【精品】高二数学人教B版选修4-5讲义:第一章 1.5 1.5.2 综合法和分析法含解析
- 格式:doc
- 大小:352.50 KB
- 文档页数:9
1. 5 不等式证明的基本方法1 . 5.1 比较法扭氢问龙索弟葯幻比卅匚诸[对应学生用书P16][读教材填要点]1. 定义要证a>b,只需要证 a —b>0;要证a<b,只需证a —b<0,这种证明不等式的方法,称为比较法.2. 用比较法证明不等式的步骤⑴求差.(2) 变形:可用因式分解、配方、乘法公式等,把差变形为乘积式平方和的形式.(3) 作出判断.[小问题大思维]作差比较法的主要适用类型是什么?实质是什么?提示:作差比较法尤其适用于具有多项式结构特征的不等式的证明. 实质是把两个数或式子的大小判断问题转化为一个数(或式子)与0的大小关系•:爲爲疋企壮至它-字,hi:…点軌迪[对应学生用书P16]比较法证明不等式4 3 2[例1]求证:⑴当x€ R时,1 + 2x >2x + x ;a ba b ----(2)当a, b € (0,+s )时,a b > (ab) 2 .[思路点拨](1)利用作差比较法,注意变形分解 :(2)利用作商比较法,注意判断底数大小决定商的大小.[精解详析]⑴法一:(1 + 2x4) —(2x3+ x2)3=2x (x—1)—(x+ 1)(x—1)=(x—1)(2x3—x—1)=(x—1)(2x3—2x+ x—1)1. 5 不等式证明的基本方法=(x—1)[2x(/ —1) + (x—1)]11(x 1)2(2X 22x 1)(x 1)2 2 x 122 1101 2x 4 2x 3x 2.(1 2x 4 )(2 x 3 x 2) x 4 2x 3 x 2 x 4 2x 2 1 (x 1)2x 2 (x 2 1)2 01 2x 4 2x 3 x 2.⑵一a ab ba-baa bb _aPa 竽 babPa b a 竽 b1a>b>0 a >Ia b |1■ x a ba jb>a>00<a <1a b 2 <0b>1.a “ba b(0 )a ab b (ab)—规』l 沁 姑(i 2)x> 11 x>0 ■\/iX >0.x2.=-2【(x+ 1) - 2 x+ 1 + 1]-2( .x+ 1- 1)2w 0,•••寸1+x w 1+ 2.[例2]甲、乙二人同时同地沿同一路线走到同一地点,甲有一半时间以速度m行走,另一半以速度n行走;乙有一半路程以速度m行走,另一半路程以速度n行走.如果m^ n, 问甲、乙二人谁先到达指定地点?[思路点拨]本题考查比较法在实际问题中的应用,解答本题需要设出从出发点到指定地点的路程s,甲、乙二人走完这段路程各自需要的时间如t2,然后利用作差法比较t1, t2的大小即可.[精解详析]设从出发地点至指定地点的路程为s,甲、乙二人走完这段路程所用的时间分别为如t2,依题意有:t1 t1^m+ 尹=s,2m+影t2mn m+ n '其中s, m, n都是正数,且m^ n,• •屯—t2< 0,即t r V t2.从而知甲比乙先到达指定地点.应用不等式解决问题时,关键是如何把等量关系不等量关系转化为不等式的问题来解决,也就是建立数学模型是解应用题的关键,最后利用不等式的知识来解.解答不等式问题,一般可分为如下步骤:①阅读理解材料;②建立数学模型;③讨论不等式关系;④作出问题结论.2 .某人乘出租车从A地到B地,有两种方案.第一种方案:乘起步价为10元,超过规定里程后每千米 1.2元的出租车;第二种方案:乘起步价为8元,超过规定里程后每千米1.4元的出租车.按出租车管理条例, 在起步价内,不同型号的出租车行驶的路程是相等的,则此人从A 地到B 地选择哪一种方案比较合适?解:设A 地到B 地的距离为m 千米.起步价内行驶的路程为 a 千米.显然当m w a 时,选起步价为 8元的出租车比较合适.当m>a 时,设m = a + x(x>0),乘坐起步价为10元的出租车费用为 P(x)元.乘坐起步价 为8元的出租车费用为 Q(x)元,贝U P(x)= 10+ 1.2x , Q(x) = 8+ 1.4x. •/ P(x) — Q(x) = 2 — 0.2x = 0.2(10 — x)•••当x>10时,P(x)<Q(x),此时选择起步价为 10元的出租车较为合适. 当x<10时,P(x)>Q(x),此时选择起步价为 8元的出租车较为合适. 当x = 10时,P(x)= Q(x),两种出租车任选,费用相同.、选择题 1.下列关系中对任意 a v b v 0的实数都成立的是(2 .2A . a v b b C . a>1解析:■/ a v b v 0, •— a> — b>0.2 2 (—a) >( — b) >0. 即 a 2>b 2>0. b 2 • a2v 1.b 2又 lg b 2— Ig a 2= Ig^v Ig 1 = 0. a• lg b 2v Ig a 2答案:B1 o2.已知P =?++!,Q= a 2— a +1,那么P 、Q的大小关系是()A . P>Q C . P >Q解析:2 21 — (a — a + 1 f a + a + 1 } P — Q = 24 i 2—++T ,YING YONG课下训练经撫化.贵在鮭类旁通P18][对应学生用书)2 2B . lgb <ig aB . P<QD .>3 (A C A D4 A C56a 2 a 1 0a 4 a 2 0P Q 0. QP.m主彩石⑴w p wm n>p B m>n p n> m>pD n m>pB C.n.D.(ab k a k b) (a k 1 b k 1)(k N )(ab k a "b) b k (a b) a k (b a) b k 1a>0 b>0 a>b (a b)(b k a k ) a k >b k(a b)(b k a k )<0 a<ba k <b k(a b)(b k a k )<o.2 2(x y )(x y) N (x y )(x y) MN 2, 、 z 2 . 2X z 、 x y 0 M M N (x y 2)(x y) (x 2y 2)(x y)(x y)[(x 2y 2) (x y)2]2xy(x y)x<y<0 xy 0 x y<0.2xy(x y)>0 M N>0. M>N. M>N0<x<1a换b 1 X c 匕得c>b,知c最大.答案:c17.如果a>0, b>0,则下列两式的大小关系为lg(1 + Vab) _______ 艮lg(1 + a) + lg(1 +b)].(填不等关系符号)解析:T (1 + a)(b+ 1) = 1 + a+ b+ ab,1•- 2[lg(1 + a) + lg(1 + b)]=lg 1 + a+ b+ ab.T (1 + :.;ab)2 —(-;”;1 + a+ b + ab)?= 2 ■'ab —(a + b),又 a + b》2、.;ab,.°. 2・..;ab —(a + b)w 0.1•- lg(1 + ■.ab)w 2【lg(1 + a) + lg(1 + b)].答案:w&一个个体户有一种商品,其成本低于^■器元.如果月初售出可获利100元,再将本利存入银行,已知银行月息为2.5%,如果月末售出可获利120元,但要付成本的2%的保管费,这种商品应_______________________ 出售(填“月初”或“月末”).解析:设这种商品的成本费为a元.月初售出的利润为L1= 100+ (a+ 100) X 2.5% ,月末售出的利润为L2= 120-2%a,则L1-L2= 100 + 0.025a+ 2.5- 120 + 0.02a=0.045 a-...av3器,•. L1<L2,月末出售好.答案:月末三、解答题9.已知a> 1,求证.a+ 1 - '.a< ,a- .a —1,证明:•/ ( a + 1 - .a) —( a —a- 1)= 1 -1.a+ 1 + \ a .a + a- 1m 0/什昇1 ) 0 f(a) f(b)a 3b 3 剧(a 2 b 2)a p a &a 並)b 乐(伍翻(帝佝[(佝5(W )5]a by/a y/b(回5(W )5(击承)[(W )5 (W )5] 0 a <b 羽<训 (诉)5<(托)5b a<0.a 1b 1m b a (a1 • 1<0f (a)<f(b )m•— >0 f(a)>f(b) a 1 b 12 2 2 2a 22x b 2 1 x 2 2x>a 2 a>0 b>0a 3b 3 何a 211m R a>b>1 mxf(x)'丿x 1f(a)f(a) f(b) ma 1a 1mb m b ab 1(a1 b1.a>b>1b a<0 a 1>0 b 1>0(⑴ 佝(何(何]>0.f(b)m>0m<0b>a.c b — x) 5^)产>01 x 1 x 1 xI -a + 1 + \a+ \; a—1 i,a+ 1 - .a<, a —, a- 1.10.设a, b是非负实数,求证:a3+ b3> ab(a I 2+ b2).什昇1) 0 f(a) f(b)m 0 /。
P24][ P24]() ()[1] |x 1| |x|<2.[] 3x 1x 1 x<2 一<x 1 2 1<x<0 x 1x<21<x<0x 1 x<2x<2.不等式的基木性质解不等式p 1元一次不等式含绝对值的不等式一元二次不等式因此,原不等式的解集为# —2<x<1匚法二:利用方程和函数的思想方法.令f(x) = |x+ 1|+ 凶一22x—1 x> 0 ,1=—1 —K x<0 ,—2x — 3 x<—1 .作函数f(x)的图象(如图),3 1知当f(x)<0 时,一2<x<?.3 1故原不等式的解集为X1 — 3<x<1 .法三:利用数形结合的思想方法.由绝对值的几何意义知,x+ 11表示数轴上点P(x)到点A(—1)的距离,|x|表示数轴上点P(x)到点0(0)的距离.由条件知,这两个距离之和小于 2.3 1 |--------------- 1作数轴(如图),知原不等式的解集为吠一3 v x</ .2 2丿3-1 0 1L.~2T 法四:利用等价转化的思想方法.原不等式? 0W|x+ 1|<2 —|x|,•••(x+ 1)2<(2 —|x|)2,且|X|<2,即0<4|x|<3—2x,且xi<2.• 16x <(3 —2x),且—2<x<2.3 1 3 1、解得—2<x<2・故原不等式的解集为<x|—2v x<2 r.[例2]已知f(x) =|ax+ 1|(a € R),不等式f(x) < 3 的解集为{x|—2< x< 1}.(1) 求a的值;⑵若f(x 一2f $ j w k恒成立,求k的取值范围.[解](1)由|ax+ 1|w 3 得—4w ax w 2.又f(x) w 3的解集为{x|—2w x w 1},所以当a w 0时,不合题意.当a>0 时,一4w x w2,得 a = 2.a a(2) 法一:记h(x) = f(x)—2fQ ,kk 1.B 2 .3 D 4 . 31.5(1x 1 」 4x 31<x< h(x) <【11 x212k 1.2|x 1||[3]0<x<21 cos 2x 8sin 2x22cos x8sin 2x 1 .. f(x)- 2sin xcos x 丄4ta n x. tan xI r 、 1x! P n 丿 tan x>0 tan x>0.f(x)1 4ta n x2 1 4ta nxtan x、:tan x[]C[4]xm11164.2014k (m 0) x 3(k )m 120148|h(x)| 1 k1| 1f(x) 2fg) k⑴将2014年该产品的利润y 万元(利润=销售金额—生产成本—技术改革费用 )表示为技术改革费用 m 万元的函数;⑵该企业2014年的技术改革费用投入多少万元时,厂家的利润最大? [解] ⑴由题意可知,当 m = 0时,x = 1(万件), 1 = 3— k.「. k = 2.「. x = 3 — _2—m + 1 每件产品的销售价格为 1.5 X 8±^6X (元),X ••• 2014年的利润16⑵「m >0,• mV (m +1)》216=8,• y w 29 — 8= 21.16当 =m + 1,即 m = 3, y max = 21. m +1•该企业2014年的技术改革费用投入 3万元时,厂家的利润最大证明不等式是近几年新课标高考的一个热点考向,常以解答题的形式出现,常与函数、 数列等知识交汇命题,常用到的证明方法有:1. 比较法证明不等式比较法证明不等式的依据是: 不等式的意义及实数比较大小的充要条件.作差比较法证明的一般步骤是:①作差;②恒等变形;③判断结果的符号;④下结论•其中,变形是证明 推理中一个承上启下的关键,变形的目的在于判断差的符号,而不是考虑差能否化简或值是多少,变形所用的方法要具体情况具体分析, 可以配方,可以因式分解,可以运用一切有效的恒等变形的方法.[例 5]已知 a > b>0,求证:2a 3 — b 3 >2ab 2— a 2b. [证明]2a 3— b 3— (2ab 2— a 2b) =2a(a 2— b 2) + b(a 2— b 2)22=(a — b )(2 a + b) =(a — b)(a + b)(2a + b).因为 a > b>0 ,所以 a — b >0, a + b>0,2a + b>0,从而(a — b)(a + b)(2a + b) > 0, 即 2a ‘— b ‘》2ab ?— a ^b.y = x • 1.5X8 + 16xx —(8 + 16x)— m -16m + 1卜 m + 1 + 29(m > 0).2. 综合法证明不等式综合法证明不等式的思维方向是“顺推” 件(由因导果),最后推导出所要证明的不等式成立.综合法证明不等式的依据是:已知的不等式以及逻辑推证的基本理论: 证明时要注意的是:作为依据和出发点的几个重要不等式(已知或已证)成立的条件往往不同,应用时要先考虑是否具备应有的条件,避免错误、如一些带等号的不等式,应用时要清楚取等号的条件, 即对重要不等式中“当且仅当…时,取等号”的理由要理解掌握.[例 6] 设 x>0 , y>0 , z>0,求证: ,x 2+ xy + y 2 + y 2 + yz + z 2>x + y + 乙 >x +y ,① 7y 2+ zy + z[z+ 2/+ 4y 2 >z + 2,②•••由①②得:x 2 + xy + y 2 + y 2 + zy + z>x + y + 乙 3. 分析法证明不等式分析法证明不等式的依据也是不等式的基本性质、 已知的重要不等式和逻辑推理的基本理论•分析法证明不等式的思维方向是“逆推”,即由待证的不等式出发,逐步寻找使它成立的充分条件(执果索因),最后得到的充分条件是已知 (或已证)的不等式.当要证的不等式不知从何入手时, 可考虑用分析法去证明,特别是对于条件简单而结论 复杂的题目往往更为有效.由教材内容可知,分析法是“执果索因”,步步寻求上一步成立的充分条件,而综合法是“由因导果”,逐步推导出不等式成立的必要条件,两者是对立统一的两种方法•一般来 说,对于较复杂的不等式, 直接用综合法往往不易入手, 因此,通常用分析法探索证题途径,然后用综合法加以证明,所以分析法和综合法可结合使用.[例 7]已知 a>0, b>0,且 a + b = 1,求证:[证明]即证 a + b + 1 + 2,即由已知的不等式出发,逐步推出其必要条[证明]8]2 .2 a2 1a孑<21 1 1112 12 31 1 1[ ] 1 23 <k 1 2 •2小11)2n<3.a>0 b>0 a b 1.(1)(ab1 1ab 2(a b) 4 114.] 22.212a12aaa2 4[9]22 )<1 +1 +1+ 步+ {+ …+ 十=1=3 — 2°-1V 3.爪匚'■■叭[对应学生用书P26] 一、选择题A . [ — 1,4) D . (— 1,4)解析:A = {x|x — 1|>2} = {x|x>3 或 x< — 1},2B = {x|x — 6x + 8<0} = {x|2<x<4}, •••(?u A) n B = {x|2<x w 3}. 答案:C12. a>1 ”是“才<1 ”成立的( )A .充分不必要条件B •必要不充分条件 C. 充要条件D. 既不充分也不必要条件1 1 一 a解析:当一<1时,有 <0,即a<0或a>1, a a 1所以a>1 ”是“丄<1”成立的充分不必要条件.a 答案:A 3.已知a ,b ,c 满足c<b<a 且a>0, ac<0,则下列选项中不一疋能成立的是()c b A . -<aa ab — a B . >0c .2 2b a c.—> —c ca — c D . <0 ac解析:由b>c , a>0,即丄>0,可得->c ,故A 恒成立.a a a-b<a ,…b — a<0.b _ a又c<0,•—厂>0,故B 恒成立.c -c<a ,・• a — c>0.1.已知全集 U = R ,且 A = {x|X — 1|>2}, B = {x|x 2— 6x + 8<0},则(?u A) n B 等于( B . (2,3) C . (2,3]ac<0 ----------- <0 Dac b 2 a 1b 2>a 2 c<0.2 2b a <—c cC4 |x 2| |x 3|>a x RA ( 5)B [0,5)C (1) D [0,1]A B A B |x 2| X 3|5Aa b不肩也何2占曙|x 1| |x 3|M >N6()x|ax 2|<3!x —I 33l32 a5一3 7a 71- 336 a引X132|x 2| |x 3|5 AB5a<5. A( 3)B(2)5.[-2x — 2,(X W — 3 , *;4, (— 3<x<1 ,(2x + 2, (X 》1 .当 x < — 3 时,一2x — 2>6? x < — 4; 当 x > 1 时,2x + 2>6? x >2; 当一3<x<1时,4W 6,舍去. 故不等式的解集为{x|x > 2或x < — 4}. 答案:{x|x > 2 或 x <— 4}1 , ,8.已知 a>0,贝U ---- , ~: ----- , ---------- 从大至U 小的顺序为2如 2pa + 1 >/a+p a + 1 解析:T a>0, — 2、a<• J a +、a + 1<2 .j a + 1 1 ______ 1 _______ 12 H a a + a + 1 2 ;:a + 1 1 1 _______ 12 ja a + \:a + 1 2\: a + 1 三、解答题(1)证明:对n 》2总有x n 》,a ; ⑵证明:对n 》2总有X n 》X n + 1.证明:(1)由x 1 = a>0,及X n + 1 = 1X n +旦可以归纳证明21 X n 丿X n • = a(n € N +),所以当n 》2时,x *》a 成立. X n (2)当 n 》2 时,因为 X n 》a>0 , X n + 1= 2 X n + X , 所以 x n +1 — x n =# 、 21 , a 1 a — x n= 1X n +X n —冷=2 - X n 仝故当n 》2时,Xn 》Xn + 1成立.10.已知关于x 的不等式 |ax — 1|+ |ax — a|》1(a>0).(1)当a = 1时,求此不等式的解集;(2)若此不等式的解集为 R ,求实数a 的取值范围. 解: (1)当 a = 1 时,得 2|x — 1|》1, 13 1••• ix -1》2 x 》3或 x < 2,•••不等式的解集为 *| x < 1或X 》2 .答案:9.某数列由下列条件确定:1 X 1 = a>0, xn + 1=-刈+x n , Xn >0,从而有 X n +1= £1-0(2) |ax 1| |ax a| |a 1|b a 小 C・a a 2b 2 ab ab a 2 A B|a| |b| 0 |a b| 0.Ra 2 a 0. |a 1| 1a[2 ) 11 (1) x(x 1)(x 21)(x 31) 8x(2) x R(x 1)(x 2 1)(x 3 1) 8x 3xx 12五 12 x 2xx 31 2品(x 1)(x 21)(x 3 1)2乐 2x 2欢8x 3(⑵ x R(x 21)(x1)(x 3 31) 8x 3(1)x>0x 0 8x 3 0.(x 1)(x 2 1)(x 3 1)(x 1)2(x 21)(x 2 x 1)(x 1)2(x 2 1)[(x 2)刃P49]1090120 ) 50 )A a 2 b 2B ab b 2 D |a||b| |a b|ABCD b a 0? ai |b|.a>0 a 2. (1) x答案:D2.设 a , b , c € R J 则"abc = 1” 是"芈 + -1 +-1 < a + b + c ” 的( p aQ b A /CA .充分条件但不是必要条件B •必要条件但不是充分条件C .充分必要条件D .既不充分也不必要的条件 解析:当a = b = c = 2时,有辛+¥ a + b + c ,但abc 丰1,所以必要性不成立; a . b . c当 abc = 1 时,"a * I * 1广J " * ac * ab , a* b 土 *2* c a * c > ab * bc * ac ,所以充分性成立, a * b * c ”的充分不必要条件. 答案:A x > 0,3.不等式3 -x 2 — x 的解集是()> | |3* x 2*X A . (0,2) B . (0,2.5) C . (0, .6) D . (0,3)5解析:用筛选法,容易验证 x = 2是不等式的解,否定A ; x = 5不是不等式的解,否定D ; X=V 6使汙% 瓷!取 “ = ”,7 V 2,故否定 B.3十x 2十X | 2 答案:C4•若a>b>0,则下列不等式中一定成立的是 () 1 1 A . a * b>b *a b b * 1B.a 诂 112a * b aC .a -b>b -aD .O *十航解析:a>b>0?右〉1〉。
1.2基本不等式[对应学生用书P7][读教材·填要点]1.定理1设a ,b ∈R ,则a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.定理2(基本不等式或平均值不等式)如果a ,b a =b 时,等号成立.即:两个正数的算术平均不小于(即大于或等于)它们的几何平均.3.定理3(三个正数的算术—几何平均值不等式)如果a ,b ,c 为正数,则a +b +c 3≥a =b =c 时,等号成立.4.定理4(一般形式的算术—几何平均值不等式) 如果a 1,a 2,…,a n 为n 个正数,则 a 1+a 2+…+a nn≥ 并且当且仅当a 1=a 2=…=a n 时,等号成立.[小问题·大思维]1.在基本不等式a +b2≥ab 中,为什么要求a ,b ∈(0,+∞)?提示:对于不等式a +b2≥ab ,如果a ,b 中有两个或一个为0,虽然不等式仍成立,但是研究的意义不大,而且a ,b 至少有一个为0时,不能称ab 为几何平均(或等比中项),因此规定a ,b ∈(0,+∞).2.满足不等式a +b +c 3≥3abc 成立的a ,b ,c 的范围是什么?提示:a ,b ,c 的范围为a ≥0,b ≥0,c ≥0.[对应学生用书P8][例1] 已知a ,b ,c 为正实数,且abc =1 求证:(a +b )(b +c )(c +a )≥8.[思路点拨] 本题考查基本不等式在证明不等式中的应用,解答本题需要分析不等式的特点,先对a +b ,b +c ,c +a 分别使用基本不等式,再把它们相乘.[精解详析] ∵a ,b ,c 为正实数, ∴a +b ≥2ab >0, b +c ≥2bc >0, c +a ≥2ca >0, 由上面三式相乘可得 (a +b )(b +c )(c +a ) ≥8ab ·bc ·ca =8abc . 即(a +b )(b +c )(c +a )≥8.(1)用基本不等式证明不等式时,应首先依据不等式两边式子的结构特点进行恒等变形,使之具备基本不等式的结构和条件,然后合理地选择基本不等式或其变形形式进行证明.(2)本题证明过程中多次用到基本不等式,然后利用同向不等式的可加性得出所证的不等式.1.已知a ,b ∈(0,+∞),求证:(a +b )⎝⎛⎭⎫1a +1b ≥4. 证明:∵a >0,b >0,∴a +b ≥2ab >0,① 当且仅当a =b 时取等号. 1a +1b≥21ab>0,② 当且仅当1a =1b ,即a =b 时取等号.①×②,得(a +b )⎝⎛⎭⎫1a +1b ≥2ab ·21ab=4, 当且仅当a =b 时取等号.∴(a +b )⎝⎛⎭⎫1a +1b ≥4.[例2] (1)已知a ,b ,c ∈R +, 求证:a 2+b 2+c 2+⎝⎛⎭⎫1a +1b +1c 2≥6 3.(2)设a 1,a 2,a 3均为正数,且a 1+a 2+a 3=m ,求证:1a 1+1a 2+1a 3≥9m.[思路点拨] 本题考查平均不等式的应用.解答(1)题时可重复使用均值不等式,(2)题需要先观察求证式子的结构,然后通过变形转化为用平均不等式证明.[精解详析] (1)a 2+b 2+c 2+⎝⎛⎭⎫1a +1b +1c 2 ≥33a 2b 2c 2+931a 2·1b 2·1c 2≥233a 2b 2c 2·931a 2·1b 2·1c 2=63,当且仅当a =b =c =43时等号成立. (2)∵⎝⎛⎭⎫1a 1+1a 2+1a 3·m =(a 1+a 2+a 3)·⎝⎛⎭⎫1a 1+1a 2+1a 3≥33a 1·a 2·a 3·3 31a 1·1a 2·1a 3=9·3a 1·a 2·a 3·1a 1·1a 2·1a 3=9.当且仅当a 1=a 2=a 3=m3时等号成立.又∵m >0,∴1a 1+1a 2+1a 3≥9m.三个正数的算术—几何平均不等式定理,是根据不等式的意义、性质和比较法证出的,因此,凡是可以利用该定理证明的不等式,一般都可以直接应用比较法证明,只是在具备条件时,直接应用该定理会更简便.若不直接具备“一正二定三相等”的条件,要注意经过适当的恒等变形后再使用定理证明.连续多次使用平均值不等式定理时要注意前后等号成立的条件是否保持一致.2.已知a ,b ,c ∈R +,证明⎝⎛⎭⎫1a 2+1b 2+1c 2(a +b +c )2≥27. 证明:∵a ,b ,c ∈R +, ∴a +b +c ≥33abc >0. ∴(a +b +c )2≥93a 2b 2c 2 又1a 2+1b 2+1c 2≥331a 2b 2c2>0, ∴⎝⎛⎭⎫1a 2+1b 2+1c 2(a +b +c )2≥331a 2b 2c 2·93a 2b 2c 2 =27.当且仅当a =b =c 时,等号成立. ∴⎝⎛⎭⎫1a 2+1b 2+1c 2(a +b +c )2≥27.[对应学生用书P9]一、选择题1.设x 、y 为正实数,且xy -(x +y )=1,则( ) A .x +y ≥2(2+1) B .x +y ≤2(2+1) C .x +y ≤(2+1)2D .x +y ≥(2+1)2解析:x >0,y >0,xy -(x +y )=1⇒xy =1+(x +y )⇒1+(x +y )≤⎝ ⎛⎭⎪⎫x +y 22⇒x +y ≥2(2+1).答案:A2.已知圆柱的轴截面周长为6,体积为V ,则下列关系式总成立的是( ) A .V ≥π B .V ≤π C .V ≥18πD .V ≤18π解析:设圆柱的底面半径为r ,高为h ,则由题意得:4r +2h =6,即2r +h =3, 于是有V =πr 2h ≤π·⎝⎛⎭⎪⎫r +r +h 33=π⎝⎛⎭⎫333=π, 当且仅当r =h 时取等号. 答案:B3.设x ,y ,z ∈R +且x +y +z =6,则lg x +lg y +lg z 的取值范围是( ) A .(-∞,lg 6] B .(-∞,3lg 2] C .[lg 6,+∞) D .[3lg 2,+∞) 解析:∵lg x +lg y +lg z =lg(xyz ), 而xyz ≤⎝⎛⎭⎪⎫x +y +z 33,∴lg(xyz )≤lg 8=3lg 2(当且仅当x =y =z =2时,等号成立). 答案:B4.设a ,b ,c ∈(0,+∞)且a +b +c =1,令x =⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1,则x 的取值范围为( )A.⎣⎡⎭⎫0,18 B.⎣⎡⎭⎫18,1 C .[1,8)D .[8,+∞)解析:∵x =⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1 =1-a a ·1-b b ·1-c c =(b +c )·(c +a )·(a +b )abc≥2bc ·2ca ·2ababc=8,当且仅当a =b =c 时取等号,∴x ≥8. 答案:D 二、填空题5.已知x ,y ∈R +,且满足x 3+y 4=1,则xy 的最大值为________.解析:因为x >0,y >0, 所以x 3+y 4≥2x 3·y 4= xy3,即 xy3≤1,解得xy ≤3,所以其最大值为3. 答案:36.设a >1,t >0,则12log a t 与log a t +12的大小关系为12log a t ________log a t +12(填“<”“≥”或“≤”).解析:因为12log a t =log a t ,又t >0又t +12≥ t . 而a >1,∴log a t +12≥log a t ,故填“≤”.答案:≤7.函数y =x 2x 4+9(x ≠0)有最大值________,此时x =________.解析:∵x ≠0,∴x 2>0. ∴y =x 2x 4+9=1x 2+9x2≤12x 2·9x2=16, 当且仅当x 2=9x 2,即x 4=9,x =±3时取等号,即当x =±3时,y max =16.答案:16±38.已知a >0,b >0,c >0,且a +b +c =1,则abc 的最大值是________. 解析:∵a ,b ,c ∈(0,+∞),∴1=a +b +c ≥33abc . 0<abc ≤⎝⎛⎭⎫133=127,当且仅当a =b =c =13时取等号.答案:127三、解答题9.求函数y =2x 2+3x (x >0)的最小值.解:由x >0知2x 2>0,32x >0,则y =2x 2+3x =2x 2+32x +32x≥332x 2·32x ·32x =3392.当且仅当2x 2=32x ,即x =334时,y min =3392=32336.10.已知a ,b 为正实数,a +b =1. 求证:⎝⎛⎭⎫a +1a 2+⎝⎛⎭⎫b +1b 2≥252. 证明:∵a >0,b >0,a +b =1. ∴1=a +b ≥2ab ,ab ≤12.∴1ab ≥4.∵a +b 2≤ a 2+b 22,∴a 2+b 22≥⎝ ⎛⎭⎪⎫a +b 22. ∴⎝⎛⎭⎫a +1a 2+⎝⎛⎭⎫b +1b 2≥2⎣⎢⎡⎦⎥⎤a +1a +b +1b 22=⎝⎛⎭⎫1+1a +1b 22≥⎝⎛⎭⎫1+21ab 22≥252.∴⎝⎛⎭⎫a +1a 2+⎝⎛⎭⎫b +1b 2≥252. 当且仅当a =b =12时等号成立.11.设a ,b ,c 为正实数, 求证:1a 3+1b 3+1c3+abc ≥2 3.证明:因为a ,b ,c 为正实数,由算术—几何平均不等式可得 1a 3+1b 3+1c 3≥331a 3·1b 3·1c 3, 即1a 3+1b 3+1c 3≥3abc (当且仅当a =b =c 时,等号成立). 所以1a 3+1b 3+1c 3+abc ≥3abc +abc .而3abc+abc ≥23abc·abc =23(当且仅当a 2b 2c 2=3时,等号成立), 所以1a 3+1b 3+1c 3+abc ≥23(当且仅当a =b =c =63时,等号成立).。
数学人教B 选修4-5第一章不等式的基本性质和证明的基本方法知识建构综合应用专题一 含绝对值不等式的解法1.公式法|f (x )|>g (x )f (x )>g (x )或f (x )<-g (x );|f (x )|<g (x )-g (x )<f (x )<g (x ).2.平方法|f (x )|>|g (x )|[f (x )]2>[g (x )]2.3.零点分段法含有两个以上绝对值符号的不等式,可先求出使每个含绝对值符号的代数式值等于零的未知数的值,将这些值依次在数轴上标注出来,它们把数轴分成若干个区间,讨论每一个绝对值符号内的代数式在每一个区间上的符号,转化为不含绝对值的不等式去解.应用1解下列关于x 的不等式:(1)|x -x 2-2|>x 2-3x -4;(2)|x -2|-|2x +5|>2x .提示:根据绝对值的意义,先去掉绝对值符号,再解不等式.应用2若f 1(x )=3|x -p 1|,f 2(x )=2·3|x -p 2|,x ∈R ,p 1,p 2为常数,且f (x )=⎩⎪⎨⎪⎧f 1(x ),f 1(x )≤f 2(x ),f 2(x ),f 1(x )>f 2(x ).求f (x )=f 1(x )对所有实数x 成立的充要条件(用p 1,p 2表示).专题二 基本不等式的应用利用基本不等式求最值问题一般有两种类型:(1)和为定值时,积有最大值;(2)积为定值时,和有最小值.在具体应用基本不等式解题时,一定要注意适用的范围和条件:“一正、二定、三相等”.应用1(1)已知0<x <2,求函数y =x (8-3x )的最大值.(2)已知x >1,求函数y =x 2-2x +22x -2的最小值. 提示:先通过恒等变形,使不等式具备“一正、二定、三相等”的条件,再应用基本不等式求最值.应用2已知a >b >0,求a 2+16b (a -b )的最小值. 提示:适当变形后,可多次应用基本不等式,但应注意验证等号是否成立. 专题三 恒成立问题对于恒成立不等式求参数范围问题,常见类型及其解法如下:(1)分离参数法运用“f (x )≤a f (x )max ≤a ,f (x )≥a f (x )min ≥a ”可解决恒成立中的参数范围问题.(2)更换主元法不少含参不等式恒成立问题,若直接从主元入手非常困难或不可能时,可转换思维角度,将主元与参数互换,常可得到简捷的解法.(3)数形结合法在研究曲线交点的恒成立问题时,若能数形结合,揭示问题所蕴含的几何背景,发挥形象思维与抽象思维各自的优势,可直观地解决问题.应用1已知函数f (x )在定义域(-∞,1]上是减函数,问是否存在实数k ,使得f (k -sinx )≥f (k 2-sin 2x )对一切x ∈R 恒成立?并说明理由.提示:首先应根据函数的单调性去掉函数符号,转化为关于sin x 的不等式恒成立问题. 应用2设有关于x 的不等式lg(|x +3|+|x -7|)>a .(1)当a =1时,解此不等式;(2)当a 为何值时,此不等式的解集是R?提示:对于(1),根据对数函数的单调性转化为绝对值不等式求解.(2)可转化为函数最值问题求解.专题四 不等式的证明证明不等式的主要方法有作差比较法、作商比较法、平方差比较法、综合法、分析法.其次还有反证法、放缩法、换元法、判别式法、构造函数法等,但这些方法不是孤立的,它们相互渗透、相辅相成,有的题目可以有多种证法,而有的题目要同时用几种方法才能解决,因此我们在平时解题中要通过一题多解,一解多法的反复训练,加强对各种方法的区别与联系的认识,把握每种方法的优点和缺点,从而不断提高我们分析问题和解决问题的能力.应用1已知a ,b ,c ,d ∈R ,求证:ac +bd ≤(a 2+b 2)(c 2+d 2).提示:本题可用分析法、综合法、比较法、三角代换法、构造函数法等证明.应用2用反证法证明钝角三角形最大边上的中线小于该边长的一半.答案:综合应用专题一应用1:解:(1)解法一:原不等式等价于x -x 2-2>x 2-3x -4或x -x 2-2<-(x 2-3x -4),解得1-2<x <1+2或x >-3,∴原不等式的解集为{x |x >-3}.解法二:∵|x -x 2-2|=|x 2-x +2|=x 2-x +2,∴原不等式等价于x 2-x +2>x 2-3x -4x >-3.∴原不等式的解集为{x |x >-3}.(2)分段讨论:①当x <-52时,原不等式变形为 2-x +2x +5>2x ,解得x <7,∴原不等式的解集为{x |x <-52}. ②当-52≤x ≤2时,原不等式变形为2-x -2x -5>2x , 解得x <-35. ∴原不等式的解集为{x |-52≤x <-35}. ③当x >2时,原不等式变形为x -2-2x -5>2x ,解得x <-73,∴原不等式无解. 综上可得,原不等式的解集为{x |x <-35}. 应用2:解:f (x )=f 1(x )恒成立f 1(x )≤f 2(x )3|x -p 1|≤2·3|x -p 2|3|x -p 1|-|x -p 2|≤2|x -p 1|-|x -p 2|≤log 32.(*)若p 1=p 2,则(*)式0≤log 32,显然成立;若p 1≠p 2,记g (x )=|x -p 1|-|x -p 2|.当p 1>p 2时,g (x )=⎩⎪⎨⎪⎧p 1-p 2, x <p 2,-2x +p 1+p 2, p 2≤x ≤p 1,p 2-p 1, x >p 1, 所以g (x )max =p 1-p 2,故只需p 1-p 2≤log 32.当p 1<p 2时,g (x )=⎩⎪⎨⎪⎧ p 1-p 2, x <p 1,2x -p 1-p 2, p 1≤x ≤p 2,p 2-p 1, x >p 2,所以g (x )max =p 2-p 1,故只需p 2-p 1≤log 32.综上所述,f (x )=f 1(x )对所有实数x 成立的充要条件是|p 1-p 2|≤log 32.专题二应用1:解:(1)∵0<x <2,∴0<3x <6,∴8-3x >0,∴y =x (8-3x )=13·3x ·(8-3x ) ≤13⎝⎛⎭⎫3x +8-3x 22=163,当且仅当3x =8-3x ,即x =43时取等号, ∴当x =43时,y =x (8-3x )有最大值163. (2)∵x >1,∴y =x 2-2x +22x -2=(x -1)2+12(x -1)=12[(x -1)+1x -1] ≥12×2(x -1)·1x -1=1. 当且仅当x -1=1x -1,即x =2时取等号, 所以当x =2时,y =x 2-2x +22x -2有最小值1. 应用2:解:解法一:因为a >b >0,所以a -b >0,所以a 2+16b (a -b )≥a 2+16⎝⎛⎭⎫b +a -b 22=a 2+64a 2≥16, 当且仅当a =2b ,a 2=8,即a =22,b =2时,等号成立,所以a 2+16b (a -b )的最小值为16. 解法二:因为a >b >0,所以a -b >0,所以a 2+16b (a -b )=[(a -b )+b ]2+16(a -b )b≥(2(a -b )b )2+16(a -b )b=4(a -b )b +16(a -b )b≥24(a -b )b ·16(a -b )b=16, 当且仅当a =2b ,(a -b )b =2,即a =22,b =2时,等号成立,所以a 2+16b (a -b )的最小值为16. 专题三应用1:解:存在.理由:∵f (x )在(-∞,1]上是减函数,∴k -sin x ≤k 2-sin 2x ≤1.假设存在实数k 符合题意.∵k 2-sin 2x ≤1,即k 2-1≤sin 2x 对一切x ∈R 恒成立,且sin 2x ≥0,∴k 2-1≤0,∴-1≤k ≤1.①由k -sin x ≤k 2-sin 2x ,得(sin x -12)2≤k 2-k +14, ∴k 2-k +14≥(sin x -12)2对一切x ∈R 恒成立, 又(sin x -12)2的最大值为94, ∴k 2-k +14≥94,解得k ≤-1或k ≥2.② 由①②知k =-1.应用2:解:(1)当a =1时,lg(|x +3|+|x -7|)>1,|x +3|+|x -7|>10,⎩⎪⎨⎪⎧ x ≥7,2x -4>10,或⎩⎪⎨⎪⎧ -3<x <7,10>10,或⎩⎪⎨⎪⎧ x ≤-3,4-2x >10,x >7或x <-3.所以不等式的解集为{x |x <-3或x >7}.(2)设f (x )=|x +3|+|x -7|,有f (x )≥|(x +3)-(x -7)|=10,当且仅当(x +3)(x -7)≤0,即-3≤x ≤7时,f (x )取得最小值10,∴lg(|x +3|+|x -7|)≥1.要使lg(|x +3|+|x -7|)>a 的解集为R ,只要a <1.专题四应用1:证明:证法一:(1)当ac +bd ≤0时,显然成立.(2)当ac +bd >0时,欲证原不等式成立,只需证(ac +bd )2≤(a 2+b 2)(c 2+d 2). 即证a 2c 2+2abcd +b 2d 2≤a 2c 2+a 2d 2+b 2c 2+b 2d 2.即证2abcd ≤b 2c 2+a 2d 2.即证(bc -ad )2≥0.因为a ,b ,c ,d ∈R ,所以上式恒成立.故原不等式成立.综合(1)、(2)知,原不等式成立.证法二:(a 2+b 2)(c 2+d 2)=a 2c 2+a 2d 2+b 2c 2+b 2d 2=(a 2c 2+2abcd +b 2d 2)+(b 2c 2-2abcd +a 2d 2)=(ac +bd )2+(bc -ad )2≥(ac +bd )2.∴(a 2+b 2)(c 2+d 2)≥|ac +bd |≥ac +bd ,即原不等式成立.证法三:∵(a 2+b 2)(c 2+d 2)-(ac +bd )2=(bc -ad )2≥0,∴(a 2+b 2)(c 2+d 2)≥(ac +bd )2,∴(a 2+b 2)(c 2+d 2)≥|ac +bd |≥ac +bd ,即ac +bd ≤(a 2+b 2)(c 2+d 2).证法四:不妨设⎩⎪⎨⎪⎧ a =r 1cos α,b =r 1sin α,⎩⎪⎨⎪⎧c =r 2cos βd =r 2sin β, 则ac +bd =r 1r 2cos αcos β+r 1r 2sin αsin β=r 1r 2cos(α-β).又∵|r 1r 2|=|r 1|·|r 2|=a 2+b 2c 2+d 2=(a 2+b 2)(c 2+d 2),及r 1r 2cos(α-β)≤|r 1r 2|,∴ac +bd ≤(a 2+b 2)(c 2+d 2).证法五:构造函数f (x )=(a 2+b 2)x 2+2(ac +bd )x +(c 2+d 2)=(a 2x 2+2acx +c 2)+(b 2x 2+2bdx +d 2)=(ax +c )2+(bx +d )2.不论x 取任何实数,函数f (x )的值均为非负数,因此,(1)当a 2+b 2≠0时,方程f (x )=0的判别式Δ≤0,即[2(ac +bd )]2-4(a 2+b 2)(c 2+d 2)≤0.即(ac +bd )2≤(a 2+b 2)(c 2+d 2),∴ac +bd ≤|ac +bd |≤(a 2+b 2)(c 2+d 2).(2)当a 2+b 2=0时,原不等式显然成立.综合(1)(2),可知原不等式成立. 应用2:解:已知:如图,在△ABC 中,∠CAB >90°,D 是BC 的中点.求证:AD <12BC .证明:假设AD ≥12BC . (1)若AD =12BC ,由平面几何中的定理“若三角形一边上的中线等于该边长的一半,那么这条边所对的角为直角”,可知∠A =90°,与题设矛盾. 所以AD ≠12BC . (2)若AD >12BC ,因为BD =DC =12BC , 所以在△ABD 中,AD >BD .从而∠B >∠BAD .同理∠C >∠CAD .所以∠B +∠C >∠BAD +∠CAD ,即∠B +∠C >∠CAB .因为∠B +∠C =180CAB ︒-∠,所以180CAB ︒-∠>∠CAB .则∠CAB <90°,这与题设∠CAB >90°矛盾.所以AD >12BC 不成立. 由(1)(2)知,AD <12BC . 真题放送1.(2011·陕西高考)设0<a <b ,则下列不等式中正确的是( )A .a <b <ab <a +b 2B .a <ab <a +b 2<b C .a <ab <b <a +b 2 D .ab <a <a +b 2<b 2.(2011·山东高考)不等式|x -5|+|x +3|≥10的解集是( )A .[-5,7]B .[-4,6]C .(-∞,-5]∪[7,+∞)D .(-∞,-4]∪[6,+∞)3.(2011·广东高考)不等式|x +1|-|x -3|≥0的解集是____________.4.(2011·浙江高考)设x ,y 为实数,若4x 2+y 2+xy =1,则2x +y 的最大值是________.5.(2011·辽宁高考)已知函数f (x )=|x -2|-|x -5|.(1)证明:-3≤f (x )≤3;(2)求不等式f (x )≥x 2-8x +15的解集.6.(2011·安徽高考)(1)设x ≥1,y ≥1,证明x +y +1xy ≤1x +1y+xy ; (2)设1<a ≤b ≤c ,证明log a b +log b c +log c a ≤log b a +log c b +log a c .答案:1.B ∵0<a <b ,∴a ·a <ab ,∴a <ab . 由基本不等式,知ab <a +b 2(a ≠b ). 又∵0<a <b ,∴a +b <b +b ,∴a +b 2<b , ∴a <ab <a +b 2<b . 2.D 方法一:令y =|x -5|+|x +3|,此函数对应的图象如下图所示.令y =10,即|x -5|+|x +3|=10,解得x =-4或x =6.结合图象可知|x -5|+|x +3|≥10的解集为(-∞,-4]∪[6,+∞).方法二:将x =6代入可知适合已知不等式,故排除选项C ;将x =0代入可知不适合已知不等式,故排除选项A ,B.故选D.3.[1,+∞) 原不等式可化为⎩⎪⎨⎪⎧ x ≤-1,-(x +1)-(3-x )≥0,或⎩⎪⎨⎪⎧-1<x <3,x +1-(3-x )≥0,或⎩⎪⎨⎪⎧x ≥3,x +1-(x -3)≥0. 解得不等式的解集为[1,+∞).4.2105设2x +y =m ,则y =m -2x ,代入4x 2+y 2+xy =1, 得6x 2-3mx +m 2-1=0.由Δ=9m 2-24(m 2-1)≥0,得m 2≤85, 所以-2105≤m ≤2105,所以2x +y 的最大值为2105. 5.解:(1)证明:f (x )=|x -2|-|x -5|=⎩⎪⎨⎪⎧ -3, x ≤2,2x -7, 2<x <5,3, x ≥5.当2<x <5时,-3<2x -7<3.所以-3≤f (x )≤3.(2)由(1)可知,当x ≤2时,f (x )≥x 2-8x +15的解集为空集;当2<x <5时,f (x )≥x 2-8x +15的解集为{x |5-3≤x <5};当x ≥5时,f (x )≥x 2-8x +15的解集为{x |5≤x ≤6}.综上,不等式f (x )≥x 2-8x +15的解集为{x |5-3≤x ≤6}.6.证明:(1)由于x ≥1,y ≥1,所以x +y +1xy ≤1x +1y+xyxy (x +y )+1≤y +x +(xy )2.而[y +x +(xy )2]-[xy (x +y )+1]=[(xy )2-1]-[xy (x +y )-(x +y )]=(xy +1)(xy -1)-(x +y )(xy -1)=(xy -1)(xy -x -y +1)=(xy -1)(x -1)(y -1),又因为x ≥1,y ≥1,所以(xy -1)(x -1)(y -1)≥0.从而所要证明的不等式成立.(2)设log a b =x ,log b c =y ,由对数的换底公式,得log c a =1xy ,log b a =1x ,log c b =1y,log a c =xy .于是,所要证明的不等式即为x +y +1xy ≤1x +1y+xy ,其中x =log a b ≥1,y =log b c ≥1. 故由(1)可知所要证明的不等式成立.。
1.5.2 综合法和分析法[对应学生用书P19][读教材·填要点]1.综合法从命题的已知条件出发,利用公理、已知的定义及定理,逐步推导,从而最后导出要证明的命题,这种方法称为综合法.2.分析法从需要证明的命题出发,分析使这个命题成立的充分条件,利用已知的一些定理,逐步探索,最后达到命题所给出的条件(或者一个已证明过的定理或一个明显的事实),这种证明方法称为分析法.[小问题·大思维]1.如何理解分析法寻找的是使要证命题成立的充分条件?提示:用分析法证题时,语气总是假定的,常用“欲证A 只需证B ”表示,说明只要B 成立,就一定有A 成立,所以B 必须是A 的充分条件才行,当然B 是A 的充要条件也可.2.用综合法和分析法证明不等式有怎样的逻辑关系?提示:综合法:A ⇒B 1⇒B 2⇒…⇒B n ⇒B (逐步推演不等式成立的必要条件), 即由条件出发推导出所要证明的不等式成立.分析法:B ⇐B 1⇐B 2⇐…⇐B n ⇐A (步步寻求不等式成立的充分条件), 总之,综合法与分析法是对立统一的两种方法.[对应学生用书P19][例1] 已知a ,b ,c 均为正实数,且互不相等,又abc =1. 求证:a +b +c <1a +1b +1c.[思路点拨] 本题考查用综合法证明不等式,解答本题可从左到右证明,也可从右到左证明.由左端到右端,应注意左、右两端的差异,这种差异正是我们思考的方向.左端含有根号,脱去根号可通过a =1bc <1b +1c 2实现;也可以由右到左证明,按上述思路逆向证明即可.[精解详析] 法一:∵a ,b ,c 是不等正数,且abc =1,∴a +b +c =1bc+1ac+1ab <1b +1c 2+1a +1c 2+1a +1b 2=1a +1b +1c. 法二:∵a ,b ,c 是不等正数,且abc =1, ∴1a +1b +1c =bc +ca +ab =bc +ca 2+ca +ab 2+ab +bc2> abc 2+a 2bc +ab 2c =a +b+c .(1)用综合法证明不等式时,主要利用基本不等式,函数的单调性以及不等式的性质等知识,在严密的演绎推理下推导出结论.(2)综合法证明不等式中所依赖的已知不等式主要是重要不等式,其中常用的有如下几个:①a 2≥0(a ∈R ).②(a -b )2≥0(a ,b ∈R ),其变形有:a 2+b 2≥2ab ,(a +b 2)2≥ab .a 2+b 2≥12(a +b )2.③若a ,b 为正实数,a +b 2≥ab .特别b a +ab≥2.④a 2+b 2+c 2≥ab +bc+ca .1.已知a >0,b >0,求证a (b 2+c 2)+b (c 2+a 2)≥4abc . 证明:因为b 2+c 2≥2bc ,a >0, 所以a (b 2+c 2)≥2abc . 又因为c 2+a 2≥2ac ,b >0, 所以b (c 2+a 2)≥2abc .因此a (b 2+c 2)+b (c 2+a 2)≥4abc .[例2]a,b均为正实数,且2c>a+b.求证:c-c2-ab<a<c+c2-ab.[思路点拨]本题考查分析法在证明不等式中的应用.解答本题需要对原不等式变形为-c2-ab<a-c<c2-ab,然后再证明.[精解详析]要证c-c2-ab<a<c+c2-ab,只需证-c2-ab<a-c<c2-ab,即证|a-c|<c2-ab,两边平方得a2-2ac+c2<c2-ab,也即证a2+ab<2ac,即a(a+b)<2ac.∵a,b均为正实数,且a+b<2c,∴a(a+b)<2ac显然成立.∴原不等式成立.(1)当所证不等式与重要不等式、基本不等式没有什么直接联系,或很难发现条件与结论之间的关系时,可用分析法来寻找证明途径.(2)对于无理不等式的证明,常采用分析法通过平方将其有理化,但在乘方的过程中,要注意其变形的等价性.(3)分析法证题的本质是从被证的不等式出发寻求使结论成立的充分条件,证明的关键是推理的每一步都必须可逆.2.已知x>0,y>0,求证:(x2+y2)12>(x3+y3)13.证明:要证明(x2+y2)12>(x3+y3)13,只需证(x2+y2)3>(x3+y3)2,即证x6+3x4y2+3x2y4+y6>x6+2x3y3+y6,即证3x4y2+3x2y4>2x3y3.∵x>0,y>0,∴x2y2>0.即证3x2+3y2>2xy.∵3x2+3y2>x2+y2≥2xy,∴3x2+3y2>2xy成立.∴(x2+y 2)12>(x3+y 3)13.[例3] 已知a ,b ,c 均为正实数,且b 2=ac .求证:a 4+b 4+c 4>(a 2-b 2+c 2)2. [思路点拨] 本题考查综合法与分析法的综合应用.解答本题可先采用分析法将所要证明的不等式转化为较易证明的不等式,然后再用综合法证明.[精解详析] 欲证原不等式成立,只需证a 4+b 4+c 4>a 4+b 4+c 4-2a 2b 2+2a 2c 2-2b 2c 2, 即证a 2b 2+b 2c 2-a 2c 2>0,∵b 2=ac ,故只需证(a 2+c 2)ac -a 2c 2>0. ∵a 、c >0,故只需证a 2+c 2-ac >0, 又∵a 2+c 2>2ac ,∴a 2+c 2-ac >0显然成立. ∴原不等式成立.(1)通过等式或不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式易于证明.(2)有些不等式的证明,需要一边分析一边综合,称之为分析综合法,或称“两头挤”法,如本例,这种方法充分表明了分析与综合之间互为前提,互相渗透,相互转化的辩证统一关系.3.已知a >b >c ,求证:1a -b +1b -c +1c -a >0.证明:法一:要证明1a -b +1b -c +1c -a >0, 只需要证明1a -b +1b -c >1a -c .∵a >b >c ,∴a -c >a -b >0,b -c >0, ∴1a -b >1a -c, 1b -c >0,∴1a -b +1b -c >1c -a 成立.∴1a -b +1b -c -1c -a>0成立. 法二:若令a -b =x ,b -c =y ,则a -c =x +y , ∵a >b >c ,∴x >0,y >0, 证明1a -b +1b -c +1c -a >0,只要证明:1x +1y -1x +y>0,也就是要证:y (x +y )+x (x +y )-xyxy (x +y )>0,即证:x 2+y 2+xy xy (x +y )>0,∵x >0,y >0,∴x +y >0,x 2+y 2+xy >0, ∴上式成立,即1x +1y -1x +y >0,故1a -b +1b -c +1c -a >0.[对应学生用书P20]一、选择题1.设a ,b 均为正实数,A =a +b ,B =a +b ,则A 、B 的大小关系是( ) A .A ≥B B .A ≤B C .A >BD .A <B解析:用综合法(a +b )2=a +2ab +b , 所以A 2-B 2>0. 又A >0,B >0, ∴A >B . 答案:C2.已知x >y >z ,且x +y +z =0,下列不等式中成立的是( )A .xy >yzB .xz >yzC .xy >xzD .x |y |>z |y |解析:由已知得3x >x +y +z =0, 3z <x +y +z =0,∴x >0,z <0.由⎩⎨⎧x >0,y >z得xy >xz . 答案:C3.若a >0,b >0,下列不等式中不成立的是( ) A.b a +ab≥2B .a 2+b 2≥2ab C.b 2a +a 2b≥a +bD.1a +1b ≥2+2a +b解析:由b a ∈(0,+∞)且a b ∈(0,+∞),得b a +ab ≥2b a ·ab,所以A 成立,B 显然成立,不等式C 可变形为a 3+b 3≥a 2b +ab 2⇔(a 2-b 2)(a -b )≥0.答案:D4.已知a 、b 、c 为三角形的三边且S =a 2+b 2+c 2,P =ab +bc +ca ,则( ) A .S ≥2P B .P <S <2P C .S >PD .P ≤S <2P解析:∵a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca , ∴a 2+b 2+c 2≥ab +bc +ca , 即S ≥P .又三角形中|a -b |<c ,∴a 2+b 2-2ab <c 2. 同理b 2-2bc +c 2<a 2,c 2-2ac +a 2<b 2, ∴a 2+b 2+c 2<2(ab +bc +ca ).即S <2P . 答案:D 二、填空题5.已知a ,b ,c ∈R +,则1a +1b +1c 与1ab +1bc +1ac 的大小关系是________________.解析:因为1a +1b≥21ab ,1b +1c≥21bc ,1a +1c≥21ab ,三式相加可得1a +1b +1c ≥1ab+1bc +1ac. 答案:1a +1b +1c ≥1ab +1bc +1ac6.若x >0,y >0,且5x +7y =20,则xy 的最大值是________________. 解析:xy =135(5x ·7y )≤135⎝ ⎛⎭⎪⎫5x +7y 22=135⎝⎛⎭⎫2022=207.当且仅当5x =7y =10即x =2,y =107时取等号.答案:2077.已知a >0,b >0,若P 是a ,b 的等差中项,Q 是a ,b 的正的等比中项,1R 是1a ,1b的等差中项,则P 、Q 、R 按从大到小的排列顺序为________.解析:由已知P =a +b2,Q =ab ,1R =1a +1b 2=a +b 2ab ,即R =2ab a +b ,显然P ≥Q , 又2aba +b ≤2ab2ab =ab ,∴Q ≥R .∴P ≥Q ≥R . 答案:P ≥Q ≥R8.若不等式1a -b +1b -c +λc -a >0在条件a >b >c 时恒成立,则λ的取值范围是________.解析:不等式可化为1a -b +1b -c >λa -c . ∵a >b >c ,∴a -b >0,b -c >0,a -c >0, ∴λ<a -ca -b +a -cb -c恒成立.∵a -c a -b +a -c b -c =(a -b )+(b -c )a -b +(a -b )+(b -c )b -c =2+b -c a -b +a -b b -c≥2+2=4. ∴λ<4.答案:(-∞,4) 三、解答题9.a ,b ,c 为互不相等的正数,且abc =1. 求证:1a +1b +1c >a +b +c .证明:法一:由左式推证右式∵abc =1,且a ,b ,c 为互不相等的正数,∴1a +1b +1c =bc +ac +ab =bc +ac 2+ac +ab 2+ab +bc 2>bc ·ac +ac ·ab +ab ·bc (基本不等式)=c +a +b . ∴1a +1b +1c>a +b +c . 法二:由右式推证左式∵a ,b ,c 为互不相等的正数,且abc =1, ∴a +b +c =1bc+1ac+1ab<1b +1c 2+1a +1c 2+1a +1b 2(基本不等式) =1a +1b +1c. ∴1a +1b +1c>a +b +c . 10.已知a >b >0,求证:(a -b )28a <a +b 2-ab <(a -b )28b .证明:要证(a -b )28a <a +b 2-ab <(a -b )28b ,只要证(a -b )24a <a +b -2ab <(a -b )24b ,即证⎝⎛⎭⎪⎫a -b 2a 2<(a -b )2<⎝ ⎛⎭⎪⎫a -b 2b 2, 即证0<a -b 2a <a -b <a -b 2b,即证a +b a <2<a +b b ,即证1+b a <2<1+a b, 即证b a<1<ab成立. 因为a >b >0,所以a b >1,ba <1,故ba<1,ab>1成立. 所以有(a -b )28a <a +b 2-ab <(a -b )28b成立.11.已知实数a 、b 、c 满足c <b <a ,a +b +c =1,a 2+b 2+c 2=1.求证:1<a +b <43.证明:∵a +b +c =1,∴欲证结论等价于 1<1-c <43,即-13<c <0.又a 2+b 2+c 2=1,则有 ab =(a +b )2-(a 2+b 2)2=(1-c )2-(1-c 2)2=c 2-c .① 由a +b =1-c .②由①②得a 、b 是方程x 2-(1-c )x +c 2-c =0的两个不等实根,从而Δ=(1-c )2-4(c 2-c )>0,解得-13<c <1.∵c <b <a ,∴(c -a )(c -b )=c 2-c (a +b )+ab =c 2-c (1-c )+c 2-c >0,解得c <0或c >23(舍).∴-13<c <0,即1<a +b <43.。