二元一次解不等式组的步骤
- 格式:docx
- 大小:36.46 KB
- 文档页数:1
解二元一次不等式组
解决二元一次不等式组的方法有很多,其中包括解法和图形解法。
二元一次不等式组是一种有用的数学工具,能够解决许多实际应用中的问题。
它也有助于我们在解决数学问题时加强解答技能。
本文将介绍如何使用解法和图形解法来解决二元一次不等式组。
首先,让我们来看看如何使用解法来解决二元一次不等式组。
可以通过将这些不等式转换为方程来解决。
首先,应将所有不等式积累起来,将其表示为一个总方程,即可得到所要求的结果。
比如说,如果有两个不等式x+2y<4和3x+4y>12,则可以将其组合为一个总方程:4x+6y<16。
其次,要解决二元一次不等式组,还可以使用图形解法。
图形解法可以帮助我们更清楚地了解给定的不等式组。
将所有不等式用线段画出来,并分别找出它们的交点。
交点中的点即为所需要求的结果。
比如说,如果有两个不等式2x+y<6和x-y>4,则可以将其用线段图
表示出来,并找到它们的交点(-2,2)。
这说明x=-2,y=2即为所需求解的结果。
最后,要掌握解决二元一次不等式组的方法,还需要熟悉相关的概念和知识,这就需要大量的训练和练习。
需要从简单的例子开始,然后逐渐深入研究,最终掌握这门技能。
总而言之,解决二元一次不等式组的方法有解法和图形解法。
二元一次不等式组可以帮助我们解决实际问题,也有助于提高解答技能。
解决二元一次不等式组需要熟悉概念和知识,不断练习,从简单的例
子开始,逐步深入。
初中数学不等式知识点初中数学中,不等式是一个重要的知识点。
学好不等式的知识,对于理解和解决数学问题是非常有帮助的。
下面是关于不等式的一些重要知识点。
一、不等式的定义:不等式是指将未知数与实数用不等号进行比较的数学式子。
不等式中的不等号可以是“小于”(<)、”小于等于“(≤)、”大于“(>)、”大于等于“(≥)。
例如:x+3<7,2x≥10等都是不等式。
二、不等式的性质:1.两边加(减)一个相同的正数或负数,不等号不变,不等式仍然成立。
2.两边乘(除)一个相同的正数,不等号不变,不等式仍然成立;两边乘(除)一个相同的负数,不等号反向,不等式仍然成立。
3.如果两个不等量互为相反数,则它们的大小关系恰好相反。
4.如果不等式的两边同时加(或减)一个相同的数,不等号方向不变。
5.交换不等式的两边,不等号方向改变。
三、一元一次不等式:一元一次不等式是指只含有一个未知数的一次不等式。
例如:2x+3<7,5x-4≥8等。
解一元一次不等式的步骤:1.把含有未知数的项移到不等式的一边,把常数移到不等式的另一边。
2.对于不等式前面的系数,如果是正数,则保持不变;如果是负数,则改变不等号方向。
3.化简不等式,得到一个最简的解。
4.将解集用符号表示。
四、绝对值不等式:绝对值不等式是指一个未知数的绝对值与实数之间的不等关系。
例如:,x+2,<5,3x-4,≥2等。
解绝对值不等式的方法:1.若,x,<a,则-x<a<x。
2.若,x,>a,则x<-a或x>a。
3. 若,ax+b,<c,其中a>0且c>0,则是不等式等价于 -c < ax+b< c。
五、一元二次不等式:一元二次不等式是指一个未知数的二次多项式与实数之间的不等关系。
例如:x^2-4x<3,x^2+5x+6>0等。
解一元二次不等式的步骤:1.将二次项移项,化为一元二次不等式。
高中二元一次不等式组解法
二元一次不等式组解法,也作为一元二次不等式组解法,是中学数学课程中常见的研
究内容。
它是指解决两个一次不等式的联立方程的方法。
所求的解如可实现一个解集,必
须是这两个不等式的共同解之一。
一元二次不等式组解法一般都具有统一的模式,首先要将不等式分别变为方程,准备
乘法变换,这样就可以将二次不等式转换为两个一元一次方程。
之后,将两个方程加起来,保证变量x被移至左边,右边统一记为定值,得到一个新的一元一次方程;最后,在用算
法解一元一次方程,就可以求出所有可行的解。
以一元二次不等式3x²-5x≤-6为例,先将其分别变化为方程:
3x²-5x+6≥0 且3x²-5x-6≤0
由上式可求出x0 = 2 或 x2 = 3 且x0应当是大于等于0,x2应当是小于等于3的解。
将上面的结论变为二元不等式表示法,就可以得到0≤x ≤ 3。
也就是说,二元不等
式3x²-5x≤-6的解集为{x | 0≤x ≤ 3}。
求解一元二次不等式组涉及到四步工作:第一步将不等式化为方程;第二步变换成一
元一次方程;第三步用算法解一元一次方程;第四步得出解集并变换为不等式表示。
解一
元二次不等式组可以通过以上步骤进行,但也要注意,在转换过程当中,需要对不等式的
号符号进行合理的变换,避免出现不正确的答案。
二元一次方程组解法(提高)知识讲解【学习目标】1. 掌握加减消元法解二元一次方程组的方法;2. 能熟练、正确、灵活掌握代入法和加减法解二元一次方程组;3.会对一些特殊的方程组进行特殊的求解.【要点梳理】要点一、加减消元法解二元一次方程组两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.要点诠释:用加减消元法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不互为相反数,又不相等,那么就用适当的数乘方程的两边,使同一个未知数的系数互为相反数或相等;(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)将这个求得的未知数的值代入原方程组中的任意一个方程中,求出另一个未知数的值,并把求得的两个未知数的值用“大括号”联立起来,就是方程组的解.要点二、选择适当的方法解二元一次方程组解二元一次方程组的基本思想(一般思路)是消元,消元的方法有两种:代入消元和加减消元,通过适当练习做到巧妙选择,快速消元.【典型例题】类型一、加减法解二元一次方程组1.(2020春•澧县期末)用加减消元法解方程组34659 23x y x y++==【思路点拨】先将原方程写成方程组的形式后,再求解. 【答案与解析】解:此式可化为:349(1) 2659(2) 3x yx y+⎧=⎪⎪⎨+⎪=⎪⎩由(1):3x+4y=18 (1) 由(2):6x+5y=27 (2) (1)×2:6x+8y=36 (3) (3)-(2):3y=9y=3代入(1):3x+12=183x=6x=2∴23 xy=⎧⎨=⎩【总结升华】先将每个式子化至最简,即形如ax+by=c的形式再消元. 举一反三:【变式】方程组201020092008200820072006x y x y -=⎧⎨-=⎩的解为:.【答案】12x y =-⎧⎨=-⎩2.已知关于x 、y 的方程组ax by cex dy f+=⎧⎨+=⎩的解为31x y =⎧⎨=⎩,求关于x 、y 的方程组()()()()a x y b x y ce x y d x y f-++=⎧⎨-++=⎩的解. 【思路点拨】如果用一般方法来解答此题,很难达到目标,观察发现,两方程的系数相同,只是未知数的呈现方式不同,如果我们把x -y ,x+y 看作一个整体,则两个方程同解. 【答案与解析】解:方程组的解仅仅与未知数的系数有关,与未知数选用什么字母无关,因此把(x -y )与(x+y )分别看成一个整体当作未知数,可得3,1.x y x y -=⎧⎨+=⎩ 解得:2,1.x y =⎧⎨=-⎩【总结升华】本例采用了类比的方法,若把其中的x+y 和x -y 分别看作整体,则第二个方程组与第一个方程组相同,即x+y =1,x -y =3. 举一反三:【变式】三个同学对问题“若方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是:. 【答案】 解:由方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,得1112223434a b c a b c +=⎧⎨+=⎩,上式可写成111222352105352105a b c a b c ⨯+⨯=⎧⎨⨯+⨯=⎩,与111222325325a x b y c a x b y c +=⎧⎨+=⎩比较,可得:510x y =⎧⎨=⎩.类型二、用适当方法解二元一次方程组3.解方程组36101610x y x yx y x y +-⎧+=⎪⎪⎨+-⎪-=-⎪⎩【思路点拨】解决本题有多种方法:加减法或代入法,或整体代入法,整体代入法最简单. 【答案与解析】解:设,610x y x ym n +-==,则原方程组可化为31m n m n +=⎧⎨-=-⎩①②解得12m n =⎧⎨=⎩即16210x y x y +⎧=⎪⎪⎨-⎪=⎪⎩ ,所以620x y x y +=⎧⎨-=⎩解得137x y =⎧⎨=-⎩所以原方程组的解为137x y =⎧⎨=-⎩.【总结升华】解一个方程组的方法一般有多种方法,我们要根据方程组的特点选择最简便的求解方法. 举一反三:【变式】【答案】解:去分母,整理化简得,9112061925x y x y +=⎧⎨+=⎩①②,②×3-①×2得,3535y =,即1y =, 将1y =代入①得,99x =,即1x =, 所以原方程组的解为11x y =⎧⎨=⎩. 4.试求方程组27526x y x y ⎧-=--⎪⎨-=-⎪⎩的解.【答案与解析】解:27526x y x y ⎧-=--⎪⎨-=-⎪⎩①②①-②,整理得513y y -=-③ ∵50y -≥,∴13-y ≥0,即y ≤13,当513y ≤≤时,③可化为513y y -=-,解得9y =; 当5y ≤时,③可化为513y y -=-,无解. 将9y =代入②,得23x -=,解得15x =-或.综上可得,原方程组的解为:19x y =-⎧⎨=⎩或59x y =⎧⎨=⎩.【总结升华】解含有绝对值的方程组,一般先转化为含绝对值的一元一次方程,再分类讨论求出解. 举一反三:【变式】(2020春•杭锦后旗校级期末)若二元一次方程组和y=kx+9有相同解,求(k+1)2的值. 【答案】 解:方程组,①×3+②得:11x=22, 解得:x=2,将x=2代入①得:6﹣y=7, 解得:y=﹣1, ∴方程组的解为,将代入y=kx+9得:k=﹣5,则当k=﹣5时,(k+1)2=16. 第二课时 【学习目标】1.理解不等式的有关概念,掌握不等式的三条基本性质;2.理解不等式的解(解集)的意义,掌握在数轴上表示不等式的解集的方法;3.会利用不等式的三个基本性质,熟练解一元一次不等式或不等式组;4.会根据题中的不等关系建立不等式(组),解决实际应用问题;5.通过对比方程与不等式、等式性质与不等式性质等一系列教学活动,理解类比的方法是学习数学的一种重要途径.【知识网络】【要点梳理】要点一、不等式1.不等式:用符号“<”(或“≤”),“>”(或“≥”),≠连接的式子叫做不等式.要点诠释:(1)不等式的解:能使不等式成立的未知数的值叫做不等式的解.(2)不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.解集的表示方法一般有两种:一种是用最简的不等式表示,例如x a>,x a≤等;另一种是用数轴表示,如下图所示:(3)解不等式:求不等式的解集的过程叫做解不等式.2. 不等式的性质:不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).要点二、一元一次不等式1.定义:不等式的左右两边都是整式,经过化简后只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫做一元一次不等式,要点诠释:ax+b>0或ax+b<0(a≠0)叫做一元一次不等式的标准形式.2.解法:解一元一次不等式步骤:去分母、去括号、移项、合并同类项、系数化为1.要点诠释:不等式解集的表示:在数轴上表示不等式的解集,要注意的是“三定”:一是定边界点,二是定方向,三是定空实.3.应用:列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即:(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式;(5)解:解出所列的不等式的解集;(6)答:检验是否符合题意,写出答案.要点诠释:列一元一次不等式解应用题时,经常用到“合算”、“至少”、“不足”、“不超过”、“不大于”、“不小于”等表示不等关系的关键词语,弄清它们的含义是列不等式解决问题的关键. 要点三、一元一次不等式组关于同一未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.要点诠释:(1)不等式组的解集:不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集. (2)解不等式组:求不等式组解集的过程,叫做解不等式组.(3)一元一次不等式组的解法:分别解出各不等式,把解集表示在数轴上,取所有解集的公共部分,利用数轴可以直观地表示不等式组的解集.(4)一元一次不等式组的应用:①根据题意构建不等式组,解这个不等式组;②由不等式组的解集及实际意义确定问题的答案.【典型例题】类型一、不等式1.(2020春•天津期末)判断以下各题的结论是否正确(对的打“√”,错的打“×”).(1)若 b﹣3a<0,则b<3a;(2)如果﹣5x>20,那么x>﹣4;(3)若a>b,则 ac2>bc2;(4)若ac2>bc2,则a>b;(5)若a>b,则 a(c2+1)>b(c2+1).(6)若a>b>0,则<..【答案与解析】解:(1)若由b﹣3a<0,移项即可得到b<3a,故正确;(2)如果﹣5x>20,两边同除以﹣5不等号方向改变,故错误;(3)若a>b,当c=0时则 ac2>bc2错误,故错误;(4)由ac2>bc2得c2>0,故正确;(5)若a>b,根据c2+1,则 a(c2+1)>b(c2+1)正确.(6)若a>b>0,如a=2,b=1,则<正确.故答案为:√、×、×、√、√、√.【总结升华】本题考查了不等式的性质,两边同乘以或除以一个不为零的负数,不等号方向改变.2. 设x>y ,试比较代数式-(8-10x)与-(8-10y)的大小,如果较大的代数式为正数,则其中最小的正整数x 或y 的值是多少?【思路点拨】比较两个代数式的大小,可以运用不等式的性质得出比较方法。
二元一次不等式解法
代入法解二元一次方程组的步骤
①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;
②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的. );
③解这个一元一次方程,求出未知数的值;
④将求得的未知数的值代入①中变形后的方程中,
求出另一个未知数的值;
⑤用“{”联立两个未知数的值,就是方程组的解;
⑥最后检验(代入原方程组中进行检验,方程是否满足左边=右边)。
加减法解二元一次方程组的步骤
①利用等式的基本性质,将原方程组中某个未知数的系数化成相等或相反数的形式;
②再利用等式的基本性质将变形后的两个方程相加或相减,消去一个未知数,得到一个一元一次方程(一定要将方程的两边都乘以同一个数,切忌只乘以一边,然后若未知数系数相等则用减法,若未知数系数互为相反数,则用加法);
③解这个一元一次方程,求出未知数的值;
④将求得的未知数的值代入原方程组中的任何一个方程中,求出另一个未知数的值;
⑤用“{”联立两个未知数的值,就是方程组的解;
⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边)。
二元一次解不等式组的步骤
一、把二元一次不等式组写成统一的表达式,以方便解答。
通常这种不等式组形式如下:
a1x + b1y ≤ c1
二、利用把不等式变形为等式的方法求解。
将等式左边的变量统一到一边,另一边写成定值,并且化简求未知量:
a1 x + b1 y = c1
b2 y – a2 x = c2
三、将变形后的两等式按一定方法组合起来求解。
将相同项相加,或者相减:
四、利用代数方程求解。
解一元二次方程:
x = (c1 – c2)/(a2 – a1)
五、从解出来的x值和等式:b1 y + b2 y = c1 + c2 中解出y的值
六、将x和y的值带入到原不等式组中检验是否满足:
七、将可解范围写成空间坐标形式。
由计算步骤得出x,y的范围,如x∈[x1,x2],y∈[y1, y2],那么可解范围就是一个平行四边形:
(x1, y1) (x1, y2) (x2, y2) (x2, y1).。