新人教版九年级上册《第22章+二次函数》2020年单元测试卷(7)
- 格式:doc
- 大小:3.23 MB
- 文档页数:24
人教版九年级上册数学第22章二次函数单元测试题一、单选题1.对于二次函数245y x x=++的图象,下列说法不正确的是()A.开口向上B.对称轴是直线2x=-D.与x轴没有交点C.顶点坐标是(2,1)2.抛物线2=---的顶点坐标是()(3)5y xA.(3,﹣5)B.(﹣3,5)C.(3,5)D.(﹣3,﹣5)3.将抛物线y=x2向上平移1个单位长度,再向左平移3个单位长度后,得到的抛物线的解析式为()A.y=(x+3)2+1B.y=(x﹣3)2+1C.y=(x+3)2﹣1D.y=(x﹣3)2﹣14.已知二次函数y=x2+6x+c的图象与x轴的一个交点为(﹣1,0),则它与x轴的另一个交点的坐标是()A.(﹣3,0)B.(3,0)C.(﹣5,0)D.(5,0)5.若二次函数y=x2+2x+k的图象经过点(1,y1),(﹣2,y2),则y1,y2与的大小关系为()A.y1>y2B.y1=y2C.y1<y2D.不能确定6.若二次函数y=ax2+bx+c的部分图像如图所示,则方程ax2+bx+c=0的解是()A.x=1B.x=1或﹣4C.x1=1,x2=﹣3D.x1=﹣1,x2=﹣27.二次函数y=ax2+bx+c的大致图象如图,下列结论错误的为()A.b2﹣4ac>0B.a+b+c>0C.ax2+bx+c≥﹣1D.2a﹣b=08.如图,抛物线y=ax2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C,下列结论不正确的是()A.abc>0B.2a+b=0C.3a+c>0D.4a+2b+c<0 9.已知二次函数()222=--,关于该函数在13y x-≤≤的取值范围内,下列说法正x确的是().A.有最大值-1,有最小值-2B.有最大值0,有最小值-1C.有最大值7,有最小值-1D.有最大值7,有最小值-210.二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象如图所示,下列结论:①abc<0;①3a+c=0;①当﹣1<x<3时,y<0;①顶点坐标为(1,﹣4a),其中正确的个数为()个.A.1B.2C.3D.4二、填空题11.将抛物线2=-向左平移1个单位,再向下平移2个单位,所得抛物线的解析y x21式为_______.12.抛物线y=(x+2)2上有三点A(-4,y1),B(-1,y2),C(1,y3),则对称轴为 __________;1y ,2y ,3y 的大小关系为__________.13.已知二次函数y =x 2﹣2x ﹣3在t ≤x ≤t +3时的最小值是t ,则t 的值为__________________.14.二次函数2(3)2y x =++的图象的对称轴是直线_________________;15.如图,是一名男生推铅球时,铅球行进过程中形成的抛物线.按照图中所示的平面直角坐标系,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是21251233y x x =-++,则铅球推出的水平距离OA 的长是_____m .16.如图是一个横断面为抛物线形状的拱桥,此时水面宽AB 为3米,拱桥最高点C 离水面的距离CO 也为3米,则当水位上升1米后,水面的宽度为____米.17.已知函数y =﹣x 2+2x +6,当0≤x <m 时,函数值的取值范围是6≤y ≤7,则实数m 的取值范围是 __.18.如图为函数2112y x =+和212y x =的图象,则图中阴影部分的面积为___________.19.已知函数23(2)4y x =-++,当x =_______时,函数取得最大值.20.公园要建造一个如图1的圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA ,O 恰在水面中心,OA =0.8米,安置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA 的任一平面上抛物线路径如图2所示.为使水流形状较为漂亮,设计成水流在与OA 水平距离为1米时,达到距水面最大高度1.44米(不计其他因素).则水池的半径至少要 _____米,才能使喷出的水流不致落到池外.三、解答题21.已知抛物线y=ax2+2x+c与x轴交于A(-1,0)、B(3,0)两点,一次函数y=kx+b 的图象l经过抛物线上的点C(m,n).(1)求抛物线的解析式;(2)若m=3,直线l与抛物线只有一个公共点,求k的值.22.如图,二次函数2=-++的图象与x轴交于A、B两点,与y轴交于点C,y x2x3△的面积.顶点为D,求BCD23.已知:二次函数2(0)y ax bx c a=++≠中的x和y满足下表:x…012345…y…301-0m8…(1)可求得m 的值为__________;(2)求出这个二次函数的解析式;(3)当03x <<时,则y 的取值范围为____________________.24.某商店购进一批成本为每件30元的小商品.经调查发现,当销售价为35元时,平均每天能销售90件;当销售价每涨2元时,平均每天就能少销售4件,设每件小商品售价x 元,平均每天销售y 件.(1)求该商品每天的销售量y 与销售单价x 之间的函数关系式;(2)若商店按单价不低于成本价且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得利润w 元最大?最大利润是多少?25.如图,抛物线21262y x x =-++与X 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接BC ,点D 为抛物线对称轴上一动点.(1)求直线BC 的函数表达式;(2)连接OD ,CD ,求OCD 周长的最小值;(3)在抛物线上是否存在一点E .使以B 、C 、D 、E 为顶点的四边形是以BC 为边的平行四边形?若存在,请直接写出E 点的坐标;若不存在,请说明理由.参考答案:1.B2.A3.A4.C5.A6.C7.D8.C9.D10.C11.y =2(x +1)2-3或y =2x 2﹢4x ﹣112. 2x =- 213y y y <<13或﹣3 14.x =-315.101617.12m <≤18.419.-220.2.521.(1)抛物线的解析式为y =-x 2+2x +3;(2)k =-422.BCD △的面积为3.23.(1)3;(2)243y x x =-+;(3)13y -≤<.24.(1)2160y x =-+(2)销售单价定为50元时,使得销售该洗手液每天获得的利润最大,最大利润是1200元. 25.(1)6y x =-+(2)6+(3)存在,点()4,10E --或()8,10-。
检测内容:第二十二章二次函数得分________卷后分________评价________一、选择题(每小题3分,共30分)1.下列函数关系中,y是x的二次函数的是( C )A.y=ax2+bx+c B.y=1 x2C.y=50+x2D.y=(x+2)(2x-3)-2x22.将二次函数y=x2-2x-2化成y=a(x-h)2+k的形式为( B )A.y=(x-2)2-2 B.y=(x-1)2-3C.y=(x-1)2-2 D.y=(x-2)2-33.二次函数y=ax2+bx-1(a≠0)的图象经过点(1,1),则a+b+1的值是( D )A.-3 B.-1 C.2 D.34.将抛物线y=2x2-1向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的解析式是( D )A.y=2x2+8x+9 B.y=2x2-8x+9C.y=2x2+8x+8 D.y=2x2-8x+85.对于二次函数y=x2-6x+11的图象,下列叙述正确的是( B )A.开口向下B.对称轴为直线x=3C.顶点坐标为(-3,2) D.当x≥3时,y随x增大而减小6.已知函数y=3x2-6x+k(k为常数)的图象经过点A(0.8,y1),B(1.1,y2),C( 2 ,y3),则有( C )A.y3>y2>y1B.y1>y2>y3C.y3>y1>y2D.y1>y3>y27.在平面直角坐标系中,直线y=ax+h与抛物线y=a(x-h)2的图象不可能是( C )A B C D8.如图是一款抛物线型落地灯筒示意图,防滑螺母C为抛物线支架的最高点,点C距灯柱AB的水平距离为1.6 m,点C距水平地面的距离为2.5 m,灯罩D距灯柱AB的水平距离为3.2 m,灯柱AB=1.5 m,则灯罩D到水平地面的距离为( A )A.1.5 m B.1 m C.1.2 m D.1.4 m第8题图第9题图第10题图9.如图①,在△ABC中,点P从点A出发向点C运动,在运动过程中,设x表示线段AP的长,y表示线段BP的长,y与x之间的关系如图②所示,则边BC的长是( A )A .33B .30C .35D . 610.(遂宁中考)已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,有下列5个结论:①abc >0;②b 2<4ac ;③2c <3b ;④a +b >m(am +b)(m ≠1);⑤若方程|ax 2+bx +c|=1有四个根,则这四个根的和为2.其中正确的结论有( A )A .2个B .3个C .4个D .5个二、填空题(每小题3分,共18分)11.如果抛物线y =(a -3)x 2-2有最低点,则a 的取值范围为____a >3____.12.(兰州中考)点A(-4,3),B(0,k)在二次函数y =-(x +2)2+h 的图象上,则k =__3__.13.已知二次函数y =-14(x -2)2+5,y 随x 的增大而减小,则x 的取值范围__x ≥2__. 14.如图,过点(0,1)且平行于x 轴的直线与二次函数y =ax 2+bx +c(a >0)图象的交点坐标为(1,1),(3,1),则不等式ax 2+bx +c -1>0的解集为__x <1或x >3__.第14题图 第15题图 第16题图15.(沈阳中考)如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长度为900 m (篱笆的厚度忽略不计),当AB =__150__m 时,矩形土地ABCD 的面积最大.16.(黔东南州中考)如图,抛物线L 1:y =ax 2+bx +c(a ≠0)与x 轴只有一个公共点A(1,0),与y 轴交于点B(0,2),虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线L 2,则图中两个阴影部分的面积和为__2__.三、解答题(共72分)17.(6分)用配方法把二次函数y =12x 2-4x +5化为y =a(x +m)2+k 的形式,并指出该函数的开口方向、对称轴和顶点坐标.解:y =12 x 2-4x +5=12(x -4)2-3,∴抛物线开口向上,对称轴是直线x =4,顶点坐标是(4,-3)18.(8分)(宁波中考)如图,已知二次函数y =x 2+ax +3的图象经过点P(-2,3).(1)求a 的值和图象的顶点坐标;(2)若点Q(m ,n)在该二次函数的图象上,则:①当m =2时,求n 的值;②若点Q 到y 轴的距离小于2,请根据图象直接写出n 的取值范围.解:(1)把点P(-2,3)代入y =x 2+ax +3中,得a =2,∴y =x 2+2x +3=(x +1)2+2,∴顶点坐标为(-1,2)(2)①当m =2时,n =11;②点Q 到y 轴的距离小于2,∴|m|<2,∴-2<m <2,∴2≤n <1119.(9分)已知二次函数y =x 2-2mx +2m -1.(1)求证:二次函数的图象与x 轴总有交点;(2)若二次函数的图象与x 轴的一个交点为原点,求方程x 2-2mx +2m -1=0的解. 解:(1)证明:∵Δ=4m 2-4(2m -1)=4m 2-8m +4=4(m -1)2≥0,∴二次函数的图象与x 轴总有交点(2)把(0,0)代入y =x 2-2mx +2m -1得2m -1=0,解得m =12,方程化为x 2-x =0,解得x 1=0,x 2=1,即方程x 2-2mx +2m -1=0的解为x 1=0,x 2=120.(10分)如图,四边形ABCD 是菱形,点D 的坐标是(0, 3 ),以点C 为顶点的抛物线 y =ax 2+bx +c 恰好经过x 轴上A ,B 两点.(1) 求A ,B ,C 三点的坐标;(2) 求经过A ,B ,C 三点的抛物线的解析式;(3)若将上述抛物线沿其对称轴向上平移后恰好过点D ,求平移后抛物线的解析式,并指出平移了多少个单位长度.解:(1)A ,B ,C 三点的坐标分别为(1,0),(3,0),(2, 3 )(2)设抛物线的解析式为y =a(x -2)2+ 3 ,代入点A 的坐标(1,0),得a =- 3 ,∴抛物线的解析式为y =- 3 (x -2)2+ 3(3)设平移后的抛物线的解析式为y =- 3 (x -2)2+k ,代入点D 的坐标(0, 3 ),得k =5 3 ,∴平移后的抛物线的解析式为y =- 3 (x -2)2+5 3 ,∴平移了5 3 - 3 =4 3 个单位长度21.(12分)(营口中考)某超市销售一款免洗洗手液,这款免洗洗手液的成本价为每瓶16元,当销售单价定为20元时,每天可售出80瓶.根据市场行情,现决定降价销售.市场调查反映:销售单价每降低0.5元,则每天可多售出20瓶(销售单价不低于成本价),若设这款免洗洗手液的销售单价为x(元),每天的销售量为y(瓶).(1)求每天的销售量y(瓶)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这款免洗洗手液每天的销售利润最大,最大利润为多少元?解:(1)由题意,得y =80+20×20-x 0.5,∴y =-40x +880(x >16) (2)设每天的销售利润为w 元,则w =(-40x +880)(x -16)=-40(x -19)2+360,∵a =-40<0,∴二次函数图象开口向下,∴当x =19时,w 有最大值,最大值为360元.答:当销售单价为19元时,销售这款免洗洗手液每天的销售利润最大,最大利润为360元22.(12分)(衢州中考)如图①是一座抛物线型拱桥侧面示意图.水面宽AB 与桥长CD 均为24 m ,在距离点D6 m 的E 处,测得桥面到桥拱的距离EF 为1.5 m ,以桥拱顶点O 为原点,桥面为x 轴建立平面直角坐标系.(1)求桥拱顶部O 离水面的距离;(2)如图②,桥面上方有3根高度均为4 m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1 m.①求出其中一条钢缆抛物线的函数表达式;②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.解:(1)根据题意可知点F的坐标为(6,-1.5),可设拱桥侧面所在二次函数表达式为y1=a1x2.将F(6,-1.5)代入y1=a1x2有-1.5=36a1,解得a1=-124,∴y1=-124x2,当x=12时,y1=-124×122=-6,∴桥拱顶部O离水面高度为6 m(2)①由题意可知右边钢缆所在抛物线的顶点坐标为(6,1),可设其表达式为y2=a2(x-6)2+1,将H(0,4)代入其表达式有4=a2(0-6)2+1,解得a2=112,∴右边钢缆所在抛物线表达式为y2=112(x-6)2+1,同理可得左边钢缆所在抛物线表达式为y3=112(x+6)2+1;②设彩带的长度为L m,则L=y2-y1=112(x-6)2+1-(-124x2)=18x2-x+4=18(x-4)2+2,∴当x=4时,L最小值=2,答:彩带长度的最小值是2 m23.(15分)(眉山中考)如图①,抛物线y=-x2+bx+c与x轴交于A,B两点,与y轴交于点C,已知点B坐标为(3,0),点C坐标为(0,3).(1)求抛物线的解析式;(2)点P为直线BC上方抛物线上的一个动点,当△PBC的面积最大时,求点P的坐标;(3)如图②,点M为该抛物线的顶点,直线MD⊥x轴于点D,在直线MD上是否存在点N,使点N到直线MC的距离等于点N到点A的距离?若存在,求出点N的坐标;若不存在,请说明理由.解:(1)y=-x2+2x+3(2)∵点B(3,0),点C(0,3),∴直线BC解析式为y=-x+3,如图,过点P作PH⊥x 轴于点H,交BC于点G,设点P(m ,-m 2+2m +3),则点G(m ,-m +3),∴PG =(-m 2+2m +3)-(-m +3)=-m 2+3m ,∵S △PBC =12 ×OB ×PG =12 ×3×(-m 2+3m)=-32 (m -32 )2+278.∵0<m<3,∴当m =32 时,S △PBC 有最大值,此时点P(32 ,154) (3)存在N 满足条件,理由如下:∵抛物线y =-x 2+2x +3与x 轴交于A ,B 两点,∴点A(-1,0).∵y =-x 2+2x +3=-(x -1)2+4,∴顶点M 为(1,4).∵点M 为(1,4),点C(0,3),∴直线MC 的解析式为y =x +3.如图,设直线MC 与x 轴交于点E ,过点N 作NQ ⊥MC 于点Q, ∴点E(-3,0),∴DE =4=MD ,∴∠NMQ =45°.∵NQ ⊥MC ,∴∠NMQ =∠MNQ =45°,∴MQ =NQ =22MN.设点N(1,n),∵点N 到直线MC 的距离等于点N 到点A 的距离,∴NQ =AN ,∴NQ 2=AN 2,∴(22 MN)2=AN 2,∴(22|4-n|)2=4+n 2,∴n 2+8n -8=0,∴n =-4±2 6 ,∴存在点N 满足要求,点N 的坐标为(1,-4+2 6 )或(1,-4-2 6 )。
第22章二次函数一、选择题(本题共计9小题,每题3分,共计27分,)1.已知y=(m﹣2)x+2x﹣1是关于x的二次函数,则m=()A.﹣2B.0C.2D.0或22.根据下列表格对应值:x 3.24 3.25 3.26ax2+bx+c﹣0.020.010.03判断关于x的方程ax2+bx+c=0的一个解x的范围是()A.x<3.24B.3.24<x<3.25C.3.25<x<3.26D.3.25<x<3.283.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.若a>0,则当x≥1时,y随x的增大而减小B.若a<0,则当x≤1时,y随x的增大而增大C.当a=1时,函数图象过点(﹣1,1)D.当a=﹣2时,函数图象与x轴没有交点4.国家决定对某药品价格分两次降价,若设平均每次降价的百分率为x,该药品原价为18元,降价后的价格为y元,则y与x的函数关系式为()A.y=36(1﹣x)B.y=36(1+x)C.y=18(1﹣x)2D.y=18(1+x2)5.抛物线y=x2+1的对称轴是()A.直线x=﹣1B.直线x=1C.直线x=0D.直线y=16.将抛物线y=﹣x2+1向上平移2个单位,得到的抛物线表达式为()A.y=﹣(x+2)2B.y=﹣(x﹣2)2C.y=﹣x2﹣1D.y=﹣x2+37.某广场中心有高低不同的各种喷泉,其中一支高度为米的喷水管喷水最大高度为4米,此时喷水水平距离为米,在如图所示的坐标系中,这支喷泉的函数关系式是()A.y=x2+4B.y=﹣10(x+)2+4C.y=4(x﹣)2+D.y=﹣10(x﹣)2+48.二次函数y=ax2+bx+c(a≠0)的图象如图,且经过点(﹣1,0),则下列结论中,正确的是()A.b>0B.a+c>b C.b2﹣4ac<0D.a<c9.已知点A(﹣1,5),B(0,0),C(4,0),D(2019,m),E(2020,n)在某二次函数的图象上.下列结论:①图象开口向上;②图象的对称轴是直线x=2;③m<n;④当0<x<4时,y<0.其中正确的个数是()A.1B.2C.3D.4二、填空题(本题共计10小题,每题3分,共计30分,)10.已知抛物线的顶点为(3,﹣2)且与抛物线y=﹣x2的形状、开口方向相同,则这条抛物线的表达式为.11.抛物线y=2x2﹣4x﹣3,当﹣1≤x≤4时,y的取值范围是.12.请将函数y=x2+2x+1写成y=a(x﹣h)2+k的形式为.13.二次函数y=ax2+bx+c(a<0)与x轴的两个交点分别为A(﹣1,0),B(2,0),当y <0时,x的取值范围是.14.抛物线y=x2+bx+3经过点(3,0),则b的值为.15.如图所示,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(﹣1,0)和B(2,0),当y<0时,x的取值范围是.16.抛物线y=﹣+3x﹣2与y=ax2的形状相同,而开口方向相反,则a=.17.已知点A(﹣2,m)、B(2,n)都在抛物线y=x2+2x﹣t上,则m与n的大小关系是m n.(填“>”、“<”或“=”)18.已知:a+b+c=0,9a﹣3b+c=0,则二次函数y=ax2+bx+c(a≠0)图象的顶点可能在第象限和第象限.19.如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y =﹣x2+bx+c经过点A、B.点P在抛物线上,连接P A,PB,则当△P AB的面积为1时,点P的坐标是.三、解答题(本题共计6小题,共计63分,)20.二次函数y=x2+bx+3的图象经过点(3,0).请用配方法求出该二次函数图象的顶点坐标.21.用配方法把函数y=﹣3x2﹣6x+10化成y=a(x﹣h)2+k的形式,然后指出它的图象开口方向,对称轴,顶点坐标和最值.22.求出符合下列条件的抛物线的解析式:(1)顶点为(﹣1,﹣3),与y轴的交点为(0,﹣5);(2)将抛物线y=x2的图象先向下平移2个单位,再绕其顶点旋转180°;(3)抛物线与x轴交于点M(﹣1,0)、N(2,0),且经过点(1,2).23.如图,已知抛物线y=x2+bx+c经过点A(﹣1,0)、B(5,0).(1)求抛物线的解析式,并写出顶点M的坐标;(2)若点C在抛物线上,且点C的横坐标为8,求四边形AMBC的面积;(3)定点D(0,m)在y轴上,若将抛物线的图象向左平移2个单位,再向上平移3个单位得到一条新的抛物线,点P在新的抛物线上运动,求定点D与动点P之间距离的最小值d(用含m的代数式表示)24.如图,经过点A(0,﹣4)的抛物线y=+bx+c与x轴相交于点B(﹣1,0)和C,O为坐标原点.(1)求抛物线的解析式;(2)将抛物线y=+bx+c向上平移个单位长度,再向左平移m(m>0)个单位长度,得到新抛物线,若新抛物线的顶点P在△ABC内,求m的取值范围;(3)将x轴下方的抛物线图象关于x轴对称,得到新的函数图象C,若直线y=x+k与图象C始终有3个交点,求满足条件的k的取值范围.25.在平面直角坐标系中,抛物线y=ax2+bx+3与x轴的两个交点分别为A(﹣3,0)、B(1,0),过顶点C作CH⊥x轴于点H.(1)直接填写:a=,b=,顶点C的坐标为;(2)在y轴上是否存在点D,使得△ACD是以AC为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由.参考答案与试题解析一、选择题(本题共计9小题,每题3分,共计27分,)1.已知y=(m﹣2)x+2x﹣1是关于x的二次函数,则m=()A.﹣2B.0C.2D.0或2【分析】根据二次函数的定义,可得方程,根据解方程,可得答案.【解答】解:依题意得:m2﹣2m+2=2且m﹣2≠0,解得m=0.故选:B.2.根据下列表格对应值:x 3.24 3.25 3.26ax2+bx+c﹣0.020.010.03判断关于x的方程ax2+bx+c=0的一个解x的范围是()A.x<3.24B.3.24<x<3.25C.3.25<x<3.26D.3.25<x<3.28【分析】根据图表数据确定出代数式的值为0的x的取值范围即可.【解答】解:由图表可知,ax2+bx+c=0时,3.24<x<3.25.故选:B.3.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.若a>0,则当x≥1时,y随x的增大而减小B.若a<0,则当x≤1时,y随x的增大而增大C.当a=1时,函数图象过点(﹣1,1)D.当a=﹣2时,函数图象与x轴没有交点【分析】把a=1,x=﹣1代入y=ax2﹣2ax﹣1,于是得到函数图象不经过点(﹣1,1),根据△=8>0,得到函数图象与x轴有两个交点,根据抛物线的对称轴为直线x=1判断二次函数的增减性.【解答】A、∵抛物线的对称轴为直线x=﹣=1,∴若a>0,则当x≥1时,y随x的增大而增大,故A错误,不符合题意;B、抛物线的对称轴为直线x=﹣=1,∴若a<0,则当x≤1时,y随x的增大而增大,故B正确,符合题意;C、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故C错误,不符合题意;D、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故D错误,不符合题意;故选:B.4.国家决定对某药品价格分两次降价,若设平均每次降价的百分率为x,该药品原价为18元,降价后的价格为y元,则y与x的函数关系式为()A.y=36(1﹣x)B.y=36(1+x)C.y=18(1﹣x)2D.y=18(1+x2)【分析】原价为18,第一次降价后的价格是18×(1﹣x),第二次降价是在第一次降价后的价格的基础上降价的为:18×(1﹣x)×(1﹣x)=18(1﹣x)2,则函数解析式即可求得.【解答】解:原价为18,第一次降价后的价格是18×(1﹣x);第二次降价是在第一次降价后的价格的基础上降价的为:18×(1﹣x)×(1﹣x)=18(1﹣x)2.则函数解析式是:y=18(1﹣x)2.故选:C.5.抛物线y=x2+1的对称轴是()A.直线x=﹣1B.直线x=1C.直线x=0D.直线y=1【分析】由抛物线解析式可直接求得答案.【解答】解:∵抛物线y=x2+1,∴抛物线对称轴为直线x=0,即y轴,故选:C.6.将抛物线y=﹣x2+1向上平移2个单位,得到的抛物线表达式为()A.y=﹣(x+2)2B.y=﹣(x﹣2)2C.y=﹣x2﹣1D.y=﹣x2+3【分析】根据左加右减,上加下减可得函数解析式y=﹣x2+1+2,再整理即可.【解答】解:将抛物线y=﹣x2+1向上平移2个单位,得到的抛物线表达式为y=﹣x2+1+2=﹣x2+3,故选:D.7.某广场中心有高低不同的各种喷泉,其中一支高度为米的喷水管喷水最大高度为4米,此时喷水水平距离为米,在如图所示的坐标系中,这支喷泉的函数关系式是()A.y=x2+4B.y=﹣10(x+)2+4C.y=4(x﹣)2+D.y=﹣10(x﹣)2+4【分析】根据题意可得出此二次函数的顶点坐标为(,4),再由开口向下可得二次项的系数为负数,由此结合选项即可得出答案.【解答】解:根据图象知,抛物线开口向下,顶点(,4),A、是一个开口向上的函数,故本选项错误;B、函数的顶点坐标为(﹣,4),故本选项错误;C、函数的顶点坐标为(,),故本选项错误;D、符合题意.故选:D.8.二次函数y=ax2+bx+c(a≠0)的图象如图,且经过点(﹣1,0),则下列结论中,正确的是()A.b>0B.a+c>b C.b2﹣4ac<0D.a<c【分析】利用函数图象分别求出a,b,c的符号,进而得出x=﹣1时y的符号,进而判断得出答案.【解答】解:A、∵图象开口向下则a<0,对称轴经过x轴负半轴,∴a,b同号,∴b<0,故此选项错误;B、∵二次函数y=ax2+bx+c(a≠0)的图象如图,且经过点(﹣1,0),∴当x=﹣1时,y=a﹣b+c=0,∴a+c=b,故此选项错误;C、根据图象与x轴有两个交点,则b2﹣4ac>0,故此选项错误;D、∵方程ax2+bx+c=0的两根x1x2=,其中两根一个等于﹣1,另一个小于0大于﹣1,∴x1x2=<1,∵a,c都小于0,∴a<c,故此选项正确.故选:D.9.已知点A(﹣1,5),B(0,0),C(4,0),D(2019,m),E(2020,n)在某二次函数的图象上.下列结论:①图象开口向上;②图象的对称轴是直线x=2;③m<n;④当0<x<4时,y<0.其中正确的个数是()A.1B.2C.3D.4【分析】待定系数法求得抛物线的解析式,即可得到开口方向,对称轴方程,根据二次函数的性质即可判断.【解答】解:设二次函数的解析式为y=ax2+bx+c,把点A(﹣1,5),B(0,0),C(4,0)代入得,解得,∴抛物线解析式为y=x2﹣4x,∴图象开口向上,对称轴是直线x=﹣=2,故①②正确;∵2<2019<2020,∴m<n,故③正确;∵抛物线开口向上,与x轴的交点为(0,0),(4,0),∴当0<x<4时,y<0,故④正确;故选:D.二、填空题(本题共计10小题,每题3分,共计30分,)10.已知抛物线的顶点为(3,﹣2)且与抛物线y=﹣x2的形状、开口方向相同,则这条抛物线的表达式为y=﹣(x﹣3)2﹣2.【分析】由于已知顶点坐标,则可设顶点式y=a(x﹣3)2﹣2,然后利用二次项系数的意义得到a=﹣,从而得到所求抛物线的解析式.【解答】解:设抛物线的解析式为y=a(x﹣3)2﹣2,因为抛物线y=a(x﹣3)2﹣2与抛物线y=﹣x2的形状、开口方向相同,所以a=﹣,所以所求抛物线解析式为y=﹣(x﹣3)2﹣2.故答案为y=﹣(x﹣3)2﹣2.11.抛物线y=2x2﹣4x﹣3,当﹣1≤x≤4时,y的取值范围是﹣5≤y≤13.【分析】首先利用配方法求出二次函数的最值,进而利用x的取值范围得出y的取值范围.【解答】解:∵y=2x2﹣4x﹣3=2(x2﹣2x)﹣3,=2(x2﹣2x+1﹣1)﹣3,=2(x﹣1)2﹣5,∴当x=1时,y最小值=﹣5,∵﹣1≤x≤4,且|4﹣1>|﹣1﹣1|,∴x=4时,y最大=13,∴当﹣1≤x≤4时,y的取值范围是:﹣5≤y≤13.故答案为﹣5≤y≤13.12.请将函数y=x2+2x+1写成y=a(x﹣h)2+k的形式为y=(x+2)2﹣1.【分析】利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【解答】解:y=x2+2x+1=(x2+4x+4)﹣2+1=(x+2)2﹣1,即y=(x+2)2﹣1.故答案为y=(x+2)2﹣1.13.二次函数y=ax2+bx+c(a<0)与x轴的两个交点分别为A(﹣1,0),B(2,0),当y <0时,x的取值范围是x<﹣1或x>2.【分析】抛物线与x轴两交点为(﹣1,0),(2,0),而a<0,故y<0时,图象在x 轴的下方,进而求解.【解答】解:∵抛物线与x轴两交点为(﹣1,0),(2,0),而a<0,∴y<0时,图象在x轴的下方,∴x<﹣1或x>2,故答案是x<﹣1或x>2.14.抛物线y=x2+bx+3经过点(3,0),则b的值为﹣4.【分析】将点(3,0)代入y=x2+bx+3,即可求得b的值.【解答】解:把点(3,0)代入y=x2+bx+3,得9+3b+3=0,∴b=﹣4.15.如图所示,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(﹣1,0)和B(2,0),当y<0时,x的取值范围是x<﹣1或x>2.【分析】直接从图上可以分析:y<0时,图象在x轴的下方,共有2部分:一是A的左边,即x<﹣1;二是B的右边,即x>2.【解答】解:观察图象可知,抛物线与x轴两交点为(﹣1,0),(2,0),y<0,图象在x轴的下方,所以答案是x<﹣1或x>2.16.抛物线y=﹣+3x﹣2与y=ax2的形状相同,而开口方向相反,则a=.【分析】抛物线的形状与|a|有关,开口方向与a的正负有关.【解答】解:∵抛物线y=﹣x2+3x﹣2与y=ax2的形状相同,∴二次项系数的绝对值相等,都为;∵开口方向相反,∴二次项系数互为相反数,即y=ax2中,a=.故答案为:.17.已知点A(﹣2,m)、B(2,n)都在抛物线y=x2+2x﹣t上,则m与n的大小关系是m <n.(填“>”、“<”或“=”)【分析】根据二次函数的性质得到抛物线y=x2+2x﹣t的开口向上,有最小值为﹣t﹣1,对称轴为直线x=﹣1,则在对称轴左侧,y随x的增大而减小,在对称轴右侧,y随x的增大而增大,进而解答即可.【解答】解:∵y=x2+2x﹣t=(x+1)2﹣t﹣1,∴a=1>0,有最小值为﹣t﹣1,∴抛物线开口向上,∵抛物线y=x2+2x﹣t对称轴为直线x=﹣1,∵﹣2<0<2,∴m<n.故答案为:<18.已知:a+b+c=0,9a﹣3b+c=0,则二次函数y=ax2+bx+c(a≠0)图象的顶点可能在第二象限和第三象限.【分析】根据已知条件a+b+c=0,9a﹣3b+c=0,可知图象过点(1,0),(﹣3,0),再由二次函数y=ax2+bx+c(a≠0)的轴对称性,求出其对称轴,从而判断二次函数y=ax2+bx+c(a≠0)图象的顶点所在象限.【解答】解:由题意可得,图象过点(1,0),(﹣3,0),∴对称轴为x=﹣1,图象的顶点可能在第二象限和第三象限.19.如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y =﹣x2+bx+c经过点A、B.点P在抛物线上,连接P A,PB,则当△P AB的面积为1时,点P的坐标是点P(﹣1,2)或(﹣1+,)或(﹣1﹣,﹣).【分析】求出点A、B的坐标,然后根据待定系数法求得抛物线解析式,过点P作直线l ∥AB,作PQ∥y轴交BA于点Q,作PH⊥AB于点H,S△P AB=×AB×PH=2×PQ×=1,则|y P﹣y Q|=1,即可求解.【解答】解:y=x+2,令x=0,则y=2,令y=0,则x=﹣2,∴点A、B的坐标分别为(﹣2,0)、(0,2),∵抛物线y=﹣x2+bx+c经过点A、B,∴,解得,∴二次函数表达式为:y=﹣x2﹣x+2,过点P作直线l∥AB,作PQ∥y轴交BA于点Q,作PH⊥AB于点H,∵OA=OB,∴∠BAO=∠PQH=45°,S△P AB=×AB×PH=2×PQ×=1,则PQ=y P﹣y Q=1,在直线AB下方作直线m,使直线m和l与直线AB等距离,则直线m与抛物线两个交点坐标,分别与点AB组成的三角形的面积也为1,故:|y P﹣y Q|=1,设点P(x,﹣x2﹣x+2),则点Q(x,x+2),即:﹣x2﹣x+2﹣x﹣2=±1,解得:x=﹣1或﹣1故点P(﹣1,2)或(﹣1+,)或(﹣1﹣,﹣).三、解答题(本题共计6小题,共计63分,)20.二次函数y=x2+bx+3的图象经过点(3,0).请用配方法求出该二次函数图象的顶点坐标.【分析】先将点(3,0)代入(3,0),解得b的值,再将二次函数配方,写成顶点式即可得出顶点坐标.【解答】解:∵二次函数y=x2+bx+3的图象经过点(3,0),∴0=9+3b+3,∴b=﹣4.∴y=x2﹣4x+3=(x﹣2)2﹣1.∴该二次函数图象的顶点坐标为(2,﹣1).21.用配方法把函数y=﹣3x2﹣6x+10化成y=a(x﹣h)2+k的形式,然后指出它的图象开口方向,对称轴,顶点坐标和最值.【分析】(1)这个函数的二次项系数是﹣3,配方法变形成y=(x+h)2+k的形式,配方的方法是把二次项,一次项先分为一组,提出二次项系数﹣3,加上一次项系数的一半,就可以变形成顶点式的形式.(2)二次函数的一般形式中的顶点式是:y=a(x﹣h)2+k(a≠0,且a,h,k是常数),它的对称轴是x=h,顶点坐标是(h,k).【解答】解:∵y=﹣3x2﹣6x+10=﹣3(x+1)2+13,∴开口向下,对称轴x=﹣1,顶点坐标(﹣1,13),最大值13.22.求出符合下列条件的抛物线的解析式:(1)顶点为(﹣1,﹣3),与y轴的交点为(0,﹣5);(2)将抛物线y=x2的图象先向下平移2个单位,再绕其顶点旋转180°;(3)抛物线与x轴交于点M(﹣1,0)、N(2,0),且经过点(1,2).【分析】(1)设抛物线顶点式解析式为y=a(x+1)2﹣3,然后把与y轴的交点坐标代入函数解析式求出a的值即可;(2)根据向下平移纵坐标减求出平移后的抛物线的顶点坐标,再根据旋转利用顶点式解析式写出函数解析式即可;(3)设抛物线解析式为y=a(x+1)(x﹣2),把经过的点的坐标代入函数解析式求出a 的值,整理即可得解.【解答】解:(1)设抛物线顶点式解析式为y=a(x+1)2﹣3,则a(0+1)2﹣3=﹣5,解得a=﹣2,∴y=﹣2(x+1)2﹣3=﹣2x2﹣4x﹣5,即y=﹣2x2﹣4x﹣5;(2)∵抛物线y=x2的图象先向下平移2个单位后的顶点坐标为(0,﹣2),∴平移后再绕顶点旋转180°后的抛物线解析式为y=﹣x2﹣2;(3)设抛物线解析式为y=a(x+1)(x﹣2),则a(1+1)(1﹣2)=2,解得a=﹣1,∴y=﹣(x+1)(x﹣2)=﹣x2+x+2,即y=﹣x2+x+2.23.如图,已知抛物线y=x2+bx+c经过点A(﹣1,0)、B(5,0).(1)求抛物线的解析式,并写出顶点M的坐标;(2)若点C在抛物线上,且点C的横坐标为8,求四边形AMBC的面积;(3)定点D(0,m)在y轴上,若将抛物线的图象向左平移2个单位,再向上平移3个单位得到一条新的抛物线,点P在新的抛物线上运动,求定点D与动点P之间距离的最小值d(用含m的代数式表示)【分析】(1)函数的表达式为:y=(x+1)(x﹣5),即可求解;(2)S四边形AMBC=AB(y C﹣y D),即可求解;(3)抛物线的表达式为:y=x2,即可求解.【解答】解:(1)函数的表达式为:y=(x+1)(x﹣5)=(x2﹣4x﹣5)=x2﹣x ﹣,点M坐标为(2,﹣3);(2)当x=8时,y=(x+1)(x﹣5)=9,即点C(8,9),S四边形AMBC=AB(y C﹣y M)=×6×(9+3)=36;(3)y=(x+1)(x﹣5)=(x2﹣4x﹣5)=(x﹣2)2﹣3,抛物线的图象向左平移2个单位,再向上平移3个单位得到一条新的抛物线,则新抛物线表达式为:y=x2,则定点D与动点P之间距离PD==,令t=,则x2=3t,可得PD=,当t=﹣=﹣时,PD有最小值,∵t≥0,∴3﹣2m≤0,即m≥时,PD的最小值d=;当m<时,3﹣2m>0,t≥0,∴t2+(3﹣2m)t+m2≥0,故当PD最小时,t=0,即x=0,∴当点P与点O重合时,PD最小,即PD的最小值d=|m|∴d=.24.如图,经过点A(0,﹣4)的抛物线y=+bx+c与x轴相交于点B(﹣1,0)和C,O为坐标原点.(1)求抛物线的解析式;(2)将抛物线y=+bx+c向上平移个单位长度,再向左平移m(m>0)个单位长度,得到新抛物线,若新抛物线的顶点P在△ABC内,求m的取值范围;(3)将x轴下方的抛物线图象关于x轴对称,得到新的函数图象C,若直线y=x+k与图象C始终有3个交点,求满足条件的k的取值范围.【分析】(1)该抛物线的解析式中只有两个待定系数,只需将A、B两点坐标代入即可得解.(2)首先根据平移条件表示出移动后的函数解析式,进而用m表示出该函数的顶点坐标,将其代入直线AB、AC的解析式中,即可确定P在△ABC内时m的取值范围.(3)先根据函数解析式画出图形,然后结合图形找出抛物线与x轴有三个交点的情形,最后求得直线的解析式,从而可求得m的值.【解答】解:(1)∵经过点A(0,﹣4)的抛物线y=x2+bx+c与x轴相交于点B(﹣1,0),∴,解得,∴抛物线解析式为y=x2﹣x﹣4;(2)由(1)知,抛物线解析式为y=x2﹣x﹣4=(x2﹣7x)﹣4=(x﹣)2﹣,∴此抛物线向上平移个单位长度的抛物线的解析式为y=(x﹣)2﹣,再向左平移m(m>0)个单位长度,得到新抛物线y=(x+m﹣)2﹣,∴抛物线的顶点P(﹣m+,﹣),对于抛物线y=x2﹣x﹣4,令y=0,x2﹣x﹣4=0,解得x=﹣1或8,∴C(8,0),∵A(0,﹣4),B(﹣1,0),∴直线AB的解析式为y=﹣4x﹣4,直线AC的解析式为y=x﹣4,当顶点P在AB上时,﹣=﹣4×(﹣m+)﹣4,解得m=,当顶点P在AC上时,﹣=(﹣m+)﹣4,解得m=﹣,∴当点P在△ABC内时﹣<m<;(3)翻折后所得新图象如图所示.平移直线y=x+k知:直线位于l1和l2时,它与新图象有三个不同的公共点.①当直线位于l1时,此时l1过点B(﹣1,0),∴0=﹣1+k,即k=1.②∵当直线位于l2时,此时l2与函数y=﹣x2+x+4(﹣1≤x≤8)的图象有一个公共点∴方程x+k=﹣x2+x+4,即x2﹣5x﹣8+2k=0有两个相等实根.∴△=25﹣4(2k﹣8)=0,即k=.综上所述,k的值为1或.25.在平面直角坐标系中,抛物线y=ax2+bx+3与x轴的两个交点分别为A(﹣3,0)、B(1,0),过顶点C作CH⊥x轴于点H.(1)直接填写:a=﹣1,b=﹣2,顶点C的坐标为(﹣1,4);(2)在y轴上是否存在点D,使得△ACD是以AC为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由.【分析】(1)将A(﹣3,0)、B(1,0),代入y=ax2+bx+3求出即可,再利用平方法求出顶点坐标即可;(2)首先证明△CED∽△DOA,得出y轴上存在点D(0,3)或(0,1),即可得出△ACD是以AC为斜边的直角三角形.【解答】解:(1)将A(﹣3,0)、B(1,0),代入y=ax2+bx+3得,解得,函数的对称轴为x=1,故顶点C的坐标为(﹣1,4),故答案为﹣1,﹣2,(﹣1,4);(2)假设在y轴上存在满足条件的点D,过点C作CE⊥y轴于点E.由∠CDA=90°得,∠1+∠2=90°.又∠2+∠3=90°,∴∠3=∠1.又∵∠CED=∠DOA=90°,∴△CED∽△DOA,∴.设D(0,c),则,解之得c1=3,c2=1.综合上述:在y轴上存在点D(0,3)或(0,1),使△ACD是以AC为斜边的直角三角形.。
第二十二章《二次函数》单元测试卷一、选择题(每小题只有一个正确答案)1.下列函数中,属于二次函数的是( )A. y=x ﹣3B. y=x 2﹣(x +1)2C. y=x (x ﹣1)﹣1D.2.抛物线y=﹣x 2不具有的性质是( )A. 对称轴是y 轴B. 开口向下C. 当x <0时,y 随x 的增大而减小D. 顶点坐标是(0,0)3.已知抛物线()20y ax a =>过()12,A y -, ()21,B y 两点,则下列关系式一定正确的( )A. 120y y >>B. 210y y >>C. 120y y >>D. 210y y >>4.对于二次函数 的图像,给出下列结论:①开口向上;②对称轴是直线 ;③顶 点坐标是 ;④与 轴有两个交点.其中正确的结论是( )A. ①②B. ③④C. ②③D. ①④5.如图,二次函数 的图象开口向下,且经过第三象限的点 若点P 的横坐标为 ,则一次函数 的图象大致是A. B. C. D.6.抛物线y=ax 2+bx+c 的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc >0;②b 2﹣4ac >0;③9a ﹣3b+c=0;④若点(﹣0.5,y 1),(﹣2,y 2)均在抛物线上,则y 1>y 2;⑤5a ﹣2b+c <0.其中正确的个数有( )A. 2B. 3C. 4D. 57.抛物线y=x2+x-1与x轴的交点的个数是()A. 3个B. 2个C. 1个D. 0个8.若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A. B. C. D.9.若二次函数的x与y的部分对应值如下表:则抛物线的顶点坐标是A. B. C. D.10.当a≤x≤a+1时,函数y=x2-2x+1的最小值为1,则a的值为()A. -1B. 2C. 0或2D. -1或211.如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b;⑤3a+c<0.其中正确的结论有()A. 5个B. 4个C. 3个D. 2个12.小张同学说出了二次函数的两个条件:(1)当x<1时,y随x的增大而增大;(2)函数图象经过点(-2,4).则符合条件的二次函数表达式可以是( )A. y=-(x-1)2-5B. y=2(x-1)2-14C. y=-(x+1)2+5D. y=-(x-2)2+20二、填空题13.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣.在飞机着陆滑行中,最后4s滑行的距离是_____m.14.抛物线y=2(x+2)2+4的顶点坐标为_____.15.二次函数y=x2-2x-3,当m-2≤x≤m时函数有最大值5,则m的值可能为___________ 16.若二次函数y=x2+3x-c(c为整数)的图象与x轴没有交点,则c的最大值是________. 17.如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD的最大面积是____________________三、解答题18.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.19.传统的端午节即将来临,某企业接到一批粽子生产任务,约定这批粽子的出厂价为每只4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足如下关系:y=(1)李明第几天生产的粽子数量为280只?(2)如图,设第x天生产的每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价-成本)20.如图,已知抛物线y1=x2-2x-3与x轴相交于点A,B(点A在B的左侧),与y轴相交于点C,直线y2=kx+b经过点B,C.(1)求直线BC的函数关系式;(2)当y1>y2时,请直接写出x的取值范围.21.已知抛物线:y=a(x-m)2-a(x-m)(a、m为常数,且a≠0).(1)求证:不论a与m为何值,该抛物线与x轴总有两个公共点;(2)设该抛物线与x轴相交于A、B两点,则线段AB的长度是否与a、m的大小有关系?若无关系,求出它的长度;若有关系,请说明理由;(3)在(2)的条件下,若抛物线的顶点为C,当△ABC的面积等于1时,求a的值.22.已知抛物线y=a(x﹣1)2过点(3,1),D为抛物线的顶点.(1)求抛物线的解析式;(2)若点B、C均在抛物线上,其中点B(0,),且∠BDC=90°,求点C的坐标;(3)如图,直线y=kx+4﹣k与抛物线交于P、Q两点.①求证:∠PDQ=90°;②求△PDQ面积的最小值.参考答案1.C2.C3.C4.D5.D6.B7.B8.B9.C10.D11.B12.D13.21614.(﹣2,4).15.0或416.-317.64m218.(1)y=﹣x2﹣2x+3;(2)抛物线与x轴的交点为:(﹣3,0),(1,0)(3)15.【解析】【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B点坐标代入,即可求出二次函数的解析式;(2)根据函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标;(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【详解】(1)设抛物线顶点式y=a(x+1)2+4,将B(2,﹣5)代入得:a=﹣1,∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3),令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0);(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0),当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位,故A'(2,4),B'(5,﹣5),∴S△OA′B′=×(2+5)×9﹣×2×4﹣×5×5=15.【点睛】本题考查了用待定系数法求抛物线解析式、函数图象与坐标轴交点、图形面积的求法等知识.熟练掌握待定系数法、函数图象与坐标轴的交点的求解方法、不规则图形的面积的求解方法等是解题的关键.19.(1)李明第10天生产的粽子数量为280只.(2)第13天的利润最大,最大利润是578元. 【解析】分析:(1)把y=280代入y=20x+80,解方程即可求得;(2)根据图象求得成本p与x之间的关系,然后根据利润等于订购价减去成本价,然后整理即可得到W与x的关系式,再根据一次函数的增减性和二次函数的增减性解答.详解:(1)设李明第x天生产的粽子数量为280只,由题意可知:20x+80=280,解得x=10.答:第10天生产的粽子数量为420只.(2)由图象得,当0≤x<10时,p=2;当10≤x≤20时,设P=kx+b,把点(10,2),(20,3)代入得,==,解得==,∴p=0.1x+1,①0≤x≤6时,w=(4-2)×34x=68x,当x=6时,w最大=408(元);②6<x≤10时,w=(4-2)×(20x+80)=40x+160,∵x是整数,∴当x=10时,w最大=560(元);③10<x≤20时,w=(4-0.1x-1)×(20x+80)=-2x2+52x+240,∵a=-3<0,∴当x=-=13时,w最大=578(元);综上,当x=13时,w有最大值,最大值为578.点睛:本题考查的是二次函数在实际生活中的应用,主要是利用二次函数的增减性求最值问题,利用一次函数的增减性求最值,难点在于读懂题目信息,列出相关的函数关系式.20.(1)y=x-3;(2)当y1>y2时,x<0和x>3.【解析】分析:(1)根据抛物线的解析式求出A、B、C的解析式,把B、C的坐标代入直线的解析式,即可求出答案;(2)根据B、C点的坐标和图象得出即可.详解:(1)抛物线y1=x2-2x-3,当x=0时,y=-3,当y=0时,x=3或1,即A的坐标为(-1,0),B的坐标为(3,0),C的坐标为(0,-3),把B、C的坐标代入直线y2=kx+b得:=,=解得:k=1,b=-3,即直线BC的函数关系式是y=x-3;(2)∵B的坐标为(3,0),C的坐标为(0,-3),如图,∴当y1>y2时,x的取值范围是x<0或x>3.点睛:本题考查了一次函数和二次函数图象上点的坐标特征、用待定系数法求一次函数的解析式和二次函数与一次函数的图象等知识点,能求出B、C的坐标是解此题的关键.21.(1)证明见解析;(2)1;(3)±8【解析】分析:(1)通过提公因式法,对函数的解析式变形,然后构成方程求解出交点的坐标即可;(2)根据第一问的交点坐标得到AB的长,判断出AB的长与a、m无关;(3)通过配方法得到函数的顶点式,然后根据三角形的面积公式求解即可.详解:(1)由y=a(x-m)2-a(x-m)=a(x-m)( x-m-1),得抛物线与x轴的交点坐标为(m,0)和(m+1,0).因此不论a与m为何值,该抛物线与x轴总有两个公共点.(也可用判别式Δ做)(2)线段AB的长度与a、m的大小无关。
第22章二次函数考试时间:120分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列函数中,二次函数是()A.y=﹣4x+5 B.y=x(2x﹣3) C.y=(x+4)2﹣x2 D.y=2.(4分)已知二次函数y=a(x﹣h)2+k的图象如图所示,直线y=ax+hk的图象经第几象限()A.一、二、三 B.一、二、四 C.一、三、四 D.二、三、四3.(4分)抛物线y=2x2﹣1与直线y=﹣x+3的交点的个数是()A.0个B.1个C.2个D.3个4.(4分)设点(﹣1,y1),(2,y2),(3,y3)是抛物线y=﹣x2+a上的三点,则y1、y2、y3的大小关系为()A.y3>y2>y1B.y1>y3>y2C.y3>y1>y2D.y1>y2>y35.(4分)设一元二次方程(x﹣2)(x﹣3)=m(m>0)的两根分别为α,β.且α<β,则二次函数y=(x﹣2)(x﹣3)的函数值y>m时自变量x的取值范围是()A.x>3或x<2 B.x>β或x<αC.α<x<βD.2<x<36.(4分)已知二次函数y=ax2+bx+c中,y与x的部分对应值如下:则一元二次方程ax2+bx+c=0的一个解x满足条件()A.1.2<x<1.3 B.1.3<x<1.4 C.1.4<x<1.5 D.1.5<x<1.67.(4分)已知二次函数y=﹣(x﹣h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为﹣1,则h的值为()A.3或6 B.1或6 C.1或3 D.4或68.(4分)将进货价格为35元的商品按单价40元售出时,能卖出200个,已知该商品单价每上涨2元,其销售量就减少10个.设这种商品的售价为x元时,获得的利润为y元,则下列关系式正确的是()A.y=(x﹣35)(400﹣5x)B.y=(x﹣35)(600﹣10x)C.y=(x+5)(200﹣5x)D.y=(x+5)(200﹣10x)9.(4分)已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是()A.点火后9s和点火后13s的升空高度相同B.点火后24s火箭落于地面C.点火后10s的升空高度为139mD.火箭升空的最大高度为145m10.(4分)如图,OABC是边长为1的正方形,OC与x轴正半轴的夹角为15°,点B在抛物线y=ax2(a<0)的图象上,则a的值为()A. B.C.﹣2 D.评卷人得分二.填空题(共4小题,满分20分,每小题5分)11.(5分)抛物线y=﹣2x2﹣1的顶点坐标是.12.(5分)若函数y=x2+2x﹣m的图象与x轴有且只有一个交点,则m的值为.13.(5分)如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则方程ax2=bx+c的解是.14.(5分)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加m.评卷人得分三.解答题(共9小题,满分90分)15.(8分)已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b的值.16.(8分)下表给出了代数式﹣x2+bx+c与x的一些对应值:x …﹣2 ﹣1 0 1 2 3 …﹣x2+bx+c … 5 n c 2 ﹣3 ﹣10 …(1)根据表格中的数据,确定b,c,n的值;(2)设y=﹣x2+bx+c,直接写出0≤x≤2时y的最大值.17.(8分)已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?18.(8分)设方程x2﹣x﹣1=0的两个根为a,b,求满足f(a)=b,f(b)=a,f(1)=1的二次函数f(x).19.(10分)已知二次函数y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两点.(1)求b,c的值.(2)二次函数y=﹣x2+bx+c的图象与x轴是否有公共点?若有,求公共点的坐标;若没有,请说明情况.20.(10分)已知二次函数y=2(x﹣1)(x﹣m﹣3)(m为常数).(1)求证:不论m为何值,该函数的图象与x轴总有公共点;(2)当m取什么值时,该函数的图象与y轴的交点在x轴的上方?21.(12分)已知函数y=﹣x2+mx+(m+1)(其中m为常数)(1)该函数的图象与x轴公共点的个数是个.(2)若该函数的图象对称轴是直线x=1,顶点为点A,求此时函数的解析式及点A的坐标.22.(12分)已知二次函数y=9x2﹣6ax+a2﹣b(1)当b=﹣3时,二次函数的图象经过点(﹣1,4)①求a的值;②求当a≤x≤b时,一次函数y=ax+b的最大值及最小值;(2)若a≥3,b﹣1=2a,函数y=9x2﹣6ax+a2﹣b在﹣<x<c时的值恒大于或等于0,求实数c的取值范围.23.(14分)如图,抛物线y=ax2+bx(a>0,b<0)交x轴于O,A两点,顶点为B(I)直接写出A,B两点的坐标(用含a,b的代数式表示).(II)直线y=kx+m(k>0)过点B,且与抛物线交于另一点D(点D与点A不重合),交y轴于点C.过点D作DE⊥x轴于点E,连接AB,CE,求证:CE∥AB.(III)在(II)的条件下,连接OB,当∠OBA=120,≤k≤时,求的取值范围.xx年九年级上学期第22章二次函数单元测试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【分析】根据二次函数的定义,逐一分析四个选项即可得出结论.【解答】解:A、y=﹣4x+5为一次函数;B、y=x(2x﹣3)=2x2﹣3x为二次函数;C、y=(x+4)2﹣x2=8x+16为一次函数;D、y=不是二次函数.故选:B.【点评】本题考查了二次函数的定义,牢记二次函数的定义是解题的关键.2.【分析】根据二次函数的图象可以判断a、h、k的符号,然后根据一次函数的性质即可判断直线y=ax+hk的图象经第几象限,本题得以解决.【解答】解:由函数图象可知,y=a(x﹣h)2+k中的a<0,h<0,k>0,∴直线y=ax+hk中的a<0,hk<0,∴直线y=ax+hk经过第二、三、四象限,故选:D.【点评】本题考查二次函数的图象、一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.3.【分析】根据方程组,转化为一元二次方程,利用根的判别式即可判断;【解答】解:由,消去y得到:2x2+x﹣4=0,∵△=1﹣(﹣32)=33>0,∴抛物线y=2x2﹣1与直线y=﹣x+3有两个交点,故选:C.【点评】本题考查二次函数的性质,解题的关键是学会用转化的思想思考问题,属于中考常考题型.4.【分析】由题意可得对称轴为y轴,则(﹣1,y1)关于y轴的对称点为(1,y1),根据二次函数的增减性可得函数值的大小关系.【解答】解:∵抛物线y=﹣x2+a∴对称轴为y轴∴(﹣1,y1)关于对称轴y轴对称点为(1,y1)∵a=﹣1<0∴当x>0时,y随x的增大而减小∵1<2<3∴y1>y2>y3故选:D.【点评】本题考查了二次函数图象上的点的坐标特征,二次函数的增减性,利用增减性比较函数值的大小是本题的关键5.【分析】依照题意画出图象,观察图形结合二次函数的性质,即可找出结论.【解答】解:依照题意画出图形,如图所示.∵一元二次方程(x﹣2)(x﹣3)=m(m>0)的两根分别为α、β,∴二次函数y=(x﹣2)(x﹣3)的函数值y>m时自变量x的取值范围是x>β或x<α.故选:B.【点评】本题考查了抛物线与x轴的交点、二次函数的性质以及二次函数的图象,依照题意画出图形,利用数形结合解决问题是解题的关键.6.【分析】仔细看表,可发现y的值﹣0.24和0.25最接近0,再看对应的x的值即可得.【解答】解:由表可以看出,当x取1.4与1.5之间的某个数时,y=0,即这个数是ax2+bx+c=0的一个根.ax2+bx+c=0的一个解x的取值范围为1.4<x<1.5.故选:C.【点评】本题考查了同学们的估算能力,对题目的正确估算是建立在对二次函数图象和一元二次方程关系正确理解的基础上的.7.【分析】分h<2、2≤h≤5和h>5三种情况考虑:当h<2时,根据二次函数的性质可得出关于h 的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h>5时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论.综上即可得出结论.【解答】解:当h<2时,有﹣(2﹣h)2=﹣1,解得:h1=1,h2=3(舍去);当2≤h≤5时,y=﹣(x﹣h)2的最大值为0,不符合题意;当h>5时,有﹣(5﹣h)2=﹣1,解得:h3=4(舍去),h4=6.综上所述:h的值为1或6.故选:B.【点评】本题考查了二次函数的最值以及二次函数的性质,分h<2、2≤h≤5和h>5三种情况求出h值是解题的关键.8.【分析】根据售价减去进价表示出实际的利润;【解答】解:设这种商品的售价为x元时,获得的利润为y元,根据题意可得:y=(x﹣35)(400﹣5x),故选:A.【点评】此题考查了二次函数的应用,解题的关键是理解“商品每个涨价2元,其销售量就减少10个”.9.【分析】分别求出t=9、13、24、10时h的值可判断A、B、C三个选项,将解析式配方成顶点式可判断D选项.【解答】解:A、当t=9时,h=136;当t=13时,h=144;所以点火后9s和点火后13s的升空高度不相同,此选项错误;B、当t=24时h=1≠0,所以点火后24s火箭离地面的高度为1m,此选项错误;C、当t=10时h=141m,此选项错误;D、由h=﹣t2+24t+1=﹣(t﹣12)2+145知火箭升空的最大高度为145m,此选项正确;故选:D.【点评】本题主要考查二次函数的应用,解题的关键是熟练掌握二次函数的性质.10.【分析】连接OB,过B作BD⊥x轴于D,若OC与x轴正半轴的夹角为15°,那么∠BOD=30°;在正方形OABC中,已知了边长,易求得对角线OB的长,进而可在Rt△OBD中求得BD、OD的值,也就得到了B点的坐标,然后将其代入抛物线的解析式中,即可求得待定系数a的值.【解答】解:如图,连接OB,过B作BD⊥x轴于D;则∠BOC=45°,∠BOD=30°;已知正方形的边长为1,则OB=;Rt△OBD中,OB=,∠BOD=30°,则:BD=OB=,OD=OB=;故B(,﹣),代入抛物线的解析式中,得:()2a=﹣,解得a=﹣;故选:B.【点评】此题主要考查了正方形的性质、直角三角形的性质以及用待定系数法确定函数解析式的方法,能够正确地构造出与所求相关的直角三角形,是解决问题的关键.二.填空题(共4小题,满分20分,每小题5分)11.【分析】根据题目中的函数解析式可以直接写出该抛物线的顶点坐标,本题得以解决.【解答】解:∵y=﹣2x2﹣1,∴该抛物线的顶点坐标为(0,﹣1),故答案为:(0,﹣1).【点评】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次和函数的性质解答.12.【分析】由抛物线与x轴只有一个交点,即可得出关于m的一元一次方程,解之即可得出m的值.【解答】解:∵函数y=x2+2x﹣m的图象与x轴有且只有一个交点,∴△=22﹣4×1×(﹣m)=0,解得:m=﹣1.故答案为:﹣1.【点评】本题考查了抛物线与x轴的交点,牢记“当△=b2﹣4ac=0时,抛物线与x轴有1个交点”是解题的关键.13.【分析】根据二次函数图象与一次函数图象的交点问题得到方程组的解为,,于是易得关于x的方程ax2﹣bx﹣c=0的解.【解答】解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),∴方程组的解为,,即关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1.所以方程ax2=bx+c的解是x1=﹣2,x2=1故答案为x1=﹣2,x2=1.【点评】本题考查抛物线与x轴交点、一次函数的应用、一元二次方程等知识,解题的关键是灵活运用所学知识,学会利用图象法解决实际问题,属于中考常考题型.14.【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把y=﹣2代入抛物线解析式得出水面宽度,即可得出答案.【解答】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣2时,对应的抛物线上两点之间的距离,也就是直线y=﹣2与抛物线相交的两点之间的距离,可以通过把y=﹣2代入抛物线解析式得出:﹣2=﹣0.5x2+2,解得:x=±2,所以水面宽度增加到4米,比原先的宽度当然是增加了(4﹣4)米,故答案为:4﹣4.【点评】此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.三.解答题(共9小题,满分90分)15.【分析】根据抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),可以求得a、b的值,本题得以解决.【解答】解:∵抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),∴,解得,,即a的值是1,b的值是﹣2.【点评】本题考查二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.16.【分析】(1)把(﹣2,5)、(1,2)分别代入﹣x2+bx+c中得到关于b、c的方程组,然后解方程组即可得到b、c的值;然后计算x=﹣1时的代数式的值即可得到n的值;(2)利用表中数据求解.【解答】解:(1)根据表格数据可得,解得,∴﹣x2+bx+c=﹣x2﹣2x+5,当x=﹣1时,﹣x2﹣2x+5=6,即n=6;(2)根据表中数据得当0≤x≤2时,y的最大值是5.【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.17.【分析】(1)根据二次项的系数等于零,一次项的系数不等于零,可得方程组,根据解方程组,可得答案;(2)根据二次项的系数不等于零,可得方程,根据解方程,可得答案.【解答】解:依题意得∴∴m=0;(2)依题意得m2﹣m≠0,∴m≠0且m≠1.【点评】本题考查了二次函数的定义,二次函数的二次项的系数不等于零是解题关键.18.【分析】利用一元二次方程的根与系数的关系求得ab=﹣1,a+b=1,a2+b2=(a+b)2﹣2ab=3.根据题意知,二次函数经过点(a,b),(b,a),(1,1).把它们代入二次函数解析式f(x)=kx2+dx+c (k≠0),列出方程组,通过解方程组可以求得k、d、c的值.【解答】解:∵方程x2﹣x﹣1=0的两个根为a、b,∴ab=﹣1,a+b=1,∴a2+b2=(a+b)2﹣2ab=3.设f(x)=kx2+dx+c(k≠0),∵f(a)=b,f(b)=a,f(1)=1,∴,由①﹣②,得(a+b)k+d=﹣1,即k+d=﹣1,④由①+②,得k(a2+b2)+d(a+b)+2c=a+b,即3k+d+2c=1,⑤把④代入③解得c=2.则由⑤得3k+d=﹣3,⑥由③⑥解得,k=﹣1,d=0.故该二次函数是f(x)=﹣x2+2.【点评】本题考查了抛物线与x轴的交点,二次函数解析式的求解及其常用方法,解方程组.解题时要认真审题,仔细解答.19.【分析】(1)把点A、B的坐标分别代入函数解析式求得b、c的值;(2)利用根的判别式进行判断该函数图象是否与x轴有交点,由题意得到方程﹣x2+x+3=0,通过解该方程求得x的值即为抛物线与x轴交点横坐标.【解答】解:(1)把A(0,3),B(﹣4,﹣)分别代入y=﹣x2+bx+c,得,解得;(2)由(1)可得,该抛物线解析式为:y=﹣x2+x+3.△=()2﹣4×(﹣)×3=>0,所以二次函数y=﹣x2+bx+c的图象与x轴有公共点.∵﹣x2+x+3=0的解为:x1=﹣2,x2=8∴公共点的坐标是(﹣2,0)或(8,0).【点评】考查了抛物线与x轴的交点,二次函数图象上点的坐标特征.注意抛物线解析式与一元二次方程间的转化关系.20.【分析】(1)代入y=0求出x的值,分m+3=1和m+3≠1两种情况考虑方程解的情况,进而即可证出:不论m为何值,该函数的图象与x轴总有公共点;(2)利用二次函数图象上点的坐标特征求出该函数的图象与y轴交点的纵坐标,令其大于0即可求出结论.【解答】(1)证明:当y=0时,2(x﹣1)(x﹣m﹣3)=0,解得:x1=1,x2=m+3.当m+3=1,即m=﹣2时,方程有两个相等的实数根;当m+3≠1,即m≠﹣2时,方程有两个不相等的实数根.∴不论m为何值,该函数的图象与x轴总有公共点;(2)解:当x=0时,y=2(x﹣1)(x﹣m﹣3)=2m+6,∴该函数的图象与y轴交点的纵坐标为2m+6,∴当2m+6>0,即m>﹣3时,该函数的图象与y轴的交点在x轴的上方.【点评】本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征以及解一元一次不等式,解题的关键是:(1)由方程2(x﹣1)(x﹣m﹣3)=0有解证出该函数的图象与x轴总有公共点;(2)利用二次函数图象上点的坐标特征求出该函数的图象与y轴交点的纵坐标.21.【分析】(1)表示出根的判别式,判断其正负即可得到结果;(2)先依据抛物线的对称轴方程求得m的值,从而可得到抛物线的解析式,然后利用配方法可求得点A的坐标.【解答】解:(1)∵函数y=﹣x2+mx+(m+1)(m为常数),∴△=m2+4(m+1)=(m+2)2≥0,∴该函数图象与x轴的公共点的个数是1或2.故答案为:1或2.(2)∵抛物线的对称轴是直线x=1,∴=1,解得m=2,∴抛物线的解析式为y=﹣x2+2x+3.y=﹣x2+2x+3═﹣x2+2x﹣1+4=﹣(x﹣1)2+4,∴A(1,4).【点评】本题主要考查的是抛物线与x轴的交点,掌握抛物线与x轴交点个数与△之间的关系是解题的关键.22.【分析】先求出该抛物线的对称轴,然后根据对称轴的位置即可求出a的取值范围.【解答】解:(1)①∵y=9x2﹣6ax+a2﹣b,当b=﹣3时,二次函数的图象经过点(﹣1,4)∴4=9×(﹣1)2﹣6a×(﹣1)+a2+3,解得,a1=﹣2,a2=﹣4,∴a的值是﹣2或﹣4;②∵a≤x≤b,b=﹣3∴a=﹣2舍去,∴a=﹣4,∴﹣4≤x≤﹣3,∴一次函数y=﹣4x﹣3,∵一次函数y=﹣4x﹣3为单调递减函数,∴当x=﹣4时,函数取得最大值,y=﹣4×(﹣4)﹣3=13x=﹣3时,函数取得最小值,y=﹣4×(﹣3)﹣3=9(2)∵b﹣1=2a∴y=9x2﹣6ax+a2﹣b可化简为y=9x2﹣6ax+a2﹣2a﹣1∴抛物线的对称轴为:x=≥1,抛物线与x轴的交点为(,0)(,0)∵函数y=9x2﹣6ax+a2﹣b在﹣<x<c时的值恒大于或等于0∴c≤,∵a≥3,∴﹣<c≤.【点评】本题考查二次函数的性质,解题的关键是熟练运用二次函数的图象,本题属于中等题型.23.【分析】(Ⅰ)令y=0,可求A点坐标,根据顶点公式可求B点坐标.(Ⅱ)如图作BF⊥AO,根据根与系数关系可求D的横坐标,即可求OC,OE,AF,BF的长度(用a,b,m表示),可证△OEC∽△ABF,即可证AB∥EC(Ⅲ)由∠ABO=120°,根据抛物线的对称性可得∠FBA=60°,可求b的值,则可求B点坐标,直线y=kx+m过B点,可求m与k的关系,由△OEC∽△ABF,可求得的取值范围.【解答】解:(Ⅰ)当y=0时,有ax2+bx=0,解得:x1=0,x2=﹣,∴点A的坐标为(﹣,0).∵抛物线y=ax2+bx=a(x+)2﹣,∴点B的坐标为(﹣,﹣).(II)如图作BF⊥AO∵直线y=kx+m(k>0)与抛物线相交于B,D∴kx+m=ax2+bx∴ax2+bx﹣kx﹣m=0∴x B×x D=﹣∴﹣×x D=﹣∴x D=∴OE=∵C(0,m),B(﹣,﹣),A(﹣,0)∴OC=﹣m,AF=﹣,BF=∴,且∠COA=∠BFA=90°∴△ABF∽△OCE∴∠FAB=∠OEC∴AB∥CE(Ⅲ)∵∠OBA=120°∴∠FBA=60°∴tan∠FBA=∴b=﹣∴B(,﹣)∵直线y=kx+m过B点∴﹣=k+m∴m=﹣﹣k∵△ABF∽△OCE∴∵≤k≤∴≤≤即【点评】本题考查了二次函数综合题,二次函数的性质,相似三角形的判定和性质,通过相似三角形证明角相等是本题的关键.(本资料素材和资料部分来自网络,供参考。
第22章二次函数单元测试卷一、选择题(共8小题).1.把一根长为50cm的铁丝弯成一个长方形,设这个长方形的一边长为x(cm),它的面积为y(cm2),则y与x之间的函数关系式为()A.y=﹣x2+50x B.y=x2﹣50x C.y=﹣x2+25x D.y=﹣2x2+25 2.关于二次函数y=﹣2x2+1,以下说法正确的是()A.开口方向向上B.顶点坐标是(﹣2,1)C.当x<0时,y随x的增大而增大D.当x=0时,y有最大值﹣3.下列对二次函数y=x2﹣x的图象的描述,正确的是()A.开口向下B.对称轴是y轴C.经过原点D.在对称轴右侧部分是下降的4.将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位5.已知y=bx﹣c与抛物线y=ax2+bx+c在同一直角坐标系中的图象可能是()A.B.C.D.6.如图,已知二次函数y=ax2+bx+c(a>0)的图象经过A(﹣1,2),B(2,5),顶点坐标为(m,n),则下列说法中错误的是()A.c<3B.m≤C.n≤2D.b<17.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x=﹣,结合图象分析下列结论:①abc>0;②3a+c>0;③当x<0时,y随x的增大而增大;④一元二次方程cx2+bx+a=0的两根分别为x1=﹣,x2=;⑤<0;⑥若m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根,则m<﹣3且n>2,其中正确的结论有()A.3个B.4个C.5个D.6个8.抛物线y=2x2﹣2x+1与坐标轴的交点个数是()A.0B.1C.2D.3二、填空题(本大题共7道小题)9.某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50m),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为48m,则这三间长方形种牛饲养室的总占地面积的最大值为m2.10.若函数y=x2+2x﹣m的图象与x轴有且只有一个交点,则m的值为.11.如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为.12.如图,抛物线y=ax2+bx+c与x轴相交于点A、B(m+2,0)与y轴相交于点C,点D 在该抛物线上,坐标为(m,c),则点A的坐标是.13.如图是我省某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A、B两点,拱桥最高点C到AB的距离为9m,AB=36m,D、E为拱桥底部的两点,且DE∥AB,点E到直线AB的距离为7m,则DE的长为m.14.已知函数y=的图象如图所示,若直线y=x+m与该图象恰有三个不同的交点,则m的取值范围为.15.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b>0;②a﹣b+c=0;③一元二次方程ax2+bx+c+1=0(a≠0)有两个不相等的实数根;④当x<﹣1或x>3时,y>0.上述结论中正确的是.(填上所有正确结论的序号)三、解答题(本大题共4道小题)16.如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A和点B,与y轴交于点C,且点A的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)17.已知某商品进价每件40元,现售价每件60元,每星期可卖出300件,经市场调查反映,每次涨价1元,每星期可少卖10件.(1)要想获利6090元的利润,该商品应定价多少元?(2)能否获利7000元,试说明理由?(3)该商品应定价多少元时,获利最大,最大利润是多少?18.交通工程学理论把在单向道路上行驶的汽车看成连续的流体,并用流量、速度、密度三个概念描述车流的基本特征.其中流量q(辆/小时)指单位时间内通过道路指定断面的车辆数;速度v(千米/小时)指通过道路指定断面的车辆速度;密度k(辆/千米)指通过道路指定断面单位长度内的车辆数.为配合大数据治堵行动,测得某路段流量q与速度v之间关系的部分数据如下表:速度v(千米/小时)…51020324048…流量q(辆/小时)…55010001600179216001152…(1)根据上表信息,下列三个函数关系式中,刻画q,v关系最准确的是(只填上正确答案的序号)①q=90v+100;②q=;③q=﹣2v2+120v.(2)请利用(1)中选取的函数关系式分析,当该路段的车流速度为多少时,流量达到最大?最大流量是多少?(3)已知q,v,k满足q=vk,请结合(1)中选取的函数关系式继续解决下列问题.①市交通运行监控平台显示,当12≤v<18时道路出现轻度拥堵.试分析当车流密度k在什么范围时,该路段将出现轻度拥堵;②在理想状态下,假设前后两车车头之间的距离d(米)均相等,求流量q最大时d的值.19.凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优惠方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18﹣10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.(1)求一次至少购买多少只计算器,才能以最低价购买?(2)求写出该文具店一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;(3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?参考答案一、选择题(本大题共8道小题)1.把一根长为50cm的铁丝弯成一个长方形,设这个长方形的一边长为x(cm),它的面积为y(cm2),则y与x之间的函数关系式为()A.y=﹣x2+50x B.y=x2﹣50x C.y=﹣x2+25x D.y=﹣2x2+25解:设这个长方形的一边长为xcm,则另一边长为(25﹣x)cm,以面积y=x(25﹣x)=﹣x2+25x.故选:C.2.关于二次函数y=﹣2x2+1,以下说法正确的是()A.开口方向向上B.顶点坐标是(﹣2,1)C.当x<0时,y随x的增大而增大D.当x=0时,y有最大值﹣解:∵二次函数y=﹣2x2+1,∴该函数图象开口向下,故选项A错误;顶点坐标为(0,1),故选项B错误;当x<0时,y随x的增大而增大,故选项C正确;当x=0时,y有最大值1,故选项D错误;故选:C.3.下列对二次函数y=x2﹣x的图象的描述,正确的是()A.开口向下B.对称轴是y轴C.经过原点D.在对称轴右侧部分是下降的解:A、∵a=1>0,∴抛物线开口向上,选项A不正确;B、∵﹣=,∴抛物线的对称轴为直线x=,选项B不正确;C、当x=0时,y=x2﹣x=0,∴抛物线经过原点,选项C正确;D、∵a>0,抛物线的对称轴为直线x=,∴当x>时,y随x值的增大而增大,选项D不正确.故选:C.4.将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位解:A、平移后,得y=(x+1)2,图象经过A点,故A不符合题意;B、平移后,得y=(x﹣3)2,图象经过A点,故B不符合题意;C、平移后,得y=x2+3,图象经过A点,故C不符合题意;D、平移后,得y=x2﹣1图象不经过A点,故D符合题意;故选:D.5.已知y=bx﹣c与抛物线y=ax2+bx+c在同一直角坐标系中的图象可能是()A.B.C.D.解:A、∵二次函数图象开口向上,对称轴在y轴右侧,交y轴与负半轴,∴a>0,b<0,c<0,∴一次函数图象应该过第一、二、四象限,A错误;B、∵二次函数图象开口向下,对称轴在y轴右侧,交原点,∴a<0,b>0,c=0,∴一次函数图象应该过第一、三象限,B错误;C、∵二次函数图象开口向上,对称轴在y轴左侧,交y轴与负半轴,∴a>0,b>0,c<0,∴一次函数图象应该过第一、二、三象限,C正确;D、∵二次函数图象开口向下,对称轴在y轴右侧,交y轴正半轴,∴a<0,b>0,c>0,∴一次函数图象应该过第一、三、四象限,D错误.故选:C.6.如图,已知二次函数y=ax2+bx+c(a>0)的图象经过A(﹣1,2),B(2,5),顶点坐标为(m,n),则下列说法中错误的是()A.c<3B.m≤C.n≤2D.b<1解:由图象可得,c<0,故选项A正确;;∵a>0,∴图象开口向上,顶点为最低点,∴n≤2,故选项C正确;∵二次函数y=ax2+bx+c(a>0)的图象经过A(﹣1,2),B(2,5),∴,②﹣①,得3a+3b=3,即a+b=1,∵a>0,∴b<1,故选项D正确;∵二次函数y=ax2+bx+c(a>0)的图象经过A(﹣1,2),B(2,5),顶点坐标为(m,n),∴0<m<,即0<m<,故选项B错误;故选:B.7.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x=﹣,结合图象分析下列结论:①abc>0;②3a+c>0;③当x<0时,y随x的增大而增大;④一元二次方程cx2+bx+a=0的两根分别为x1=﹣,x2=;⑤<0;⑥若m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根,则m<﹣3且n>2,其中正确的结论有()A.3个B.4个C.5个D.6个解:∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x=﹣∴抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0),且a=b由图象知:a<0,c>0,b<0∴abc>0故结论①正确;∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)∴9a﹣3b+c=0∵a=b∴c=﹣6a∴3a+c=﹣3a>0故结论②正确;∵当x<﹣时,y随x的增大而增大;当﹣<x<0时,y随x的增大而减小∴结论③错误;∵cx2+bx+a=0,c>0∴x2+x+1=0∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0)∴ax2+bx+c=0的两根是﹣3和2∴=1,=﹣6∴x2+x+1=0即为:﹣6x2+x+1=0,解得x1=﹣,x2=;故结论④正确;∵当x=﹣时,y=>0∴<0故结论⑤正确;∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0),∴y=ax2+bx+c=a(x+3)(x﹣2)∵m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根∴m,n(m<n)为方程a(x+3)(x﹣2)=﹣3的两个根∴m,n(m<n)为函数y=a(x+3)(x﹣2)与直线y=﹣3的两个交点的横坐标结合图象得:m<﹣3且n>2故结论⑥成立;故选:C.8.抛物线y=2x2﹣2x+1与坐标轴的交点个数是()A.0B.1C.2D.3解:抛物线y=2x2﹣2x+1,显然抛物线与y轴有一个交点,令y=0,得到2x2﹣2x+1=0,∵△=8﹣8=0,∴抛物线与x轴有一个交点,则抛物线与坐标轴的交点个数是2,故选:C.二、填空题(本大题共7道小题)9.某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50m),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为48m,则这三间长方形种牛饲养室的总占地面积的最大值为144m2.解:如图,设总占地面积为S(m2),CD的长度为x(m),由题意知:AB=CD=EF=GH=x,∴BH=48﹣4x,∵0<BH≤50,CD>0,∴0<x<12,∴S=AB•BH=x(48﹣4x)=﹣4(x﹣6)2+144∴x=6时,S可取得最大值,最大值为S=144.10.若函数y=x2+2x﹣m的图象与x轴有且只有一个交点,则m的值为﹣1.解:∵函数y=x2+2x﹣m的图象与x轴有且只有一个交点,∴△=22﹣4×1×(﹣m)=0,解得:m=﹣1.故答案为:﹣1.11.如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为0.解:设抛物线与x轴的另一个交点是Q,∵抛物线的对称轴过点(1,0),与x轴的一个交点是P(4,0),∴与x轴的另一个交点Q(﹣2,0),把(﹣2,0)代入解析式得:0=4a﹣2b+c,∴4a﹣2b+c=0,故答案为:0.12.如图,抛物线y=ax2+bx+c与x轴相交于点A、B(m+2,0)与y轴相交于点C,点D 在该抛物线上,坐标为(m,c),则点A的坐标是(﹣2,0).解:令x=0,得到x=c,∴C(0,c),∵D(m,c),得函数图象的对称轴是x=,设A点坐标为(x,0),由A、B关于对称轴x=,得=,解得x=﹣2,即A点坐标为(﹣2,0),故答案为:(﹣2,0).13.如图是我省某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A、B两点,拱桥最高点C到AB的距离为9m,AB=36m,D、E为拱桥底部的两点,且DE∥AB,点E到直线AB的距离为7m,则DE的长为48m.解:如图所示,建立平面直角坐标系,x轴在直线DE上,y轴经过最高点C.设AB与y轴交于点H,∵AB=36,∴AH=BH=18,由题可知:OH=7,CH=9,∴OC=9+7=16,设该抛物线的解析式为:y=ax2+k,∵顶点C(0,16),∴抛物线y=ax2+16,代入点(18,7)∴7=18×18a+16,∴7=324a+16,∴324a=﹣9,∴a=﹣,∴抛物线:y=﹣x2+16,当y=0时,0=﹣x2+16,∴﹣x2=﹣16,∴x2=16×36=576∴x=±24,∴E(24,0),D(﹣24,0),∴OE=OD=24,∴DE=OD+OE=24+24=48,故答案为:48.14.已知函数y=的图象如图所示,若直线y=x+m与该图象恰有三个不同的交点,则m的取值范围为0<m<.解:直线y=x+m与该图象恰有三个不同的交点,则直线与y=﹣x有一个交点,∴m>0,∵与y=﹣x2+2x有两个交点,∴x+m=﹣x2+2x,△=1﹣4m>0,∴m<,∴0<m<;故答案为0<m<.15.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b>0;②a﹣b+c=0;③一元二次方程ax2+bx+c+1=0(a≠0)有两个不相等的实数根;④当x<﹣1或x>3时,y>0.上述结论中正确的是②③④.(填上所有正确结论的序号)解:由图可知,对称轴x=1,与x轴的一个交点为(3,0),∴b=﹣2a,与x轴另一个交点(﹣1,0),①∵a>0,∴b<0;∴①错误;②当x=﹣1时,y=0,∴a﹣b+c=0;②正确;③一元二次方程ax2+bx+c+1=0可以看作函数y=ax2+bx+c与y=﹣1的交点,由图象可知函数y=ax2+bx+c与y=﹣1有两个不同的交点,∴一元二次方程ax2+bx+c+1=0(a≠0)有两个不相等的实数根;∴③正确;④由图象可知,y>0时,x<﹣1或x>3∴④正确;故答案为②③④.三、解答题(本大题共4道小题)16.如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A和点B,与y轴交于点C,且点A的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)解:(1)由A(﹣1,0),对称轴为x=2,可得,解得,∴抛物线解析式为y=x2﹣4x﹣5;(2)由A点坐标为(﹣1,0),且对称轴方程为x=2,可知AB=6,∴OB=5,∴B点坐标为(5,0),∵y=x2﹣4x﹣5,∴C点坐标为(0,﹣5);(3)如图,连接BC,则△OBC是直角三角形,∴过O、B、C三点的圆的直径是线段BC的长度,在Rt△OBC中,OB=OC=5,∴BC=5,∴圆的半径为,∴圆的面积为π()2=π.17.已知某商品进价每件40元,现售价每件60元,每星期可卖出300件,经市场调查反映,每次涨价1元,每星期可少卖10件.(1)要想获利6090元的利润,该商品应定价多少元?(2)能否获利7000元,试说明理由?(3)该商品应定价多少元时,获利最大,最大利润是多少?解:(1)设每件涨价为x元时获得的总利润为y元.(60+x﹣40)(300﹣10x)=6090,整理得:x2﹣10x+9=0,解得x1=1,x2=9,60+1=61,60+9=69,答:要想获利6090元的利润,该商品应定价为61 元或69元;(2)列方程(60+x﹣40)(300﹣10x)=7000,(20+x)(300﹣10x)=7000,(20+x)(30﹣x)=700,x2﹣10x+100=0,△=(﹣10)2﹣4×1×100<0,此方程无实数解,∴销售该商品不能获利7000元;(3)设商品定价为x元,商场每星期的利润为y元.y=(x﹣40)[300﹣10×(x﹣60)]=(x﹣40)(﹣10x+900)=﹣10x2+1300x﹣36000,可知:x=﹣=65元时,商场利润最大为:25×250=6250元.答:商品定价为65元时,商场利润最大为6250元.18.交通工程学理论把在单向道路上行驶的汽车看成连续的流体,并用流量、速度、密度三个概念描述车流的基本特征.其中流量q(辆/小时)指单位时间内通过道路指定断面的车辆数;速度v(千米/小时)指通过道路指定断面的车辆速度;密度k(辆/千米)指通过道路指定断面单位长度内的车辆数.为配合大数据治堵行动,测得某路段流量q与速度v之间关系的部分数据如下表:速度v(千米/小时)…51020324048…流量q(辆/小时)…55010001600179216001152…(1)根据上表信息,下列三个函数关系式中,刻画q,v关系最准确的是③(只填上正确答案的序号)①q=90v+100;②q=;③q=﹣2v2+120v.(2)请利用(1)中选取的函数关系式分析,当该路段的车流速度为多少时,流量达到最大?最大流量是多少?(3)已知q,v,k满足q=vk,请结合(1)中选取的函数关系式继续解决下列问题.①市交通运行监控平台显示,当12≤v<18时道路出现轻度拥堵.试分析当车流密度k在什么范围时,该路段将出现轻度拥堵;②在理想状态下,假设前后两车车头之间的距离d(米)均相等,求流量q最大时d的值.解:(1)函数①q=90v+100,q随v的增大而增大,显然不符合题意.函数②q=q随v的增大而减小,显然不符合题意.故刻画q,v关系最准确的是③.故答案为③.(2)∵q=﹣2v2+120v=﹣2(v﹣30)2+1800,∵﹣2<0,∴v=30时,q达到最大值,q的最大值为1800.(3)①当v=12时,q=1152,此时k=96,当v=18时,q=1512,此时k=84,∴84<k≤96.②当v=30时,q=1800,此时k=60,∵在理想状态下,假设前后两车车头之间的距离d(米)均相等,∴流量q最大时d的值为=m.19.凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优惠方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18﹣10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.(1)求一次至少购买多少只计算器,才能以最低价购买?(2)求写出该文具店一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;(3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?解:(1)设一次购买x只,则20﹣0.1(x﹣10)=16,解得:x=50.答:一次至少买50只,才能以最低价购买;(2)当10<x≤50时,y=[20﹣0.1(x﹣10)﹣12]x=﹣0.1x2+9x,当x>50时,y=(16﹣12)x=4x;综上所述:y=;(3)y=﹣0.1x2+9x=﹣0.1(x﹣45)2+202.5,①当10<x≤45时,y随x的增大而增大,即当卖的只数越多时,利润更大.②当45<x≤50时,y随x的增大而减小,即当卖的只数越多时,利润变小.且当x=46时,y1=202.4,当x=50时,y2=200.y1>y2.即出现了卖46只赚的钱比卖50只赚的钱多的现象.当x=45时,最低售价为20﹣0.1(45﹣10)=16.5(元),此时利润最大.。
第22章二次函数单元检测试题(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 下列函数是二次函数的是( )B.y=x2+xz+1C.x2+2y−1=0D.xy=x2−yA.y=−1x22. 四位同学在研究函数y=x2+bx+c(b,c是常数)时,甲发现当x=1时,函数有最小值;乙发现−1是方程x2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是() A.甲 B.乙 C.丙 D.丁3. 某种商品的原价为a元,经过两次降价后为y元,假设每次降价的百分率为x,则y关于x函数解析式为()A.y=ax2+aB.y=x2+aC.y=ax2−2ax+aD.y=a−2x的图象交点的横4. 方程x2+3x−1=0的根可看作是函数y=x+3的图象与函数y=1x坐标,那么用此方法可推断出方程x3−x−1=0的实数根x0所在的范围是()A.−1<x0<0B.0<x0<1C.1<x0<2D.2<x0<35. 抛物线y=ax2+bx+c(a<0)如图所示,则下列说法正确的是()A.c=0B.当x>−1时y随x的增大而增大C.图象的对称轴是直线x=−2D.不等式ax2+bx+c>0的解集是−3<x<16. 在某次投篮中,球从出手到投中篮圈中心的运动路径是抛物线y=−1x2+3.5的一部5分(如图),则他与篮底的水平距离l(如图)是()A.3.5mB.4mC.4.5mD.4.6m7. 地面上一个小球被推开后笔直滑行,滑行的距离s与时间t的函数关系如图中的部分抛物线所示(其中P是该抛物线的顶点),则下列说法正确的是()A.小球滑行6秒停止B.小球滑行12秒停止C.小球滑行6秒回到起点D.小球滑行12秒回到起点8. 已知函数y=2(x−3)2−4(1≤x≤6)的最大值与最小值的和为()A.18B.0C.10D.无法确定9. 如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1, m),且与x轴的一个交点在点(3, 0)和(4, 0)之间,下列结论错误的是()A.a−b+c>0B.b2=4a(c−m)C.2a+c<0D.一元二次方程ax2+bx+c=m−1有两个不相等的实数根10. 如图,二次函数y=ax2+bx+c的图象经过点A(−3, 0),其对称轴为直线x=−1,有下列结论:①abc<0;②a+b+c<0;③5a+4c<0;④4ac−b2>0;⑤若P(−5, y1),Q(m, y2)是抛物线上两点,且y1>y2,则实数m的取值范围是−5<m< 3.其中正确结论的个数是()A.1B.2C.3D.4二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 抛物线y=−2x2+8bx+1的对称轴是直线x=−2,则抛物线的解析式为________.12. 二次函数y=x2−4x+a在−2≤x≤3的范围内有最小值−3,则a=________.13. 请将函数y=1x2+2x+1写成y=a(x−ℎ)2+k的形式为________.214. 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则不等式ax2+bx+c<0的解集是________.15. 已知二次函数y=2x2+2020,当x分别取x1,x2(x1≠x2)时,函数值相等,则当x 取2x1+2x2时,函数值为________.16. 二次函数y=ax a2−5a−4的图象是一条开口向下的抛物线,则a的值为________.17. 二次函数y=x2+2x−3的顶点坐标是________.18. 已知抛物线y=x2−2bx的顶点在第三象限,请写出一个符合条件的b的值为_________.19. 如图,已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(−2,4),B(8,2),则能使y1>y2成立的x的取值范围是________.20. 如图,二次函数y1=ax2+bx(a≠0, b≠0)和一次函数y2=kx(k≠0)的图象交于原点和点A,当y1<y2时,对应的x的取值范围为________.三、解答题(本题共计6 小题,共计60分,)21. 已知抛物线y=x2−4x+3.(1)画出这条抛物线的草图;(2)求该抛物线与x轴的交点坐标;(3)利用图象直接回答:x取什么值时,函数值小于0.22. 如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=−1x2+bx+c表示,且抛物线时的点C到墙面OB6的水平距离为3m,到地面OA的距离为17m.2(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离.(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?23. 如图,已知抛物线C1:y=a(x+2)2−5的顶点为P1与x轴相交于A、B两点(点A在点B的左侧),且点B的坐标为(1, 0);(1)由图象可知,抛物线C1的开口向________,当x>−2时,y随x的增大而________;(2)求a的值;(3)如图,抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,抛物线C3的顶点为M,当点P.M关于点O成中心对称时,求抛物线C3的解析式.24. 已知抛物线y=x2+bx+c的对称轴l交x轴于点A.(1)若此抛物线经过点(1,2),当点A的坐标为(2,0)时,求此抛物线的解析式;(2)抛物线y=x2+bx+c交y轴于点B.将该抛物线平移,使其经过点A,B,且与x轴交于另一点C.若b2=2c,b≤−1,比较线段OB与OC+3的大小.225. 如图,二次函数的图象与x轴相交于点A(−3, 0)、B(1, 0)两点,与y轴相交于点C(0, 3).点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D(1)求二次函数的解析式和D点坐标;(2)根据图象直接写出使一次函数值小于二次函数值的x的取值范围.26. 某水果公司购进某种葡萄的成本为20元/kg,经过市场调查发现,这种葡萄在未来48天的销售价p(元/kg)与时间t(天)之间的函数关系式为p={14t+30(1≤t≤24,t为整数),−12t+48(25≤t≤48,t为整数),且其日销售量y(kg)与时间t(天)之间的关系如图所示:(1)求第30天的日销售量;(2)哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售的前24天中,该公司决定每销售1kg葡萄就捐赠n(n<9)元给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求n的取值范围.参考答案一、选择题(本题共计10 小题,每题3 分,共计30分)1.【答案】C【解答】解:A,分母中含自变量,不是二次函数,错误;B,表达式中含有两个自变量,不是二次函数,错误;C,式子变形为y=−12x2+12,是二次函数,正确;D,式子变形为y=x2x+1,不是二次函数,错误.故选C.2.【答案】B【解答】解:假设甲和丙的结论正确,则{−b2=1,1+b+c=3,解得:{b=−2,c=4,∴抛物线的解析式为y=x2−2x+4.当x=−1时,y=x2−2x+4=7,∴乙的结论不正确;当x=2时,y=x2−2x+4=4,∴丁的结论正确.∵四位同学中只有一位发现的结论是错误的,∴假设成立.故乙同学结论错误.故选B.3.【答案】C【解答】解:第二次降价后的价格是:a(1−x)2,则函数解析式为y=a(1−x)2=ax2−2ax+a.故选C.4.【答案】C【解答】解:方程x3−x−1=0,∴x2−1=1x,∴它的根可视为y=x2−1和y=1x的交点的横坐标,当x=1时,x2−1=0,1x=1,交点在x=1的右边,当x=2时,x2−1=3,1x =12,交点在x=2的左边,又∵交点在第一象限.∴1<x0<2,故选C.5.【答案】D【解答】解:A、抛物线与y轴的交点在x轴上方,则c>0,所以A选项错误;B、因为抛物线过(−3, 0),(1, 0),则抛物线的对称轴为直线x=−1,而抛物线开口向下,所以当x>−1时y随x的增大而减小,所以B选项错误;C、抛物线的对称轴为直线x=−1,所以C选项错误;D、当−3<x<1时,y>0,即ax2+bx+c>0,所以D选项正确.故选D.6.【答案】B【解答】解:把y=3.05代入y=−1x2+3.5中得:5x1=1.5,x2=−1.5(舍去),∴L=2.5+1.5=4米,故选:B.7.【答案】A【解答】解:由图可知,滑行的距离s与时间t的函数关系可得,当t=6秒时,滑行距离最大,即此时小球停止滑行.故选A.8.【答案】C【解答】解:∵函数y=2(x−3)2−4的对称轴为x=3,当x=3时,函数有最小值−4,∵1≤x≤6,∴当x=6时,函数的最大值为14,∴−4+14=10.故选C.9.【答案】C【解答】解:对称轴为x=1,且m>0,由对称性可知:抛物线与x轴的另外一个交点在(−1, 0)与(−2, 0)之间,∴当−1≤x≤3,y>0,且Δ>0,开口向下,a<0.A、当x=−1时,y=a−b+c>0,故A正确;B、∵顶点坐标为(−b2a , 4ac−b24a),∴4ac−b24a=m,∴b2=4a(c−m),故B正确;C、∵−b2a=1,∴b+2a=0,∵a−b+c>0,∴3a+c>0,故C错误;D、当y<m时,抛物线与y=m有两个交点,∵y=m−1<m,∴一元二次方程ax2+bx+c=m−1有两个不相等的实数根,故D正确.故选C.10.【答案】C【解答】①观察图象可知:a>0,b>0,c<0,∴abc<0,∴①正确;②当x=1时,y=0,即a+b+c=0,∴②错误;③对称轴x=−1,即−b2a=−1得b=2a,当x=12时,y<0,即14a+12b+c<0,即a+2b+4c<0,∴5a+4c<0.∴③正确;④因为抛物线与x轴有两个交点,所以△>0,即b2−4ac>0,∴4ac−b2<0.∴④错误;⑤∵(−5, y1)关于直线x=−1的对称点的坐标是(3, y1),∴当y1>y2时,−5<m<3.∴⑤正确.二、填空题(本题共计10 小题,每题3 分,共计30分)11.【答案】y=−2x2−8x+1【解答】解:∵抛物线y=−2x2+8bx+1的对称轴是直线x=−2,∴−8b2×(−2)=−2,解得b=−1,∴y=−2x2−8x+1,故答案为:y=−2x2−8x+1.12.【答案】1【解答】解:y=x2−4x+a=(x−2)2+a−4,当x=2时,二次函数有最小值a−4,∴a−4=−3,∴a=1. 故答案为:1.13.【答案】y=12(x+2)2−1【解答】解:y=12x2+2x+1=12(x2+4x+4)−2+1=12(x+2)2−1,即y=12(x+2)2−1.故答案为y=12(x+2)2−1.14.【答案】−1<x<3【解答】解:∵由函数图象可知,当−1<x<3时,函数图象在x轴的下方,∴不等式ax2+bx+c<0的解集是−1<x<3.故答案为:−1<x<3.15.【答案】2020【解答】解:二次函数y=2x2+2020的对称轴为y轴,x分别取x1,x2时函数值相等,∴x1+x2=0,当x取2x1+2x2时,即x取0时,函数值y=2020.故答案为:2020.16.【答案】−1【解答】解:∵二次函数y=ax a2−5a−4的图象是一条开口向下的抛物线,∴{a<0a2−5a−4=2,解得;a=−1.故答案为:−1.17.【答案】【解答】此题暂无解答18.【答案】−1(答案不唯一)【解答】解:抛物线y=x2−2bx=(x−b)2−b2的顶点坐标为(b,−b2),∵抛物线的顶点在第三象限,∴{b<0,−b2<0,∴ b<0,∴b的值可以为−1.故答案为:−1(答案不唯一).19.【答案】【解答】此题暂无解答20.【答案】x<−3或x>0【解答】解:由图象可知:x=−3或x=0时,y1=y2,∴由图象可以得出:x<−3或x>0时,y1<y2.故答案为:x<−3或x>0.三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】解:(1)如图所示,(2)在y=x2−4x+3中,令y=0,则x2−4x+3=0,解得:x1=1,x2=3,∴抛物线与x轴交点为(1,0),(3,0);(3)由函数图象可知,当1<x<3时,y<0. 【解答】解:(1)如图所示,(2)在y=x2−4x+3中,令y=0,则x2−4x+3=0,解得:x1=1,x2=3,∴抛物线与x轴交点为(1,0),(3,0);(3)由函数图象可知,当1<x<3时,y<0.22.【答案】解:(1)根据题意得B(0, 4),C(3, 172),把B(0, 4),C(3, 172)代入y=−16x2+bx+c,得{c=4,−16×32+3b+c=172,解得{b=2,c=4,所以抛物线解析式为y=−16x2+2x+4,则y=−16(x−6)2+10,所以D(6, 10),所以拱顶D到地面OA的距离为10m.(2)由题意得货运汽车最外侧于地面OA的交点为(2, 0)或(10, 0),当x=2或x=10时,y=223>6,所以这辆货车能安全通过.(3)令y=8,则−16(x−6)2+10=8,解得x1=6+2√3,x2=6−2√3,则x1−x2=4√3,所以两排灯的水平距离最小是4√3m.【解答】解:(1)根据题意得B(0, 4),C(3, 172),把B(0, 4),C(3, 172)代入y=−16x2+bx+c,得{c=4,−16×32+3b+c=172,解得{b=2,c=4,所以抛物线解析式为y=−16x2+2x+4,则y=−16(x−6)2+10,所以D(6, 10),所以拱顶D到地面OA的距离为10m.(2)由题意得货运汽车最外侧于地面OA的交点为(2, 0)或(10, 0),当x=2或x=10时,y=22>6,3所以这辆货车能安全通过.(x−6)2+10=8,(3)令y=8,则−16解得x1=6+2√3,x2=6−2√3,则x1−x2=4√3,所以两排灯的水平距离最小是4√3m.23.【答案】上,增大(2)把点B的坐标(1, 0)代入y=a(x+2)2−5得,0=a(1+2)2−5,;解得a=59(3)设抛物线C3:y=a′(x−ℎ)2+k,∵抛物线C2与抛物线C1关于x轴对称,C3是C2向右平移得到的,,∴a′=−59∵点P.M关于点O成中心对称,且P(−2, −5),∴点M(2, 5),∴抛物线C3的解析式为y=−5(x−2)2+5.9【解答】解:(1)由图象可知,抛物线C1的开口向上,当x>−2时,y随x的增大而增大;(2)把点B的坐标(1, 0)代入y=a(x+2)2−5得,0=a(1+2)2−5,;解得a=59(3)设抛物线C3:y=a′(x−ℎ)2+k,∵抛物线C2与抛物线C1关于x轴对称,C3是C2向右平移得到的,,∴a′=−59∵点P.M关于点O成中心对称,且P(−2, −5),∴点M(2, 5),∴抛物线C3的解析式为y=−5(x−2)2+5.924.【答案】【解答】此题暂无解答25.【答案】∵A(−3, 0),B(1, 0),C(0, 3),∴抛物线对称轴为:直线x=−1,∵点C、D是二次函数图象上的一对对称点,∴D(−2, 3),设二次函数的解析式为y=a(x+3)(x−1),把C(0, 3)代入得a⋅3⋅(−1)=3,解得a=−1,所以抛物线解析式为y=−(x+3)(x−1),即y=−x2−2x+3;观察函数图象得当−2<x<1时,一次函数值小于二次函数值.【解答】∵A(−3, 0),B(1, 0),C(0, 3),∴抛物线对称轴为:直线x=−1,∵点C、D是二次函数图象上的一对对称点,∴D(−2, 3),设二次函数的解析式为y=a(x+3)(x−1),把C(0, 3)代入得a⋅3⋅(−1)=3,解得a=−1,所以抛物线解析式为y=−(x+3)(x−1),即y=−x2−2x+3;观察函数图象得当−2<x<1时,一次函数值小于二次函数值.26.【答案】解:(1)设y=kt+b,把t=3,y=114;t=6,y=108代入得到:{3k+b=114,6k+b=108,解得:{k=−2,b=120.∴y=−2t+120.将t=30代入上式,得:y=−2×30+120=60.答:第30天的日销售量是60kg.(2)设第x天的销售利润为w元.当1≤t≤24时,由题意w=(−2t+120)(14t+30−20)=−12(t−10)2+1250,∴t=10时,w最大值为1250元.当25≤t≤48时,w=(−2t+120)(−12t+48−20)=t2−116t+3360,∵对称轴t=58,a=1>0,∴在对称轴左侧w随x增大而减小,∴t=25时,w最大值=1085,综上所述第10天利润最大,最大利润为1250元.(3)设每天扣除捐赠后的日销售利润为m元,由题意m=(−2t+120)(14t+30−20)−(−2t+120)n=−12t2+(10+2n)t+1200−120n,∵在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,∴2n+10≥24,解得n≥7.又∵n<9,∴n的取值范围为7≤n<9.【解答】解:(1)设y=kt+b,把t=3,y=114;t=6,y=108代入得到:{3k+b=114,6k+b=108,解得:{k=−2,b=120.∴y=−2t+120.将t=30代入上式,得:y=−2×30+120=60.答:第30天的日销售量是60kg.(2)设第x天的销售利润为w元.当1≤t≤24时,由题意w=(−2t+120)(14t+30−20)=−12(t−10)2+1250,∴t=10时,w最大值为1250元.当25≤t≤48时,w=(−2t+120)(−12t+48−20)=t2−116t+3360,∵对称轴t=58,a=1>0,∴在对称轴左侧w随x增大而减小,∴t=25时,w最大值=1085,综上所述第10天利润最大,最大利润为1250元.(3)设每天扣除捐赠后的日销售利润为m元,由题意m=(−2t+120)(14t+30−20)−(−2t+120)n=−12t2+(10+2n)t+1200−120n,∵在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,∴2n+10≥24,解得n≥7.又∵n<9,∴n的取值范围为7≤n<9.。
新人教版九年级数学上册《第22章二次函数》单元测试卷及答案一、选择题1、在同一坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能是()A.B.C.D.2、二次函数的最大值是()A.3 B.4 C.5 D.63、下列y关于x的函数中,一定是二次函数的为()A.B.C.D.4、是二次函数,则=()A.,B.,C.D.5、某同学在用描点法画二次函数的图象时,列出下面的表格:根据表格提供的信息,下列说法错误的是()A. 该抛物线的对称轴是直线B. 该抛物线与轴的交点坐标为C. D. 若点是该抛物线上一点.则6、关于抛物线y=x2 -2x+1,下列说法错误的是()A.开口向上B.与x轴有一个交点C.对称轴是直线x=1 D.当x>1时,y随x的增大而减小7、抛物线的部分图象如图所示(对称轴是),如果,那么的取值范围是()A.B.C.或D.或8、二次函数与坐标轴的交点个数为()个。
A.B.C.D.9、已知关于的方程的解为,点是抛物线上的一个点,下列四个点中一定在该抛物线上的是()A.B.C.D.10、已知抛物线的图象如图所示,则下列结论:①;②;③;④.其中正确的结论有()A.①②B.②③C.③④D.②④二、填空题11、已知函数是关于x的二次函数,则m= 。
12、如图是二次函数和一次函数的图象,当,的取值范围是________。
13、已知二次函数的图象开口向下,且经过点,符合条件的一个二次函数的解析式是________。
14、已知点在抛物线上,当时,总有成立,则的取值范围是________。
15、二次函数的图象经过点、,那么________(填“”或“”)。
16、二次函数的最小值是________。
三、解答题17、已知抛物线经过点,且顶点坐标为,求这条抛物线的解析式。
18、已知函数,其中与的平方成正比,是的一次函数,根据表格中的数据,确定的函数式;如果时,函数取最小值,求关于的函数式;在的条件下,写出的最小值。
人教版(2024年)九年级(上)单元检测卷第22章《二次函数》时间:100分钟满分:120分题号一二三总分得分一.选择题(共10小题,满分30分,每小题3分)1.下列函数中,y是x的二次函数的是( )A.y=3x+1B.xy=8C.D.y=x2﹣x﹣52.二次函数y=(x﹣1)2+2的顶点坐标是( )A.(﹣2,1)B.(1,2)C.(﹣1,2)D.(1,﹣2)3.二次函数y=x2﹣4x+7的图象的顶点所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限4.要得到二次函数y=﹣(x﹣2)2+1的图象,需将y=﹣x2的图象( )A.向左平移2个单位,再向下平移1个单位B.向右平移2个单位,再向上平移1个单位C.向左平移1个单位,再向上平移2个单位D.向右平移1个单位,再向下平移2个单位5.二次函数y=ax2+bx的图象如图所示,则一次函数y=ax+b的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限6.在平面直角坐标系xOy中,抛物线y=ax2+bx+c如图所示,则关于x的方程ax2+bx+c=0根的情况为( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法准确判断7.在二次函数y=﹣x2+2x+3中,当0<x<3时,y的取值范围是( )A.0<y<3B.1<y<4C.0<y≤4D.﹣4≤y<08.某厂今年一月份新产品的研发资金为10万元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年一季度新产品的研发资金y(元)关于x的函数关系式为( )A.y=10(1+x)3B.y=10+10(1+x)+10(1+x)2C.y=10+10x+x2D.y=10(1+x)29.某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为( )元.A.50B.90C.80D.7010.如图;二次函数y=ax2+bx+c(a<0)的图象与x轴分别交于,两点,与y 轴正半轴交于点C,下列判断:①abc<0;②4ac﹣b2>0;③c﹣a<0;④2a+b=0;⑤若,(3,y2)是抛物线上的两个点,则y1>y2.其中正确的是( )A.①②③B.①②④C.③④⑤D.①④⑤二.填空题(共6小题,满分18分,每小题3分)11.抛物线y=﹣3x2的开口 .(填“向上”或“向下”)12.若y=(1﹣m)是二次函数,则m= .13.抛物线y=(x﹣1)2﹣1与y轴交点的纵坐标是 .14.已知二次函数y=ax2+bx+c(a>0)的图象上有四点A(﹣1,y1),B(3,y1),C(2,y2),D (﹣2,y3),则y1,y2,y3的大小关系是 .(从小到大排列)15.某段公路上汽车紧急刹车后前行的距离s(单位:m)关于行驶时间t(单位:s)的函数解析式是s=30t﹣5t2,遇到刹车时,汽车从刹车后到停下来前进了 m.16.已知二次函数y=ax2+bx+c的y与x的部分对应值如表:下列结论:x﹣1013y﹣3131①抛物线的开口向下;②其图象的对称轴为直线x=1;③当x<1时,函数值y随x的增大而增大;④方程ax2+bx+c=0有一个根大于4,其中正确的结论有 .三.解答题(共8小题,满分72分)17.(6分)已知抛物线y=x2﹣kx﹣3k与x轴的一个交点为(﹣2,0)(1)求k的值;(2)求抛物线与x轴的另一个交点坐标.18.(6分)已知二次函数y=x2+px+q的图象经过A(0,1),B(2,﹣1)两点.(1)求p,q的值.(2)试判断点P(﹣1,2)是否在此函数的图象上.19.(8分)已知一个二次函数图象上部分点的横坐标x与纵坐标y的对应值如表所示:x…﹣3﹣2﹣101…y…0﹣3﹣4﹣30…(1)这个二次函数的解析式是 ;(2)在给定的平面直角坐标系中画出这个二次函数的图象;(3)当﹣4<x<0时,y的取值范围为 .20.(8分)用100米长的篱笆在地上围成一个长方形,当长方形的宽由小到大变化时,长方形的面积也随之发生变化.设长方形的宽为x(米),长方形的面积为y(平方米).(1)求长方形的面积y(平方米)与长方形的宽x(米)之间的关系式;(2)当长方形的宽由1米变化到20米时,长方形面积由y1(平方米)变化到y2(平方米),求y1和y2的值.21.(10分)“动若脱兔”是一个汉语成语,这个成语的含义是在行动时变得敏捷迅速,就像脱逃的兔子一样.野兔跳跃时的空中运动路线可以看作是抛物线的一部分.(1)野兔一次跳跃的最远水平距离为2.8m,最大竖直高度为0.98m,以其起跳点为原点,建立平面直角坐标系,求满足条件的抛物线的解析式;(无需写出取值范围)(2)若在野兔起跳点2米处有一个高度为0.65米的树桩,请问野兔是否能成功越过木桩,避免守株待兔的故事再次上演?22.(10分)如图,抛物线y=﹣x2+2x+c经过坐标原点O和点A,点A在x轴上.(1)求此抛物线的解析式,并求出顶点B的坐标;(2)连接OB,AB,求S△OAB;(3)若点C在抛物线上,且S△OAC=8,求点C的坐标.23.(10分)如图,抛物线与x轴交于A(﹣2,0),B(4,0),与y轴交于点C(0,4).(1)求抛物线的解析式;(2)P是抛物线在第一象限的一个动点,点Q在线段BC上,且点Q始终在点P正下方,求线段PQ的最大值.24.(14分)综合与探究如图,抛物线y=ax2+bx﹣2与x轴交于A(﹣2,0),B(4,0),与y轴交于点C,作直线BC,P 是抛物线上的一个动点.(1)求抛物线的函数表达式并直接写出直线BC的函数表达式.(2)当点P在直线BC下方时,连接CP,BP,OP.当时,求点P的坐标.(3)在抛物线的对称轴上是否存在点Q,使以P,Q,B,C为顶点的四边形是平行四边形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、y是x的一次函数,故此选项不合题意;B、y是x的反比例函数,故此选项不合题意;C、y是x2的反比例函数,故此选项不合题意;D、y是x的二次函数,故此选项符合题意;故选:D.2.解:二次函数y=(x﹣1)2+2的顶点坐标是(1,2).故选:B.3.解:∵y=x2﹣4x+7=(x﹣2)2+3,∴顶点坐标为(2,3),∴顶点在第一象限.故选:A.4.解:二次函数y=﹣x2的图象向右平移2个单位,再向上平移1个单位即可得到二次函数y=﹣(x﹣2)2+1的图象.故选:B.5.解:根据二次函数y=ax2+bx的图象可知,a<0,﹣>0,∴b>0,∴一次函数y=ax+b的图象经过第一、二、四象限,不经过第三象限.故选:C.6.解:∵y=ax2+bx+c的图象与x轴没有交点,且方程ax2+bx+c=0的根就是抛物线y=ax2+bx+c(a ≠0)的图象与x轴的交点的横坐标,∴关于x的方程ax2+bx+c=0的根的情况是没有实数根.故选:C.7.解:y=﹣x2+2x+3=﹣(x﹣1)2+4,∵﹣1<0,对称轴为直线x=1,∴当x=1时,y有最大值,最大值为4,∵3﹣1>1﹣0,∴当x=3时,y有最小值0,∴当0<x<3时,y的取值范围是0<y≤4,故选:C.8.解:∵该厂今年一月份新产品的研发资金为10万元,以后每月新产品的研发资金与上月相比增长率都是x,∴该厂今年二月份新产品的研发资金为10(1+x)万元,三月份新产品的研发资金为10(1+x)2万元.根据题意得:y=10+10(1+x)+10(1+x)2.故选:B.9.解:设利润为w元,每顶头盔的售价为x元,由题意可得:w=(x﹣50)[200+(80﹣x)×20]=﹣20(x﹣70)2+8000,∴当x=70时,w取得最大值,故选:D.10.解:由图象可得,a<0,c>0,∵二次函数y=ax2+bx+c(a<0)的图象与x轴分别交于,两点,∴对称轴为直线,∴b=﹣2a,∴2a+b=0,b>0,∴abc<0,∴故①④正确;∴二次函数y=ax2+bx+c(a<0)的图象与x轴有两个不同的交点,∴b2﹣4ac>0,∴4ac﹣b2<0,故②错误;∵a<0,c>0,∴c﹣a>0,故③错误;由图象可得,y1>0,y2<0,∴y1>y2,故⑤正确;∴①④⑤正确,故选:D.二.填空题(共6小题,满分18分,每小题3分)11.解:∵抛物线y=﹣3x2,a=﹣3<0,∴抛物线y=﹣3x2的开口向下,故答案为:向下.12.解:∵y=(1﹣m)是二次函数,∴1﹣m≠0且m2+1=2,解得:m=﹣1.故答案为:﹣1.13.解:将x=0代入y=(x﹣1)2﹣1,得y=0,所以抛物线与y轴的交点坐标是(0,0).故答案为:0.14.解:依题意,A(﹣1,y1),B(3,y1),在二次函数y=ax2+bx+c(a为常数,且a>0)的图象上,∴对称轴为直线x==1,抛物线开口向上,∵2﹣1=1,1﹣(﹣2)=3,∴点C(2,y2)到对称轴的距离为1,点D(﹣2,y3)到对称轴的距离为3,点B(3,y1)到对称轴的距离为2,∴y2<y1<y3,故答案为:y2<y1<y3.15.解:∵s=﹣5t2+30t=﹣5(t﹣3)2+45,∴汽车刹车后到停下来前进了45m,故答案为:45.16.解:∵抛物线经过点(0,1),(3,1),∴抛物线的对称轴为直线,所以②错误;而x=﹣1时,y=﹣3,∴抛物线开口向下,所以①正确;当x<1时,函数值y随x的增大而增大,所以③正确;∵抛物线经过(﹣1,﹣3)和(0,1),∴抛物线与x轴的一个交点在(﹣1,0)和(0,0)之间,∴抛物线与x轴的一个交点在(3,0)和(4,0)之间,∴方程ax2+bx+c=0的根小于4.所以④错误.故答案为:①③.三.解答题(共8小题,满分72分)17.解:(1)根据题意得,4+2k﹣3k=0,所以k=4;得抛物线的解析式为y=x2﹣4x﹣12;(2)∵x2﹣4x﹣12=0,解得x1=﹣2,x2=6,∴抛物线与x轴的另一个交点坐标(6,0).18.解:(1)把A(0,1),B(2,﹣1)代入y=x2+px+q,得,解得,∴p,q的值分别为﹣3,1;(2)把x=﹣1代入y=x2﹣3x+1,得y=5,∴点P(﹣1,2)不在此函数的图象上.19.解:(1)由题意可得二次函数的顶点坐标为(﹣1,﹣4),设二次函数的解析式为:y=a(x+1)2﹣4,把点(0,﹣3)代入y=a(x+1)2﹣4,得a=1,故抛物线解析式为y=(x+1)2﹣4,即y=x2+2x﹣3;(2)如图所示:(3)∵y=(x+1)2﹣4,∴当x=﹣4时,y=(﹣4+1)2﹣4=5,当x=﹣0时,y=﹣3,又对称轴为x=﹣1,∴当﹣4<x<0时,y的取值范围是﹣4≤y<5.20.解:(1)由题意得:y=x(50﹣x)=﹣x2+50x,∴长方形的面积y(平方米)与长方形的宽x(米)之间的关系式为y=﹣x2+50x.(2)当x=1时,;当x=20时,.21.解:(1)依题意,由x=0,y=0和x=2.8,y=0可知,对称轴为直线.∴当x=1.4时,y有最大值0.98.即顶点坐标为(1.4,0.98).∴设抛物线的解析式为y=a(x﹣1.4)2+0.98.由题知函数图象过原点(0,0),把x=0,y=0代入y=a(x﹣1.4)2+0.98,得a(0﹣1.4)2+0.98=0,解得.∴抛物线的解析式为.(2)依题意,将x=2代入,得.∵0.8>0.65,∴野兔能成功越过木桩.22.解:(1)把(0,0)代入y=﹣x2+2x+c得c=0,∴抛物线解析式为y=﹣x2+2x,∵y=﹣x2+2x=﹣(x﹣1)2+1,∴顶点B的坐标为(1,1);(2)当y=0时,﹣x2+2x=0,解x1=0,x2=2,∴A(2,0),∴S△OAB=×2×1=1;(3)设C点坐标为(t,﹣t2+2t),∵S△OAC=8,∴×2×|﹣t2+2t|=8,即t2﹣2t=8或t2﹣2t=﹣8,解方程t2﹣2t=8得t1=﹣2,t2=4,∴C点坐标为(﹣2,﹣8),或(4,﹣8),方程t2﹣2t=﹣8无实数解,综上所述,C点坐标为(﹣2,﹣8),或(4,﹣8).23.解:(1)∵抛物线经过点C(0,4),∴可设抛物线解析式为y=ax2+bx+4,将点A(﹣2,0),B(4,0)代入,得,解得,∴抛物线解析式为:.(2)设经过点B、C的直线解析式为y=mx+n,将点B(4,0),C(0,4)代入,得,解得,∴经过点B、C的直线解析式为y=﹣x+4,设点,点Q(x,﹣x+4),∴,∴当x=2时,PQ有最大值2.24.解:(1)由题意得:y=a(x+2)(x﹣4)=a(x2﹣2x﹣8)=ax2+bx﹣2,则﹣8a=﹣2,解得:a=,则抛物线的表达式为:y=x2﹣x﹣2;由抛物线的表达式知,点C(0,﹣2),由点B、C的坐标得,直线BC的表达式为:y=x﹣2;(2)设点P(t,x2﹣t﹣2),过点P作直线PN∥BC交y轴于点N,由点P、B的坐标得,直线PB的表达式为:y=(t+2)(x﹣4),则点N(0,﹣t﹣2),当时,则CN:ON=2:5,即CN=CO=,则点N(0,﹣),即﹣t﹣2=﹣,解得:t=,则点P(,﹣);(3)存在,理由:由抛物线的表达式知,其对称轴为直线x=1,设点Q(1,m),点P(t,t2﹣t﹣2),当BC为对角线时,由中点公式得:,解得:,则点Q(1,﹣);当BQ或BP为对角线时,则或,解得:m=或,则点Q(1,)或(1,),综上,Q(1,﹣)或(1,)或(1,).。
人教版九年级数学上册第22章二次函数单元测试卷题号一二三总分得分一、选择题(本大题共10小题,共30分)1.抛物线y=12(x−2)2−3的顶点坐标是A. (2,3)B. (2,−3)C. (−2,3)D. (−2,−3)2.抛物线y=12x2,y=x2,y=−x2的共同性质是:①都是开口向上;②都以点(0,0)为顶点;③都以y轴为对称轴;④都关于x轴对称.其中正确的个数为().A. 1B. 2C. 3D. 43.在同一直角坐标系中,一次函数y=ax−b和二次函数y=−ax2−b的大致图象是()A. B. C. D.4.将函数y=x2+x的图象向右平移a(a>0)个单位长度,得到函数y=x2−3x+2的图象,则a的值为()A. 1B. 2C. 3D. 45.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(12,−2);⑤当x<12时,y随x的增大而减小;⑥a+b+c>0中正确的有()A. 3 个B. 4 个C. 5 个D. 6 个6.顶点为(−5,0),且开口方向、形状与函数y=−13x2的图象相同的抛物线是()A. y=13(x−5)2 B. y=−13x2−5 C. y=−13(x+5)2 D. y=13(x+5)2第15页,共16页7.二次函数的图象如图所示,则这个二次函数的解析式为()(x−2)2+3A. y=12(x−2)2−3B. y=12(x−2)2+3C. y=−12(x−2)2−3D. y=−128.若函数y=x2−2x+b的图象与坐标轴有三个交点,则b的取值范围是()A. b<1B. b>1C. 0<b<1D. b<1且b≠09.已知抛物线y=x2−4x+3与x 轴相交于点A,B(点A 在点B 左侧),顶点为M.平移该抛物线,使点M平移后的对应点M′落在x轴上,点B平移后的对应点B′落在y 轴上,则平移后的抛物线解析式为()A. y=x2+2x+1B. y=x2+2x−1C. y=x2−2x+1D. y=x2−2x−110.如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=2cm,点P在边AC上从点A向点C移动,点Q在边CB上,从点C向点B移动.若点P,Q均以1cm/s的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ,则线段PQ的最小值是()A. 20cmB. 18cmC. 2√5cmD. 3√2cm二、填空题(本大题共5小题,共15分)x2上,则y1,y2,y3的大小关11.已知点A(−3,y1),B(−1,y2),C(2,y3)在抛物线y=23系是________.12.某抛物线的顶点为(3,−4),并且经过点(4,−2),则此抛物线的解析式为_____.13.如图,一次函数y=mx+n的图象与二次函数y=ax2+bx+c的图象交于A(−1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是______.14.若二次函数y=kx2−4x+1的图象与x轴有两个交点,则k的取值范围是.15.公路上行驶的汽车急刹车时的行驶路程s(m)与时间t(s)的函数关系式为s=20t−5t2,当遇到紧急情况时,司机急刹车,但由于惯性汽车要滑行_______m才能停下来.三、解答题(本大题共4小题,共55分)16.已知抛物线y=12x2−4x+7与y=12x交于A、B两点(A在B点左侧).(1)求A、B两点坐标;(2)求抛物线顶点C的坐标,并求△ABC面积.17.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,经市场调查发现,该产品每天的销量y(千克)与售价x(元/千克)有如下关系:y=−2x+80.设这种产品每天的销售利润是w元.(1)求w与x之间的函数关系式;(2)该产品售价定为每千克多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,售价应定为每千克多少元?18.如图,已知二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(−3,0),与y轴交于点C,点D(−2,−3)在抛物线上.第15页,共16页(1)求抛物线的表达式;(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;(3)若抛物线上有一动点P,使三角形ABP的面积为6,求点P坐标.19.对称轴为直线x=−1的抛物线y=x2+bx+c,与x轴相交与A,B两点,其中点A的坐标为(−3,0).(1)点B的坐标________;(2)求出抛物线的解析式,并求出抛物线的顶点坐标;(3)抛物线向右平移m个单位后,与图中阴影部分的正方形有公共点,请直接写出m的取值范围________.答案和解析1.【答案】B【解析】〔分析〕已知解析式是抛物线的顶点式,根据顶点式的坐标特点,直接写出顶点坐标。
第1页(共1页) 新人教版九年级上册《第22章 二次函数》2020年单元测试卷(7) 一、选择题(每小题3分,共30分) 1.(3分)在下列关于x的函数中,一定是二次函数的是( )
A.2yx B.2yaxbxc C.8yx D.2(1)yxx 2.(3分)抛物线221yx的对称轴是( ) A.直线14x B.直线14x C.y轴 D.x轴 3.(3分)下列函数中,y总随x的增大而减小的是( ) A.4yx B.4yx C.4yx D.2yx 4.(3分)若将抛物线2yx向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为( ) A.2(2)3yx B.2(2)3yx C.2(2)3yx D.2(2)3yx 5.(3分)在直角坐标系中,函数3yx与21yx的图象大致是( )
A. B. C. D. 6.(3分)当1axa时,函数221yxx的最小值为1,则a的值为( ) A.1 B.2 C.0或2 D.1或2 7.(3分)抛物线23yxbx的对称轴为直线1x.若关于x的一元二次方程 第1页(共1页)
230(xbxtt为实数)在14x的范围内有实数根,则t的取值范围是( )
A.211t B.2t C.611t D.26t 8.(3分)下列四个二次函数:①2yx,②22yx,③212yx,④23yx,其中抛物线开口从大到小的排列顺序是( ) A.③①②④ B.②③①④ C.④②①③ D.④①③② 9.(3分)如图,正方形ABCD的边长为2cm,动点P,Q同时从点A出发,在正方形的边上,分别按ADC,ABC的方向,都以1/cms的速度运动,到达点C运动终止,连接PQ,设运动时间为xs,APQ的面积为2ycm,则下列图象中能大致表示y与x的函数关系的是( )
A. B. C. D. 10.(3分)如图,二次函数2yaxbxc的图象经过点(1,0)A、点(3,0)B、点1(4,)Cy,
若点2(Dx,2)y是抛物线上任意一点,有下列结论: ①二次函数2yaxbxc的最小值为4a; ②若214x,则205ya; ③若21yy,则24x; ④一元二次方程20cxbxa的两个根为1和13 其中正确结论的个数是( ) 第1页(共1页)
A.1 B.2 C.3 D.4 二、填空题(每小题4分,共32分) 11.(4分)若||1(1)2mymxx是二次函数,则m . 12.(4分)抛物线22(2)4yx的顶点坐标为 . 13.(4分)已知二次函数2yx,当0x时,y随x的增大而 (填“增大”或“减小” ). 14.(4分)二次函数2245yxx的最大值是 . 15.(4分)已知二次函数24yxxk的图象的顶点在x轴下方,则实数k的取值范围是 . 16.(4分)二次函数2yxbxc的图象如图所示,则一次函数ybxc的图象不经过第 象限.
17.(4分)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加 m. 第1页(共1页)
18.(4分)如图,直线yxm和抛物线2yxbxc都经过点(1,0)A和(3,2)B,不等式2xbxcxm 的解集为 .
三、解答题(共7小题,58分) 19.(7分)已知,在同一直角坐标系中,反比例函数5yx与二次函数22yxxc的图象交于点(1,)Am. (1)求m、c的值; (2)求二次函数图象的对称轴和顶点坐标. 20.(7分)已知开口向上的抛物线22||4yaxxa经过点(0,3). (1)确定此抛物线的解析式; (2)当x取何值时,y有最小值,并求出这个最小值.
21.(7分)如图抛物线254yaxaxa与x轴相交于点A、B,且过点(5,4)C. (1)求a的值和该抛物线顶点P的坐标. (2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式.
22.(8分)如图,已知点(0,2)A,(2,2)B,(1,2)C,抛物线22:22Fyxmxm与直线2x交于点P. (1)当抛物线F经过点C时,求它的表达式; 第1页(共1页)
(2)设点P的纵坐标为py,求py的最小值,此时抛物线F上有两点1(x,1)y,2(x,2)y,且122xx,比较1y与2y的大小.
23.(9分)如图,已知二次函数2yaxbxc的图象过(2,0)A,(0,1)B和(4,5)C三点. (1)求二次函数的解析式; (2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标; (3)在同一坐标系中画出直线1yx,并写出当x在什么范围内时,一次函数的值大于二次函数的值.
24.(10分)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)
与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本. (1)请直接写出y与x的函数关系式; (2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元? (3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少? 25.(10分)如图,抛物线22yaxxc经过A,B,C三点,已知(1,0)A,(0,3)C. (1)求此抛物线的关系式; 第1页(共1页)
(2)设点P是线段BC上方的抛物线上一动点,过点P作y轴的平行线,交线段BC于点D,当BCP的面积最大时,求点D的坐标; (3)点M是抛物线上的一动点,当(2)中BCP的面积最大时,请直接写出使45PDM
的点M的坐标. 第1页(共1页) 新人教版九年级上册《第22章 二次函数》2020年单元测试卷
(7) 参考答案与试题解析 一、选择题(每小题3分,共30分) 1.(3分)在下列关于x的函数中,一定是二次函数的是( )
A.2yx B.2yaxbxc C.8yx D.2(1)yxx 【分析】根据二次函数的定义:2(0yaxbxca.a是常数),可得答案. 【解答】解:A、2yx是二次函数,故A符合题意; B、0a时是一次函数,故B不符合题意, C、8yx是一次函数,故C不符合题意;
D、2(1)yxx不是二次函数,故D不符合题意; 故选:A. 【点评】本题考查了二次函数的定义,利用二次函数的定义是解题关键,注意a是不等于零的常数. 2.(3分)抛物线221yx的对称轴是( ) A.直线14x B.直线14x C.y轴 D.x轴 【分析】直接根据二次函数的性质即可得出结论. 【解答】解:抛物线221yx中一次项系数为0, 抛物线的对称轴是y轴. 故选:C. 【点评】本题考查的是二次函数的性质,熟知二次函数2yaxc的对称轴是y轴是解答此题的关键. 3.(3分)下列函数中,y总随x的增大而减小的是( )
A.4yx B.4yx C.4yx D.2yx 【分析】根据各个选项中的函数解析式,可以得到y随x的增大如何变化,从而可以解答本 第1页(共1页)
题. 【解答】解:4yx中y随x的增大而增大,故选项A不符题意, 4yx中y随x的增大而减小,故选项B符合题意, 4yx中y随x的增大而增大,故选项C不符题意, 2yx中,当0x时,y随x的增大而增大,当0x时,y随x的增大而减小,故选项D不
符合题意, 故选:B. 【点评】本题考查二次函数的性质、一次函数的性质、正比例函数的性质,解答本题的关键是明确题意,利用一次函数和二次函数的性质解答. 4.(3分)若将抛物线2yx向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为( ) A.2(2)3yx B.2(2)3yx C.2(2)3yx D.2(2)3yx 【分析】根据二次函数图象的平移规律解答即可. 【解答】解:将抛物线2yx向右平移2个单位可得2(2)yx,再向上平移3个单位可得2(2)3yx,
故选:B. 【点评】本题考查了二次函数的几何变换,熟悉二次函数的平移规律是解题的关键. 5.(3分)在直角坐标系中,函数3yx与21yx的图象大致是( )
A. B. C. D. 第1页(共1页)
【分析】已知一次函数、二次函数解析式,可根据图象的基本性质,直接判断. 【解答】解:一次函数3yx的比例系数30k, y随x的增大而增大,排除A、C; 因为二次函数21yx的图象的顶点坐标应该为(0,1),故可排除B; 故选:D. 【点评】本题考查了二次函数的图象及正比例函数的图象,应该识记一次函数ykxb在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等. 6.(3分)当1axa时,函数221yxx的最小值为1,则a的值为( ) A.1 B.2 C.0或2 D.1或2 【分析】利用二次函数图象上点的坐标特征找出当1y时x的值,结合当1axa时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论. 【解答】解:当1y时,有2211xx, 解得:10x,22x. 当1axa时,函数有最小值1, 2a或10a, 2a或1a,
故选:D. 【点评】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当1y时x的值是解题的关键.
7.(3分)抛物线23yxbx的对称轴为直线1x.若关于x的一元二次方程230(xbxtt为实数)在14x的范围内有实数根,则t的取值范围是( )