用SPSS软件做时间序列分析典型实例
- 格式:doc
- 大小:464.50 KB
- 文档页数:8
SPSS时间序列:频谱分析⼀、频谱分析(分析-预测-频谱分析)“频谱图”过程⽤于标识时间序列中的周期⾏为。
它不需要分析⼀个时间点与下⼀个时间点之间的变异,只要按不同频率的周期性成分分析整体序列的变异。
平滑序列在低频率具有更强的周期性成分;⽽随机变异(“⽩噪声”)将成分强度分布到所有频率。
不能使⽤该过程分析包含缺失数据的序列。
1、⽰例。
建造新住房的⽐率是⼀个国家/地区经济的重要晴⾬表。
有关住房的数据开始时通常会表现出⼀个较强的季节性成分。
但在估计当前数字时,分析⼈员需要注意数据中是否呈现了较长的周期。
2、统计量。
正弦和余弦变换、周期图值和每个频率或周期成分的谱密度估计。
在选择双变量分析时:交叉周期图的实部和虚部、余谱密度、正交谱、增益、平⽅⼀致和每个频率或周期成分的相位谱。
3、图。
对于单变量和双变量分析:周期图和频谱密度。
对于双变量分析:平⽅⼀致性、正交谱、交叉振幅、余谱密度、相位谱和增益。
4、数据。
变量应为数值型。
5、假设。
变量不应包含任何内嵌的缺失数据。
要分析的时间序列应该是平稳的,任何⾮零均值应该从序列中删除。
平稳. 要⽤ARIMA 模型进⾏拟合的时间序列所必须满⾜的条件。
纯的MA 序列是平稳的,但AR 和ARMA 序列可能不是。
平稳序列的均值和⽅差不随时间改变。
⼆、频谱图(分析-预测-频谱分析)1、选择其中⼀个“频谱窗⼝”选项来选择如何平滑周期图,以便获得谱密度估计值。
可⽤的平滑选项有“Tukey-Hamming”、“Tukey”、“Parzen”、“Bartlett”、“Daniell(单元)”和“⽆”。
1.1、Tukey-Hamming. 权重为Wk = .54Dp(2 pi fk) + .23Dp (2 pi fk + pi/p) + .23Dp (2pi fk - pi/p),k = 0, ..., p,其中p 是⼀半跨度的整数部分,Dp 是阶数p 的Dirichlet 内核。
1.2、Tukey. 权重为Wk = 0.5Dp(2 pi fk) + 0.25Dp (2 pi fk + pi/p) + 0.25Dp(2 pi fk -pi/p),k = 0, ..., p,其中p 是⼀半跨度的整数部分,Dp 是阶数p 的Dirichlet 内核。
《统计软件实验报告》SPSS软件的上机实践应用时间序列分析数学与统计学学院一、实验内容:时间序列是指一个依时间顺序做成的观察资料的集合。
时间序列分析过程中最常用的方法是:指数平滑、自回归、综合移动平均及季节分解。
本次实验研究就业理论中的就业人口总量问题。
但人口经济的理论和实践表明,就业总量往往受到许多因素的制约,这些因素之间有着错综复杂的联系,因此,运用结构性的因果模型分析和预测就业总量往往是比较困难的。
时间序列分析中的自回归求积分移动平均法(ARIMA)则是一个较好的选择。
对于时间序列的短期预测来说,随机时序ARIMA是一种精度较高的模型。
我们已XX省历年(1969-2005)从业人员人数为数据基础建立一个就业总量的预测时间序列模型,通过spss建立模型并用此模型来预测就业总量的未来发展趋势。
二、实验目的:1.准确理解时间序列分析的方法原理2.学会实用SPSS建立时间序列变量3.学会使用SPSS绘制时间序列图以反应时间序列的直观特征。
4.掌握时间序列模型的平稳化方法。
5.掌握时间序列模型的定阶方法。
6.学会使用SPSS建立时间序列模型与短期预测。
7.培养运用时间序列分析方法解决身边实际问题的能力。
三、实验分析:总体分析:先对数据进行必要的预处理和观察,直到它变成稳态后再用SPSS对数据进行分析。
数据的预处理阶段,将它分为三个步骤:首先,对有缺失值的数据进行修补,其次将数据资料定义为相应的时间序列,最后对时间序列数据的平稳性进行计算观察。
数据分析和建模阶段:根据时间序列的特征和分析的要求,选择恰当的模型进行数据建模和分析。
四、实验步骤:SPSS的数据准备包括数据文件的建立、时间定义和数据期间的指定。
SPSS的时间定义功能用来将数据编辑窗口中的一个或多个变量指定为时间序列变量,并给它们赋予相应的时间标志,具体操作步骤是:1.选择菜单:Date→Define Dates,出现窗口:单击【ok(确认)】按钮,此时完成时间的定义,SPSS将在当前数据编辑窗口中自动生成标志时间的变量。
SPSS时间序列分析案例时间序列分析是一种研究时间上连续观测变量的统计方法。
它可以用于预测未来的趋势和模式,帮助企业提前做出调整。
SPSS是一款功能强大的统计分析软件,可以进行各种统计方法的分析。
以下将通过一个时间序列分析案例,介绍SPSS如何进行时间序列分析。
假设家服装零售店想要分析过去几个季度的销售数据,以便预测未来几个季度的销售情况。
该店提供的数据集包含每个季度的销售总额。
首先,我们需要导入数据集到SPSS软件中。
在SPSS软件的主界面,选择“文件”菜单中的“打开”选项,然后选择对应的数据文件。
接下来,我们需要将数据按照时间序列的顺序进行排序。
在数据视图中,点击数据集右上角的“排列数据”按钮,在弹出的菜单中选择时间变量,并按照升序进行排序。
点击“确定”按钮完成排序。
然后,我们可以使用SPSS的时间序列分析工具来执行分析。
在菜单栏选择“分析”选项,然后选择“时间序列”子菜单中的“建模”选项。
在弹出的对话框中选择要分析的变量,即销售总额,并点击“确定”按钮。
SPSS将会输出一个时间序列模型的报告。
报告中包含了多个统计指标,如拟合优度、残差等,以及趋势和季节性的分析结果。
通过这些指标,我们可以判断时间序列的趋势特征和模式,并做出预测。
除了时间序列分析工具,SPSS还提供了其他的时间序列分析方法,如平滑技术、ARIMA模型等。
根据具体的研究目的和数据特点,我们可以选择合适的方法进行分析。
在本案例中,我们可以使用平滑技术来预测未来的销售情况。
平滑技术根据历史数据的平均值来预测未来的值。
在SPSS的时间序列分析工具中,选择“平滑”子菜单中的“simple exponential smoothing”选项,并设置平滑指数和初始预测值。
SPSS将会输出一个平滑结果的报告,包含了预测值和置信区间。
通过以上步骤,我们可以通过SPSS进行时间序列分析,帮助企业做出准确的预测和决策。
当然,在实际应用中,还需要根据具体情况进行参数选择和模型检验,以确保分析结果的可靠性。
时间序列季节性分析spss表1 为某公司连续144个⽉的⽉度销售量记录,变量为sales。
试⽤专家模型、ARIMA模型和季节性分解模型分析此数据。
选定样本期间为1978年9⽉⾄1990年5⽉。
按时间顺序分别设为1⾄141。
⼀、画出趋势图,粗略判断⼀下数据的变动特点。
具体操作为:依次单击菜单“Analyz e→Forecasting→Sequence Chart”,打开“Sequence Chart”对话框,在打开的对话框中将sales选⼊“Variables”列表框,时间变量date选⼊“Time Axis Labels”,单击“OK”按钮,则⽣成如图2 所⽰的sales序列。
图1 “Sequence Chart”对话框从趋势图可以明显看出,时间序列的特点为:呈线性趋势、有季节性变动,但季节波动随着趋势增加⽽加⼤。
⼆、模型的估计(⼀)、季节性分解模型根据时间序列特点,我们选择带线性趋势的季节性乘法模型作为预测模型。
1、定义⽇期具体操作为:依次单击菜单“Data→Define Date”,打开“Define Date”对话框,在“Cases Are”列表框选择“Years,months”的⽇期格式,在对话框的右侧定义数据的起始年份、⽉份。
定义完毕后,单击“OK”按钮,在数据集中⽣成⽇期变量。
图3 “Define Date”对话框2、季节分解具体操作为:“Analyze→Forecasting→Seasonal Decomposition”打开“Seasonal Decomposition”对话框,将待分析的序列变量名选⼊“Variable”列表框。
在“Model Type”选择组中选择“Multiplicative”模型;在“Moving Average Weight”选择组中选择“Endpoints weighted by 0.5”。
单击“OK”按钮,执⾏季节分解操作。
图4 “Seasonal Decomposition”对话框3、画出序列图①原始序列和校正了季节因⼦作⽤的序列图图5为sales 序列和校正了季节因⼦作⽤的序列图。
第11章SPSS在时间序列预测中的应用SPSS19.0软件使用教程在进入SPSS后,具体工作流程如下:1.将数据输入SPSS,并存盘以防断电。
2.进行必要的预分析(分布图、均数标准差的描述等),以确定应采用的检验方法。
3.按题目要求进行统计分析。
4.保存和导出分析结果。
下面就按这几步依次讲解。
§1.1 数据的输入和保存1.1.1 SPSS的界面当打开SPSS后,展现在我们面前的界面如下:请将鼠标在上图中的各处停留,很快就会弹出相应部位的名称。
请注意窗口顶部显示为“SPSS for Windows Data Editor”,表明现在所看到的是SPSS的数据管理窗口。
这是一个典型的Windows软件界面,有菜单栏、工具栏。
特别的,工具栏下方的是数据栏,数据栏下方则是数据管理窗口的主界面。
该界面和EXCEL极为相似,由若干行和列组成,每行对应了一条记录,每列则对应了一个变量。
由于现在我们没有输入任何数据,所以行、列的标号都是灰色的。
请注意第一行第一列的单元格边框为深色,表明该数据单元格为当前单元格。
对Windows操作界面不熟悉的朋友可参见SAS入门第一课中的相关内容。
对数据表界面操作不熟悉的朋友可先学习一下EXCEL的操作(因为它的帮助是中文的)。
有的SPSS系统打开时会出现一个导航对话框,请单击右下方的Cancer按钮,即可进入上面的主界面。
1.1.2 定义变量该资料是定量资料,设计为成组设计,因此我们需要建立两个变量,一个变量代表血磷值,习惯上取名为X,另一个变量代表观察对象是健康人还是克山病人,习惯上取名为GROUP。
对数据的统计分析格式不太熟悉的朋友请先学习统计软件第一课。
选择菜单Data==>Define Variable。
系统弹出定义变量对话框如下:该变量定义对话框在SPSS 10.0版中已被取消,这里的操作只适合9.0~7.0版的用户。
对话框最上方为变量名,现在显示为“VAR00001”,这是系统的默认变量名;往下是变量情况描述,可以看到系统默认该变量为数值型,长度为8,有两位小数位,尚无缺失值,显示对齐方式为右对齐;第三部分为四个设置更改按钮,分别可以设定变量类型、标签、缺失值和列显示格式;第四部分实际上是用来定义变量属于数值变量、有序分类变量还是无序分类变量,现在系统默认新变量为数值变量;最下方则依次是确定、取消和帮助按钮。
spss地大数据分析资料报告案例spss 的大数据分析资料报告案例在当今数字化时代,数据已成为企业和组织决策的重要依据。
SPSS (Statistical Product and Service Solutions)作为一款功能强大的统计分析软件,在处理和分析大数据方面发挥着重要作用。
本文将通过一个实际的案例,展示如何运用 SPSS 进行大数据分析,并从中得出有价值的结论。
一、案例背景假设我们是一家电商公司,拥有大量的用户交易数据。
我们希望通过对这些数据的分析,了解用户的购买行为、偏好以及市场趋势,以便优化产品推荐、营销策略和供应链管理。
二、数据收集与整理首先,我们从数据库中提取了相关的数据,包括用户的基本信息(如年龄、性别、地域等)、购买记录(产品类别、购买时间、购买金额等)以及浏览行为等。
这些数据量庞大,可能达到数百万甚至数千万条记录。
在将数据导入 SPSS 之前,我们需要对数据进行预处理,包括数据清洗、缺失值处理和异常值检测。
例如,删除重复的记录、填充缺失的关键信息,并剔除明显不符合常理的异常值。
三、数据分析方法1、描述性统计分析通过计算均值、中位数、标准差等统计量,对用户的年龄、购买金额等变量进行概括性描述,了解数据的集中趋势和离散程度。
2、相关性分析分析不同变量之间的相关性,例如用户年龄与购买金额之间、购买频率与产品类别之间的关系。
3、分类分析使用聚类分析将用户分为不同的群体,以便针对不同群体制定个性化的营销策略。
4、时间序列分析对于购买时间等变量,运用时间序列分析方法预测未来的销售趋势。
四、SPSS 操作与结果解读1、描述性统计分析结果例如,我们发现用户的平均年龄为 30 岁,购买金额的中位数为 500 元,标准差为 200 元。
这表明大部分用户年龄较为年轻,购买金额分布相对较为集中。
2、相关性分析结果发现用户年龄与购买金额之间存在较弱的正相关关系,即年龄较大的用户可能购买金额相对较高。
用SPSS软件做时间序列分析典型实例
用SPSS软件做时间序列分析,有某公司2002年一季度到2010年二季度的34个税后利润数据,要求预测出该公司2010年三季度和四季度的税后利润。
要求:
1.画出序列趋势图
2.绘制出自相关图和偏自相关图
3.确定参数和模型
4.给出预测值
2
税后盈利
自相关图序列:税后盈利
滞后
自相关标准误差a
Box-Ljung 统计量
值df Sig.b
1 .306 .164 3.48
2 1 .062
2 .198 .162 4.987 2 .083
3 .185 .159 6.340 3 .096
4 .542 .157 18.342 4 .001
5 .084 .154 18.641 5 .002
6 .06
7 .151 18.836 6 .004
7 .094 .149 19.239 7 .007
8 .458 .146 29.093 8 .000
9 .041 .143 29.176 9 .001
10 .016 .140 29.189 10 .001
11 .012 .137 29.197 11 .002
12 .236 .134 32.308 12 .001
13 -.092 .131 32.806 13 .002
14 -.094 .128 33.345 14 .003
15 -.079 .125 33.745 15 .004
16 .106 .121 34.510 16 .005
a. 假定的基础过程是独立性(白噪音)。
b. 基于渐近卡方近似。
偏自相关
序列:税后盈利
滞后偏自相关标准误差
1 .306 .171
2 .115 .171
3 .107 .171
4 .503 .171
5 -.279 .171
6 -.010 .171
7 .046 .171
8 .268 .171
9 -.130 .171
10 -.054 .171
11 -.053 .171
12 -.081 .171
13 -.040 .171
14 -.051 .171
15 -.027 .171
16 -.062 .171
QUARTER, period 4
自相关图序列:QUARTER, period 4
滞后
自相关标准误差a
Box-Ljung 统计量
值df Sig.b
1 -.171 .164 1.086 1 .297
2 -.564 .162 13.239 2 .001
3 -.207 .159 14.926 3 .002
4 .882 .157 46.644 4 .000
5 -.148 .154 47.567 5 .000
6 -.493 .151 58.200 6 .000
7 -.183 .149 59.725 7 .000
8 .763 .146 87.161 8 .000
9 -.125 .143 87.921 9 .000
10 -.423 .140 97.035 10 .000
11 -.160 .137 98.400 11 .000
12 .645 .134 121.554 12 .000
13 -.101 .131 122.152 13 .000
14 -.352 .128 129.748 14 .000
15 -.137 .125 130.955 15 .000
16 .527 .121 149.826 16 .000
a. 假定的基础过程是独立性(白噪音)。
b. 基于渐近卡方近似。
偏自相关
序列:QUARTER, period 4
滞后偏自相关标准误差
1 -.171 .171
2 -.611 .171
3 -.767 .171
4 .531 .171
5 -.273 .171
6 .061 .171
7 .055 .171
8 -.120 .171
9 .044 .171
10 -.003 .171
11 -.014 .171
12 -.060 .171
13 .002 .171
14 -.004 .171
15 -.013 .171
16 -.080 .171
3、确定参数和模型
时间序列建模程序
模型描述
模型类型
模型 ID 税后利润模型_1 ARIMA(0,1,0)(0,1,0) 模型摘要
4、给出预测值
2010年第三季度139621.02万元2010年第四季度170144.55万元。