.【分析】由Rt△APB中AB=2OP知要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,据此求解可得.【解答】解:∵PA⊥PB,∴∠APB=90°,∵AO=BO,∴AB=2PO,若要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,过点M作MQ⊥x轴于点Q,∴OM =5, 又∵MP ′=2, ∴OP ′=3, ∴AB =2OP ′=6, 故选:C .【点评】本题主要考查点与圆的位置关系,解题的关键是根据直角三角形斜边上的中线等于斜边的一半得出AB 取得最小值时点P 的位置.3.【解答】解:22.5A ∠=︒,245BOC A ∴∠=∠=︒,O 的直径AB 垂直于弦CD ,CE DE ∴=,OCE ∆为等腰直角三角形,CE ∴==,2CD CE ∴==. 故选:C .4.【解答】解30ACB ∠=︒,60AOB ∴∠=︒,2OA =, ∴60221801803n r AB πππ===︒, 故选:C .5.【解答】解:转动一次A 的路线长是:9042180ππ⨯=,转动第二次的路线长是:90551802ππ⨯=, 转动第三次的路线长是:90331802ππ⨯=, 转动第四次的路线长是:0, 转动五次A 的路线长是:9042180ππ⨯=, 以此类推,每四次循环,故顶点A 转动四次经过的路线长为:352622ππππ++=,20154503÷=….3 顶点A 转动2015次经过的路线长为:65043024ππ⨯=.故选:D .6.【分析】根据图形的对称性,用360°除以3计算即可得解.【解答】解:∵360°÷3=120°,∴旋转的角度是120°的整数倍,∴旋转的角度至少是120°.故选:C .【点评】本题考查了旋转对称图形,仔细观察图形求出旋转角是120°的整数倍是解题的关键. 7.【分析】先求出AB =6,再利用正方形的性质确定D (﹣3,10),由于70=4×17+2,所以第70次旋转结束时,相当于△OAB 与正方形ABCD 组成的图形绕点O 顺时针旋转2次,每次旋转90°,此时旋转前后的点D 关于原点对称,于是利用关于原点对称的点的坐标特征可出旋转后的点D 的坐标.【解答】解:∵A (﹣3,4),B (3,4),∴AB =3+3=6,∵四边形ABCD 为正方形,∴AD =AB =6,∴D (﹣3,10),∵70=4×17+2,∴每4次一个循环,第70次旋转结束时,相当于△OAB 与正方形ABCD 组成的图形绕点O 顺时针旋转2次,每次旋转90°,∴点D 的坐标为(3,﹣10).故选:D .【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.8.【分析】过点O 作OF ⊥CD 于点F ,OG ⊥AB 于G ,连接OB 、OD 、OE ,由垂径定理得出DF =CF ,AG =BG =AB =3,得出EG =AG ﹣AE =2,由勾股定理得出OG ==2,证出△EOG是等腰直角三角形,得出∠OEG=45°,OE=OG=2,求出∠OEF=30°,由直角三角形的性质得出OF=OE=,由勾股定理得出DF═,即可得出答案.【解答】解:过点O作OF⊥CD于点F,OG⊥AB于G,连接OB、OD、OE,如图所示:则DF=CF,AG=BG=AB=3,∴EG=AG﹣AE=2,在Rt△BOG中,OG===2,∴EG=OG,∴△EOG是等腰直角三角形,∴∠OEG=45°,OE=OG=2,∵∠DEB=75°,∴∠OEF=30°,∴OF=OE=,在Rt△ODF中,DF===,∴CD=2DF=2;故选:C.【点评】本题考查的是垂径定理、勾股定理以及直角三角形的性质,根据题意作出辅助线,构造出直角三角形是解答此题的关键.9.【分析】根据题意,可以推出AD=BD=20,若设半径为r,则OD=r﹣10,OB=r,结合勾股定理可推出半径r的值.【解答】解:∵OC⊥AB,∴AD=DB=20m,在Rt△AOD中,OA2=OD2+AD2,设半径为r得:r2=(r﹣10)2+202,解得:r=25m,∴这段弯路的半径为25m故选:A.【点评】本题主要考查垂径定理的应用、勾股定理的应用,关键在于设出半径为r后,用r表示出OD、OB的长度.10.【分析】画出符合题意的几何图形,证明△OAB是等边三角形即可得到此弦所对圆心角的度数.【解答】解:如图,∵OA=OB=AB,∴△OAB是等边三角形,∴∠AOB=60°.故选:C.【点评】本题考查了圆心角、弧、弦的关系.解答该题时,利用了等边三角形的判定和性质,熟记和圆有关的各种性质是解题的关键.11.【分析】直接利用互余的性质再结合圆周角定理得出∠COE的度数,再利用四边形内角和定理得出答案.【解答】解:∵∠ACB=90°,∠A=56°,∴∠ABC=34°,又∵∠OCF=∠OEF=90°,∴∠F=360°﹣90°﹣90°﹣68°=112°.故选:C.【点评】此题主要考查了圆周角定理以及四边形内角和定理,正确得出∠OCE的度数是解题关键.12.【分析】连接AC,如图,根据圆周角定理得到∠BAC=90°,∠ACB=∠ADB=70°,然后利用互余计算∠ABC的度数.【解答】解:连接AC,如图,∵BC是⊙O的直径,∴∠BAC=90°,∵∠ACB=∠ADB=70°,∴∠ABC=90°﹣70°=20°.故答案为20°.故选:A.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.13.【分析】由圆周角定理得到∠AOC=2∠ADC=60°,然后由垂径定理和圆心角、弧、弦的关系求得∠BOC的度数.【解答】解:如图,∵∠ADC=30°,∴∠AOC=2∠ADC=60°.∵AB是⊙O的弦,OC⊥AB交⊙O于点C,故选:D.【点评】本题考查了垂径定理,圆周角定理,圆心角、弧、弦之间的关系等知识点,能综合运用定理进行推理是解此题的关键.14.【分析】根据圆心角与圆周角关系定理求出∠AOB的度数,进而由角的和差求得结果.【解答】解:∵∠ACB=50°,∴∠AOB=2∠ACB=100°,∵∠AOP=55°,∴∠POB=45°,故选:B.【点评】本题是圆的一个计算题,主要考查了在同圆或等圆中,同弧或等弧所对的圆心角等于它所对的圆周角的2信倍.15.【分析】连接AC,根据圆内接四边形的性质求出∠DAB,根据圆周角定理求出∠ACB、∠CAB,计算即可.【解答】解:连接AC,∵四边形ABCD是半圆的内接四边形,∴∠DAB=180°﹣∠C=70°,∵=,∴∠CAB=∠DAB=35°,∵AB是直径,∴∠ABC=90°﹣∠CAB=55°,故选:A.【点评】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.16.【分析】连接AC,如图,根据圆内接四边形的性质和圆周角定理得到∠1=∠CDA,∠2=∠3,从而得到∠3=∠CDA,所以AC=AD=5,然后利用勾股定理计算AE的长.【解答】解:连接AC,如图,∵BA平分∠DBE,∴∠1=∠2,∵∠1=∠CDA,∠2=∠3,∴∠3=∠CDA,∴AC=AD=5,∵AE⊥CB,∴∠AEC=90°,∴AE===2.故选:D.【点评】本题考查了圆内接四边形的性质:圆内接四边形的对角互补.圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).也考查了勾股定理.17.【分析】根据题意得到四边形ABCD共圆,利用圆内接四边形对角互补即可求出所求角的度数.【解答】解:由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故选:B.【点评】此题考查了圆内接四边形的性质,熟练掌握圆内接四边形的性质是解本题的关键.18.【分析】根据圆心角、弧、弦的关系定理得到∠AOB=∠AOC,再根据圆周角定理解答.【解答】解:连接OB,∵点B是的中点,∴∠AOB=∠AOC=70°,由圆周角定理得,∠D=∠AOB=35°,故选:D.【点评】本题考查的是圆心角、弧、弦的关系定理、圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.【解答】解:∵在正六边形ABCDEF中,∠BCD==120°,BC=CD,∴∠CBD=(180°﹣120°)=30°,故选:A.【点评】本题考查的是正多边形和圆、等腰三角形的性质,三角形的内角和,熟记多边形的内角和是解题的关键.20.【分析】过点B作BG⊥AC于点G.,正六边形ABCDEF中,每个内角为(6﹣2)×180°÷6=120°,即∠ABC=120°,∠BAC=∠BCA=30°,于是AG=AC=,AB=2,【解答】解:如图,过点B作BG⊥AC于点G.正六边形ABCDEF中,每个内角为(6﹣2)×180°÷6=120°,∴∠ABC=120°,∠BAC=∠BCA=30°,∴AG=AC=,∴GB=1,AB=2,即边长为2.故选:D.【点评】本题考查了正多边形,熟练运用正多边形的内角和公式是解题的关键.21.【分析】根据多边形内角和定理、正五边形的性质求出∠ABC、CD=CB,根据等腰三角形的性质求出∠CBD,计算即可.【解答】解:∵五边形ABCDE为正五边形,∴∠ABC=∠C==108°,CD CB∴∠CBD==36°,∴∠ABD=∠ABC﹣∠CBD=72°,故选:C.【点评】本题考查的是正多边形和圆、多边形的内角和定理,掌握正多边形和圆的关系、多边形内角和等于(n﹣2)×180°是解题的关键.22.【分析】连接OC,OD.求出∠COD的度数,再根据圆周角定理即可解决问题;【解答】解:如图,连接OC,OD.∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,故选:B.【点评】本题考查正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.【分析】连接OC,根据等边三角形的性质得到∠BOC=80°,根据弧长公式计算即可.【解答】解:连接OC,∵OA=OC,∠CAO=60°,∴△AOC为等边三角形,∴∠AOC=60°,∴∠BOC=∠AOB﹣∠AOC=140°﹣60°=80°,则的长==,【点评】本题考查的是弧长的计算,等边三角形的判定和性质,掌握弧长公式:l =是解题的关键. 24.【分析】连接BC 、OD 、OB ,先证△BOD 是等边三角形,再根据阴影部分的面积是S 扇形BOD ﹣S △BOD 计算可得.【解答】解:如图所示,连接BC 、OD 、OB ,∵∠A =40°,AB =AC ,∴∠ACB =70°,∵BD ∥AC ,∴∠ABD =∠A =40°,∴∠ACD =∠ABD =40°,∴∠BCD =30°,则∠BOD =2∠BCD =60°,又OD =OB ,∴△BOD 是等边三角形,则图中阴影部分的面积是S 扇形BOD ﹣S △BOD =﹣×22 =π﹣,故选:B.【点评】本题主要考查扇形面积的计算,解题的关键是掌握等腰三角形和等边三角形的判定与性质、圆周角定理、扇形的面积公式等知识点.25.【分析】根据题意,作出合适的辅助线,即可求得DE的长、∠DOB的度数,然后根据图形可知阴影部分的面积是△ABC的面积减去△AOD的面积和扇形BOD的面积,从而可以解答本题.【解答】解:∵在Rt△ABC中,∠ABC=90°,AB=2,BC=2,∴tan A=,∴∠A=30°,∴∠DOB=60°,∵OD=AB=,∴DE=,∴阴影部分的面积是:=,故选:A.【点评】本题考查扇形面积的计算、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.26.【分析】根据圆的面积和矩形的面积公式即可得到结论.【解答】解:圆所扫过的图形面积=π+2π×2=5π,故选:A.【点评】本题考查了圆的面积的计算矩形的面积的计算,圆的周长的计算,中点圆所扫过的图形面积是圆的面积与矩形的面积和是解题的关键.27.【分析】连接OB 、OC ,先利用同弧所对的圆周角等于所对的圆心角的一半,求出扇形的圆心角为60度,即可求出半径的长2,利用三角形和扇形的面积公式即可求解;【解答】解:作OD ⊥BC ,则BD =CD ,连接OB ,OC ,∴OD 是BC 的垂直平分线, ∵=,∴AB =AC ,∴A 在BC 的垂直平分线上,∴A 、O 、D 共线,∵∠ACB =75°,AB =AC ,∴∠ABC =∠ACB =75°,∴∠BAC =30°,∴∠BOC =60°,∵OB =OC ,∴△BOC 是等边三角形,∴OA =OB =OC =BC =2,∵AD ⊥BC ,AB =AC ,∴BD =CD ,∴AD 经过圆心O ,∴OD =OB =,∴AD =2+,∴S △ABC =BC •AD =2+,S △BOC =BC •OD =,∴S 阴影=S △ABC +S 扇形BOC ﹣S △BOC =2++﹣=2+π,【点评】本题主要考查了扇形的面积公式,圆周角定理,垂径定理等,明确S 阴影=S △ABC +S 扇形BOC ﹣S △BOC 是解题的关键.28.【分析】根据扇形的面积公式S =计算即可.【解答】解:S ==12π,故选:C .【点评】本题考查的是扇形面积的计算,掌握扇形的面积公式S =是解题的关键.29.【分析】连接OB ,根据平行四边形的性质得到AB =OC ,推出△AOB 是等边三角形,得到∠AOB =60°,根据扇形的面积公式即可得到结论.【解答】解:连接OB ,∵四边形OABC 是平行四边形,∴AB =OC ,∴AB =OA =OB ,∴△AOB 是等边三角形,∴∠AOB =60°,∵OC ∥AB ,∴S △AOB =S △ABC ,∴图中阴影部分的面积=S 扇形AOB ==6π,【点评】本题考查的是扇形面积的计算,平行四边形的性质,掌握扇形的面积公式是解题的关键.。
人教版 九年级数学 第24章24.1 ---24.4复习题(含答案) 24.1 圆的有关性质一、选择题(本大题共10道小题)1. 如图,已知直径MN ⊥弦AB ,垂足为C ,有下列结论:①AC =BC ;②AN ︵=BN ︵;③AM ︵=BM ︵;④AM =BM .其中正确的个数为( )A .1B .2C .3D .42. 小红不小心把家里的一块圆形玻璃镜打碎了,需要配制一块同样大小的玻璃镜,工人师傅在一块如图所示的玻璃镜残片的边缘描出了点A ,B ,C ,给出三角形ABC ,则这块玻璃镜的圆心是 ( )A .AB ,AC 边上的中线的交点 B .AB ,AC 边上的垂直平分线的交点 C .AB ,AC 边上的高所在直线的交点D .∠BAC 与∠ABC 的角平分线的交点3.如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是( )A .50°B .60°C .80°D .100°4. 如图,AB ,AC分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为A.5B.4C.13D.4.85.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF.若∠AOF=40°,则∠F的度数是( )A.20°B.35°C.40°D.55°6. 如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为P,则OP的长为() A.3 B.2.5 C.4 D.3.57. 如图,AB为⊙O的直径,C,D为⊙O上两点.若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°8. 如图,四边形ABCD是菱形,⊙O经过点A,C,D,与BC相交于点E,连接AC ,AE .若∠D =80°,则∠EAC 的度数为( )A .20°B .25°C .30°D .35°9. 如图,在半径为5的⊙O 中,AB ,CD 是互相垂直的两条弦,垂足为P ,且AB =CD =8,则OP 的长为( )A .3B .4C .3 2D .4 210. 如图,⊙P与x 轴交于点A(—5,0),B(1,0),与y 轴的正半轴交于点C.若∠ACB =60°,则点C 的纵坐标为( )A.13+ 3B .2 2+ 3C .4 2D .2 2+2二、填空题(本大题共8道小题)11. 如图所示,AB 为☉O 的直径,点C 在☉O 上,且OC ⊥AB ,过点C 的弦CD 与线段OB 相交于点E ,满足∠AEC=65°,连接AD ,则∠BAD= 度.12. (2019•娄底)如图,C 、D 两点在以AB 为直径的圆上,2AB =,30ACD ∠=︒,则AD __________.13. 如图,以△ABC的边BC为直径的⊙O分别交AB,AC于点D,E,连接OD,OE.若∠A=65°,则∠DOE=________°.14. 如图,在⊙O中,BD为⊙O的直径,弦AD的长为3,AB的长为4,AC平分∠DAB,则弦CD的长为________.15. 如图,在⊙O中,半径OA垂直于弦BC,点D在圆上,且∠ADC=30°,则∠AOB的度数为________.16. 如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E 在边BC上,连接AE.若∠ABC=64°,则∠BAE的度数为________.17. 当宽为3 cm 的刻度尺的一边与⊙O 相切于点A 时,另一边与⊙O 的两个交点B ,C 处的读数如图所示(单位: cm),那么该圆的半径为________cm.18. 如图,△ABC 内接于⊙O ,若∠OAB =32°,则∠C =________°.三、解答题(本大题共4道小题)19. 如图,在⊙O 中,M ,N 分别是半径OA ,OB 的中点,且CM ⊥OA 交⊙O 于点C ,DN ⊥OB 交⊙O 于点D .求证:AC ︵=BD ︵.20. 如图,AB 为O 的直径,点C 在O 上.(1)尺规作图:作BAC 的平分线,与O 交于点D ;连接OD ,交BC 于点E (不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑); (2)探究OE 与AC 的位置及数量关系,并证明你的结论.21. 如图,直线AB经过⊙O的圆心,与⊙O相交于点A,B,点C在⊙O上,且∠AOC=30°,P是直线AB上的一个动点(与点O不重合),直线PC与⊙O相交于点Q.在直线AB上使QP=QO成立的点P共有几个?请相应地求出∠OCP的度数.22. 如图,点E是△ABC的内心,线段AE的延长线交BC于点F(∠AFC≠90°),交△ABC的外接圆于点D.(1)求点F与△ABC的内切圆⊙E的位置关系;(2)求证:ED=BD;(3)若∠BAC=90°,△ABC的外接圆的直径是6,求BD的长;(4)B,C,E三点可以确定一个圆吗?若可以,则它们确定的圆的圆心和半径分别是什么?若不可以,请说明理由.人教版 九年级数学 24.1 圆的有关性质 课后训练-答案一、选择题(本大题共10道小题) 1. 【答案】D2. 【答案】B[解析]本题实质上是要确定三角形外接圆的圆心,三角形外接圆的圆心是三边垂直平分线的交点,故选B .3. 【答案】D[解析] 由同弧所对的圆周角等于圆心角的一半, 可知∠α=2∠BCD =260°. 而∠α+∠BOD =360°, 所以∠BOD =100°.4. 【答案】C【解析】∵AB 为直径,∴90ACB ∠=︒,∴6BC ===, ∵OD AC ⊥,∴142CD AD AC ===,在Rt CBD △中,BD ==C .5. 【答案】B6. 【答案】C7. 【答案】B[解析] 如图,连接AD.∵AB 为⊙O 的直径,∴∠ADB =90°.∵∠A 和∠BCD 都是BD ︵所对的圆周角,∴∠A =∠BCD =40°,∴∠ABD =90°-40°=50°.故选B.8. 【答案】C9. 【答案】C[解析] 如图,过点O 作OE ⊥AB ,OF ⊥CD ,垂足分别为E ,F ,连接AO.∵OE ⊥AB ,∴AE =12AB =4.在Rt △OAE 中,OA =5,由勾股定理可得OE =3,同理得OF =3.又∵AB ⊥CD ,∴四边形OEPF 是正方形,∴PE =OE = 3.在Rt △OPE 中,由勾股定理可得OP =3 2.10. 【答案】B[解析] 如图,连接PA ,PB ,PC ,过点P 作PD ⊥AB 于点D ,PE⊥OC 于点E.∵∠ACB =60°,∴∠APB =120°. ∵PA =PB ,∴∠PAB =∠PBA =30°. ∵A(-5,0),B(1,0), ∴AB =6, ∴AD =BD =3,∴PD =3,PA =PB =PC =2 3. ∵PD ⊥AB ,PE ⊥OC ,∠AOC =90°,∴四边形PEOD 是矩形,∴OE =PD =3,PE =OD =3-1=2, ∴CE =PC2-PE2=12-4=2 2, ∴OC =CE +OE =2 2+3, ∴点C 的纵坐标为2 2+ 3. 故选B.二、填空题(本大题共8道小题)11. 【答案】20 [解析]如图,连接DO ,∵CO ⊥AB , ∴∠COB=90°,∵∠AEC=65°,∴∠C=25°,∵OD=OC ,∴∠ODC=∠C=25°,∴∠DOC=130°,∴∠DOB=40°,∵2∠BAD=∠DOB , ∴∠BAD=20°.12. 【答案】1【解析】∵AB 为直径,∴90ADB ∠=︒,∵30B ACD ∠=∠=︒,∴112122AD AB ==⨯=. 故答案为:1.13. 【答案】50[解析] 由三角形的内角和定理,得∠B +∠C =180°-∠A .再由OB =OD =OC =OE ,得到∠BDO =∠B ,∠CEO =∠C .在等腰三角形BOD 和等腰三角形COE 中,∠DOB +∠EOC =180°-2∠B +180°-2∠C =360°-2(∠B +∠C )=360°-2(180°-∠A )=2∠A ,所以∠DOE =180°-2∠A =50°.14. 【答案】52 2 [解析] ∵BD 为⊙O 的直径,∴∠DAB =∠DCB =90°. ∵AD =3,AB =4,∴BD =5.又∵AC 平分∠DAB ,∴∠DAC =∠BAC =45°, ∴∠DBC =∠DAC =45°,∠CDB =∠BAC =45°, 从而CD =CB ,∴CD =52 2.15. 【答案】60°[解析] ∵OA ⊥BC ,∴AB ︵=AC ︵,∴∠AOB =2∠ADC.∵∠ADC=30°,∴∠AOB =60°.16. 【答案】52°[解析] ∵四边形ABCD 是圆内接四边形,∴∠B +∠D =180°.∵∠B =64°,∴∠D =116°.又∵点D 关于AC 的对称点是点E , ∴∠AEC =∠D =116°.又∵∠AEC =∠B +∠BAE ,∴∠BAE =52°.17. 【答案】25618. 【答案】58[解析] 方法一:如图①,连接OB.∵在△OAB 中,OA =OB ,∴∠OAB =∠OBA.又∵∠OAB =32°,∴∠OBA =32°,∴∠AOB =180°-2×32°=116°.又∵∠C =12∠AOB(一条弧所对的圆周角是它所对的圆心角的一半), ∴∠C =58°.方法二:如图②,过点A 作直径AD ,连接BD ,则∠ABD =90°,∴∠C =∠D =90°-32°=58°(同弧所对的圆周角相等).三、解答题(本大题共4道小题)19. 【答案】证明:如图,连接OC ,OD ,则OC =OD .∵M ,N 分别是半径OA ,OB 的中点, ∴OM =ON .∵CM ⊥OA ,DN ⊥OB ,∴∠OMC =∠OND =90°. 在Rt △OMC 和Rt △OND 中,⎩⎨⎧OC =OD ,OM =ON ,∴Rt △OMC ≌Rt △OND (HL), ∴∠MOC =∠NOD ,∴AC ︵=BD ︵.20. 【答案】(1)如图所示:(2)OE AC ∥,12OE AC =. 理由如下:∵AD 平分BAC ∠, ∴12BAD BAC ∠=∠, ∵12BAD BOD ∠=∠,∴BOD BAC ∠=∠, ∴OE AC ∥,∵OA OB =,∴OE 为ABC △的中位线, ∴OE AC ∥,12OE AC =.21. 【答案】解:在直线AB 上使QP =QO 成立的点P 共有3个. (1)如图①.在△QOC 中,OC =OQ ,∴∠OQC =∠OCQ . 在△OPQ 中,QP =QO ,∴∠QOP =∠QPO .又∵∠QPO =∠OCQ +∠AOC ,且∠AOC =30°,∠QOP +∠QPO +∠OQC =180°,∴3∠OCQ =120°, ∴∠OCQ =40°. 即∠OCP =40°.(2)如图②. ∵QO =QP , ∴∠QPO =∠QOP .设∠QPO =x ,则∠OQC =∠QPO +∠QOP =2x .又∵OC =OQ , ∴∠OCQ =∠OQC =2x ,∴∠AOC =∠OPC +∠OCP =x +2x =3x . ∵∠AOC =30°,∴3x =30°,解得x =10°, ∴∠OCP =2x =20°. (3)如图③.∵QO =QP ,∴∠QOP =∠QPO . ∵OC =OQ ,∴∠OQC =∠OCQ .设∠QPO =y ,则∠OQC =∠OCQ =∠QPO +∠AOC =y +30°,∴在△OPQ中,有y+y+y+30°=180°,解得y=50°,∴∠OCP=180°-50°-30°=100°.综上所述,在直线AB上使QP=QO成立的点P共有3个,∠OCP的度数分别为40°,20°,100°.22. 【答案】解:(1)设⊙E切BC于点M,连接EM,则EM⊥BC.又线段AE的延长线交BC 于点F,∠AFC≠90°,∴EF>EM,∴点F在△ABC的内切圆⊙E外.(2)证明:∵点E是△ABC的内心,∴∠BAD=∠CAD,∠ABE=∠CBE.∵∠CBD=∠CAD,∴∠BAD=∠CBD.∵∠BED=∠ABE+∠BAD,∠EBD=∠CBE+∠CBD,∴∠BED=∠EBD,∴ED=BD.(3)如图①,连接CD.设△ABC的外接圆为⊙O.∵∠BAC=90°,∴BC是⊙O的直径,∴∠BDC=90°.∵⊙O的直径是6,∴BC=6.∵E为△ABC的内切圆的圆心,∴∠BAD=∠CAD,∴BD=CD.又∵BD2+CD2=BC2,∴BD=CD=3 2.(4)B,C,E三点可以确定一个圆.如图②,连接CD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴BD=CD.又由(2)可知ED=BD,∴BD=CD=ED,∴B,C,E三点确定的圆的圆心为点D,半径为BD(或ED,CD)的长度.24.2 点和圆、直线和圆的位置关系一、选择题(本大题共8道小题)1. 已知⊙O的半径为5 cm,圆心O到直线l的距离为5 cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定2. 2019·武汉江岸区期中点P到直线l的距离为3,以点P为圆心,以下列长度为半径画圆,能使直线l与⊙P相交的是()A.1 B.2 C.3 D.43. 2020·武汉模拟在Rt△ABC中,∠BAC=90°,AB=8,AC=6,以点A为圆心,4.8为半径的圆与直线BC的公共点的个数为()A.0 B.1 C.2 D.不能确定4. 如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与图中7×4方格中的格点相连,连线能够与该圆弧相切的格点有()A.1个B.2个C.3个D.4个5.如图,AP为⊙O的切线,P为切点,若∠A=20°,C、D为圆周上两点,且∠PD C=60°,则∠OBC等于( )A. 55°B. 65°C. 70°D. 75°6. 如图,在△MBC中,∠MBC=90°,∠C=60°,MB=2 3,点A在MB上,以AB为直径作⊙O与MC相切于点D,则CD的长为()A. 2B. 3 C.2 D.37. 如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ的最小值为()A.5 B.4 2 C.4.75 D.4.88. 一把直尺、含60°角的三角尺和光盘如图所示摆放,A为60°角与直尺的交点,AB=3,则光盘的直径是()A.3 B.3 3 C.6 D.6 3二、填空题(本大题共8道小题)9. 直角三角形的两条直角边分别是5和12,则它的内切圆半径为.10. 如图,P A,PB是☉O的切线,A,B为切点,点C,D在☉O上.若∠P=102°,则∠A+∠C=.11. 设⊙O 的半径为3,点O 到直线l 的距离为d ,若直线l 与⊙O 至少有一个公共点,则d 的取值范围是________.12. 如图,AB是⊙O 的直径,⊙O 交BC 于点D ,DE ⊥AC ,垂足为E ,要使DE是⊙O 的切线,则图中的线段应满足的条件是____________.13. 如图,在△ABC 中,∠A =60°,BC =5 cm.能够将△ABC 完全覆盖的最小圆形纸片的直径是________cm.14. 已知l 1∥l 2,l 1,l 2之间的距离是3 cm ,圆心O 到直线l 1的距离是1 cm ,如果圆O 与直线l 1,l 2有三个公共点,那么圆O 的半径为________cm.15. 如图,AB 是⊙O的直径,OA =1,AC 是⊙O 的弦,过点C 的切线交AB 的延长线于点D.若BD =2-1,则∠ACD =________°.16. 如图所示,在半圆O 中,AB 是直径,D是半圆O 上一点,C 是AD ︵的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE,CB于点P,Q,连接AC,有下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心.其中正确的结论是________(只需填写序号).三、解答题(本大题共4道小题)17. 在△ABC中,AB=AC=10,BC=16,⊙A的半径为7,判断⊙A与直线BC 的位置关系,并说明理由.18. 如图,AC是⊙O的直径,PA切⊙O于点A,PB切⊙O于点B,且∠APB=60°.(1)求∠BAC的度数;(2)若PA=1,求点O到弦AB的距离.19. 已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,求证:AC平分∠DAB;(2)如图②,当直线l与⊙O相交于点E,F时,求证:∠BAF=∠DAE.20. 如图,直线AB经过⊙O上的点C,直线AO与⊙O交于点E和点D,OB与⊙O交于点F,连接DF,DC.已知OA=OB,CA=CB.(1)求证:直线AB是⊙O的切线;(2)求证:∠CDF=∠EDC;(3)若DE=10,DF=8,求CD的长.人教版九年级数学24.2 点和圆、直线和圆的位置关系培优训练-答案一、选择题(本大题共8道小题)1. 【答案】B2. 【答案】D3. 【答案】B4. 【答案】C[解析] 如图,连接AB,BC,作AB,BC的垂直平分线,可得点A,B,C所在的圆的圆心为O′(2,0).只有当∠O′BF=∠O′BD+∠DBF=90°时,BF与圆相切,此时△BO′D≌△FBE,EF=DB=2,此时点F的坐标为(5,1).作过点B,F的直线,直线BF经过格点(1,3),(7,0),此两点亦符合要求.即与点B的连线,能够与该圆弧相切的格点是(5,1)或(1,3)或(7,0),共3个.5. 【答案】B【解析】连接OP ,如解图,则OP ⊥AP .∵∠D =60°,∴∠COP =120°,∵∠A =20°,∠APO =90°,∴∠AOP =70°,∴∠AOC =50°,∵OB =OC ,∴∠OBC =180°-50°2=65°.解图6. 【答案】C[解析] 在Rt △BCM 中,∠MBC =90°,∠C =60°,∴∠BMC =30°,∴BC =12MC ,即MC =2BC.由勾股定理,得MC2=BC2+MB2.∵MB =2 3, ∴(2BC)2=BC2+12,∴BC =2.∵AB 为⊙O 的直径,且AB ⊥BC ,∴BC 为⊙O 的切线.又∵CD 也为⊙O 的切线,∴CD =BC =2.7. 【答案】D[解析] 如图,设PQ 的中点为F ,⊙F 与AB 的切点为D ,连接FD ,FC ,CD .∵AB =10,AC =8,BC =6, ∴∠ACB =90°, ∴PQ 为⊙F 的直径.∵⊙F 与AB 相切,∴FD ⊥AB ,FC +FD =PQ ,而FC +FD ≥CD ,∴当CD 为Rt △ABC 的斜边AB 上的高且点F 在CD 上时,PQ 有最小值,为CD 的长,即CD 为⊙F 的直径.∵S △ABC =12BC ·AC =12CD ·AB ,∴CD =4.8.故PQ 的最小值为4.8.8. 【答案】D[解析] 设光盘的圆心为O ,连接OA ,OB ,则OB⊥AB ,∠OAB =12×(180°-60°)=60°. ∵AB =3,∴OA =6,OB =3 3, ∴光盘的直径是6 3.故选 D.二、填空题(本大题共8道小题)9. 【答案】2 [解析]直角三角形的斜边==13,所以它的内切圆半径==2.10. 【答案】219°[解析]连接AB ,∵P A ,PB 是☉O 的切线, ∴P A=PB. ∵∠P=102°,∴∠P AB=∠PBA=(180°-102°)=39°. ∵∠DAB +∠C=180°,∴∠P AD +∠C=∠P AB +∠DAB +∠C=180°+39°=219°.11. 【答案】0≤d≤312. 【答案】BD =CD或AB =AC (答案不唯一)[解析] (1)连接OD .要使DE 是⊙O 的切线,结合DE ⊥AC ,只需OD ∥AC ,根据O 是AB 的中点,只需BD =CD 即可;(2)根据(1)中探求的条件,要使BD =CD ,则连接AD ,由于∠ADB =90°,只需AB =AC ,根据等腰三角形的三线合一即可.13. 【答案】10 33 如图,能够将△ABC 完全覆盖的最小圆形纸片是△ABC 的外接圆⊙O.连接OB ,OC ,则∠BOC =2∠A =120°.过点O 作OD ⊥BC 于点D ,则∠BOD =12∠BOC =60°.∴∠OBD =30°,∴OB =2OD.由垂径定理,得BD =12BC =52 cm ,在Rt △BOD 中,由勾股定理,得OB2=OD2+BD2,即(2OD)2=OD2+(52)2,解得OD =56 3 cm.∴OB =5 33cm ,∴能够将△ABC 完全覆盖的最小圆形纸片的直径是10 33 cm.14. 【答案】2或4 [解析] 设圆O 的半径为r cm 如图①所示,r -1=3,得r =4;如图②所示,r +1=3,得r =2.15. 【答案】112.5 [解析] 如图,连接OC.∵CD 是⊙O 的切线,∴OC ⊥CD.∵BD =2-1,OA =OB =OC =1,∴OD =2,∴CD =OD2-OC2=(2)2-12=1,∴OC =CD ,∴∠DOC =45°.∵OA =OC ,∴∠OAC =∠OCA ,∴∠OCA =12∠DOC =22.5°,∴∠ACD =∠OCA +∠OCD =22.5°+90°=112.5°.16. 【答案】②③ [解析] ∵在半圆O 中,AB 是直径,D 是半圆O 上一点,C 是AD ︵的中点,∴AC ︵=DC ︵,但不一定等于DB ︵,∴∠BAD 与∠ABC 不一定相等,故①错误.如图,连接OD ,则OD ⊥GD ,∠OAD =∠ODA .∵∠ODA +∠GDP =90°,∠OAD +∠GPD =∠OAD +∠APE =90°, ∴∠GPD =∠GDP ,∴GP =GD ,故②正确.补全⊙O ,延长CE 交⊙O 于点F .∵CE ⊥AB ,∴A 为FC ︵的中点,即AF ︵=AC ︵.又∵C 为AD ︵的中点,∴CD ︵=AC ︵,∴AF ︵=CD ︵,∴∠CAP =∠ACP ,∴AP =CP .∵AB 为⊙O 的直径,∴∠ACQ =90°,∴∠ACP +∠PCQ =90°,∠CAP +∠PQC =90°,∴∠PCQ =∠PQC ,∴PC =PQ ,∴AP =PQ ,即P 为Rt △ACQ 的斜边AQ 的中点,∴点P 为Rt △ACQ 的外心,故③正确.三、解答题(本大题共4道小题)17. 【答案】解:⊙A 与直线BC 相交.理由:过点A 作AD ⊥BC 于点D ,则BD =CD =8.∵AB =AC =10,∴AD =6.∵6<7,∴⊙A 与直线BC 相交.18. 【答案】解:(1)∵PA 切⊙O 于点A ,PB 切⊙O 于点B ,∴PA =PB ,∠PAC =90°.∵∠APB =60°,∴△APB 是等边三角形,∴∠BAP =60°,∴∠BAC =90°-∠BAP =30°.(2)过点O 作OD ⊥AB 于点D ,如图所示,则AD =BD =12AB.由(1)得△APB是等边三角形,∴AB=PA=1,∴AD=1 2.在Rt△AOD中,∵∠BAC=30°,∴OD=12OA.由勾股定理,得OA2=OD2+AD2,即(2OD)2=OD2+(1 2)2,∴OD=36,即点O到弦AB的距离为36.19. 【答案】证明:(1)如图①,连接OC.∵直线l与⊙O相切于点C,∴OC⊥l.又∵AD⊥l,∴AD∥OC,∴∠DAC=∠ACO.∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB.(2)如图②,连接BF.∵AB是⊙O的直径,∴∠AFB=90°,∴∠BAF=90°-∠B.∵∠AEF=∠ADE+∠DAE=90°+∠DAE,又由圆内接四边形的性质,得∠AEF+∠B=180°,∴90°+∠DAE+∠B=180°,∴∠DAE=90°-∠B,∴∠BAF=∠DAE.20. 【答案】解:(1)证明:如图,连接OC.∵OA=OB,AC=CB,∴OC⊥AB.又∵点C在⊙O上,∴直线AB是⊙O的切线.(2)证明:∵OA=OB,AC=CB,∴∠AOC=∠BOC.∵OD=OF,∴∠ODF=∠OFD.∵∠AOB=∠ODF+∠OFD=∠AOC+∠BOC,∴∠BOC=∠OFD,∴OC∥DF,∴∠CDF=∠OCD.∵OD=OC,∴∠ODC=∠OCD,∴∠CDF=∠EDC.(3)如图,过点O作ON⊥DF于点N,延长DF交AB于点M. ∵ON⊥DF,∴DN=NF=4.在Rt△ODN中,∵∠OND=90°,OD=5,DN=4,∴ON=OD2-DN2=3.由(2)知OC∥DF,∴∠OCM+∠CMN=180°.由(1)知∠OCM=90°,∴∠CMN=90°=∠OCM=∠MNO,∴四边形OCMN是矩形,∴CM=ON=3,MN=OC=5.在Rt△CDM中,∵∠DMC=90°,CM=3,DM=DN+MN=9,∴CD=DM2+CM2=92+32=310.24.3正多边形和圆一、选择题1.如图,四边形ABCD是⊙O的内接四边形,AB为⊙0直径,点C为劣弧BD 的中点,若∠DAB=40°,则∠ABC=().A.140°B.40°C.70°D.50°2.如图,圆O是△ABC的外接圆,连接OA、OC,∠OAC=20°,则∠ABC的度数为()A.140°B.110°C.70°D.40°3.如图,已知△ABC为⊙O的内接三角形,AB>AC.E为BAC的中点,过E 作EF⊥AB于F.若AF=1,AC=4,∠C=60°,则⊙O的面积是()A.8πB.10πC.12πD.18π4.如图,四边形ABCD 内接于O ,9AB =,15AD =,120BCD ∠=︒,弦AC 平分BAD ∠,则AC 的长是( )A .73B .83C .12D .135.如图,AB 为⊙O 的直径,点C 为圆上一点,∠BAC =20°,将劣弧AC 沿弦AC 所在的直线翻折,交AB 于点D ,则弧AD 的度数等于( )A .40°B .50C .80°D .1006.如图,等边△ABD 与等边△ACE ,连接BE 、CD ,BE 的延长线与CD 交于点F ,下列结论:(1)BE=CD ;(2)AF 平分∠EAC ; (3)∠BFD=60°;(4)AF+FD=BF 其中正确的有( )A .1个B .2个C .3个D .4个7.正方形ABCD 中,对角线AC 、BD 交于O ,Q 为CD 上任意一点,AQ 交BD 于M ,过M作MN ⊥AM 交BC 于N ,连AN 、QN .下列结论:①MA=MN ;②∠AQD=∠AQN ; ③S △AQN =12S 五边形ABNQD ;④QN 是以A 为圆心,以AB 为半径的圆的切线.其中正确的结论有( )A .①②③④B .只有①③④C .只有②③④D .只有①② 8.如图,在菱形ABCD 中,点P 是BC 边上一动点,连结AP ,AP 的垂直平分线交BD 于点G ,交 AP 于点E ,在P 点由B 点到C 点的运动过程中,∠APG 的大小变化情况是( )A .变大B .先变大后变小C .先变小后变大D .不变9.如图,矩形ABCD 为⊙O 的内接四边形,AB =2,BC =3,点E 为BC 上一点,且BE =1,延长AE 交⊙O 于点F ,则线段AF 的长为( )A .755B .5C .5+1D .35210.在四边形ABCD 中,M 、N 分别是CD 、BC 的中点, 且AM ⊥CD ,AN ⊥BC ,已知∠MAN=74°,∠DBC=41°,则∠ADB 度数为( ).A .15°B .17°C .16°D .32°二、填空题11.如图,C 为半圆O 上一点,AB 为直径,且AB 2a =,COA 60∠=.延长AB 到P ,使1BP AB 2=,连CP 交半圆于D ,过P 作AP 的垂线交AD 的延长线于H ,则PH 的长度为________.12.如图,边长为4的正方形ABCD内接于⊙O,点E是弧AB上的一动点(不与点A、B重合),点F是弧BC上的一点,连接OE,OF,分别与交AB,BC于点G,H,且∠EOF=90°,连接GH,有下列结论:①弧AE=弧BF;②△OGH是等腰直角三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为4+22.其中正确的是_____.(把你认为正确结论的序号都填上)13.如图,在Rt△ABC中,∠BAC=90°,BC=5,AB=3,点D是线段BC上一动点,连接AD,以AD为边作△ADE∽△ABC,点N是AC的中点,连接NE,当线段NE最短时,线段CD的长为_____.14.如图,四边形ABCD内接于⊙O,∠1+∠2=64°,∠3+∠4=__________°.15.如图,边长一定的正方形ABCD,Q为CD上一个动点,AQ交BD于点M,过M作MN⊥AQ交BC于点N,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;②MP=12BD;③BN+DQ=NQ;④AB BNBM2是_____.三、解答题16.如图,四边形ABCD 是O 的内接四边形,42BC =,45BAC ∠=,75ABC ∠=,求AB 的长.17.如图,已知∠MON=120°,点A ,B 分别在OM ,ON 上,且OA =OB =a ,将射线OM 绕点O 逆时针旋转得到OM′,旋转角为α(0120α≤<︒︒且60α≠︒),作点A 关于直线OM′的对称点C ,画直线BC 交于OM′与点D ,连接AC ,AD .有下列结论:有下列结论:①∠BDO + ∠ACD = 90°;②∠ACB 的大小不会随着a 的变化而变化;③当 30︒=α时,四边形OADC 为正方形;④ACD ∆23a .其中正确的是________________.(把你认为正确结论的序号都填上) 18.我们定义:有一组邻边相等且有一组对角互补的凸四边形叫做等补四边形 (1)概念理解①根据上述定义举一个等补四边形的例子:②如图1,四边形ABCD 中,对角线BD 平分∠ABC ,∠A +∠C =180°,求证:四边形ABCD是等补四边形(2)性质探究:③小明在探究时发现,由于等补四边形有一组对角互补,可得等补四边形的四个顶点共圆,如图2,等补四边形ABCD内接于⊙O,AB=AD,则∠ACD∠ACB(填“>”“<”或“=“);④若将两条相等的邻边叫做等补四边形的“等边”,等边所夹的角叫做“等边角”,它所对的角叫做“等边补角”连接它们顶点的对角线叫做“等补对角线”,请用语言表述③中结论:(3)问题解决在等补四边形ABCD中,AB=BC=2,等边角∠ABC=120°,等补对角线BD 与等边垂直,求CD的长.19.定义:在凸四边形中,我们把两组对边乘积的和等于对角线的乘积的四边形称为“完美四边形”(1)在正方形、矩形、菱形中,一定是“完美四边形”的是______.(2)如图1,在△ABC中,AB=2,BC=52,AC=3,D为平面内一点,以A、B、C、D四点为顶点构成的四边形为“完美四边形”,若DA,DC的长是关于x的一元二次方程x2-(m+3)x+14(5m2-2m+13)=0(其中m为常数)的两个根,求线段BD的长度.(3)如图2,在“完美四边形”EFGH中,∠F=90°,EF=6,FG=8,求“完美四边形”EFGH面积的最大值.20.如图,O 是ABC 的外接圆,ABC 的外角DAC ∠的平分线交O 于点E ,连接CE 、BE .(1)求证:BE CE =;(2)若60CAB ∠=︒,23BC =,求劣弧BC 的长度.21.(1)已知:如图1,AB 是O 的直径,点P 为O 上一点(且点P 不与A 、B 重合)连接PA ,PB ,APB ∠的角平分线PC 交O 于点C . ①若86PA PB ==,,求AB 的长 ②求证:2PA PB PC +=(2)如图2,在正方形ABCD 中,52AB 2=,若点P 满足3PC =,且90APC ∠=︒,请直接写出点B 到AP 的距离.22.如图(1) ,折叠平行四边形ABCD ,使得,B D 分别落在,BC CD 边上的,B D ''点,,AE AF 为折痕(1)若AE AF =,证明:平行四边形ABCD 是菱形; (2)若110BCD ︒∠= ,求B AD ''∠的大小;(3)如图(2) ,以,AE AF 为邻边作平行四边形AEGF ,若AE EC =,求CGE ∠的大小23.在平面直角坐标系xOy 中,已知(0,2)A ,动点P 在3y x =的图像上运动(不与O 重合),连接AP ,过点P 作PQ AP ⊥,交x 轴于点Q ,连接AQ .(1)求线段AP 长度的取值范围;(2)试问:点P 运动过程中,QAP ∠是否问定值?如果是,求出该值;如果不是,请说明理由.(3)当OPQ ∆为等腰三角形时,求点Q 的坐标.【参考答案】1.C 2.B 3.C 4.B 5.D 6.C 7.A 8.D 9.A 10.C 113 12.①②④ 13.411014.64 15.①②③④ 16.317.①②④18.(1)①正方形;②略;(2)③=;④等补四边形的“等补对角线”平分“等边补角”;(3)CD 的值为2或4. 19.(1)正方形、矩形;(2)3;(3)49. 20.(1)略;(2)43π21.(1)①10AB =,②略;(2)72或12 22.(1)略;(2)30°;(3)45°.23.(1)3AP ≥;(2)QAP ∠为定值,QAP ∠=30°;(3)1(234,0)Q +,2(234,0)Q -,3(23,0)Q -,423(,0)3Q24.4 弧长和扇形面积一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , ) 1. 如图是一圆锥的侧面展开图,其弧长为,则该圆锥的全面积为A.B.C.D.2. 一扇形面积是,半径为,则该扇形圆心角度数是( ) A.B.C.D.3. 圆锥的底面半径为,母线长为,则该圆锥的侧面积为( ) A.B.C.D.4. 如图,在边长为的正方形内部,以各边为直径画四个半圆,则图中阴影部分的面积是( )A. B. C. D.5. 如果圆柱的底面直径为,母线长为,那么圆柱的侧面展开图的面积等于()A. B. C. D.6. 一个扇形占其所在圆的面积的,则该扇形圆心角是()A. B. C. D.无法计算7. 如图,圆锥的底面半径,高,则这个圆锥的侧面展开图的圆心角是()A. B. C. D.8. 一个圆锥的底面圆的周长是,母线长是,它的侧面展开图的圆心角的度数是()A. B. C. D.9. 已知一个圆锥的侧面积是,它的侧面展开图圆心角为,则这个圆锥的底面半径为A. B. C. D.10. 如图,边长为米的正方形池塘的周围是草地,池塘边、、、处各有一棵树,且米.现用长米的绳子将一头羊拴在其中的一棵树上.为了使羊在草地上活动区域的面积最大,应将绳子拴在()A.处B.处C.处D.处二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 如果圆柱的母线长为,底面半径为,那么这个圆柱的侧面积是________.12. 一个圆锥的侧面展开图是一个圆心角为,面积为的扇形,则这个圆锥的高是________.13. 一个圆柱体底面积直径是高的倍,如果底面积半径是分米,则它的表面积是________平方分米.14. 一个扇形的圆心角是,面积为,那么这个扇形的弧长为________.15. 用一个圆心角为的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于,则这个圆锥的母线长为________.16. 已知圆锥的底面周长为,母线长为,那么这个圆锥的侧面积是________(结果保留).17. 如图,已知的半径,弦,且,点在上,则图中的阴影部分的面积是________.18. 如图,为的弦,点为的中点,,当点、在上运动一周时,点所走过的路径与围成的图形面积是________.19. 如图所示,已知的半径,,则所对的弧的长为________.20. 现有圆周的一个扇形彩纸片,该扇形的半径为,小红同学为了在“六一”儿童节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为的圆锥形纸帽(接缝处不重叠),那么剪去的扇形纸片的圆心角为________.三、解答题(本题共计6 小题,共计60分,)21. 如图,扇形的圆心角,半径,若将此扇形围成一个圆锥的侧面,求圆锥的底面面积的半径.22. 如图,圆锥的底面半径为,高为,求这个圆锥的侧面积和表面积.23. 如图,圆锥的底面半径,高.求这个圆锥的表面积.取24. 如图,在中,,,以腰为直径作半圆,分别交,于点,.求,的长.25. 有一直径为圆形纸片,从中剪出一个圆心角是的最大扇形(如图所示).(1)求阴影部分的面积(2)用所剪的扇形纸片围城一个圆锥,该圆锥的底面圆的半径是多少?26. 如图,一个圆锥的高为,侧面展开图是半圆.求圆锥的母线长与底面半径之比;求的度数;求圆锥的侧面积(结果保留).参考答案与试题解析一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】B【解答】解:设圆锥的底面圆的半径为,扇形的半径为,根据题意得,解得,,解得,所以该圆锥的全面积.故选.2.【答案】A【解答】解:设扇形圆心角的度数为,∴,∴.即扇形圆心角度数为.故选.3.【答案】C【解答】圆锥的侧面展开图为扇形,由扇形面积公式可以得出此圆锥侧面积为:=.4.【答案】D【解答】解:如图所示,.故选.5.【答案】A【解答】解:圆柱的侧面积,故选.6.【答案】B【解答】解:∵一个扇形占其所在圆的面积的,∴该扇形的圆心角占它所在圆的圆心角的,即.故选.7.【答案】C【解答】解:圆锥的母线长,设这个圆锥的侧面展开图的圆心角为,根据题意得,解得,即这个圆锥的侧面展开图的圆心角为.故选.8.【答案】C【解答】解:圆锥侧面展开图的扇形面积半径为,弧长为,代入扇形弧长公式,即,解得,即扇形圆心角为度.故选.9.【答案】【解答】此题暂无解答10.【答案】B【解答】解:①;②;③;④,故选二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】【解答】解:这个圆柱的侧面积.故答案为:.12.【答案】【解答】解:设母线长为,底面圆的半径为,,解得:,底面圆的周长为:,解得:,∴这个圆锥的高是:.故答案为:.13.【答案】【解答】解:∵一个圆柱体底面直径是高的倍,如果底面半径是分米,∴高为分米,底面周长为:(分米),则其侧面积为:(平方分米),上下两底面积为:(平方分米).故它的表面积是:平方分米.14.【答案】【解答】解:设这个扇形的半径是.根据扇形面积公式,得,解得(负值舍去).故半径为.弧长是:.故答案为.15.【答案】【解答】解:设圆锥的母线长为,根据题意得:,解得:.故答案为:.16.【答案】【解答】解:圆锥的侧面积.17.【答案】【解答】解:连接,,∵,∴,∵,∴是等边三角形,∴,,∴,故答案为:.18.【答案】【解答】解:如图,连接、,点所走过的路径为小圆,∵点为的中点,,∴,且,∴点所走过的路径与围成的图形面积是,故答案为:.19.【答案】【解答】解:所对的弧的长,故答案为:.20.【答案】【解答】解:解得:,∵扇形彩纸片是圆周,因而圆心角是∴剪去的扇形纸片的圆心角为.剪去的扇形纸片的圆心角为.故答案为.三、解答题(本题共计 6 小题,每题10 分,共计60分)21.【答案】圆锥的底面圆的半径为.【解答】解:设圆锥的底面圆的半径为,根据题意得,解得.22.【答案】解:∵圆锥的底面半径为,高为,∴圆锥的母线长为,∴.∵圆锥的底面积,∴.【解答】解:∵圆锥的底面半径为,高为,∴圆锥的母线长为,∴.∵圆锥的底面积,∴.23.【答案】解:在中,,,由勾股定理知,侧面积,底面积,∴圆锥的表面积.【解答】解:在中,,,由勾股定理知,侧面积,底面积,∴圆锥的表面积.24.【答案】解:连接,∵,,∴,∴的长,连接、,∵为圆的直径,∴,又,∴,∴,∴的长.【解答】解:连接,∵,,∴,∴的长,连接、,∵为圆的直径,∴,又,∴,∴,∴的长.25.【答案】解:(1)连接,,∵,,∴是圆的直径,,∵圆的直径为,则,故.∴阴影;(2)的长,则,解得:.故该圆锥的底面圆的半径是.【解答】解:(1)连接,,∵,,∴是圆的直径,,∵圆的直径为,则,故.∴阴影;(2)的长,则,解得:.故该圆锥的底面圆的半径是.26.【答案】解:设此圆锥的高为,底面半径为,母线长,∵,∴;由中图所示,∵,,∴,,∴,同理,则;由中图可知,,∴,即,解得,∴,∴圆锥的侧面积为.【解答】解:设此圆锥的高为,底面半径为,母线长,∵,∴;由中图所示,∵,,∴,,∴,同理,则;由中图可知,,∴,即,解得,∴,∴圆锥的侧面积为.。
浙教版九年级上册数学第3章圆的基本性质含答案一、单选题(共15题,共计45分)1、如图,AB为半圆O的直径,C、D是半圆上的两点,且D是的中点,连接AC,若∠B=70°,则∠DAB的度数为()A.54°B.55°C.56°D.57°2、如图,矩形ABCD中,AB=8,BC=6,将矩形ABCD绕点A逆时针旋转得到矩形AEFG,AE,FG分别交射线CD于点PH,连结AH,若P是CH的中点,则△APH的周长为()A.15B.18C.20D.243、已知的半径为5,圆心O的坐标为,点P的坐标是,则点P在()A.内B.上C.外D.不确定4、点P为⊙O内一点,且OP=4,若⊙O的半径为6,则过点P的弦长不可能为()A.8B.10.5C.D.125、如图,在△ABC中,AB=AC,∠B=30°,点D、E分别为AB、AC上的点,且DE∥BC.将△ADE绕点A逆时针旋转至点B、A、E在同一条直线上,连接BD、EC.下列结论:①△ADE的旋转角为120°;②BD=EC;③BE=AD+AC;④DE⊥AC,其中正确有( )A.②③B.②③④C.①②③D.①②③④6、如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED的正切值等于()A. B. C.2 D.7、如图,在△ABC中,CA=CB,∠ACB=90°,以AB的中点D为圆心,作圆心角为90°的扇形DEF,点C恰在EF上,设∠ADE=α(0°<α<90°),当α由小到大变化时,图中阴影部分的面积()A.由小变大B.由大变小C.不变D.先由小变大,后由大变小8、下列命题不正确的是( )A.三点确定一个圆B.三角形的外接圆有且只有一个C.经过一点有无数个圆D.经过两点有无数个圆9、如图,点A、B、C是⊙O上的点,OB∥AC,连结BC交OA于点D,若∠ADB=60°,则∠AOB的度数为( )A.30°B.40°C.45°D.50°10、如图,AB是半圆O的直径,C、D是半圆O上的两点,,OD与AC交于点下列结论不一定成立的是()A. 是等边三角形B.C.D.11、三角形外心具有的性质是()A.到三个顶点距离相等B.到三边距离相等C.外心必在三角形外 D.到顶点的距离等于它到对边中点的距离的两倍12、如图4×4的正方形网格中,△PMN绕某点旋转一定的角度,得到△P 1M1N1,其旋转中心是()A. A点B. B点C. C点D. D点13、如图,小明为检验四边形MNPQ四个顶点是否在同一圆上,用尺规分别作了MN,MQ的垂直平分线交于点O,则M,N,P,Q四点中,不一定在以O为圆心,OM 为半径的圆上的点是()A.点MB.点NC.点PD.点Q14、如图,P是⊙O外一点,PA、PB分别交⊙O于C、D两点,已知和所对的圆心角分别为90°和50°,则∠P=()A.45°B.40°C.25°D.20°15、下列说法正确的是()A.长度相等的弧是等弧B.相等的圆心角所对的弧相等C.面积相等的圆是等圆D.劣弧一定比优弧短二、填空题(共10题,共计30分)16、如图,已知在⊙O 中,半径 OA= ,弦 AB=2,∠BAD=18°,OD 与AB 交于点 C,则∠ACO=________ 度.17、如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA =1,将菱形OABC绕原点顺时针旋转105°至OA'B′C'的位置,则点B'的坐标为________.18、一个底面直径是80 cm,母线长为90 cm的圆锥的侧面展开图的圆心角的度数为________19、用一个半径为6,圆心角为120°的扇形围成一个圆锥的侧面,则圆锥的高为________.20、如图,图形①经过________变换成图形②,图形②经过________变换成图形③,图形③经过________变换成图形④(选填“轴对称”“平移”或“旋转”).21、AB是半圆O的直径,AB=8,点C为半圈上的一点将此半圆沿BC所在的直线折叠,若配给好过圆心O,则图中阴影部分的面积是________.22、如图,AB是半圆O的直径,AC=AD,OC=2, ∠CAB=30°.则点O到CD的距离OE为________.23、如图,点B在x的正半轴上,且BA⊥OB于点B,将线段BA绕点B逆时针旋转60°到BB′的位置,且点B′的坐标为(1,).若反比例函数y= (x>0)的图象经过A点,则k=________.24、如图,在平面直角坐标系中,三角形②是由三角形①绕点P旋转后所得的图形,则旋转中心P的坐标是________.25、如图,点P(3,4),⊙P半径为2,A(2.8,0),B(5.6,0),点M是⊙P上的动点,点C是MB的中点,则AC的最小值是________.三、解答题(共5题,共计25分)26、如图,AB、CD是⊙O的直径,弦CE∥AB,的度数为70°.求∠EOC的度数.27、我们学习过利用用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的人们根据实际需爱,发明了一种简易操作工具--------三分角器.图1是它的示意图,其中与半圆O的直径在同一直线上,且的长度与半圆的半径相等;与重直F点足够长.使用方法如图2所示,若要把三等分,只需适当放置三分角器,使经过的顶点,点落在边上,半圆O与另一边恰好相切,切点为F,则就把三等分了.为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图2,点在同一直线上,垂足为点B,▲求证:▲28、如图,王虎使一长为4cm,宽为3cm的长方形木板,在桌面上做无滑动的翻滚(顺时针方向)木板上点A位置变化为A→A1→A2,其中第二次翻滚被桌面上一小木块挡住,使木板与桌面成30°角,则点A翻滚到A2位置时共走过的路径长为多少?29、已知如图所示,A,B,C是⊙O上三点,∠AOB=120°,C是的中点,试判断四边形OACB形状,并说明理由.30、如图,AD是△ABC的角平分线,以点C为圆心,CD为半径作圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,EF:FD=4:3.(1)求证:点F是AD的中点;(2)求cos∠AED的值;(3)如果BD=10,求半径CD的长.参考答案一、单选题(共15题,共计45分)1、B2、C3、B4、A5、B6、D8、A9、B10、A11、A12、B13、C14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、29、。
九年级数学上册圆的相关性质练习题1.下列命题中,真命题的个数为()①顶点在圆周上的角是圆周角;②圆周角的度数等于圆心角度数的一半;③900的圆周角所对的弦是直径;④直径所对的角是直角;⑤圆周角相等,则它们所对的弧也相等;⑥同弧或等弧所对的圆周角相等.A. 1 个B. 2 个C. 3 个D. 4 个2.如果两个圆心角相等,那么()A.这两个圆心角所对的弦相等 B.这两个圆心角所对的弧相等C.这两个圆心角所对的弦的弦心距相等 D.以上说法都不对3.如果两条弦相等,那么()A.这两条弦所对的弧相等B.这两条弦所对的圆心角相等C.这两条弦的弦心距相等D.以上答案都不对4.在同圆中,圆心角∠AOB=2∠COD,则两条弧AB与CD关系是()A.AB=2CDB.AB>CDC.AB<2CDD.不能确定5.如图,MN是半圆O的直径,K是MN延长线上一点,直线KP交半圆于点Q,P.若∠K=200,∠PMQ =400,则∠MQP等于()A. 300B. 350C. 400 D . 5006.如图,⊙O的直径为10cm,弦AB为8cm,P是弦AB上一点,若OP的长为整数, 则满足条件的点P有( )A.2个B.3个C.4个D.5个7.如图,AC是⊙O的直径,点B, D在⊙O上,那么图中等于12∠BOC的角有()A. l 个B. 2 个C.3 个D. 4 个8.如图,同心圆中,大圆的弦AB交小圆于C、D,已知AB=4,CD=2,AB的弦心距等于1,那么两个同心圆的半径之比为()A.3:2 B.5:2 C.5:2D.5:49.如图,A 是半径为5的⊙O 内一点,且OA=3,过点A 且长小于8的弦有( ) A.0条 B.1条 C.2条 D.4条10.如图,AB 为⊙O 直径,E 是BC 中点,OE 交BC 于点D ,BD=3,AB=10,则AC=_____. 11.如图,点A 、B 、C 、D 都在⊙O 上,BC 是直径,AD=DC ,︒=∠201,则2∠和3∠分别为 ° BCA D.O1452313.P 为⊙O 内一点,OP=3cm ,⊙O 半径为5cm ,则经过P 点的最短弦长为________;•最长弦长为_______.14.如图,⊙O 的直径为10,弦AB=8,P 是弦AB 上的一个动点,那么OP 长的取值范围是_____. 15.如图,已知AB 是⊙O 的直径,CD 与AB 相交于点E ,∠ACD=600,∠ADC=500 ,则∠AEC= . 16.如图,A, B, C 为⊙O 上三点,∠BAC=1200,∠ABC=450 , M, N 分别为BC, AC 的中点,则OM:ON 的值为17.如图,⊙O 中,半径CO 垂直于直径AB ,D 为OC 的中点,过D 作弦EF ∥AB ,则∠CBE =18.在⊙O 中,直径CD =15cm ,弦AB ⊥CD 于点M ,OM ∶MD =3∶2,则AB 的长是 19.若圆中一弦与弦高之和等于直径,弦高长为1,则圆的半径长为 20.在半径为1的⊙O 中,弦AB 、AC 的长分别为2和3,则∠BAC 的度数为 21.如图,⊙O 的弦AB 、半径OC 延长交于点D ,BD=OA ,若∠AOC=105°,求∠D 的度数.22.如图已知BC为直径,G为半圆上任一点,A为⋂BG中点,AP⊥BC于P,求证:AE=BE=EF。
初中数学【圆的基本性质】练习题一.选择题(共9小题)1.在圆中,下列命题中正确的是()A.垂直于弦的直线平分这条弦B.平分弧的直线垂直于弧所对的弦C.平分弦的直径垂直于这条弦D.平分弦所对的两条弧的直线平分这条弦2.如图,在平面直角坐标系中,点A在第一象限,⊙A与x轴相切于B,与y轴交于C(0,1),D(0,4)两点,则点A的坐标是()A.B.C.D.3.如图A,B,C是⊙O上的三个点,若∠AOC=100°,则∠ABC等于()A.50°B.80°C.100°D.130°4.如图,AB是⊙O的弦,AB=10,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是BC、AB的中点,则MN长的最大值是()A.10B.5C.10D.205.如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为()A.70°B.90°C.110°D.120°6.在Rt△ABC中,∠C=90°,AB=6,△ABC的内切圆半径为1,则△ABC的周长为()A.13B.14C.15D.167.如图所示,在⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为()A.19B.16C.18D.208.如图,AB,CD是⊙O的弦,AB⊥CD,BE是⊙O的直径.若AC=3,则DE的长是()A.3B.3.5C.2D.1.59.已知⊙O的半径为13cm,弦AB∥CD,AB=24cm,CD=10cm,则AB,CD之间的距离为()A.17cm B.7cm C.12cm D.17cm或7cm 二.填空题(共8小题)10.如图,PT切⊙O于点T,经过圆心的割线P AB交⊙O于点A和B,PT=4,P A=2,则⊙O的半径是.11.如图,⊙O中两条弦AB、CD相交于点P,已知P A=3,PB=4,PC=2,那么PD长为.12.如图,圆内接四边形ABCD中两组对边的延长线分别相交于点E,F,且∠A=45°,∠E=30°,则∠F=.13.如图,AB是⊙O的弦,AB长为8,P是⊙O上一个动点(不与A、B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为.14.如图,E是⊙O上一点,AB是⊙O的弦,OE的延长线交AB的延长线于C.如果BC =OE,∠C=40°,求∠EOA=度.15.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则BD的长为.16.如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为.17.如图,⊙O是△ABC的外接圆,BC为直径,BC=4,点E是△ABC的内心,连接AE 并延长交⊙O于点D,则DE=.三.解答题(共2小题)18.如图,以△ABC的一边AB为直径的半圆与其他两边AC,BC的交点分别为D,E,且=(1)试判断△ABC的形状,并说明理由;(2)已知半圆的半径为5,BC=12,求AD的长.19.已知:如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,G是弧AC上的任意一点,AG、DC的延长线相交于点F.求证:∠FGC=∠AGD.答案一.选择题(共9小题)1.在圆中,下列命题中正确的是()A.垂直于弦的直线平分这条弦B.平分弧的直线垂直于弧所对的弦C.平分弦的直径垂直于这条弦D.平分弦所对的两条弧的直线平分这条弦【解答】解:A、直线只有过圆心时,垂直于弦的直线平分这条弦,故选项错误;B、直线只有过圆心时,平分弧的直线垂直于弧所对的弦,故选项错误;C、被平分的弦是直径时,不一定垂直于弦,故选项错误;D、正确.故选:D.2.如图,在平面直角坐标系中,点A在第一象限,⊙A与x轴相切于B,与y轴交于C(0,1),D(0,4)两点,则点A的坐标是()A.B.C.D.【解答】解:过点A作AM⊥CD∵⊙A与x轴相切于点B,与y轴交于C(0,1),D(0,4)两点∴OC=1,CD=3,DM=CM=1.5∴OM=AB=2.5,∴圆的半径R=2.5,∴AC=2.5∴AM==2,即点A的坐标是().故选:C.3.如图A,B,C是⊙O上的三个点,若∠AOC=100°,则∠ABC等于()A.50°B.80°C.100°D.130°【解答】解:如图,在优弧上取点D,连接AD,CD,∵∠AOC=100°,∴∠ADC=∠AOC=50°,∴∠ABC=180°﹣∠ADC=130°.故选:D.4.如图,AB是⊙O的弦,AB=10,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是BC、AB的中点,则MN长的最大值是()A.10B.5C.10D.20【解答】解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC是直径时,最大,如图,∵∠ACB=∠D=45°,AB=10,∴AD=20,∴MN=AD=10,故选:A.5.如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为()A.70°B.90°C.110°D.120°【解答】解:∵∠A=50°,∴∠BOC=2∠A=100°,∵∠B=30°,∠BOC=∠B+∠BDC,∴∠BDC=∠BOC﹣∠B=100°﹣30°=70°,∴∠ADC=180°﹣∠BDC=110°,故选:C.6.在Rt△ABC中,∠C=90°,AB=6,△ABC的内切圆半径为1,则△ABC的周长为()A.13B.14C.15D.16【解答】解:根据直角三角形的内切圆的半径公式,得(AC+BC﹣AB)=1,∴AC+BC=8.则三角形的周长=8+6=14.故选:B.7.如图所示,在⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为()A.19B.16C.18D.20【解答】解:延长AO交BC于D,作OE⊥BC于E;∵∠A=∠B=60°,∴∠ADB=60°;∴△ADB为等边三角形;∴BD=AD=AB=12;∴OD=4,又∵∠ADB=60°,∴DE=OD=2;∴BE=10;∴BC=2BE=20;故选:D.8.如图,AB,CD是⊙O的弦,AB⊥CD,BE是⊙O的直径.若AC=3,则DE的长是()A.3B.3.5C.2D.1.5【解答】解:连接AE、AD,如图,∵BE是⊙O的直径.∴∠BAE=90°,∵AB⊥CD,∴AE∥CD,∴∠ADC=∠DAE,∴=,∴DE=AC=3.故选:A.9.已知⊙O的半径为13cm,弦AB∥CD,AB=24cm,CD=10cm,则AB,CD之间的距离为()A.17cm B.7cm C.12cm D.17cm或7cm 【解答】解:①当弦AB和CD在圆心同侧时,如图1,连接OA、OC.作OF⊥CD于F,交AB于E.∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=12﹣5=7cm;②当弦AB和CD在圆心异侧时,如图2,连接OA、OC.作OF⊥CD于F,交AB于E.∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=OF+OE=17cm.∴AB与CD之间的距离为7cm或17cm.故选:D.二.填空题(共8小题)10.如图,PT切⊙O于点T,经过圆心的割线P AB交⊙O于点A和B,PT=4,P A=2,则⊙O的半径是3.【解答】解:∵PT切⊙O于点T,∴由切割线定理得PT2=P A•PB,即42=2×(2+AB).解得AB=6.∴⊙O的半径是3,故答案为:3.11.如图,⊙O中两条弦AB、CD相交于点P,已知P A=3,PB=4,PC=2,那么PD长为6.【解答】解:∵两条弦AB、CD相交于点P,∵PD•PC=P A•PB,∴PD==6.故答案为6.12.如图,圆内接四边形ABCD中两组对边的延长线分别相交于点E,F,且∠A=45°,∠E=30°,则∠F=60°.【解答】解:∵四边形ABCD是圆内接四边形,∴∠BCD=180°﹣∠A=135°,有三角形的外角性质可知,∠EDC=∠BCD﹣∠E=105°,∴∠F=∠EDC﹣∠A=60°,故答案为:60°.13.如图,AB是⊙O的弦,AB长为8,P是⊙O上一个动点(不与A、B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为4.【解答】解:∵OC⊥AP,OD⊥PB,∴由垂径定理得:AC=PC,PD=BD,∴CD是△APB的中位线,∴CD=AB=×8=4,故答案为:4.14.如图,E是⊙O上一点,AB是⊙O的弦,OE的延长线交AB的延长线于C.如果BC =OE,∠C=40°,求∠EOA=60度.【解答】解:连接OB,∵OB=OE=BC,∠C=40°,∴∠COB=∠C=40°,∴∠ABO=∠C+∠COB=80°,∵OA=OB,∴∠A=∠ABO=80°,△AOC中,∠EOA=180°﹣40°﹣80°=60°,故答案为:60.15.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则BD的长为.【解答】解:过点C作CE⊥AD于点E,则AE=DE,∵∠ACB=90°,AC=3,BC=4,∴AB===5,∵S△ABC=AC•BC=AB•CE,∴CE==,∴AE===,∴AD=2AE=,∴BD=AB﹣AD=5﹣=,故答案为:.16.如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为5.【解答】∵AC平分∠BAD,∴=,∴∠BDC=∠CAD,∵∠ACD=∠DCE,∴△CDE∽△CAD,∴CD:AC=CE:CD,∴CD2=AC•CE,设AE=x,则AC=AE+CE=4+x,∴62=4(4+x),解得:x=5.∴AE=5.故答案为:5.17.如图,⊙O是△ABC的外接圆,BC为直径,BC=4,点E是△ABC的内心,连接AE 并延长交⊙O于点D,则DE=.【解答】解:如图,连接BD,CD,EC.∵点E是△ABC的内心,∴∠DAB=∠DAC,∠ECA=∠ECB,又∵∠DCB=∠DAB,∴∠DAC=∠DCB∵∠DEC=∠EAC+∠ECA,∠ECD=∠ECB+∠DCB,∴∠DEC=∠DCE,∴DE=DC,∵BC是直径,∴∠BDC=90°,∵∠DAB=∠DAC,∴=,∴BD=DC,∵BC=4,∴DC=DB=2,∴DE=2,故答案为2.三.解答题(共2小题)18.如图,以△ABC的一边AB为直径的半圆与其他两边AC,BC的交点分别为D,E,且=(1)试判断△ABC的形状,并说明理由;(2)已知半圆的半径为5,BC=12,求AD的长.【解答】(1)方法一:连接AE,∵AB是直径,∴∠AEB=∠AEC=90°,∵=,∴∠BAE=∠CAE,又AE=AE,∴△AEB≌△AEC(ASA),∴AB=AC,∴△ABC是等腰三角形;方法二:∵AB是直径,∴∠ADB=∠CDB=90°,∵=,∴DE=BE,∴∠CBD=∠BDE,∴∠C=∠CDE,∵ABED是圆内接四边形,∴∠CDE=∠CBA,∴∠C=∠CBA,∴AB=AC,∴△ABC是等腰三角形;(2)∵△ABC为等腰三角形,AE⊥BC,∴BE=CE=BC=×12=6,在Rt△ABE中,∵AB=10,BE=6,∴AE==8,∵AB为直径,∴∠ADB=90°,∴AE•BC=BD•AC,∴BD==,在Rt△ABD中,∵AB=10,BD=,∴AD==.19.已知:如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,G是弧AC上的任意一点,AG、DC的延长线相交于点F.求证:∠FGC=∠AGD.【解析】连接AD.∵CD⊥AB,∴弧AD=弧AC ,∴∠ADC=∠AGD.∵四边形ADCG是圆内接四边形,∴∠ADC=∠FGC,∴∠FGC=∠AGD.。
人教版九年级数学上册同步测试:圆的有关性质(解析版)一﹨选择题(共9小题)1.如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cm B.4cm C.5cm D.6cm2.(绍兴是著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()A.4m B.5m C.6m D.8m3.将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8cm,水的最大深度是2cm,则杯底有水部分的面积是()A.(π﹣4)cm2B.(π﹣8)cm2C.(π﹣4)cm2 D.(π﹣2)cm24.如图,一条公路的转变处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600米,E为弧CD上一点,且OE⊥CD,垂足为F,OF=米,则这段弯路的长度为()A.200π米B.100π米C.400π米D.300π米5.在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A.40cm B.60cm C.80cm D.100cm6.在半径为13的⊙O中,弦AB∥CD,弦AB和CD的距离为7,若AB=24,则CD的长为()A.10 B.4C.10或4D.10或27.如图,AB是⊙O的直径,CD为弦,CD⊥AB于E,则下列结论中不成立的是()A.∠A=∠D B.CE=DE C.∠ACB=90°D.CE=BD8.如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP=1:5,则CD的长为()A.4B.8C.2D.49.如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为()A.2B.C.2D.二﹨填空题(共15小题)10.如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为m.11.赵州桥是我国建筑史上的一大创举,它距今约1400年,历经无数次洪水冲击和8次地震却安然无恙.如图,若桥跨度AB约为40米,主拱高CD约10米,则桥弧AB所在圆的半径R=米.12.如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A﹨B,并使AB与车轮内圆相切于点D,半径为OC⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径是.13.一条排水管的截面如图所示,已知排水管的半径OA=1m,水面宽AB=1.2m,某天下雨后,水管水面上升了0.2m,则此时排水管水面宽CD等于m.14.如图,小丽荡秋千,秋千链子的长OA为2.5米,秋千向两边摆动的角度相同,摆动的水平距离AB为3米,则秋千摆至最高位置时与最低价位置时的高度之差(即CD)为米.15.如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为m.16.把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图.⊙O与矩形ABCD的边BC,AD分别相切和相交(E,F是交点),已知EF=CD=8,则⊙O的半径为.17.如图,AB为⊙O的直径,弦CD⊥AB于点E,若CD=6,且AE:BE=1:3,则AB=.18.如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点A﹨B,并使AB与车轮内圆相切于点D,做CD⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径为cm.19.如图是一圆形水管的截面图,已知⊙O的半径OA=13,水面宽AB=24,则水的深度CD 是.20.平面内有四个点A﹨O﹨B﹨C,其中∠AOB=120°,∠ACB=60°,AO=BO=2,则满足题意的OC长度为整数的值可以是.21.如图,AB是⊙O的弦,OC⊥AB于点C,连接OA﹨OB.点P是半径OB上任意一点,连接AP.若OA=5cm,OC=3cm,则AP的长度可能是cm(写出一个符合条件的数值即可)22.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为cm.23.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为.24.如图,已知⊙O的直径AB=6,E﹨F为AB的三等分点,M﹨N为上两点,且∠MEB=∠NFB=60°,则EM+FN=.三﹨解答题(共6小题)25.如图所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动.小刚身高1.6米,测得其影长为2.4米,同时测得EG的长为3米,HF的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN 的长)为2米,求小桥所在圆的半径.26.如图所示,某窗户由矩形和弓形组成,已知弓形的跨度AB=3m,弓形的高EF=1m,现计划安装玻璃,请帮工程师求出所在圆O的半径r.27.在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.(1)如图1,若点D与圆心O重合,AC=2,求⊙O的半径r;(2)如图2,若点D与圆心O不重合,∠BAC=25°,请直接写出∠DCA的度数.28.如图,已知△ABC是⊙O的内接三角形,AB=AC,点P是的中点,连接PA,PB,PC.(1)如图①,若∠BPC=60°.求证:AC=AP;(2)如图②,若sin∠BPC=,求tan∠PAB的值.29.)如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1.(1)求∠C的大小;(2)求阴影部分的面积.30.如图,AB是⊙O的直径,弦CD交AB于点E,OF⊥AC于点F,(1)请探索OF和BC的关系并说明理由;(2)若∠D=30°,BC=1时,求圆中阴影部分的面积.(结果保留π)参考答案与试题解析一﹨选择题(共9小题)1.如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cm B.4cm C.5cm D.6cm【考点】垂径定理的应用;勾股定理.【分析】过点O作OD⊥AB于点D,连接OA,由垂径定理可知AD=AB,设OA=r,则OD=r﹣2,在Rt△AOD中,利用勾股定理即可求r的值.【解答】解:如图所示:过点O作OD⊥AB于点D,连接OA,∵OD⊥AB,∴AD=AB=×8=4cm,设OA=r,则OD=r﹣2,在Rt△AOD中,OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=5cm.故选C.【点评】本题考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.2.绍兴是著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()A.4m B.5m C.6m D.8m【考点】垂径定理的应用;勾股定理.【分析】连接OA,根据桥拱半径OC为5m,求出OA=5m,根据CD=8m,求出OD=3m,根据AD=求出AD,最后根据AB=2AD即可得出答案.【解答】解:连接OA,∵桥拱半径OC为5m,∴OA=5m,∵CD=8m,∴OD=8﹣5=3m,∴AD===4m,∴AB=2AD=2×4=8(m);故选;D.【点评】此题考查了垂径定理的应用,关键是根据题意做出辅助线,用到的知识点是垂径定理﹨勾股定理.3.将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8cm,水的最大深度是2cm,则杯底有水部分的面积是()A.(π﹣4)cm2B.(π﹣8)cm2C.(π﹣4)cm2 D.(π﹣2)cm2【考点】垂径定理的应用;扇形面积的计算.【分析】作OD⊥AB于C,交小⊙O于D,则CD=2,由垂径定理可知AC=CB,利用正弦函数求得∠OAC=30°,进而求得∠AOC=120°,利用勾股定理即可求出AB的值,从而利用S﹣S△AOB求得杯底有水部分的面积.扇形【解答】解:作OD⊥AB于C,交小⊙O于D,则CD=2,AC=BC,∵OA=OD=4,CD=2,∴OC=2,在RT△AOC中,sin∠OAC==,∴∠OAC=30°,∴∠AOB=120°,AC==2,∴AB=4,﹣S△AOB=﹣××2=(π﹣4)cm2∴杯底有水部分的面积=S扇形故选A.【点评】本题考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.4.如图,一条公路的转变处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600米,E为弧CD上一点,且OE⊥CD,垂足为F,OF=米,则这段弯路的长度为()A.200π米B.100π米C.400π米D.300π米【考点】垂径定理的应用;勾股定理;弧长的计算.【分析】设这段弯路的半径为R米,OF=米,由垂径定理得CF=CD=×600=300.由勾股定理可得OC2=CF2+OF2,解得R的值,进而得出这段弧所对圆心角,求出弧长即可.【解答】解:设这段弯路的半径为R米OF=米,∵OE⊥CD∴CF=CD=×600=300根据勾股定理,得OC2=CF2+OF2即R2=3002+(300)2解之,得R=600,∴sin∠COF==,∴∠COF=30°,∴这段弯路的长度为:=200π(m).故选:A.【点评】此题主要考查了垂径定理的应用,根据已知得出圆的半径以及圆心角是解题关键.5.在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A.40cm B.60cm C.80cm D.100cm【考点】垂径定理的应用;勾股定理.【分析】连接OA,过点O作OE⊥AB,交AB于点M,由垂径定理求出AM的长,再根据勾股定理求出OM的长,进而可得出ME的长.【解答】解:连接OA,过点O作OE⊥AB,交AB于点M,∵直径为200cm,AB=160cm,∴OA=OE=100cm,AM=80cm,∴OM===60cm,∴ME=OE﹣OM=100﹣60=40cm.故选:A.【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.6.在半径为13的⊙O中,弦AB∥CD,弦AB和CD的距离为7,若AB=24,则CD的长为()A.10 B.4C.10或4D.10或2【考点】垂径定理;勾股定理.【专题】分类讨论.【分析】根据题意画出图形,由于AB和CD的位置不能确定,故应分AB与CD在圆心O 的同侧和AB与CD在圆心O的异侧两种情况进行讨论.【解答】解:当AB与CD在圆心O的同侧时,如图1所示:过点O作OF⊥CD于点F,交AB于点E,连接OA,OC,∵AB∥CD,OF⊥CD,∴OE⊥AB,∴AE=AB=×24=12,在Rt△AOE中,OE===5,∴OF=OE+EF=5+7=12,在Rt△OCF中,CF===5,∴CD=2CF=2×5=10;当AB与CD在圆心O的异侧时,如图2所示:过点O作OF⊥CD于点F,反向延长交AB于点E,连接OA,OC,∵AB∥CD,OF⊥CD,∴OE⊥AB,∴AE=AB=×24=12,在Rt△AOE中,OE===5,∴OF=EF﹣OE=7﹣5=2,在Rt△OCF中,CF===,∴CD=2CF=2×=2.故CD的长为10或2.故选D.【点评】本题考查的是垂径定理,在解答此类题目时要注意进行分类讨论,不要漏解.7.如图,AB是⊙O的直径,CD为弦,CD⊥AB于E,则下列结论中不成立的是()A.∠A=∠D B.CE=DE C.∠ACB=90°D.CE=BD【考点】垂径定理.【专题】压轴题.【分析】根据垂径定理,直径所对的角是直角,以及同弧所对的圆周角相等,即可判断.【解答】解:∵AB是⊙O的直径,CD为弦,CD⊥AB于E.∴CE=DE.故B成立;A﹨根据同弧所对的圆周角相等,得到∠A=∠D,故该选项正确;C﹨根据直径所对的圆周角是直角即可得到,故该选项正确;D﹨CE=DE,而△BED是直角三角形,则DE<BD,则该项不成立.故选D.【点评】本题主要考查了垂径定理的基本内容,以及直径所对的圆周角是直角.8.如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP=1:5,则CD的长为()A.4B.8C.2D.4【考点】垂径定理;勾股定理.【专题】探究型.【分析】先根据⊙O的直径AB=12求出OB的长,再由BP:AP=1:5求出BP的长,故可得出OP的长,连接OC,在Rt△OPC中利用勾股定理可求出PC的长,再根据垂径定理即可得出结论.【解答】解:∵⊙O的直径AB=12,∴OB=AB=6,∵BP:AP=1:5,∴BP=AB=×12=2,∴OP=OB﹣BP=6﹣2=4,∵CD⊥AB,∴CD=2PC.如图,连接OC,在Rt△OPC中,∵OC=6,OP=4,∴PC===2,∴CD=2PC=2×2=4.故选D.【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.9.如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为()A.2B.C.2D.【考点】垂径定理;含30度角的直角三角形;勾股定理.【专题】压轴题.【分析】先过O作OC⊥AP,连结OB,根据OP=4,∠APO=30°,求出OC的值,在Rt△BCO中,根据勾股定理求出BC的值,即可求出AB的值.【解答】解:过O作OC⊥AP于点C,连结OB,∵OP=4,∠APO=30°,∴OC=sin30°×4=2,∵OB=3,∴BC===,∴AB=2;故选A.【点评】此题考查了垂经定理,用到的知识点是垂经定理﹨含30度角的直角三角形﹨勾股定理,解题的关键是作出辅助线,构造直角三角形.二﹨填空题(共15小题)10.如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为0.8m.【考点】垂径定理的应用;勾股定理.【分析】过O点作OC⊥AB,C为垂足,交⊙O于D,连OA,根据垂径定理得到AC=BC=0.5m,再在Rt△AOC中,利用勾股定理可求出OC,即可得到CD的值,即水的深度.【解答】解:如图,过O点作OC⊥AB,C为垂足,交⊙O于D﹨E,连OA,OA=0.5m,AB=0.8m,∵OC⊥AB,∴AC=BC=0.4m,在Rt△AOC中,OA2=AC2+OC2,∴OC=0.3m,则CE=0.3+0.5=0.8m,故答案为:0.8.【点评】本题考查了垂径定理的应用,掌握垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧是解题的关键,注意勾股定理的运用.11.赵州桥是我国建筑史上的一大创举,它距今约1400年,历经无数次洪水冲击和8次地震却安然无恙.如图,若桥跨度AB约为40米,主拱高CD约10米,则桥弧AB所在圆的半径R=25米.【考点】垂径定理的应用;勾股定理.【分析】根据垂径定理和勾股定理求解即可.【解答】解:根据垂径定理,得AD=AB=20米.设圆的半径是r,根据勾股定理,得R2=202+(R﹣10)2,解得R=25(米).故答案为25.【点评】此题综合运用了勾股定理以及垂径定理.注意构造由半径﹨半弦﹨弦心距组成的直角三角形进行有关的计算.12.如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A﹨B,并使AB与车轮内圆相切于点D,半径为OC⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径是50cm.【考点】垂径定理的应用;勾股定理;切线的性质.【分析】根据垂径定理求得AD=30cm,然后根据勾股定理即可求得半径.【解答】解:如图,连接OA,∵CD=10cm,AB=60cm,∵CD⊥AB,∴OC⊥AB,∴AD=AB=30cm,∴设半径为r,则OD=r﹣10,根据题意得:r2=(r﹣10)2+302,解得:r=50.∴这个车轮的外圆半径长为50cm.故答案为:50cm.【点评】本题考查了垂径定理的应用以及勾股定理的应用,作出辅助线构建直角三角形是本题的关键.13.一条排水管的截面如图所示,已知排水管的半径OA=1m,水面宽AB=1.2m,某天下雨后,水管水面上升了0.2m,则此时排水管水面宽CD等于 1.6m.【考点】垂径定理的应用;勾股定理.【分析】先根据勾股定理求出OE的长,再根据垂径定理求出CF的长,即可得出结论.【解答】解:如图:∵AB=1.2m,OE⊥AB,OA=1m,∴OE=0.8m,∵水管水面上升了0.2m,∴OF=0.8﹣0.2=0.6m,∴CF=m,∴CD=1.6m.故答案为:1.6.【点评】本题考查的是垂径定理的应用,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.14.如图,小丽荡秋千,秋千链子的长OA为2.5米,秋千向两边摆动的角度相同,摆动的水平距离AB为3米,则秋千摆至最高位置时与最低价位置时的高度之差(即CD)为0.5米.【考点】垂径定理的应用;勾股定理.【分析】由题意知,秋千摆至最低点时,点C为弧AB的中点,由垂径定理知AB⊥OC,AD=BD=AB=1.5米.再根据勾股定理求得OD即可.【解答】解:∵点C为弧AB的中点,O为圆心由垂径定理知:AB⊥OC,AD=BD=AB=1.5米,在Rt△OAD中,根据勾股定理,OD==2(米),∴CD=OC﹣OD=2.5﹣2=0.5(米);故答案为0.5.【点评】本题考查了垂径定理的应用,勾股定理的应用,将实际问题抽象为几何问题是解题的关键.15.如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为0.2m.【考点】垂径定理的应用;勾股定理.【分析】过O作OC垂直于AB,利用垂径定理得到C为AB的中点,在直角三角形AOC 中,由水面高度与半径求出OC的长,即可得出排水管内水的深度.【解答】解:过O作OC⊥AB,交AB于点C,可得出AC=BC=AB=0.4m,由直径是1m,可知半径为0.5m,在Rt△AOC中,根据勾股定理得:OC===0.3(m),则排水管内水的深度为:0.5﹣0.3=0.2(m).故答案为:0.2.【点评】此题考查了垂径定理的应用,以及勾股定理,熟练掌握定理是解本题的关键.16.把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图.⊙O与矩形ABCD的边BC,AD分别相切和相交(E,F是交点),已知EF=CD=8,则⊙O的半径为5.【考点】垂径定理的应用;勾股定理;切线的性质.【专题】几何图形问题.【分析】首先由题意,⊙O与BC相切,记切点为G,作直线OG,分别交AD﹨劣弧于点H﹨I,再连接OF,易求得FH的长,然后设求半径为r,则OH=8﹣r,然后在Rt△OFH 中,r2﹣(16﹣r)2=82,解此方程即可求得答案.【解答】解:由题意,⊙O与BC相切,记切点为G,作直线OG,分别交AD﹨劣弧于点H﹨I,再连接OF,在矩形ABCD中,AD∥BC,而IG⊥BC,∴IG⊥AD,∴在⊙O中,FH=EF=4,设求半径为r,则OH=8﹣r,在Rt△OFH中,r2﹣(8﹣r)2=42,解得r=5,故答案为:5.【点评】此题考查了切线的性质﹨垂径定理以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握方程思想与数形结合思想的应用.17.如图,AB为⊙O的直径,弦CD⊥AB于点E,若CD=6,且AE:BE=1:3,则AB= 4.【考点】垂径定理;勾股定理.【专题】计算题.【分析】根据AE与BE比值,设出AE为x与BE为3x,由AE+BE表示出AB,进而表示出OA与OB,由OA﹣AE表示出OE,连接OC,根据AB与CD垂直,利用垂径定理得到E为CD中点,求出CE的长,在直角三角形OCE中,利用勾股定理列出方程,求出方程的解得到x的值,即可确定出AB的长.【解答】解:连接OC,根据题意设AE=x,则BE=3x,AB=AE+EB=4x,∴OC=OA=OB=2x,OE=OA﹣AE=x,∵AB⊥CD,∴E为CD中点,即CE=DE=CD=3,在Rt△CEO中,利用勾股定理得:(2x)2=32+x2,解得:x=,则AB=4x=4.故答案为:4【点评】此题考查了垂径定理,以及勾股定理,熟练掌握定理是解本题的关键.18.如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点A﹨B,并使AB与车轮内圆相切于点D,做CD⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径为50cm.【考点】垂径定理的应用;勾股定理;切线的性质.【专题】几何图形问题.【分析】设点O为外圆的圆心,连接OA和OC,根据CD=10cm,AB=60cm,设半径为r,则OD=r﹣10,根据垂径定理得:r2=(r﹣10)2+302,求得r的值即可.【解答】解:如图,设点O为外圆的圆心,连接OA和OC,∵CD=10cm,AB=60cm,∴设半径为r,则OD=r﹣10,根据题意得:r2=(r﹣10)2+302,解得:r=50,故答案为:50.【点评】本题考查了垂径定理的应用,解题的关键是正确构造直角三角形.19.如图是一圆形水管的截面图,已知⊙O的半径OA=13,水面宽AB=24,则水的深度CD 是8.【考点】垂径定理的应用;勾股定理.【分析】先根据垂径定理求出AC的长,再根据勾股定理求出OC的长,根据CD=OD﹣OC 即可得出结论.【解答】解:∵⊙O的半径OA=13,水面宽AB=24,OD⊥AB,∴OD=OA=13,AC=AB=12,在Rt△AOC中,OC===5,∴CD=OD﹣OC=13﹣5=8.故答案为:8.【点评】本题考查的是垂径定理的应用,解答此类问题时往往是找出直角三角形,利用勾股定理求解.20.平面内有四个点A﹨O﹨B﹨C,其中∠AOB=120°,∠ACB=60°,AO=BO=2,则满足题意的OC长度为整数的值可以是2,3,4.【考点】垂径定理;等边三角形的判定与性质.【专题】压轴题.【分析】分类讨论:如图1,根据圆周角定理可以推出点C在以点O为圆心的圆上;如图2,根据已知条件可知对角∠AOB+∠ACB=180°,则四个点A﹨O﹨B﹨C共圆.分类讨论:如图1,如图2,在不同的四边形中,利用垂径定理﹨等边△MAO的性质来求OC的长度.【解答】解:如图1,∵∠AOB=120°,∠ACB=60°,∴∠ACB=∠AOB=60°,∴点C在以点O为圆心的圆上,且在优弧AB上.∴OC=AO=BO=2;如图2,∵∠AOB=120°,∠ACB=60°,∴∠AOB+∠ACB=180°,∴四个点A﹨O﹨B﹨C共圆.设这四点都在⊙M上.点C在优弧AB上运动.连接OM﹨AM﹨AB﹨MB.∵∠ACB=60°,∴∠AMB=2∠ACB=120°.∵AO=BO=2,∴∠AMO=∠BMO=60°.又∵MA=MO,∴△AMO是等边三角形,∴MA=AO=2,∴MA<OC≤2MA,即2<OC≤4,∴OC可以取整数3和4.综上所述,OC可以取整数2,3,4.故答案是:2,3,4.【点评】本题考查了垂径定理﹨等边三角形的判定与性质.此题需要分类讨论,以防漏解.在解题时,还利用了圆周角定理,圆周角﹨弧﹨弦间的关系.21.如图,AB是⊙O的弦,OC⊥AB于点C,连接OA﹨OB.点P是半径OB上任意一点,连接AP.若OA=5cm,OC=3cm,则AP的长度可能是6cm(写出一个符合条件的数值即可)【考点】垂径定理;勾股定理.【专题】开放型.【分析】根据勾股定理求出AC,根据垂径定理求出AB,即可得出AP的范围是大于等于5cm且小于等于8cm,举出即可.【解答】解:∵OC⊥AB,∴∠ACO=90°,∵OA=5cm,OC=3cm,∴由勾股定理得:AC==4cm,∴由垂径定理得:AB=2AC=8cm,只要举出的数大于等于5且小于等于8cm即可,如6cm,故答案为:6.【点评】本题考查了勾股定理和垂径定理的应用,关键是求出AP的范围.22.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为2 cm.【考点】垂径定理;勾股定理.【专题】压轴题.【分析】通过作辅助线,过点O作OD⊥AB交AB于点D,根据折叠的性质可知OA=2OD,根据勾股定理可将AD的长求出,通过垂径定理可求出AB的长.【解答】解:过点O作OD⊥AB交AB于点D,连接OA,∵OA=2OD=2cm,∴AD===cm,∵OD⊥AB,∴AB=2AD=cm.故答案为:2.【点评】本题综合考查垂径定理和勾股定理的运用.23.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为(3,2).【考点】垂径定理;坐标与图形性质;勾股定理.【专题】压轴题;探究型.【分析】过点P作PD⊥x轴于点D,连接OP,先由垂径定理求出OD的长,再根据勾股定理求出PD的长,故可得出答案.【解答】解:过点P作PD⊥x轴于点D,连接OP,∵A(6,0),PD⊥OA,∴OD=OA=3,在Rt△OPD中,∵OP=,OD=3,∴PD===2,∴P(3,2).故答案为:(3,2).【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.24.如图,已知⊙O的直径AB=6,E﹨F为AB的三等分点,M﹨N为上两点,且∠MEB=∠NFB=60°,则EM+FN=.【考点】垂径定理;含30度角的直角三角形;勾股定理.【专题】压轴题.【分析】延长ME交⊙O于G,根据圆的中心对称性可得FN=EG,过点O作OH⊥MG于H,连接MO,根据圆的直径求出OE,OM,再解直角三角形求出OH,然后利用勾股定理列式求出MH,再根据垂径定理可得MG=2MH,从而得解.【解答】解:如图,延长ME交⊙O于G,∵E﹨F为AB的三等分点,∠MEB=∠NFB=60°,∴FN=EG,过点O作OH⊥MG于H,连接MO,∵⊙O的直径AB=6,∴OE=OA﹣AE=×6﹣×6=3﹣2=1,OM=×6=3,∵∠MEB=60°,∴OH=OE•sin60°=1×=,在Rt△MOH中,MH===,根据垂径定理,MG=2MH=2×=,即EM+FN=.故答案为:.【点评】本题考查了垂径定理,勾股定理的应用,以及解直角三角形,作辅助线并根据圆的中心对称性得到FN=EG是解题的关键,也是本题的难点.三﹨解答题(共6小题)25.如图所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动.小刚身高1.6米,测得其影长为2.4米,同时测得EG的长为3米,HF的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN 的长)为2米,求小桥所在圆的半径.【考点】垂径定理的应用;勾股定理;相似三角形的应用.【分析】根据已知得出旗杆高度,进而得出GM=MH,再利用勾股定理求出半径即可.【解答】解:∵小刚身高1.6米,测得其影长为2.4米,∴8米高旗杆DE的影子为:12m,∵测得EG的长为3米,HF的长为1米,∴GH=12﹣3﹣1=8(m),∴GM=MH=4m.如图,设小桥的圆心为O,连接OM﹨OG.设小桥所在圆的半径为r,∵MN=2m,∴OM=(r﹣2)m.在Rt△OGM中,由勾股定理得:∴OG2=OM2+42,∴r2=(r﹣2)2+16,解得:r=5,。
一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;固定的端点O为圆心。
连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。
圆上任意两点之间的部分叫做圆弧,简称弧。
2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线;3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;A内含(图5)⇒ 无交点 ⇒ d R r <-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。
推论2:圆的两条平行弦所夹的弧相等。
即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD六、圆心角定理顶点到圆心的角,叫圆心角。
圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。
此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论, 即:①AOB DOE ∠=∠;②AB DE =;③OC OF =;④ 弧BA =弧BD图4图5BD七、圆周角定理顶点在圆上,并且两边都与圆相交的角,叫圆周角。
1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。
即:∵AOB ∠和ACB ∠是弧AB 所对的圆心角和圆周角 ∴2AOB ACB ∠=∠ 2、圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;即:在⊙O 中,∵C ∠、D ∠都是所对的圆周角 ∴C D ∠=∠推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。
即:在⊙O 中,∵AB 是直径 或∵90C ∠=︒ ∴90C ∠=︒ ∴AB 是直径推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
即:在△ABC 中,∵OC OA OB ==∴△ABC 是直角三角形或90C ∠=︒注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。
八、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。
即:在⊙O 中,∵四边形ABCD 是内接四边形 ∴180C BAD ∠+∠=︒180B D ∠+∠=︒BBABA ODAE C ∠=∠九、切线的性质与判定定理(1)切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 即:∵MN OA ⊥且MN 过半径OA 外端∴MN 是⊙O 的切线 (2)性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点。
推论2:过切点垂直于切线的直线必过圆心。
以上三个定理及推论也称二推一定理:即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。
十、切线长定理 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。
即:∵PA 、PB 是的两条切线 ∴PA PB = PO 平分BPA ∠十一、圆幂定理(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。
即:在⊙O 中,∵弦AB 、CD 相交于点P , ∴PA PB PC PD ⋅=⋅(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。
即:在⊙O 中,∵直径AB CD ⊥, ∴2CE AE BE =⋅(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这DBBA点到割线与圆交点的两条线段长的比例中项。
即:在⊙O 中,∵PA 是切线,PB 是割线 ∴ 2PA PC PB =⋅(4)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。
即:在⊙O 中,∵PB 、PE 是割线 ∴PC PB PD PE ⋅=⋅十二、两圆公共弦定理圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦。
如图:12O O 垂直平分AB 。
即:∵⊙1O 、⊙2O 相交于A 、B 两点 ∴12O O 垂直平分AB 十三、圆的公切线 两圆公切线长的计算公式:(1)公切线长:12Rt O O C ∆中,221AB CO ==(2)外公切线长:2CO 是半径之差; 内公切线长:2CO 是半径之和 。
十四、圆内正多边形的计算 (1)正三角形在⊙O 中△ABC 是正三角形,有关计算在Rt BOD ∆中进行:::2OD BD OB =;(2)正四边形同理,四边形的有关计算在Rt OAE ∆中进行,::OE AE OA =(3)正六边形同理,六边形的有关计算在Rt OAB ∆中进行,::2AB OB OA =.十五、扇形、圆柱和圆锥的相关计算公式 1、扇形:(1)弧长公式:180n Rl π=; (2)扇形面积公式: 213602n R S lR π== n :圆心角 R :扇形多对应的圆的半径 l :扇形弧长 S :扇形面积2、圆柱:(1)A 圆柱侧面展开图2S S S =+侧表底=222rh r ππ+B 圆柱的体积:2V r h π=(2)A 圆锥侧面展开图S S S =+侧表底=2Rr r ππ+B 圆锥的体积:213V r h π=一、圆的定义。
1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的各元素。
1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。
半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。
三、圆的基本性质。
1、圆的对称性。
(1)圆是轴对称图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
lOC 1D 1(3)圆是旋转对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。
圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、设⊙O 的半径为r ,OP=d 。
7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。
(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。
(直角三角形的外心就是斜边的中点。
)8、直线与圆的位置关系。
d 表示圆心到直线的距离,r 表示圆的半径。
直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切; 直线与圆没有交点,直线与圆相离。
29、平面直角坐标系中,A (x 1,y 1)、B (x 2,y 2)。
则AB=221221)()(y y x x -+-10、圆的切线判定。
(1)d=r 时,直线是圆的切线。
切点不明确:画垂直,证半径。
(2)经过半径的外端且与半径垂直的直线是圆的切线。
切点明确:连半径,证垂直。
11、圆的切线的性质(补充)。
(1)经过切点的直径一定垂直于切线。
(2)经过切点并且垂直于这条切线的直线一定经过圆心。
12、切线长定理。
(1)切线长:从圆外一点引圆的两条切线,切点与这点之间连线段的长叫这个点到圆的切线长。
(2)切线长定理。
∵ PA 、PB 切⊙O 于点 A 、B ∴ PA=PB ,∠1=∠2。
13、内切圆及有关计算。
(1)三角形内切圆的圆心是三个内角平分线的交点,它到三边的距离相等。
d = r 直线与圆相切。
d < r (r >) 直线与圆相交。
d > r (r <) 直线与圆相离。
d = r 点P 在⊙O 上 d < r (r >) 点P 在⊙O 内 d > r (r <) 点P 在⊙O 外 12(2)图 1 A P B · O 213(2)图 x A B C DF 567 x 5-x 7-x O九年级数学圆的性质及习题(2)如图,△ABC中,AB=5,BC=6,AC=7,⊙O切△ABC三边于点D、E、F。
求:AD、BE、CF的长。
分析:设AD=x,则AD=AF=x,BD=BE=5-x,CE=CF=7-x.可得方程:5-x+7-x=6,解得x=3(3)△ABC中,∠C=90°,AC=b,BC=a,AB=c。
求内切圆的半径r。
分析:先证得正方形ODCE,得CD=CE=rAD=AF=b-r,BE=BF=a-rb-r+a-r=c得r=2cb a-+(4)S△ABC =)(21cbar++14、(补充)(1)弦切角:角的顶点在圆周上,角的一边是圆的切线,另一边是圆的弦。
如图,BC切⊙O于点B,AB为弦,∠ABC叫弦切角,∠ABC=∠D。