对数函数基础题型
- 格式:ppt
- 大小:1.52 MB
- 文档页数:20
对数函数的图像与性质(一)考向一 对数函数的概念1、下列函数是对数函数的是( ) A .3log (1)y x =+B .log (2)(0a y x a =>,且1)a ≠C .y lnx =D .2(0,1)a y log x a a =>≠且【分析】根据对数函数的定义即可得出.【解答】解:根据对数函数的定义可得:只有y lnx =为对数函数. 故选:C .2、若函数y =log (2a -1)x +(a 2-5a +4)是对数函数,则a =________. 【解析】因为函数y =log (2a -1)x +(a 2-5a +4)是对数函数,所以⎩⎪⎨⎪⎧2a -1>0,2a -1≠1,a 2-5a +4=0,解得a =4.3、对数函数f(x)的图象经过点(14,2),则f(x)= . 【答案】log 12x【解析】设数函数f(x)=log a x ,(a >0且a ≠1) ∵图象经过点(14,2), 得a =12∴f(x)=log 12x故答案为:log 12x4、已知 f(x 6)=log 2x ,那么 f(8)等于 ( ) A . 43B . 8C . 18D . 12【答案】D【解析】由题可知,x >0,令x 6=8,得x =816=212,所以f(8)=log 2212=12.考向二 对数函数的图像1、(1)如图是对数函数log a y x =的图象,已知a 值取3,43,35,110,则相应于1C ,2C ,3C ,4C 的a 值依次是( ). A .3,43,35,110B .3,43,110,35 C .43,3,35,110D .43,3,110,35 (2)当1a >时,在同一坐标系中,函数x y a -=与log a y x =的图象是( )(3)若函数()0,1xy a a a =>≠的值域为{}1y y ≥,则函数log a y x =的图象大致是( )【答案】⑴A ⑵D ⑶B2、同一直角坐标系中,当时,函数与的图象是A. B. C. D.【答案】C【解析】当时,函数,,所以图象过点,在其定义域上是增函数;函数的图象过点,在其定义域上是减函数.故选C.3、当0<a<1时,在同一坐标系中,函数y=a x 与y=log a x 的图象是( )【答案】D【解析】因为函数y=a x 与y=log a x 互为反函数,所以它们的图象关于直线y=x 对称, 且当0<a<1时,函数y=a x 与y=log a x 都是减函数,观察图象知,D 正确.故选D. 4、若点(,)a b 在lg y x = 图像上,a ≠1,则下列点也在此图像上的是A .1(,)b aB .(10,1)a b -C .10(,1)b a+ D .2(,2)a b D 【解析】当2x a =时,2lg 2lg 2y a a b ===,所以点2(,2)a b 在函数lg y x =图象上.5、已知函数2log ()y x a b =++的图象不经过第四象限,则实数a 、b 满足( )A .1a ,0bB .0a >,1bC .210b og a +D .20b a +【分析】因为函数2log ()y x a b =++的图象不经过第四象限,所以当0x =时,0y ,所以2log 0a b +.【解答】解:函数2log ()y x a b =++的图象不经过第四象限, ∴当0x =时,0y ,2log 0a b ∴+,故选:C .【点评】本题主要考查了指数函数的图象和性质,是基础题.6、如图,若1C ,2C 分别为函数log a y x =和log b y x =的图象,则( )A .01a b <<<B .01b a <<<C .1a b >>D .b a l >>【分析】由题意利用对数函数的单调性和特殊点,得出结论.【解答】解:根据1C ,2C 分别为函数log a y x =和log b y x =的图象,可得01b <<,01a <<,且b a <, 故选:B .7、对数函数log (0a y x a =>且1)a ≠与二次函数2(1)y a x x =--在同一坐标系内的图象可能是( )A .B .C .D .【分析】根据二次函数的开口方向,对称轴及对数函数的增减性,逐个检验即可得出答案. 【解答】解:由对数函数log (0a y x a =>且1)a ≠与二次函数2(1)y a x x =--可知,①当01a <<时,此时10a -<,对数函数log a y x =为减函数,②当1a >时,此时10a ->,对数函数log a y x =为增函数,题意. 故选:A .8、已知点(,)m n 在函数2log y x =的图象上,则下列各点也在该函数图象上的是( )A .2(m ,2)nB .(2,2)m nC .(2,1)m n ++D .(,1)2mn -数图象上.【解答】解:点(,)m n 在函数2log y x =的图象上,2log y m n ∴==,故选:D .考向三 对数函数的性质1、函数()()322(01)a f x log x a a +>≠=-,恒过定点________. 【答案】(1,2)【解析】当1x =时,()()13222a f log +==-.所以函数()()322(01)a f x log x a a +>≠=-,恒过定点(1,2).2、已知函数f (x )=log a (x+1)+1(a>0,且a ≠1)的图象恒过定点P ,则点P 的坐标是 . 令x+1=1,得x=0,则f (0)=log a 1+1=1,即定点P 的坐标为(0,1).3、已知函数f (x )=log a (x-m )+n 的图象恒过点(3,5),则lg m+lg n 等于( ) A .10 B .lg12C .1D .110解析:(1)由已知可得{3-m =1,n =5,∴{m =2,n =5,∴lgm+lg n=lg 2+lg 5=lg 10=1.4、已知函数1()log 1(0x b f x a x a -=+->且1a ≠,0b >且1)b ≠,则()f x 的图象过定点( ) A .(0,1)B .(1,1)C .(1,0)D .(0,0)【分析】当1x =时,()f x f =(1)0log 111010b a =+-=+-=,即可求出结果.【解答】解:当1x =时,()f x f =(1)0log 111010b a =+-=+-=, ()f x ∴的图象过定点(1,0),故选:C .5、函数2()log f x x =是( ) A .(0,)+∞上的增函数 B .(0,)+∞上的减函数 C .R 上的增函数D .R 上的减函数【分析】对数函数log (0a y x a =>且1)a ≠,定义域为(0,)+∞;当1a >时在(0,)+∞上为增函数;当01a <<时,在(0,)+∞上为减函数.【解答】解:log (0a y x a =>且1)a ≠,定义域为(0,)+∞; 当1a >时,在(0,)+∞上为增函数, 当01a <<时,在(0,)+∞上为减函数.本题21a =>,故2log y x =在(0,)+∞上为增函数. 故选:A . 6、函数23log 2(01ax y a x +=+>+且1)a ≠的图象经过的定点坐标为 . 【分析】令真数等于1,求得x 、y 的值,可得函数的图象经过定点的坐标.故函数23log (01ax y a x +=>+且1)a ≠的图象经过的定点坐标为(2,2)-, 故答案为:(2,2)-.考向四 对数函数的性质应用1、比较下列各组值的大小:(1)log 534与log 543;(2)log 132与log 152;(3)log 23与log 54.【解析】 (1)法一(单调性法):对数函数y =log 5x 在(0,+∞)上是增函数,而34<43,所以log 534<log 543.法二(中间值法):因为log 534<0,log 543>0,所以log 534<log 543.(2)法一(单调性法):由于log 132=1log 213,log 152=1log 215,又因对数函数y =log 2x 在(0,+∞)上是增函数, 且13>15,所以0>log 213>log 215, 所以1log 213<1log 215,所以log 132<log 152.法二(图象法):如图,在同一坐标系中分别画出y =log 13x 及y(3)取中间值1,因为log 23>log 22=1=log 55>log 54, 所以log 23>log 54.2、(1)比较大小(填“>”,“<”或“=”).①0.5log 2011____0.5log 2012;② 1.5log 2011____ 1.5log 2012;③0.5log 3____0.6log 3;④0.5log 0.8____0.6log 0.8; ⑤ 1.5log 3____2log 3; ⑥ 1.5log 0.8____2log 0.8.(2)若3log 4a =,7log 6b =,2log 0.8c =,则( ). A .a b c >> B .b a c >>C .c a b >>D .b c a >>(3)若20.3a =,2log 0.3b =,3log 4c =,则( ). A .a b c >> B .b a c >>C .c a b >>D .b c a >>(4)若101a b c >><<,,则( )A. c c a b <B.c c ab ba <C.log log b a a c b c< D.log log a b c c<【答案】⑴①>;②<;③>;④<;⑤>;⑥<.⑵A ; ⑶C ; 4C ; 3、若log m 8.1<log n 8.1<0,那么m,n 满足的条件是( ) (A)m>n>1 (B)n>m>1(C)0<n<m<1 (D)0<m<n<1【答案】C【解析】由题意知m,n 一定都是大于0且小于1的数,根据函数图象(图略)知,当x>1时,底数越大,函数值越小,故选C.4、若函数()log (0a f x x a =>且1)a ≠在区间[a ,22]a 上的最大值比最小值多2,则(a = )A .2B .3或13C .4或12D .2或12的单调性即可解题.①当1a > 时,2(2)2a a log a log a -=,得2a =,故选:A .5、设,a b 都是不等于1的正数,则“333ab>>”是“log 3log 3a b <”的 A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件 B 【解析】由指数函数的性质知,若333a b ,则1a b ,由对数函数的性质,3log 3b ;反之,取12,13b ,显然有3log 3b ,此时01b a ,于是333ab ,所以“333a b”是log 3log 3a b <的充分不必要条件,选B .6、若2log 13a <,则a 的取值范围是( ) A. ()20,1, 3⎛⎫+∞ ⎪⎝⎭ B. 2,3⎛⎫+∞ ⎪⎝⎭ C. 2,13⎛⎫ ⎪⎝⎭ D. 220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭【答案】C7、函数f(x)是奇函数,且在区间[0,4]上是减函数,则比较大小()f π-_______21(log )8f . 【答案】>8、已知log 0.7(2x )<log 0.7(x -1),求x 的取值范围.【解析】因为函数y =log 0.7x 在(0,+∞)上为减函数,所以由log 0.7(2x )<log 0.7(x -1)得⎩⎪⎨⎪⎧ 2x >0,x -1>0,2x >x -1,解得x >1.即x 的取值范围是(1,+∞).9、已知f(x)=log 3x ,则的大小是 A. B.C.D.【答案】B 【解析】由函数y=log 3x 的图象可知,图象呈上升趋势,即随着x 的增大,函数值y 也在增大,故.10、函数12log y x =,x ∈(0,8]的值域是( )A.[-3,+∞)B.[3,+∞)C.(-∞,-3]D.(-∞,3]【答案】A11、设a =log 123,b =(13)0.2,c =213则 ( )A.b <a <cB.c <b <aC.c <a <bD.a <b <c 【答案】D 【解析】由题得a =log 123<log 121=0,b >0,c >0.b =(13)0.2<(13)0=1, c =213>20=1,所以a <b <c .故选:D考向五 指数函数与对数函数的关系(反函数)1、下列说法正确的是( ) A .函数x y a =与1()x y a =图象关于x 轴对称B .函数log a y x =与1log ay x =图象关于y 轴对称C .函数x y a =与log a y x =图象关于直线y x =对称D .函数x y a =与log a y x =图象关于y 轴对称【分析】根据图象关于原点对称、图象关于x 轴对称、图象关于y 轴对称、图象关于y x =对称,分别画出出各个函数图象,再对照选项即可得出正确答案.【解答】解:令2a =,分别作出对应的图象,由图象可知 ,函数,函数对于选项C ,D 函数x y a =与log a y x =图象关于直线y x =对称,故C 正确,D 不正确.故选:C .2、(1)若()x f x a =,()log b g x x =-,且lg lg 0a b +=,1a ≠,1b ≠.则()y f x =与()y g x =的图象( )A .关于直线0x y +=对称B .关于直线0x y -=对称C .关于y 轴对称D .关于原点对称(2)若函数()x f x a =(0a >,且1a ≠)的反函数的图象过点(21)-,,则a =______.(3)若()3log f x x =的反函数是()y g x =,则()1g -值为( )A .3B .3-C .13D .13-3、已知函数2()log f x x =,若函数()g x 是()f x 的反函数,则()()2f g =( )A .1B .2C .3D .4 【答案】B【解析】由函数2y f x log x ==() ,得2y x =,把x 与y 互换,可得2x y =,即2x g x ()=,∴2224g ==() ,则()22442f g f log ===()().故选:B4、若函数()y f x =与函数2log y x =互为反函数,则(1(f += )A .9B .11C .16D .18【分析】首先求出反函数的关系式,进一步利用对数的运算的应用求出结果.【解答】解:因为函数()y f x =与函数2log y x =互为反函数,所以()2x f x =,故选:D . 【点评】本题考查的知识要点:反函数,对数的运算,主要考查学生的运算能力和转换能力及思维能力,属于基础题.5、设函数()(0x b f x a a +=>且1)a ≠的图象过点(1,8),其反函数的图象过(16,2),则(a b += )A .3B .4C .5D .6【分析】根据反函数的图象过(16,2),可知()f x 图象过点(2,16),和(1,8),代入联立解得.【解答】解:()(0x b f x a a +=>且1)a ≠的图象过点(1,8),∴代入得18b a +=①,其反函数的图象过(16,2),()(0x b f x a a +∴=>且1)a ≠的图象过点(2,16),∴代入得216b a +=②,联立①②,解之得2a =,2b =,故选:B .【点评】本题考查反函数,以及指数函数,属于基础题.【点评】本题主要考查函数的图象的对称性的应用,考查了命题的真假判断与应用,属于基础题.6、已知函数()x f x a =,()log (0,1)a g x x a a =>≠,若f (3)g (3)0>,则()f x 与()g x 的图象为( )A .B .C .D .【分析】根据指数函数的性质,由f (3)g (3)0>得到g (3)0>从而得到a 的取值范围,然后根据指数函数和对数函数的性质即可得到结论. 【解答】解:()x f x a =,()log (0,1)a g x x a a =>≠,若f (3)g (3)0>,f ∴(3)0>,g (3)0>,1a ∴>,即()f x ,()g x 都为增函数,故选:B .。
对数函数典型问题例一:1、已知的最大值和最小值以及相应的x 值.2、已知0)3(log )12(log 2<<+a a a a ,则a 的取值范围为3、不等式0.30.40.20.6x x⨯>⨯的解集是 . 例二:1、求函数)32(log )(22++=x x x f 的定义域和值域.2、已知函数f(x)=lg(ax 2+2x +1)(a ∈R ).(1)若函数f(x)的定义域为R ,求实数a 的取值范围;(2)若函数f(x)的值域为R ,求实数a 的取值范围.例三:1、求函数的的单调区间.2、),在(2-)(log 221∞+-=a ax x y 上是增函数,求a 的取值范围例四:1、 函数)1lg()(2++=x x x f 的奇偶性为 2.已知函数1()log (0,1)1a mxf x a a x -=>≠-的图象关于原点对称. (1)求m 的值; (2)判断f(x) 在(1,)+∞上的单调性,并根据定义证明.例五:1、若0<a <1,f (x )=|log a x |,则下列各式中成立的是( )A .f (2)>f (13)>f (14) B .f (14)>f (2)>f (13) C .f (13)>f (2)>f (14) D .f (14)>f (13)>f (2)2、已知 ),在∞+>2[1|log |x a 上恒成立,求a 的取值范围例六、已知f(x)=log a (a x -1)(a >0,a≠1).(1)求f(x)的定义域;(2)讨论f(x)的单调性;(3)求函数y=f(2x)与y=f -1(x)的图象交点的横坐标.对数函数典型问题练习1、3.022.02,3.0log ,3.0从小到大排列为2.(1) 求函数22(log )(log )34x xy =在区间上的最值. 3.函数f(x)的定义域为[0,1],则函数3[log (3)]f x -的定义域为 .4.已知y =log a (2-ax )在[0,1]上是x 的减函数,则a 的取值范围是5.若函数22x x y a -=-⋅的图象关于原点对称,则a =6.设函数19()log (0,1)(9)2,(log 2)a f x x a a f f -=>≠=满足则的值是7、函数的递增区间是( )A .(-∞,1)B .(2,+∞)C .(-∞,) D .(,+∞) 8.设函数200,0(),()1,lg(1),0x x f x f x x x x ≤=>+>⎧⎨⎩若则的取值范围为( ) A .(-1,1) B .(-1,+∞) C .(,9)-∞ D .(,1)(9,)-∞-+∞9.已知函数1()()2x f x =,其反函数为()g x ,则2()g x 是( ) A .奇函数且在(0,+∞)上单调递减 B .偶函数且在(0,+∞)上单调递增C .奇函数且在(-∞,0)上单调递减D .偶函数且在(-∞,0)上单调递增10、设函数f(x)=x 2-x +b ,已知log 2f(a)=2,且f(log 2a)=b(a>0且a≠1),(1)求a ,b 的值;(2)试在f(log 2x)>f(1)且log 2f(x)<f(1)的条件下,求x 的取值范围.11、已知函数f(x)=log a (x -3a)(a >0且a≠1),将函数y=f(x)图象向左平移2个单位得y=g(x) 的图象.(1)写出y=g(x)的解析式;(2)若当x ∈[a +2,a +3]时,恒有|f(x)+g(x)|≤1,试求a 的取值范围.13、已知f (log a x )=22(1)(1)a x x a --,其中a >0,且a ≠1. (1)求f (x ); (2)求证:f (x )是奇函数; (3)求证:f (x )在R 上为增函数14.已知:()lg()x x f x a b =-(a >1>b >0).(1)求)(x f 的定义域;(2)判断)(x f 在其定义域内的单调性;(3)若)(x f 在(1,+∞)内恒为正,试比较a-b 与1的大小.。
指对函数题型分类一、指数函数:)0,1(>≠=a a a y x 题型一:比较大小1、(1) ; (2) ______ 1; (3) ______2、985316,8,4,2,2从小到大的排列顺序是 。
3、设111()()1222b a <<<,那么 ( ) A.a a <a b <b a B.a a < b a <a b C.a b <a a <b a D.a b <b a <a a 4、已知下列等式,比较m ,n 的大小:(1)22m n < (2)0.20.2m n <5、下列关系中,正确的是( )A 、5131)21()21(> B 、2.01.022> C 、2.01.022--> D 、115311()()22- - >5.比较下列各组数的大小 (1)31.13.11.1,1.1 (2)3.02.06.0,6.0-- (3)3241⎪⎭⎫ ⎝⎛、3251⎪⎭⎫ ⎝⎛、3141⎪⎭⎫⎝⎛; (4)0.42、20.4、log 402⋅题型二:复合指数函数图象 1、 函数( )的图象是()2.函数与的图象大致是( ).3.当时,函数与的图象只可能是( )4.在下列图象中,二次函数 与指数函数 的图象只可( )5、若,,则函数的图象一定在()A .一、二、三象限B .一、三、四象限C .二、三、四象限D .一、二、四象限6、已知函数xx f 2)(=,则)1(x f -的图象为 ( )ABCD7、函数b x a x f -=)(的图象如图,其中a 、b 为常数, 则下列结论正确的是( ) A .0,1<>b a B .0,1>>b a C .0,10><<b a D .0,10<<<b a8、(全国卷Ⅳ文科)为了得到函数x y )31(3⨯=的图象,可以把函数xy )31(=的图象( )A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度9、画出12-=x y 和12-=xy 的图象。
2.2.1对数与对数运算重难点题型【举一反三系列】【知识点1 对数的概念与基本性质】2.常用对数和自然对数(1)常用对数:通常我们将以10为底的对数叫做常用对数,并把N 10log 记为N lg .(2)自然对数:在科学技术中常使用以无理数e =2.71828…为底数的对数,以e 为底的对数称为自然对数,并把N e log 记为N ln . 3.对数与指数的关系当0>a ,且1≠a 时,N x N a a xlog =⇔=.4.对数的基本性质(1)负数和零没有对数,即0>N ; (2)01log =a )1,0(≠>a a 且; (3))1,0(1log ≠>=a a a a 且. 【知识点2 对数的运算性质】 1.2.abb c c a log log log =(a >0,且a ≠1;c >0,且c ≠1;b >0). 3.知识拓展(1)可用换底公式证明以下结论: ①a b b a log 1log =;②1log log log =⋅⋅a c b c b a ;③b b a na n log log =;④b nm b a m a n log log =;⑤b b a alog log 1-=.(2)对换底公式的理解:换底公式真神奇,换成新底可任意,原底加底变分母,真数加底变分子.【考点1 对数有意义条件】【例1】(2019秋•马山县期中)对数式log (a ﹣2)(5﹣a )中实数a 的取值范围是( ) A .(﹣∞,5) B .(2,5)C .(2,3)∪(3,5)D .(2,+∞)【分析】对数式有意义的条件是:真数为正数,底为正数且不为1,联立得到不等式组,解出即可. 【答案】解:要使对数式b =log (a ﹣2)(5﹣a )有意义,则,解得a∈(2,3)∪(3,5),故选:C.【点睛】本题主要考查了对数式有意义的条件,即真数为正数,底为正数且不为1,属于基础题.【变式1-1】(2019秋•龙岩期末)若对数式log(t﹣2)3有意义,则实数t的取值范围是()A.[2,+∞)B.(2,3)∪(3,+∞)C.(﹣∞,2)D.(2,+∞)【分析】根据对数式log(t﹣2)3的定义,底数大于0且不等于1,列出不等式组,求出解集即可.【答案】解:要使对数式log(t﹣2)3有意义,须;解得t>2且t≠3,∴实数t的取值范围是(2,3)∪(3,+∞).故选:B.【点睛】本题考查了对数定义的应用问题,是基础题目.【变式1-2】在M=log(x﹣3)(x+1)中,要使式子有意义,x的取值范围为()A.(﹣∞,3]B.(3,4)∪(4,+∞)C.(4,+∞)D.(3,4)【分析】由对数的定义可得,由此解得x的范围.【答案】解:由函数的解析式可得,解得3<x<4,或x>4.故选:B.【点睛】本题主要考查对数的定义,属于基础题.【变式1-3】若对数ln(x2﹣5x+6)存在,则x的取值范围为.【分析】由已知利用对数的概念可得x2﹣5x+6>0,解不等式即可得解.【答案】解:∵对数ln(x2﹣5x+6)存在,∴x2﹣5x+6>0,∴解得:3<x或x<2,即x的取值范围为:(﹣∞,2)∪(3,+∞).故答案为:(﹣∞,2)∪(3,+∞).【点睛】本题考查对数函数的定义域的求法,是基础题.解题时要认真审题,仔细解答.【考点2 对数式与指数式的互化】【例2】(2019秋•巴彦淖尔校级期中)将下列指数形式化成对数形式,对数形式化成指数形式.①54=625②()m=5.73③ln10=2.303④lg0.01=﹣2⑤log216=4.【分析】利用对数的定义进行指对互化.【答案】解:①log5625=4,② 5.73=m,③e2.303=10,④10﹣2=0.01,⑤24=16.【点睛】本题考查了指对互化,是基础题.【变式2-1】将下列指数式化为对数式,对数式化为指数式:(1)102=100;(2)lna=b;(3)73=343;(4)log6=﹣2.【分析】根据对数的定义进行转化.【答案】解:(1)lg100=2,(2)e b=a,(3)log7343=3;(4)6﹣2=.【点睛】本题考查了对数的定义,属于基础题.【变式2-2】将下列指数式与对数式互化:(1)log216=4(2)27=﹣3(3)43=64(4)﹣2=16.【分析】根据指数式a x=N等价于对数式x=log a N,可将指数式与对数式互化.【答案】解:(1)log216=4可化为:24=16;(2)27=﹣3可化为:;(3)43=64可化为:log464=3;(4)﹣2=16可化为:.【点睛】本题考查的知识点是指数式与对数式的互化,熟练掌握指数式a x=N等价于对数式x=log a N,是解答的关键.【变式2-3】将下列指数式化为对数式,对数式化为指数式.(1)3﹣2=;(2)9=﹣2;(3)1g0.001=﹣3.【分析】直接利用指数式与对数式的互化,写出结果即可.【答案】解:(1)3﹣2=;可得﹣2=1og3.(2)9=﹣2;()﹣2=9.(3)1g0.001=﹣3.0.001=10﹣3.【点睛】本题考查指数式与对数式的互化,考查计算能力.【考点3 解对数方程】【例3】求下列各式中x的值:(1)log4x=﹣,求x;(2)已知log2(log3x)=1,求x.【分析】(1)根据对数和指数之间的关系即可将log232=5化成指数式;(2)根据对数和指数之间的关系即可将3﹣3=化成对数式;(3)根据对数的运算法则即可求x;(4)根据对数的运算法则和性质即可求x.【答案】解:(1)∵log232=5,∴25=32(2)∵3﹣3=,∴log3=﹣3;(3)∵log4x=﹣,∴x===2﹣3=;(4)∵log2(log3x)=1,∴log3x=2,即x=32=9.【点睛】本题主要考查指数式和对数式的化简,根据指数和对数的关系是解决本题的关键.【变式3-1】求下列各式中x的值:(1)log x27=;(2)4x=5×3x.【分析】(1)根据log x27=,可得=,进而得到x=9,(2)根据4x=5×3x,可得,化为对数式可得答案.【答案】解:(1)∵log x27=,∴=27=33=,故x=9,(2)∵4x=5×3x.∴,∴x=【点睛】本题考查的知识点是指数式与对数式的互化,熟练掌握a x=N⇔log a N=x(a>0,且a≠1,N >0)是解答的关键.【变式3-2】先将下列式子改写指数式,再求各式中x的值.①log2x=﹣②log x3=﹣.【分析】化对数式为指数式,然后利用有理指数幂的运算性质化简求值.【答案】解:①由log2x=﹣,得==;②由log x3=﹣,得,即.【点睛】本题考查对数式化指数式,考查了有理指数幂的运算性质,是基础的计算题.【变式3-3】将下列对数式化为指数式求x值:(1)log x27=;(2)log2x=﹣;(3)log5(log2x)=0;(4);(5)x=16.【分析】利用指数式与对数的互化:a b=N⇔log a N=B(a>0,a≠1,)、对数的性质log a1=0及log a a =1、指数的性质即可得出.【答案】解:(1)∵,∴,∴x==32=9;(2),∴==;(3)∵log5(log2x)=0,∴log2x=1,∴x=2;(4)∵,∴,化为33x=3﹣2,∴3x=﹣2,得到;(5)∵,∴,∴2﹣x=24,解得x=﹣4.【点睛】熟练掌握指数式与对数的互化:a b=N⇔log a N=B(a>0,a≠1,)、对数的性质、指数的性质是解题的关键.【考点4 对数运算性质的化简求值】【例4】(2019春•东莞市期末)计算(1)2﹣()+lg+()lg1(2)lg52+lg8+lg5lg20+(lg2)2【分析】(1)进行分数指数幂和对数的运算即可;(2)进行对数的运算即可.【答案】解:(1)原式=;(2)原式=2lg5+2lg2+lg5(2lg2+lg5)+(lg2)2=2+(lg2+lg5)2=3.【点睛】考查分数指数幂和对数的运算,完全平方公式的运用.【变式4-1】(2019•西湖区校级模拟)计算:(1);(2).【分析】(1)进行对数的运算即可;(2)进行指数式和根式的运算即可.【答案】解:(1)原式=;(2)原式=.【点睛】考查对数的运算性质,以及指数式和根式的运算.【变式4-2】(2019春•大武口区校级月考)(1)()0+()+();(2)【分析】(1)进行分数指数幂的运算即可;(2)进行对数的运算即可.【答案】解:(1)原式=;(2)原式=.【点睛】考查分数指数幂和对数的运算,以及对数的定义.【变式4-3】(2019春•禅城区期中)(1)化简:(2a b)(﹣6a b)÷(﹣3a b);(2)求值:2(lg)2+lg2•lg5+.【分析】(1)由指数幂的运算得:原式=4a b=4a,(2)由对数的运算得:原式=2(lg2)2+lg2(1﹣lg2)+(1﹣lg2)=1.得解【答案】解:(1)(2a b)(﹣6a b)÷(﹣3a b)=4a b=4a,(2)2(lg)2+lg2•lg5+=2(lg2)2+lg2(1﹣lg2)+(1﹣lg2)=1.【点睛】本题考查了对数的运算及指数幂的运算,属简单题.【考点5 利用换底公式化简求值】【例5】(2019秋•中江县校级期中)利用对数的换底公式化简下列各式:(1)log a c•log c a;(2)log23•log34•log45•log52;(3)(log43+log83)(log32+log92).【分析】根据换底公式,把对数换为以10为底的对数,进行计算即可.【答案】解:(1)log a c•log c a=•=1;(2)log23•log34•log45•log52=•••=1;(3)(log43+log83)(log32+log92)=(+)(+)=(+)(+)=•=.【点睛】本题考查了对数的计算问题,也考查了换底公式的灵活应用问题,是基础题目.【变式5-1】利用对数的换底公式化简下列各式:(log43+log83)(log32+log92)【分析】利用对数性质、运算法则、换底公式直接求解.【答案】解:(log43+log83)(log32+log92)=(log6427+log649)(log94+log92)=log64243•log98===.【点睛】本题考查对数值的求法,考查对数性质、运算法则、换底公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.【变式5-2】利用对数的换底公式化简下列各式:(1)log43+log83(2)log45+log92.【分析】(1)利用对数的换底公式展开后通分计算;(2)直接利用对数的换底公式进行化简.【答案】解:(1)log43+log83==;(2)log45+log92==.【点睛】本题考查对数的换底公式,是基础的会考题型.【变式5-3】(2019秋•西秀区校级期中)利用换底公式求log225•log34•log59的值.【分析】利用对数的运算法则和对数的换底公式即可得出.【答案】解:原式==2log25•2log32•2log53=8log25•log32•log53==8.【点睛】本题考查了对数的运算法则和对数的换底公式,属于基础题.【考点6 用已知对数表示其他对数】【例6】已知log189=a,18b=5,用a、b表示log645.【分析】根据换底公式,化简计算即可得到答案.【答案】解:log189=a,18b=5,∴b=log185,∴log645====【点睛】本题考查了对数的运算性质,以及换底公式,属于基础题【变式6-1】(1)已知log310=a,log625=b,试用a,b表示log445.(2)已知log627=a,试用a表示log1816.【分析】(1)先用换底公式用a表示lg3,再用换底公式化简log625=b,把lg3代入求出lg2,再化简log445,把lg3、lg2的表达式代入即可用a,b表示log445.(2)先用换底公式化简log1816,由条件求出lg3,再把它代入化简后的log1816 的式子.【答案】解:(1)∵log310=a,∴a=,∵log625=b===,∴lg2=,∴log445=====.(2)∵log627=a==,∴lg3=,∴log1816====.【点睛】本题考查换底公式及对数运算性质,体现解方程的思想,属于基础题.【变式6-2】(1)已知log147=a,log145=b,用a、b表示log3528.(2)已知log189=a,18b=5,用a、b表示log3645.【分析】根据换底公式,化简计算即可得到答案.【答案】解:(1)log147=a,log145=b,∴log3528====,(2)∵log189=a,18b=5,∴log185=b,∴log3645====,【点睛】本题考查了对数的运算性质,以及换底公式,属于基础题.【变式6-3】.已知lg2=a,lg3=b,用a,b表示下列各式的值.(1)lg12;(2)log224;(3)log34;(4)lg.【分析】利用对数的换底公式与对数的运算法则即可得出.【答案】解:∵lg2=a,lg3=b,∴(1)lg12=2lg2+lg3=2a+b;(2)log224=+log23=3+;(3)log34==;(4)=lg3﹣3lg2=b﹣3a.【点睛】本题考查了对数的换底公式与对数的运算法则,属于基础题.【考点7 与对数有关的条件求值问题】【例7】(2018秋•龙凤区校级月考)(1)已知lgx+lg(4y)=2lg(x﹣3y),求x﹣y的值;(2)已知lg2=a,lg3=b,试用a,b表示log830.【分析】(1)由lgx+lg(4y)=2lg(x﹣3y),推导出=9,再由x﹣y==,能求出结果.(2)log830==,由此能求出结果.【答案】解:(1)∵lgx+lg(4y)=2lg(x﹣3y),∴,解得=9,∴x﹣y===4.(2)∵lg2=a,lg3=b,∴log830===.【点睛】本题考查对数式化简求值,考查对数性质、运算法则等基础知识,考查运算求解能力,是基础题.【变式7-1】(2019秋•江阴市期中)已知lgx+lgy=2lg(x﹣y),求.【分析】由题意可得x>0,y>0,x﹣y>0,xy=(x﹣y)2,从而解得=,从而解得.【答案】解:∵lgx+lgy=2lg(x﹣y),∴x>0,y>0,x﹣y>0,xy=(x﹣y)2,∴x2﹣3xy+y2=0,即()2﹣3+1=0,故=,故=()=(3+)﹣2.【点睛】本题考查了对数的化简与运算,同时考查了整体思想的应用,属于基础题.【变式7-2】已知lg(x+2y)+lg(x﹣y)=lg2+lgx+lgy,求log8的值.【分析】由已知条件推导出,由此能求出log8的值.【答案】解:∵lg(x+2y)+lg(x﹣y)=lg2+lgx+lgy,∴,整理,得,解得或=﹣1(舍),∴log8=log82==.∴log8的值为.【点睛】本题考查对数值的求法,是基础题,解题时要认真审题,注意对数的性质和运算法则的合理运用.【变式7-3】已知2lg=lgx+lgy,求.【分析】根据对数的运算法则进行化简即可.【答案】解:由得x>y>0,即>1,则由2lg=lgx+lgy,得lg()2=lgxy,即()2=xy,即(x﹣y)2=4xy,即x2﹣2xy+y2=4xy,即x2﹣6xy+y2=0,即()2﹣6()+1=0,则==3+2或=3﹣2(舍),则=(3+2)=(3﹣2)﹣1=﹣1【点睛】本题主要考查对数的基本运算,根据对数的运算法则是解决本题的关键.【考点8 对数的综合应用】【例8】设x、y、z均为正数,且3x=4y=6z(1)试求x,y,z之间的关系;(2)求使2x=py成立,且与p最近的正整数(即求与P的差的绝对值最小的正整数);(3)试比较3x、4y、6z的大小.【分析】(1)令3x=4y=6z=k,利用指对数互化求出x、y、z,由对数的运算性质求出、、,由对数的运算性质化简与,即可得到关系值;(2)由换底公式求出P,由对数函数的性质判断P的取值范围,找出与它最接近的2个整数,利用对数的运算性质化简P与这2个整数的差,即可得到答案;(3)由(1)得3x、4y、6z,由于3个数都是正数,利用对数、指数的运算性质化简它们的倒数的差,从而得到这3个数大小关系.【答案】解:(1)令3x=4y=6z=k,由x、y、z均为正数得k>1,则x=log3k,y=log4k,z=log6k,∴,,,∵=,且,∴;(2)∵2x=py,∴p=====2=log316,∴2<log316<3,即2<p<3,∵p﹣2=log316﹣2=,3﹣p=3﹣log316=,∵﹣=0,∴,即>,∴与p的差最小的整数是3;(3)由(1)得,3x=3log3k,4y=4log4k、6z=6log6k,又x、y、z∈R+,∴k>1,=﹣==>0,∴,则3x<4y,同理可求=>0,则4y<6z,综上可知,3x<4y<6z.【点睛】本题考查了对数的运算法则、换底公式、指数式与对数式的互化,考查了推理能力,化简、计算能力,属于中档题.【变式8-1】设a,b,c是直角三角形的三边长,其中c为斜边,且c≠1,求证:log(c+b)a+log(c﹣b)a=2loga•log(c﹣b)a.(c+b)【分析】依题意,利用对数换底公式log(c+b)a=,log(c﹣b)a=证明左端=右端即可.【答案】证明:由勾股定理得a2+b2=c2.log(c+b)a+log(c﹣b)a=+====2log(c+b)a•log(c﹣b)a.∴原等式成立.【点睛】本题考查对数换底公与对数运算性质的应用,考查正向思维与逆向思维的综合应用,考查推理证明与运算能力,属于中档题.【变式8-2】(2018秋•渝中区校级期中)令P=80.25×+()﹣(﹣2018)0,Q=2log32﹣log3 +log38.(1)分别求P和Q.(2)若2a=5b=m,且,求m.【分析】(1)利用指数与对数运算性质可得P,Q.(2)2a=5b=m,且=2,利用对数换底公式可得a=,b=,代入解出即可得出.【答案】解:(1)P=×+﹣1=2+﹣1=.Q==log39=2.(2)2a=5b=m,且=2,∴a=,b=,∴=2,可得lgm=,∴m=.【点睛】本题考查了指数与对数运算性质、非常的解法,考查了推理能力与计算能力,属于基础题.【变式8-3】已知2y•log y4﹣2y﹣1=0,•log5x=﹣1,问是否存在一个正整数P,使P=.【分析】由2y•log y4﹣2y﹣1=2y•log y4﹣=0可求y,再由•log5x=﹣1求出x即可.【答案】解:∵2y•log y4﹣2y﹣1=2y•log y4﹣=0,∴y=16;∵•log5x=﹣1,∴,解得,x=;故P===3.【点睛】本题考查了指数函数与对数函数的应用及方程的解法,属于基础题.。
专题幂、指数、对数函数(七大题型)目录:01幂函数的相关概念及图像02幂函数的性质及应用03指数、对数式的运算04指数、对数函数的图像对比分析05比较函数值或参数值的大小06指数、对数(函数)的实际应用07指数、对数函数的图像与性质综合及应用01幂函数的相关概念及图像1(2024高三·全国·专题练习)若幂函数y=f x 的图象经过点2,2,则f16=()A.2B.2C.4D.12【答案】C【分析】利用已知条件求得幂函数解析式,然后代入求解即可.【解析】设幂函数y=f x =xα,因为f x 的图象经过点2,2,所以2α=2,解得α=1 2,所以f x =x 12,所以f16=1612=4.故选:C2(2024高三·全国·专题练习)结合图中的五个函数图象回答问题:(1)哪几个是偶函数,哪几个是奇函数?(2)写出每个函数的定义域、值域;(3)写出每个函数的单调区间;(4)从图中你发现了什么?【答案】(1)答案见解析;(2)答案见解析;(3)答案见解析;(4)答案见解析.【分析】根据已知函数图象,数形结合即可求得结果.【解析】(1)数形结合可知,y =x 2的图象关于y 轴对称,故其为偶函数;y =x ,y =x 3,y =1x的图象关于原点对称,故都为奇函数.(2)数形结合可知:y =x 的定义域是0,+∞ ,值域为0,+∞ ;y =x ,y =x 3的定义域都是R ,值域也是R ;y =1x的定义域为-∞,0 ∪0,+∞ ,值域也为-∞,0 ∪0,+∞ ;y =x 2的定义域为R ,值域为0,+∞ .(3)数形结合可知:y =x 的单调增区间是:0,+∞ ,无单调减区间;y =x ,y =x 3的单调增区间是:R ,无单调减区间;y =1x的单调减区间是:-∞,0 和0,+∞ ,无单调增区间;y =x 2的单调减区间是-∞,0 ,单调增区间是0,+∞ .(4)数形结合可知:幂函数均恒过1,1 点;幂函数在第一象限一定有图象,在第四象限一定没有图象.对幂函数y =x α,当α>0,其一定在0,+∞ 是单调增函数;当α<0,在0,+∞ 是单调减函数.3(2022高一上·全国·专题练习)如图所示是函数y =x mn(m 、n ∈N *且互质)的图象,则()A.m ,n 是奇数且mn<1 B.m 是偶数,n 是奇数,且m n<1C.m 是偶数,n 是奇数,且mn>1 D.m ,n 是偶数,且mn>1【答案】B【分析】根据图象得到函数的奇偶性及0,+∞ 上单调递增,结合m 、n ∈N *且互质,从而得到答案.【解析】由图象可看出y =x mn为偶函数,且在0,+∞ 上单调递增,故m n ∈0,1 且m 为偶数,又m 、n ∈N *且互质,故n 是奇数.故选:B02幂函数的性质及应用4(2023高三上·江苏徐州·学业考试)已知幂函数f x =m 2+2m -2 x m 在0,+∞ 上单调递减,则实数m 的值为()A.-3 B.-1C.3D.1【答案】A【分析】根据幂函数的定义,求得m =-3或m =1,结合幂函数的单调性,即可求解.【解析】由函数f x =m 2+2m -2 x m 为幂函数,可得m 2+2m -2=1,即m 2+2m -3=0,解得m =-3或m =1,当m =-3时,函数f x =x -3在0,+∞ 上单调递减,符合题意;当m =1时,函数f x =x 在0,+∞ 上单调递增,不符合题意.故选:A .5(23-24高三上·安徽·阶段练习)已知幂函数f x =m 2-5m +5 x m -2是R 上的偶函数,且函数g x =f x -2a -6 x 在区间1,3 上单调递增,则实数a 的取值范围是()A.-∞,4B.-∞,4C.6,+∞D.-∞,4 ∪6,+∞【答案】B【分析】根据幂函数的定义与奇偶性求出m 的值,可得出函数f x 的解析式,再利用二次函数的单调性可得出关于实数a 的不等式,即可解得实数a 的取值范围.【解析】因为幂函数f x =m 2-5m +5 x m -2是R 上的偶函数,则m 2-5m +5=1,解得m =1或m =4,当m =1时,f x =x -1,该函数是定义域为x x ≠0 的奇函数,不合乎题意;当m =4时,f x =x 2,该函数是定义域为R 的偶函数,合乎题意.所以,f x =x 2,则g x =x 2-2a -6 x ,其对称轴方程为x =a -3,因为g x 在区间1,3 上单调递增,则a -3≤1,解得a ≤4.故选:B .6(23-24高三上·上海静安·阶段练习)已知a ∈-1,2,12,3,13,若f x =x a为奇函数,且在0,+∞ 上单调递增,则实数a 的取值个数为()A.1个 B.2个C.3个D.4个【答案】B【分析】a =-1时,不满足单调性,a =2或a =12时,不满足奇偶性,当a =3或a =13时,满足要求,得到答案.【解析】当a =-1时,f x =x -1在0,+∞ 上单调递减,不合要求,当a =2时,f -x =-x 2=x 2=f x ,故f x =x 2为偶函数,不合要求,当a =12时,f x =x 12的定义域为0,+∞ ,不是奇函数,不合要求,当a =3时,f -x =-x 3=-x 3=-f x ,f x =x 3为奇函数,且f x =x 3在0,+∞ 上单调递增,满足要求,当a =13时,f -x =-x 13=-x 13=-f x ,故f x =x 13为奇函数,且f x =x 13在0,+∞ 上单调递增,满足要求.故选:B7(22-23高三下·上海·阶段练习)已知函数f x =x 13,则关于t 的表达式f t 2-2t +f 2t 2-1 <0的解集为.【答案】-13,1 【分析】利用幂函数的性质及函数的奇偶性和单调性即可求解.【解析】由题意可知,f x 的定义域为-∞,+∞ ,所以f -x =-x 13=-x 13=-f x ,所以函数f x 是奇函数,由幂函数的性质知,函数f x =x 13在函数-∞,+∞ 上单调递增,由f t 2-2t +f 2t 2-1 <0,得f t 2-2t <-f 2t 2-1 ,即f t 2-2t <f 1-2t 2 ,所以t 2-2t <1-2t 2,即3t 2-2t -1<0,解得-13<t <1,所以关于t 的表达式f t 2-2t +f 2t 2-1 <0的解集为-13,1 .故答案为:-13,1 .8(23-24高三上·河北邢台·期中)已知函数f x =m 2-m -1 x m 2+m -3是幂函数,且在0,+∞ 上单调递减,若a ,b ∈R ,且a <0<b ,a <b ,则f a +f b 的值()A.恒大于0B.恒小于0C.等于0D.无法判断【答案】B【分析】由幂函数的定义与性质求得函数解析式,确定其是奇函数,然后利用单调性与奇偶性可判断.【解析】由m 2-m -1=1得m =2或m =-1,m =2时,f (x )=x 3在R 上是增函数,不合题意,m =-1时,f (x )=x -3,在(0,+∞)上是减函数,满足题意,所以f (x )=x -3,a <0<b ,a <b ,则b >-a >0,f (-a )>f (b ),f (x )=-x 3是奇函数,因此f (-a )=-f (a ),所以-f (a )>f (b ),即f (a )+f (b )<0,故选:B .9(2023·江苏南京·二模)幂函数f x =x a a ∈R 满足:任意x ∈R 有f -x =f x ,且f -1 <f 2 <2,请写出符合上述条件的一个函数f x =.【答案】x 23(答案不唯一)【分析】取f x =x 23,再验证奇偶性和函数值即可.【解析】取f x =x 23,则定义域为R ,且f -x =-x 23=x 23=f x ,f -1 =1,f 2 =223=34,满足f -1 <f 2 <2.故答案为:x 23.10(2022高三·全国·专题练习)已知函数f (x )=x 2,g (x )=12x-m(1)当x ∈[-1,3]时,求f (x )的值域;(2)若对∀x ∈0,2 ,g (x )≥1成立,求实数m 的取值范围;(3)若对∀x 1∈0,2 ,∃x 2∈[-1,3],使得g (x 1)≤f (x 2)成立,求实数m 的取值范围.【答案】(1)[0,9];(2)m ≤-34;(3)m ≥-8.【分析】(1)由二次函数的性质得出值域;(2)将问题转化为求g (x )在0,2 的最小值大于或等于1,再根据指数函数的单调性得出实数m 的取值范围;(3)将问题转化为g (x )在0,2 的最大值小于或等于f (x )在[-1,3]上的最大值9,从而得出实数m 的取值范围.【解析】(1)当x ∈[-1,3]时,函数f (x )=x 2∈[0,9]∴f (x )的值域0,9(2)对∀x ∈0,2 ,g (x )≥1成立,等价于g (x )在0,2 的最小值大于或等于1.而g (x )在0,2 上单调递减,所以12 2-m ≥1,即m ≤-34(3)对∀x 1∈0,2 ,∃x 2∈[-1,3],使得g (x 1)≤f (x 2)成立,等价于g (x )在0,2 的最大值小于或等于f (x )在[-1,3]上的最大值9由1-m ≤9,∴m ≥-803指数、对数式的运算11(23-24高三上·山东泰安·阶段练习)(1)计算14-124ab -1 30.1-1⋅a 3⋅b -312的值;.(2)log 37+log 73 2-log 949log 73-log 73 2; (3)log 39+12lg25+lg2-log 49×log 38+2log 23-1+ln e 【答案】(1)85;(2)2;(3)4【分析】根据指数幂运算公式和对数运算公式计算即可.【解析】(1)原式=412⋅4ab -13210⋅a 32b -32=2⋅8a 32b-3210⋅a 32b-32=85;(2)原式=log 37+log 73 2-log 73 2-log 3272×log 37=log 37×log 37+2log 73 -log 37×log 37=log 37×2log 73=2;(3)原式=log 31232+lg5+lg2-log 2232×log 323+2log 23×2-1+ln e12=4+1-3+32+12=4.12(23-24高一上·湖北恩施·期末)(1)计算:lg 12-lg 58+lg12.5-log 89⋅log 278.(2)已知a 12+a -12=3,求a +a -1+2a 2+a -2-2的值.【答案】(1)13;(2)15【分析】(1)根据对数的运算法则和运算性质,即可求解;(2)根据实数指数幂的运算性质,准确运算,即可求解.【解析】(1)由对数的运算公式,可得原式=-lg2-lg5-3lg2 +3lg5-1-23log 32×log 23=13.(2)因为a 12+a -12=3,所以a +a -1+2=9,可得a +a -1=7,所以a 2+a -2+2=49,可得a 2+a -2=47,所以a +a -1+2a 2+a -2-2=7+247-2=15.04指数、对数函数的图像对比分析13(2024·四川·模拟预测)已知函数y =x a ,y =b x ,y =log c x 在同一平面直角坐标系的图象如图所示,则()A.log 12c <b a <sin bB.log 12c <sin b <b aC.sin b <b a <log 12cD.sin b <log 12c <b a【答案】B【分析】根据幂函数,指数与对数函数的性质可得a ,b ,c 的取值范围,进而根据指对数与三角函数的性质判断即可.【解析】因为y =x a 图象过1,1 ,故由图象可得a <0,又y =b x 图象过0,1 ,故由图象可得0<b <1,又y =log c x 图象过1,0 ,故由图象可得c >1.故log 12c <log 121=0,0<sin b <1,b a >b 0=1,故log 12c <sin b <b a .故选:B14(2024高三·全国·专题练习)在同一平面直角坐标系中,函数y =1a x,y =log a x +12 (a >0,且a ≠1)的图象可能是()A. B.C. D.【答案】D 【解析】略15(2024·陕西·模拟预测)已知函数f x 的部分图象如图所示,则f x 的解析式可能为()A.f x =e x -e -xB.f x =1-2e x+1C.f x =x xD.f x =x ln x 2+2【答案】D【分析】结合指数函数的图象与性质即可判断AB 选项错误,对C 代入x =2判断C 错误,则可得到D 正确.【解析】根据函数f (x )的图象,知f (1)≈1,而对A 选项f 1 =e -e -1>2排除A ;对B 选项f x =1-2e x +1,因为e x +1>1,则2e x +1∈0,2 ,则f x =1-2e x +1∈-1,1 ,但图象中函数值可以大于1,排除B ;根据C 选项的解析式,f (2)=22≈2.8,而根据函数f (x )的图象,知f (2)≈1,排除C . 故选:D .16(23-24高三上·山东潍坊·期中)已知指数函数y =a x ,对数函数y =log b x 的图象如图所示,则下列关系成立的是()A.0<a <b <1B.0<a <1<bC.0<b <1<aD.a <0<1<b【答案】B【分析】根据题意,由指数函数以及对数函数的单调性即可得到a ,b 的范围,从而得到结果.【解析】由图象可得,指数函数y =a x 为减函数,对数函数y =log b x 为增函数,所以0<a <1,b >1,即0<a <1<b .故选:B17(23-24高三上·黑龙江哈尔滨·阶段练习)函数f (x )=x 22x -2-x 的图象大致为()A. B.C. D.【答案】A【分析】利用函数的性质和特值法对不符合题意的选项加以排除,即可得出答案.【解析】因为2x -2-x ≠0,所以x ≠0,定义域为-∞,0 ∪0,+∞ ;因为f (x )=x 22x -2-x ,所以f -x =x 22-x -2x ,故f x =-f -x ,所以f x 为奇函数,排除B ,当x 趋向于正无穷大时,x 2、2x -2-x 均趋向于正无穷大,但随x 变大,2x -2-x 的增速比x 2快,所以f x 趋向于0,排除D ,由f 1 =23,f 12 =24,则f 1 >f 12,排除C .故选:A .05比较函数值或参数值的大小18(2024·全国·模拟预测)已知a =12a,12b=log a b ,a c=log12c ,则实数a ,b ,c 的大小关系为()A.a <b <cB.a <c <bC.c <b <aD.c <a <b【答案】D【分析】由函数单调性,零点存在性定理及画出函数图象,得到a ,b ,c ∈0,1 ,得到log a b <1=log a a ,求出b>a ,根据单调性得到c =12 a c<12a=a ,从而得到答案.【解析】令f x =12x-x ,其在R 上单调递减,又f 0 =1>0,f 1 =12-1=-12<0,由零点存在性定理得a ∈0,1 ,则y =log a x 在0,+∞ 上单调递减,画出y 1=12x与y =log a x 的函数图象,可以得到b ∈0,1 ,又y 2=a x 在R 上单调递减,画出y 2=a x 与y 3=log 12x 的函数图象,可以看出c∈0,1,因为12b<12 0=1,故log a b<1=log a a,故b>a,因为a,c∈0,1,故a c>a1=a,由a c=log12c得,c=12a c<12 a=a.综上,c<a<b.故选:D.【点睛】指数和对数比较大小的方法有:(1)画出函数图象,数形结合得到大小关系;(2)由函数单调性,可选取适当的“媒介”(通常以“0”或“1”为媒介),分别与要比较的数比较大小,从而间接地得出要比较的数的大小关系;(3)作差(商)比较法是比较两个数值大小的常用方法,即对两值作差(商),看其值与0(1)的关系,从而确定所比两值的大小关系.19(2023·江西赣州·二模)若log3x=log4y=log5z<-1,则()A.3x<4y<5zB.4y<3x<5zC.4y<5z<3xD.5z<4y<3x【答案】D【分析】设log3x=log4y=log5z=m<-1,得到x=3m,y=4m,z=5m,画出图象,数形结合得到答案.【解析】令log3x=log4y=log5z=m<-1,则x=3m,y=4m,z=5m,3x=3m+1,4y=4m+1,5z=5m+1,其中m+1<0,在同一坐标系内画出y=3x,y=4x,y=5x,故5z<4y<3x故选:D20(2024高三下·全国·专题练习)已知函数f x =e x,g x =ln x,正实数a,b,c满足f a =ga ,fb g b =g a ,gc +f g a c=0,则()A.b<a<cB.c<a<bC.a<c<bD.c<b<a【答案】B【分析】由f a =g a 可得0<a <1,结合f b g b =g a 可判断b 的范围,再由g c +f g a c =0可得ln c +a c =0,结合e a =1a 可判断a ,c 大小关系,进而可得答案.【解析】由题得,g x =1x ,由f a =g a ,得e a =1a ,即1a>1,所以0<a <1.由f b g b =g a ,得e b ln b =ln a ,因为ln a <0,e b >0,所以ln b <0,又e b >1,所以ln a =e b ln b <ln b ,所以0<a <b <1.由g c +f g a c =0,得ln c +e ln a c=0,即ln c +a c =0.易知a c >0,所以ln c <0,所以0<c <1,故a <a c .又e a =1a,所以a =-ln a ,所以-ln c =a c >a =-ln a ,所以ln c <ln a ,所以c <a ,所以c <a <b .故选:B .【点睛】思路点睛:比较大小常用方法:(1)同构函数,利用单调性比较;(2)取中间值进行比较;(3)利用基本不等式比较大小;(4)利用作差法比较大小.21(2023·浙江绍兴·二模)已知f x 是定义域为R 的偶函数,且在(-∞,0)上单调递减,a =f ln2.04 ,b =f -1.04 ,c =f e 0.04 ,则()A.a <b <cB.a <c <bC.c <b <aD.c <a <b【答案】A【分析】令g x =e x -x -1,利用导数求得g x 在(0,1)单调递增,得到g x >g 0 =0,得到e 0.04>1.04,再由对数函数的性质,得到ln2.04<1.04<e 0.04,再由函数f x 的单调性与奇偶性f ln2.04 <f 1.04 <f e 0.04 ,即可求解.【解析】令g x =e x -x -1,x ∈(0,1),可得g x =e x -1>0,所以g x 在(0,1)单调递增,又由g 0 =0,所以g x >g 0 =0,即g 0.04 >0,可得e 0.04>0.04+1=1.04,又由ln2.04∈(0,1),所以ln2.04<1.04<e 0.04,因为f x 是定义域为R 的偶函数,且在(-∞,0)上单调递减,则f x 在(0,+∞)上单调递增,且b =f -1.04 =f (1.04),所以f ln2.04 <f 1.04 <f e 0.04 ,即f ln2.04 <f -1.04 <f e 0.04 ,所以a <b <c .故选:A .06指数、对数(函数)的实际应用22(2024·安徽合肥·二模)常用放射性物质质量衰减一半所用的时间来描述其衰减情况,这个时间被称做半衰期,记为T (单位:天).铅制容器中有甲、乙两种放射性物质,其半衰期分别为T 1,T 2.开始记录时,这两种物质的质量相等,512天后测量发现乙的质量为甲的质量的14,则T 1,T 2满足的关系式为()A.-2+512T1=512T2B.2+512T1=512T2C.-2+log2512T1=log2512T2D.2+log2512T1=log2512T2【答案】B【分析】设开始记录时,甲乙两种物质的质量均为1,可得512天后甲,乙的质量,根据题意列出等式即可得答案.【解析】设开始记录时,甲乙两种物质的质量均为1,则512天后,甲的质量为:1 2512T1,乙的质量为:12 512T2,由题意可得12512T2=14⋅12 512T1=12 2+512T1,所以2+512T1=512T2.故选:B.23(2024·黑龙江哈尔滨·一模)酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:100mL血液中酒精含量达到20~79mg的驾驶员即为酒后驾车,80mg及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了0.6mg/mL.如果停止喝酒以后,他血液中酒精含量会以每小时30%的速度减少,那么他至少经过几个小时才能驾驶?( )(结果取整数,参考数据:lg3≈0.48,lg7≈0.85)A.1B.2C.3D.4【答案】D【分析】设经过x个小时才能驾驶,则0.6×100×1-30%x<20,再根据指数函数的性质及对数的运算计算可得.【解析】设经过x个小时才能驾驶,则0.6×100×1-30%x<20即0.7x<1 3 .由于y=0.7x在定义域上单调递减,x>log0.713=lg13lg0.7=lg1-lg3lg7-1=-0.480.85-1=0.480.15=3.2.他至少经过4小时才能驾驶.故选:D.07指数、对数函数的图像与性质综合及应用24(2024·山东聊城·二模)已知函数f x 为R上的偶函数,且当x>0时,f x =log4x-1,则f-223=()A.-23B.-13C.13D.23【答案】A【分析】根据偶函数的定义可得f-22 3=f223 ,结合函数解析式和对数的运算性质即可求解.【解析】因为f(x)为偶函数,所以f(-x)=f(x),则f-22 3=f223 =log4223-1=log22223-1=log2213-1=13-1=-23.故选:A25(2023·江西南昌·三模)设函数f x =a x0<a<1,g x =log b x b>1,若存在实数m满足:①f (m )+g (m )=0;②f (n )-g (n )=0,③|m -n |≤1,则12m -n 的取值范围是()A.-12,-14B.-12,-3-54C.-34,-12D.-3+54,-12【答案】D【分析】由①f (m )+g (m )=0,②f (n )-g (n )=0解出0<m <1,n >1,解出12m -n <-12;结合③转化为线性规划问题解出z >-3+54.【解析】函数f x =a x 0<a <1 ,g x =log b x b >1 ,若存在实数m 满足:①f (m )+g (m )=0;②f (n )-g (n )=0,即a m =-log b m ,且a n =log b n ,则a n -a m =log b mn <0,则0<mn <1,且0<m <1,n >1,所以12m -n <-12,又因为③|m -n |≤1,则0<mn <1m -n ≤1 ,令z =12m -n ,不防设x =m ,y =n ,则转化为线性规划问题,在A 点处z 取最小值.由y =1xy =x +1 解得x =-1+52y =5+12,代入解得z >-3+54.故选:D .26(2022高三·全国·专题练习)已知函数f x =log a ax +9-3a (a >0且a ≠1).(1)若f x 在1,3 上单调递增,求实数a 的取值范围;(2)若f 3 >0且存在x 0∈3,+∞ ,使得f x 0 >2log a x 0成立,求a 的最小整数值.【答案】(1)1,92 (2)7【分析】(1)设g x =ax +9-3a ,得到g x 在1,3 上是增函数,且g 1 >0,即可求解;(2)由f 3 >0,的得到a >1,把不等式f x 0 >2log a x 0,转化为a >x 0+3,结合题意,即可求解.【解析】(1)解:由函数f x =log a ax +9-3a ,设g x =ax +9-3a ,由a >0且a ≠1,可得函数g x 在1,3 上是增函数,所以a >1,又由函数定义域可得g 1 =9-2a >0,解得a <92,所以实数a 的取值范围是1,92.(2)解:由f 3 =log a 9>0,可得a >1,又由f x 0 >2log a x 0,可得log a ax 0+9-3a >log a x 20,所以ax 0+9-3a >x 20,即a >x 0+3,因为存在x 0∈3,+∞ ,使得f x 0 >2log a x 0成立,可得a >6,所以实数a 的最小整数值是7.27(23-24高二下·湖南·阶段练习)已知函数f x =x 2+x ,-2≤x ≤14log 12x ,14<x ≤c ,若f (x )的值域是[-2,2],则c 的值为()A.2B.22C.4D.8【答案】C【分析】画出函数图像,由分段函数中定义域的范围分别求出值域的取值范围再结合二次函数和对数运算可得正确结果.【解析】当-2≤x ≤14时,f x =x 2+x =x +12 2-14∈-14,2,因为f x 的值域是-2,2 ,又f x =log 12x 在14,c上单调递减,所以log 12c =-2,∴c =4.故选:C .28(22-23高一上·辽宁本溪·期末)若不等式x -1 2<log a x (a >0,且a ≠1)在x ∈1,2 内恒成立,则实数a 的取值范围为()A.1,2B.1,2C.1,2D.2,2【答案】B【分析】分析出0<a <1时,不成立,当a >1时,画出f x =log a x ,g x =x -1 2的图象,数形结合得到实数a 的取值范围.【解析】若0<a <1,此时x ∈1,2 ,log a x <0,而x -1 2≥0,故x -1 2<log a x 无解;若a >1,此时x ∈1,2 ,log a x >0,而x -1 2≥0,令f x =log a x ,g x =x -1 2,画出两函数图象,如下:故要想x -1 2<log a x 在x ∈1,2 内恒成立,则要log a 2>1,解得:a ∈1,2 .故选:B .29(2022高二下·浙江·学业考试)已知函数f x =3⋅2x +2,对于任意的x 2∈0,1 ,都存在x 1∈0,1 ,使得f x 1 +2f x 2+m =13成立,则实数m 的取值范围为.【答案】log 216,log 213 【分析】双变量问题,转化为取值范围的包含关系,列不等式组求解【解析】∵f x 1 ∈5,8 ∴13-f x 1 2∈52,4,∴f x 2+m =3⋅2x 2+m+2∈3⋅2m +2,3⋅21+m +2 ,由题意得3⋅2m +2≥523⋅2m +1+2≤4⇒2m≥162m +1≤23⇒log 216≤m ≤log 213 故答案为:log 216,log 21330(21-22高三上·湖北·阶段练习)已知函数p (x )=m x -4+1(m >0且m ≠1)经过定点A ,函数-∞,2 且a ≠1)的图象经过点A .(1)求函数y =f (2a -2x )的定义域与值域;(2)若函数g x =f (2x λ)⋅f (x 2)-4在14,4上有两个零点,求λ的取值范围.【答案】(1)定义域为(-∞,2),值域为(-∞,2);(2)[1,+∞)【分析】(1)根据对数函数的性质,求得定点A (4,2),代入函数f x =log a x ,求得a =2,进而求得y =f (2a -2x )=log 2(4-2x ),结合对数函数的性质,求得函数的定义域与值域;(2)由(1)知,化简得到函数g x =2λ(log 2x )2+2log 2x -4,设t =log 2x ,则t ∈[-2,2],转化为h x =2λt 2+2t -4在[-2,2]上有两个零点,结合二次函数的性质,分类讨论,即可求解.【解析】(1)解:令x -4=0,解得x =4,所以p (4)=m 0+1=2,所以函数p (x )过点A (4,2),将点A 的坐标代入函数f x =log a x ,可得log a 4=2,解得a =2,又由函数y =f (2a -2x )=log 2(4-2x ),由4-2x >0,解得x <2,所以函数y =f (2a -2x )的定义域为(-∞,2),又由0<4-2x <4,所以函数y =f (2a -2x )的值域为(-∞,2).(2)解:由(1)知,函数g x =f (2x λ)⋅f (x 2)-4=log 2(2x λ)⋅log 2x 2-4=2λ(log 2x )2+2log 2x -4在14,4上有两个零点,设t =log 2x ,则t ∈[-2,2],因为t 为关于x 的单调递增函数,所以g x 在14,4有两个零点,等价于函数h x =2λt 2+2t -4在[-2,2]上有两个零点,①当λ=0时,由h x =2t -4=0,可得t =2,函数h x 只有一个零点,所以λ=0不合题意;②当λ>0时,由Δ=4+32λ>0-2<-12λ<2h -2 =8λ-8≥0h 2 =8λ≥0,解得λ≥1;③当λ<0时,由Δ=4+32λ>0-2<-12λ<2h -2 =8λ-8≤0h 2 =8λ≤0,此时不等式组的解集为空集,综上可得,实数λ的取值范围是[1,+∞).一、单选题1(2024·黑龙江·二模)已知函数y =a 12|x |+b 的图象经过原点,且无限接近直线y =2,但又不与该直线相交,则ab =()A.-1 B.-2C.-4D.-9【答案】C【分析】由题意可得a +b =0且b =2,求出a ,即可求解.【解析】因为函数y =f (x )=a 12 x +b 图象过原点,所以a 12+b =0,得a +b =0,又该函数图象无限接近直线y =2,且不与该直线相交,所以b =2,则a =-2,所以ab =-4.故选:C2(2024·上海闵行·二模)已知y =f (x ),x ∈R 为奇函数,当x >0时,f (x )=log 2x -1,则集合{x |f (-x )-f (x )<0}可表示为()A.(2,+∞)B.(-∞,-2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(2,+∞)【答案】D【分析】利用函数奇偶性可得不等式f (-x )-f (x )<0等价于f (x )>0,再求出函数解析式,利用对数函数单调性解不等式可得结果.【解析】因为y =f (x )为奇函数,所以f (-x )-f (x )<0等价于-2f (x )<0,即f (x )>0;当x >0时,f (x )=log 2x -1,即f (x )=log 2x -1>0,解得x >2;当x <0时,-x >0,可得f (-x )=-f x =log 2-x -1,所以f x =1-log 2-x ,解不等式f x =1-log 2-x >0,可得-2<x <0,综上可得集合{x |f (-x )-f (x )<0}可表示为(-2,0)∪(2,+∞).故选:D3(2024·北京通州·二模)某池塘里原有一块浮萍,浮萍蔓延后的面积S (单位:平方米)与时间t (单位:月)的关系式为S =a t +1(a >0,且a ≠1),图象如图所示.则下列结论正确的个数为()①浮萍每个月增长的面积都相等;②浮萍蔓延4个月后,面积超过30平方米;③浮萍面积每个月的增长率均为50%;④若浮萍蔓延到3平方米、4平方米、12平方米所经过的时间分别是t 1,t 2,t 3,则t 1+t 2=t 3.A.0B.1C.2D.3【答案】B【分析】由已知可得出S =2t +1,计算出萍蔓延1月至2月份增长的面积和2月至3月份增长的面积,可判断①的正误;计算出浮萍蔓延4个月后的面积,可判断②的正误;计算出浮萍蔓延每个月增长率,可判断③的正误;利用指数运算可判断④的正误.【解析】由已知可得a 1=2,则S =2t +1.对于①,浮萍蔓延1月至2月份增长的面积为23-22=4(平方米),浮萍蔓延2月至3月份增长的面积为24-23=8(平方米),①错;对于②,浮萍蔓延4个月后的面积为25=32(平方米),②对;对于③,浮萍蔓延第n 至n +1个月的增长率为2n +2-2n +12n +1=1,所以,浮萍蔓延每个月增长率相同,都是100%,③错;对于④,若浮萍蔓延到3平方米、4平方米、12平方米所经过的时间分别是t 1,t 2,t 3,则2t 1+1=3,2t 2+1=4,2t 3+1=12=3×4=2t 1+1⋅2t 2+1=2t 1+t 2+2,所以t 3=t 1+t 2+1,④错.故选:B .4(2024·天津红桥·二模)若a =2313,b =log 1225,c =3-14,则a ,b ,c 的大小关系为()A.a >b >cB.b >c >aC.b >a >cD.a <b <c【答案】C【分析】根据给定条件,利用幂函数、对数函数性质,并借助媒介数比较大小.【解析】b =log 1225>log 1212=1,a =23 13=23 4 112=1681 112>381 112=1314=c ,而a =2313<1,所以a ,b ,c 的大小关系为b >a >c .故选:C5(2024·全国·模拟预测)已知函数f (x )=log a x 3-ax 2+x -2a (a >0且a ≠1)在区间(1,+∞)上单调递减,则a 的取值范围是()A.0,23 B.23,1C.(1,2]D.[2,+∞)【答案】A【分析】对数函数的单调性与底数有关,分0<a <1和a >1两种情况讨论,此外还要注意对数函数的定义域,即真数为正;复合函数单调性满足“同增异减”,根据对数函数单调性结合题干中“在区间(1,+∞)上单调递减”得到真数部分函数的单调性,从而求得a 的取值范围.【解析】设函数g x =x 3-ax 2+x -2a ,则g x =3x 2-2ax +1.①若0<a <1,则y =log a x 在定义域上单调递减.又f x =log a x 3-ax 2+x -2a 在区间1,+∞ 上单调递减,所以g x 在区间1,+∞ 上单调递增,故gx ≥0对任意的x ∈1,+∞ 恒成立.又g 1 =4-2a ≥0,所以对任意的x ∈1,+∞ ,g x ≥0显然成立.又因为g x >0对任意x ∈1,+∞ 恒成立,所以g 1 =2-3a ≥0,故0<a ≤23.②若a >1,则y =log a x 在定义域上单调递增.又f x =log a x 3-ax 2+x -2a 在区间1,+∞ 上单调递减,所以g x 在区间1,+∞ 上单调递减,故gx ≤0对任意的x ∈1,+∞ 恒成立.因为抛物线y =3x 2-2ax +1的开口向上,所以g x ≤0不可能对任意的x ∈1,+∞ 恒成立.所以a 的取值范围为0,23.故选:A .6(2024·宁夏固原·一模)已知函数f x 的部分图像如图所示,则f x 的解析式可能为()A.f x =e x -e -x 4x -3 B.f x =e x -e -x3-4x C.f x =e x +e -x4x -3D.f x =x x -1【答案】A【分析】利用f x 在1,+∞ 上的值排除B ,利用奇偶性排除排除C ,利用f x 在1,+∞ 上的单调性排除D ,从而得解.【解析】对于B ,当x >1时,f x =e x -e -x 3-4x,易知e x -e -x >0,3-4x <0,则f x <0,不满足图象,故B 错误;对于C ,f x =e x +e -x 4x -3,定义域为-∞,-34 ∪-34,34 ∪34,+∞ ,又f (-x )=e -x +e x 4-x -3=e x +e -x4x -3=f (x ),则f x 的图象关于y 轴对称,故C 错误;对于D ,当x >1时,f x =x x -1=x x -1=1+1x -1,由反比例函数的性质可知,f x 在1,+∞ 上单调递减,故D 错误;检验选项A ,f x =e x -e -x4x -3满足图中性质,故A 正确.故选:A .7(2024·陕西西安·模拟预测)已知函数f x =12x +1,x <01x +2,x ≥0,则不等式f a 2-1 >f 3 的解集为()A.-2,2B.0,+∞C.-∞,0D.-∞,-2 ∪2,+∞【答案】A【分析】判断函数f x 的单调性,再利用单调性解不等式即可.【解析】f x =12x +1,x <01x +2,x ≥0,易知y =12x +1在-∞,0 单调递减,y =1x +2在0,+∞ 单调递减,且f x 在x =0处连续,故f x 在R 上单调递减,由f a 2-1 >f 3 ,则a 2-1<3,解得-2<a <2,故不等式f a 2-1 >f 3 的解集为-2,2 .故选:A8(2024·甘肃兰州·一模)已知y =f x 是定义在R 上的奇函数,且对于任意x 均有f x +1 +f x -1 =0,当0<x ≤1时,f x =2x -1,若f [ln (ea )]>f (ln a )(e 是自然对数的底),则实数a 的取值范围是()A.e -1+2k <a <e 1+2k (k ∈Z )B.e -32+k <a <e 12+2k(k ∈Z )C.e -1+4k <a <e 1+4k (k ∈Z ) D.e-32+4k <a <e 12+4k(k ∈Z )【答案】D【分析】首先分析函数的周期性与对称性,画出函数在-2,2 上的函数图象,结合图象可知在-2,2 内要满足f [ln (ea )]>f (ln a ),只需-32<ln a <12,即可求出a 的范围,再结合周期性即可得解.【解析】因为y =f x 是定义在R 上的奇函数,所以f 0 =0且图象关于原点对称,又f x +1 +f x -1 =0,所以f x +1 =-f x -1 =f 1-x ,所以f x +4 =f 1-x +3 =-f 2+x =-f 1-x +1 =-f -x =f x ,f -1+x =f 3+x =f 1-2+x =f -1-x ,f 2+x =f -2+x =-f 2-x ,所以函数的周期为4且函数图象关于x =1+2k k ∈Z 和2k ,0 k ∈Z 对称,又当0<x ≤1时,f x =2x -1,所以f x 在区间-2,2 上的图象如下所示:由图可知,在-2,2 内要满足f [ln (ea )]=f (1+ln a )>f (ln a ),则-32<ln a <12,即e -32<a <e 12,再根据函数的周期性可知e -32+4k <a <e12+4k(k ∈Z ).故选:D【点睛】关键点点睛:本题关键是由题意分析出函数的周期为4且函数图象关于x =1+2k k ∈Z 和2k ,0 k ∈Z 对称,再结合函数在-2,2 上的图象.二、多选题9(2024·河南洛阳·模拟预测)下列正确的是()A.2-0.01>2-0.001B.log 23>log 2π-1C.log 1.85<log 1.75D.log 33.01>e -0.01【答案】BCD【分析】利用指数函数的性质判断A ;由对数函数的性质判断B ,C ;由对数函数的性质可得log 33.01>1,由指数函数的性质可得e -0.01<1,即可判断.【解析】解:对于A ,因为-0.01<-0.001,所以2-0.01<2-0.001,所以A 错误;对于B ,因为log 23>log 2π2=log 2π-1,所以B 正确;对于C ,因为log 1.85>0,log 1.75>0,所以log 1.85=ln5ln1.8<ln5ln1.7=log 1.75,所以C 正确;对于D ,因为log 33.01>log 33=1,e -0.01<e 0=1,所以log 33.01>e -0.01,所以D 正确.故选:BCD .10(2024·全国·模拟预测)已知实数a ,b 满足log 3a +log b 3=log 3b +log a 4,则下列关系式中可能正确的是()A.∃a ,b ∈(0,+∞),使|a -b |>1B.∃a ,b ∈(0,+∞),使ab =1C.∀a ,b ∈(1,+∞),有b <a <b 2D.∀a ,b ∈(0,1),有b <a <b【答案】ABC【分析】由原方程可得log 3b -1log 3b=log 3a -1log 4a ,构适函数,由函数的单调性得出值域,根据函数的值域判断A ;令ab =1,代入原方程转化为判断(ln b )2=ln3×ln122是否有解即可判断B ;条件变形放缩后构造函数,利用函数的单调性得出a ,b 大小,判断CD .【解析】由log 3a +log b 3=log 3b +log a 4得log 3b -1log 3b=log 3a -1log 4a ,令f (x )=log 3x -1log 3x ,则f (x )分别在(0,1)和(1,+∞)上单调递增,令g (x )=log 3x -1log 4x,则g (x )分别在(0,1)和(1,+∞)上单调递增,当x ∈(0,1)时,f x 的值域为R ,当x ∈(2,+∞)时,g (x )的值域为log 32-2,+∞ ,所以存在b ∈(0,1),a ∈(2,+∞),使得f (b )=g (a );同理可得,存在b ∈(2,+∞),a ∈(0,1),使得f (b )=g (a ),因此∃a ,b ∈(0,+∞),使|a -b |>1,故选项A 正确.令ab =1,则方程log 3a +log b 3=log 3b +log a 4可化为log b 3+log b 4=2log 3b ,由换底公式可得(ln b )2=ln3×ln122>0,显然关于b 的方程在(0,+∞)上有解,所以∃a ,b ∈(0,+∞),使ab =1,故选项B 正确.当a ,b ∈(1,+∞)时,因为log 3b -1log 3b =log 3a -1log 4a <log 3a -1log 3a ,所以f (b )<f (a ).又f x 在(1,+∞)上单调递增,所以b <a .因为log 3b -1log 3b=log 3a -1log 4a >log 4a -1log 4a ,令h (x )=x -1x,则h (x )在(0,+∞)上单调递增.因为h log 3b >h log 4a ,所以log 3b >log 4a ,从而log 3b >log 4a =log 2a >log 3a ,所以b >a .综上所述,b <a <b 2,故选项C 正确.当a ,b ∈(0,1)时,因为log 3b -1log 3b =log 3a -1log 4a >log 3a -1log 3a ,所以f (b )>f (a ).又f x 在(0,1)上单调递增,所以b >a .因为log 3b -1log 3b=log 3a -1log 4a <log 4a -1log 4a .令h (x )=x -1x,则h (x )在(0,+∞)上单调递增,因为h log 3b <h log 4a ,所以log 3b <log 4a ,从而log 3b <log 4a =log 2a <log 3a ,所以b <a .综上所述,b 2<a <b ,故选项D 错误.故选:ABC .【点睛】关键点点睛:本题的关键是根据对数式的运算规则和对数函数的单调性求解.11(2024·重庆·三模)已知函数f x =log 62x +3x ,g x =log 36x -2x .下列选项正确的是()A.f 12<g 12 B.∃x 0∈0,1 ,使得f x 0 =g x 0 =x 0C.对任意x ∈1,+∞ ,都有f x <g xD.对任意x ∈0,+∞ ,都有x -f x ≤g x -x【答案】BCD【分析】根据2+3>6,3>6-2即可判断A ;根据2x 0+3x 0=6x 0,令h x =6x -2x -3x ,结合零点的存在性定理即可判断B ;由f x -x =log 613 x +12 x 、g x -x =log 32x-23 x ,结合复合函数的单调性可得f x -x 和g x -x 的单调性,即可判断C ;由选项BC 的分析可得6f x-6x =3x -3g x,分类讨论当x ∈0,x 0 、x ∈x 0,+∞ 时x -f x 与g x -x 的大小,进而判断D .【解析】A :因为2+3 2=5+26>6 2,所以2+3>6,3>6- 2.因为f 12 =log 62+3 >log 66=12,g 12 =log 36-2 <log 33=12,所以f 12 >g 12,故A 错误;B :若f x 0 =g x 0 =x 0,则f x 0 =log 62x 0+3x 0=x 0=log 66x 0,即2x 0+3x 0=6x,g x 0 =log 36x 0-2x 0 =x 0=log 33x 0,可得6x 0-2x 0=3x 0,令h x =6x -2x -3x ,因为h 0 =-1,h 1 =1,所以∃x 0∈0,1 ,使得h x 0 =0,即2x 0+3x 0=6x 0,故B 正确;C :因为f x -x =log 62x +3x -log 66x =log 62x +3x 6x =log 613 x +12 x ,且y =13 x +12 x 在1,+∞ 上单调递减,所以f x -x 也单调递减,可得f x -x <log 612+13<0,因为g x -x =log 36x -2x -log 33x =log 36x -2x 3x =log 32x -23 x .又y =2x -23 x 在1,+∞ 上单调递增,所以g x -x 也单调递增,得g x -x >log 32-23>0,即f x -x <g x -x ,因此,对于任意的x ∈1,+∞ ,都有f x <g x ,故C 正确;D :由B 可知:∃x 0∈0,1 ,使得h x 0 =0,结合C 的结论,可知当x ∈0,x 0 ,f x >x ,g x <x ,即g x <x <f x ,当x ∈x 0,+∞ 时,f x <x ,g x >x ,即f x <x <g x ,因为6f x =2x +3x ,3g x =6x -2x ,得2x =6f x -3x =6x -3g x ,即6f x -6x =3x -3g x ,当x ∈0,x 0 时,有6x 6f x -x -1 =3g x 3x -g x -1 ,因为6x >3g x ,所以6f x -x -1<3x -g x -1,所以0<f x -x <x -g x ,因此可得g x -x ≤x -f x <0,即x -f x ≤g x -x ,当x ∈x 0,+∞ ,有6f x 6x -f x -1 =3x 3g x -x -1 ,因为6f x >3x ,所以6x -f x -1<3g x -x -1,可得0<x -f x <g x -x ,即x -f x ≤g x -x ,因此,对于任意的x ∈0,+∞ ,都有x -f x ≤g x -x ,故D 正确.故选:BCD .【点睛】方法点睛:证明不等式的恒成立问题的求解策略:形如f x ≥g x 的恒成立的求解策略:1、构造函数法:令F x =f x -g x ,利用导数或基本函数的单调性求得函数F x 的单调性与最小值,只需F x min ≥0恒成立即可;2、参数分离法:转化为a ≥φx 或a ≤φx 恒成立,即a ≥φx max 或a ≤φx min 恒成立,只需利用导数求得函数φx 的单调性与最值即可;3,数形结合法:结合函数y =f x 的图象在y =g x 的图象的上方(或下方),进而得到不等式恒成立.三、填空题12(2023·河南·模拟预测)已知幂函数f x =m 2-6m +9 x m 满足f 1 =2,则f 2 =.【答案】4【分析】由幂函数的定义结合导数求得m ,进而可得答案.【解析】由幂函数的定义可得m 2-6m +9=1,解得m =2或m =4,当m =2时,f x =x 2,f x =2x ,f 1 =2符合题意;当m =4时,f x =x 4,f x =4x 3,f 1 =4,不符合题意.故f x =x 2,f 2 =4.故答案为:4.13(2024·全国·模拟预测)已知函数f x =x x -1,g x =e x -1-e -x +1+1,则f x 与g x 的图象交点的纵坐标之和为.【答案】2【分析】分析函数的奇偶性,由图象的平移变换求解即可.【解析】对于f x =x x -1=1x -1+1,可以把f x 的图象看作:由f 1x =1x -1的图象向上平移1个单位长度得到,而f 1x 的图象可看作由f 2x =1x 的图象向右平移1个单位长度得到;对于g x =e x -1-e -x +1+1=e x -1-1e x -1+1的图象可看作由g 1x =e x -1-1e x -1的图象向上平移1个单位长度得到,而g 1x 的图象可看作由g 2x =e x -1e x 的图象向右平移1个单位长度得到.易知f 2x =1x 与g 2x =e x -1ex 都为奇函数,公众号:慧博高中数学最新试题则易知f 2x 与g 2x 的图象共有两个关于原点对称的交点,且交点的纵坐标之和为0.因为将函数图象向右平移不改变f 1x 与g 1x 两函数图象交点处函数值的大小,所以f 1x 与g 1x 的图象交点的纵坐标之和为0,又将函数图象向上平移1个单位长度会使得原交点处的函数值都增加1,则f x 与g x 的图象的两个交点的纵坐标与f 1x 与g 1x 的图象两个交点的纵坐标相比都增加1,故f x 与g x 的图象交点的纵坐标之和为2.故答案为:214(2024·全国·模拟预测)已知定义在-∞,0 ∪0,+∞ 上的函数f x ,对于定义域内任意的x ,y ,都有f xy =f x +f y ,且f x 在0,+∞ 上单调递减,则不等式f x <log 2x +12的解集为.【答案】x x <-1 或x >1【分析】由f xy =f x +f y ,利用赋值法,得到函数f x 的奇偶性,构造函数F x =f x -log 2x +12,研究其单调性和奇偶性,再由F 1 =0,将不等式f x <log 2x +12转化为F x <F 1 求解.【解析】由f xy =f x +f y ,令x =y =1,得f 1 =f 1 +f 1 ,所以f 1 =0.令x =y =-1,得f -1 =0.令y =-1,得f -x =f x +f -1 =f x ,所以函数f x 为偶函数.构造函数F x =f x -log 2x +12,因为F -x =F x ,所以F x 为偶函数,且在0,+∞ 上为减函数.因为F 1 =f 1 -log 21+12=0,所以不等式f x <log 2x +12等价于F x =f x -log 2x +12<0=F 1 ,所以F x <F 1 ,即x >1,所以x <-1或x >1,故不等式f x <log 2x +12的解集为x |x <-1 或x >1 .故答案为:x |x <-1 或x >1 .。
对数及对数函数1、对数的基本概念(1)一般地,如果a (1,0≠>a a )的b 次幂等于N ,就是N a b =,那么数b 叫做以a 为底N 的对数, 记作b N a=log ,其中a 叫做对数的底数,N 叫做真数,式子N a log 叫做对数式(2)常用对数:N 10log ,记作N lg ; 自然对数N e log (e =2.71828…),记作N ln .(3)指数式与对数式的关系:log xa a N x N =⇔=(0>a ,且1≠a ,0N >)(4)对数恒等式:2、对数的性质(1)负数和零没有对数,即0>N ; (2)1的对数是零,即01log =a ; (3)底的对数等于1,即1log =a a3、对数的运算性质(1)如果a >0,a ≠1,M >0,N >0,那么①N M MN a a a log log )(log +=; ②N M NMa a alog log log -=; ③M n M a n alog log =(2)换底公式: 推论:① b N N b log 1log =; ② ; ③ 1log log =⋅a b b a4、对数函数的定义:函数 叫做对数函数,其中x 是自变量(1)研究对数函数的图象与性质:由于对数函数 与指数函数 互为反函数,所以 的图像和 的图像关于直线 对称。
(2)复习)10(≠>=a a a y x且的图象和性质()010log >≠>=N a a N aNa ,且bNN a a b log log log =b mn b a na m log log =a y log x =(a 0a 1)>≠且a y log x =x y a =a y log x=xy a =y x =2.对数函数的图像:3.对数函数的性质:【回顾一下】① 定义:函数 称为对数函数,1) 函数的定义域为 ;2) 函数的值域为 ; 3) 当____ __时,函数为减函数,当_________时为增函数; 4) 函数与函数 ______ 互为反函数.① 1) 图象经过点( ),图象在 ;2) 对数函数以 为渐近线(当时,图象向上无限接近y 轴;当时,图象向下无限接近y 轴); 4) 函数y =log a x 与 的图象关于x 轴对称. ① 函数值的变化特征:题型一、对数式的运算 例题1:填空(1)[])81(log loglog 346=_____ ___; (2)19lg 3lg 2+-= ;(3)04.0log 10log 222+=_____ ___; (4)3log 28log 316161+=_____ ___; (5)=⋅⋅⋅4log 5log 7log 3log 7352例题2:若a y x =-lg lg ,则=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛332lg 2lg y x ( ).A a 3 .Ba 23 .C a .D 2a 题型二 变式、对数运算性质运用 变式1:计算变式2:3128x y ==,则11x y-= .xy a log =)1,0(≠>=a a a y x 且10<<a 1>a 2(lg 2)lg 2lg 50lg 25+⋅+题型三、解对数式方程例题1:已知216log =x ,则=x ( ).A 2 .B 4 .C 8 .D 32例题2:已知 ① 3log 1log 266-=x ,求x 的值 ; ② 2)25(log 22=--x x ,求x 的值。
4.4 对数函数最新课程标准:(1)通过具体实例,了解对数函数的概念.能用描点法或借助计算工具画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点.(2)知道对数函数y =log a x 与指数函数y =a x互为反函数(a >0,且a≠1).(3)收集、阅读对数概念的形成与发展的历史资料,撰写小论文,论述对数发明的过程以及对数对简化运算的作用.知识点一 对数函数的概念函数y =log a x(a >0,且a≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 状元随笔 形如y =2log 2x ,y =log 2x3都不是对数函数,可称其为对数型函数.知识点二 对数函数的图象与性质a >10<a <1图 象性 质定义域(0,+∞)值域R过点(1,0),即当x =1时,y =0在(0,+∞)上是增函数在(0,+∞)上是减函数状元随笔 底数a 与1的大小关系决定了对数函数图象的“升降”:当a >1时,对数函数的图象“上升”;当0<a <1时,对数函数的图象“下降”.知识点三 反函数一般地,指数函数y =a x(a >0,且a≠1)与对数函数y =log a x(a >0,且a≠1)互为反函数,它们的定义域与值域正好互换. [教材解难] 1.教材P 130思考根据指数与对数的关系,由y =⎝ ⎛⎭⎪⎫125730x(x≥0)得到x =log 573012y(0<y≤1).如图,过y 轴正半轴上任意一点(0,y 0)(0<y 0≤1)作x 轴的平行线,与y =⎝ ⎛⎭⎪⎫125730x (x≥0)的图象有且只有一个交点(x 0,y 0).这就说明,对于任意一个y∈(0,1],通过对应关系x=log573012y,在[0,+∞)上都有唯一确定的数x和它对应,所以x也是y的函数.也就是说,函数x=log573012y,y∈(0,1]刻画了时间x随碳14含量y的衰减而变化的规律.2.教材P132思考利用换底公式,可以得到y=log12x=-log2x.因为点(x,y)与点(x,-y)关于x轴对称,所以y=log2x图象上任意一点P(x,y)关于x轴的对称点P1(x,-y)都在y=log12x的图象上,反之亦然.由此可知,底数互为倒数的两个对数函数的图象关于x轴对称.根据这种对称性,就可以利用y=log2x的图象画出y=log12x的图象.3.教材P138思考一般地,虽然对数函数y=log a x(a>1)与一次函数y=kx(k>0)在区间(0,+∞)上都单调递增,但它们的增长速度不同.随着x的增大,一次函数y=kx(k>0)保持固定的增长速度,而对数函数y=log a x(a >1)的增长速度越来越慢.不论a的值比k的值大多少,在一定范围内,log a x可能会大于kx,但由于log a x 的增长慢于kx的增长,因此总会存在一个x0,当x>x0时,恒有log a x<kx.4.4.1 对数函数的概念[基础自测]1.下列函数中是对数函数的是( ) A .y =log 14x B .y =log 14 (x +1)C .y =2log 14xD .y =log 14x +1 解析:形如y =log a x(a >0,且a≠1)的函数才是对数函数,只有A 是对数函数. 答案:A2.函数y =xln(1-x)的定义域为( ) A .(0,1) B .[0,1) C .(0,1] D .[0,1]解析:由题意,得⎩⎪⎨⎪⎧x≥0,1-x >0,解得0≤x<1;故函数y =xln(1-x)的定义域为[0,1).答案:B3.函数y =log a (x -1)(0<a <1)的图象大致是( )解析:∵0<a <1,∴y=log a x 在(0,+∞)上单调递减,故A ,B 可能正确;又函数y =log a (x -1)的图象是由y =log a x 的图象向右平移一个单位得到,故A 正确. 答案:A4.若f(x)=log 2x ,x∈[2,3],则函数f(x)的值域为________. 解析:因为f(x)=log 2x 在[2,3]上是单调递增的, 所以log 22≤log 2x≤log 23,即1≤log 2x≤log 23. 答案:[1,log 23]题型一 对数函数的概念例1 下列函数中,哪些是对数函数? (1)y =log a x(a >0,且a≠1); (2)y =log 2x +2;(3)y=8log2(x+1);(4)y=log x6(x>0,且x≠1);(5)y=log6x.【解析】(1)中真数不是自变量x,不是对数函数.(2)中对数式后加2,所以不是对数函数.(3)中真数为x+1,不是x,系数不为1,故不是对数函数.(4)中底数是自变量x,而非常数,所以不是对数函数.(5)中底数是6,真数为x,系数为1,符合对数函数的定义,故是对数函数.用对数函数的概念例如y=log a x(a>0且a≠1)来判断.方法归纳判断一个函数是对数函数的方法跟踪训练1 若函数f(x)=(a2-a+1)log(a+1)x是对数函数,则实数a=________.解析:由a2-a+1=1,解得a=0或a=1.又底数a+1>0,且a+1≠1,所以a=1.答案:1对数函数y=log a x系数为1.题型二求函数的定义域[教材P130例1]例2 求下列函数的定义域:(1)y=log3x2;(2)y=log a(4-x)(a>0,且a≠1).【解析】(1)因为x2>0,即x≠0,所以函数y=log3x2的定义域是{x|x≠0}.(2)因为4-x>0,即x<4,所以函数y=log a(4-x)的定义域是{x|x<4}.真数大于0.教材反思求定义域有两种题型,一种是已知函数解析式求定义域,常规为:分母不为0;0的零次幂与负指数次幂无意义;偶次根式被开方式(数)非负;对数的真数大于0,底数大于0且不等于1.另一种是抽象函数的定义域问题.同时应注意求函数定义域的解题步骤.跟踪训练2 求下列函数的定义域: (1)y =lg(x +1)+3x21-x; (2)y =log (x -2)(5-x). 解析:(1)要使函数有意义,需⎩⎪⎨⎪⎧x +1>0,1-x >0,即⎩⎪⎨⎪⎧x >-1,x <1.∴-1<x <1,∴函数的定义域为(-1,1). (2)要使函数有意义,需⎩⎪⎨⎪⎧ 5-x >0,x -2>0,x -2≠1,∴⎩⎪⎨⎪⎧x <5,x >2,x≠3.∴定义域为(2,3)∪(3,5).真数大于0,偶次根式被开方数大于等于0,分母不等于0,列不等式组求解. 题型三 对数函数的图象问题例3 (1)函数y =x +a 与y =log a x 的图象只可能是下图中的( )(2)已知函数y =log a (x +3)-1(a >0,a≠1)的图象恒过定点A ,若点A 也在函数f(x)=3x+b 的图象上,则f(log 32)=________.(3)如图所示的曲线是对数函数y =log a x ,y =log b x ,y =log c x ,y =log d x 的图象,则a ,b ,c ,d 与1的大小关系为________.【解析】 (1)A 中,由y =x +a 的图象知a >1,而y =log a x 为减函数,A 错;B 中,0<a <1,而y =log a x 为增函数,B 错;C 中,0<a <1,且y =log a x 为减函数,所以C 对;D 中,a <0,而y =log a x 无意义,也不对.(2)依题意可知定点A(-2,-1),f(-2)=3-2+b =-1,b =-109,故f(x)=3x-109,f(log 32)=33log 2-109=2-109=89. (3)由题干图可知函数y =log a x ,y =log b x 的底数a >1,b >1,函数y =log c x ,y =log d x 的底数0<c <1,0<d <1.过点(0,1)作平行于x 轴的直线,则直线与四条曲线交点的横坐标从左向右依次为c ,d ,a ,b ,显然b >a >1>d >c.【答案】 (1)C (2)89(3)b >a >1>d >c状元随笔 (1)由函数y =x +a 的图象判断出a 的范围. (2)依据log a 1=0,a 0=1,求定点坐标.(3)沿直线y =1自左向右看,对数函数的底数由小变大. 方法归纳解决对数函数图象的问题时要注意(1)明确对数函数图象的分布区域.对数函数的图象在第一、四象限.当x 趋近于0时,函数图象会越来越靠近y 轴,但永远不会与y 轴相交.(2)建立分类讨论的思想.在画对数函数图象之前要先判断对数的底数a 的取值范围是a >1,还是0<a <1.(3)牢记特殊点.对数函数y =log a x(a >0,且a≠1)的图象经过点:(1,0),(a,1)和⎝ ⎛⎭⎪⎫1a ,-1.跟踪训练3(1)如图所示,曲线是对数函数y =log a x(a >0,且a≠1)的图象,已知a 取3,43,35,110,则相应于C 1,C 2,C 3,C 4的a 值依次为( )A.3,43,35,110B.3,43,110,35C.43,3,35,110D.43,3,110,35(2)函数y =log a |x|+1(0<a <1)的图象大致为( )解析:(1)方法一 作直线y =1与四条曲线交于四点,由y =log a x =1,得x =a(即交点的横坐标等于底数),所以横坐标小的底数小,所以C 1,C 2,C 3,C 4对应的a 值分别为3,43,35,110,故选A.方法二 由对数函数的图象在第一象限内符合底大图右的规律,所以底数a 由大到小依次为C 1,C 2,C 3,C 4,即3,43,35,110.故选A.增函数底数a >1, 减函数底数0<a <1.(2)函数为偶函数,在(0,+∞)上为减函数,(-∞,0)上为增函数,故可排除选项B ,C ,又x =±1时y =1,故选A.先去绝对值,再利用单调性判断. 答案:(1)A (2)A课时作业 23一、选择题1.下列函数是对数函数的是( ) A .y =2+log 3xB .y =log a (2a)(a >0,且a≠1)C .y =log a x 2(a >0,且a≠1) D .y =ln x解析:判断一个函数是否为对数函数,其关键是看其是否具有“y=log a x”的形式,A ,B ,C 全错,D 正确.答案:D2.若某对数函数的图象过点(4,2),则该对数函数的解析式为( ) A .y =log 2x B .y =2log 4x C .y =log 2x 或y =2log 4x D .不确定解析:由对数函数的概念可设该函数的解析式为y =log a x(a >0,且a≠1,x >0),则2=log a 4即a 2=4得a =2.故所求解析式为y =log 2x.答案:A3.设函数y =4-x 2的定义域为A ,函数y =ln(1-x)的定义域为B ,则A∩B=( ) A .(1,2) B .(1,2] C .(-2,1) D .[-2,1)解析:由题意可知A ={x|-2≤x≤2},B ={x|x <1},故A∩B={x|-2≤x<1}. 答案:D4.已知a >0,且a≠1,函数y =a x与y =log a (-x)的图象只能是下图中的( )解析:由函数y =log a (-x)有意义,知x <0,所以对数函数的图象应在y 轴左侧,可排除A ,C.又当a >1时,y =a x为增函数,所以图象B 适合.答案:B 二、填空题5.若f(x)=log a x +(a 2-4a -5)是对数函数,则a =________. 解析:由对数函数的定义可知 ⎩⎪⎨⎪⎧a 2-4a -5=0a >0a≠1,∴a=5.答案:56.已知函数f(x)=log 3x ,则f ⎝ ⎛⎭⎪⎫95+f(15)=________.解析:f ⎝ ⎛⎭⎪⎫95+f(15)=log 395+log 315=log 327=3. 答案:37.函数f(x)=log a (2x -3)(a >0且a≠1)的图象恒过定点P ,则P 点的坐标是________.解析:令2x -3=1,解得x =2,且f(2)=log a 1=0恒成立,所以函数f(x)的图象恒过定点P(2,0). 答案:(2,0) 三、解答题8.求下列函数的定义域: (1)y =log 3(1-x); (2)y =1log 2x ;(3)y =log 711-3x. 解析:(1)由1-x >0,得x <1,∴函数y =log 3(1-x)的定义域为(-∞,1). (2)由log 2x≠0,得x >0且x≠1. ∴函数y =1log 2x的定义域为{x|x >0且x≠1}. (3)由11-3x >0,得x <13.∴函数y =log 711-3x 的定义域为⎝ ⎛⎭⎪⎫-∞,13.9.已知f(x)=log 3x. (1)作出这个函数的图象;(2)若f(a)<f(2),利用图象求a 的取值范围. 解析:(1)作出函数y =log 3x 的图象如图所示(2)令f(x)=f(2),即log 3x =log 32, 解得x =2.由图象知,当0<a <2时,恒有f(a)<f(2).∴所求a 的取值范围为0<a <2. [尖子生题库]10.已知函数y =log 2x 的图象,如何得到y =log 2(x +1)的图象?y =log 2(x +1)的定义域与值域是多少?与x 轴的交点是什么?解析:y =log 2x ――――――→左移1个单位y =log 2(x +1),如图.定义域为(-1,+∞),值域为R ,与x 轴的交点是(0,0).4.4.2 对数函数的图象和性质4.4.3 不同函数增长的差异 [基础自测]1.函数y =e x的图象与函数y =f(x)的图象关于直线y =x 对称,则( ) A .f(x)=lg x B .f(x)=log 2x C .f(x)=ln x D .f(x)=x e解析:易知y =f(x)是y =e x 的反函数,所以f(x)=ln x. 答案:C2.若log 3a <0,⎝ ⎛⎭⎪⎫13b >1,则( ) A .a >1,b >0 B .0<a <1,b >0 C .a >1,b <0 D .0<a <1,b <0解析:由函数y =log 3x ,y =⎝ ⎛⎭⎪⎫13x的图象知,0<a <1,b <0.答案:D3.下列函数中,随x 的增大,增长速度最快的是( ) A .y =3xB .y =103x C .y =log 2x D .y =x 3解析:指数函数模型增长速度最快,故选A. 答案:A4.函数f(x)=log 3(4x -x 2)的递增区间是________. 解析:由4x -x 2>0得0<x <4, 函数y =log 3(4x -x 2)的定义域为(0,4). 令u =4x -x 2=-(x -2)2+4, 当x∈(0,2]时,u =4x -x 2是增函数, 当x∈(2,4]时,u =4x -x 2是减函数. 又∵y=log 3u 是增函数,∴函数y =log 3(4x -x 2)的增区间为(0,2]. 答案:(0,2]题型一 比较大小[教材P 133例3]例1 比较下列各题中两个值的大小: (1)log 23.4,log 28.5; (2)log 0.31.8,log 0.32.7;(3)log a 5.1,log a 5.9(a >0,且a≠1).【解析】 (1)log 23.4和log 28.5可看作函数y =log 2x 的两个函数值.因为底数2>1,对数函数y =log 2x 是增函数,且3.4<8.5,所以log 23.4<log 28.5.(2)log 0.31.8和log 0.32.7可看作函数y =log 0.3x 的两个函数值.因为底数0.3<1,对数函数y =log 0.3x 是减函数,且1.8<2.7,所以log 0.31.8>log 0.32.7.(3)log a 5.1和log a 5.9可看作函数y =log a x 的两个函数值.对数函数的单调性取决于底数a 是大于1还是小于1,因此需要对底数a 进行讨论.当a >1时,因为函数y =log a x 是增函数,且5.1<5.9,所以log a 5.1<log a 5.9; 当0<a <1时,因为函数y =log a x 是减函数,且5.1<5.9,所以log a 5.1>log a 5.9. 构造对数函数,利用函数单调性比较大小. 教材反思比较对数值大小时常用的三种方法跟踪训练1 (1)设a =log 2π,b =log 12π,c =π-2,则( )A .a >b >cB .b >a >cC .a >c >bD .c >b >a (2)比较下列各组值的大小:①log230.5,log 230.6. ②log 1.51.6,log 1.51.4.③log 0.57,log 0.67. ④log 3π,log 20.8.【解析】 (1)a =log 2π>1,b =log 12π<0,c =π-2∈(0,1),所以a >c >b.(2)①因为函数y =log23x 是减函数,且0.5<0.6,所以log 230.5>log 230.6.②因为函数y =log 1.5x 是增函数,且1.6>1.4,所以log 1.51.6>log 1.51.4. ③因为0>log 70.6>log 70.5,所以1log 70.6<1log 70.5,即log 0.67<log 0.57.两类对数不等式的解法(1)形如log a f(x)<log a g(x)的不等式. ①当0<a <1时,可转化为f(x)>g(x)>0; ②当a >1时,可转化为0<f(x)<g(x).(2)形如log a f(x)<b 的不等式可变形为log a f(x)<b =log a a b. ①当0<a <1时,可转化为f(x)>a b; ②当a >1时,可转化为0<f(x)<a b .跟踪训练2 (1)满足不等式log 3x <1的x 的取值集合为________; (2)根据下列各式,确定实数a 的取值范围: ①log 1.5(2a)>log 1.5(a -1); ②log 0.5(a +1)>log 0.5(3-a). 解析:(1)因为log 3x <1=log 33,所以x 满足的条件为⎩⎪⎨⎪⎧x >0,log 3x <log 33,即0<x <3.所以x 的取值集合为{x|0<x <3}. (2)①函数y =log 1.5x 在(0,+∞)上是增函数.因为log 1.5(2a)>log 1.5(a -1),所以⎩⎪⎨⎪⎧2a >a -1,a -1>0,解得a >1,即实数a 的取值范围是a >1.②函数y =log 0.5x 在(0,+∞)上是减函数,因为log 0.5(a +1)>log 0.5(3-a), 所以⎩⎪⎨⎪⎧a +1>0,3-a >0,a +1<3-a ,解得-1<a <1.即实数a 的取值范围是-1<a <1.答案:(1){x|0<x <3} (2)①(1,+∞) ②(-1,1) (1)log 33=1.(2)由对数函数的单调性求解. 题型三 对数函数性质的综合应用例3 已知函数f(x)=log a (1+x)+log a (3-x)(a >0且a≠1). (1)求函数f(x)的定义域;(2)若函数f(x)的最小值为-2,求实数a 的值.【解析】 (1)由题意得⎩⎪⎨⎪⎧1+x >0,3-x >0,解得-1<x <3,所以函数f(x)的定义域为(-1,3).状元随笔 在同一平面直角坐标系内作出函数y =2x和y =log 2x 的图象,从图象上可观察出函数的增长变化情况.如图:课时作业 24一、选择题1.设a =log 0.50.9,b =log 1.10.9,c =1.10.9,则a ,b ,c 的大小关系为( ) A .a <b <c B .b <a <c C .b <c <a D .a <c <b解析:因为0=log 0.51<a =log 0.50.9<log 0.50.5=1, b =log 1.10.9<log 1.11=0,c =1.10.9>1.10=1, 所以b <a <c ,故选B. 答案:B2.y 1=2x,y 2=x 2,y 3=log 2x ,当2<x <4时,有( ) A .y 1>y 2>y 3 B .y 2>y 1>y 3 C .y 1>y 3>y 2 D .y 2>y 3>y 1解析:在同一平面直角坐标系内画出这三个函数的图象(图略),在区间(2,4)内,从上到下图象依次对应的函数为y 2=x 2,y 1=2x,y 3=log 2x ,故y 2>y 1>y 3.答案:B3.若log a 34<1(a >0,且a≠1),则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,34B.⎝ ⎛⎭⎪⎫0,34∪(1,+∞) C .(1,+∞) D.(0,1)若f(x),g(x)均为减函数,则⎩⎪⎨⎪⎧0<3-a <1,0<a <1,无解.答案:(1,2) 三、解答题8.比较下列各组对数值的大小: (1)log 151.6与log 152.9;(2)log 21.7与log 23.5; (3)log 123与log 153;(4)log 130.3与log 20.8.解析:(1)∵y=log 15x 在(0,+∞)上单调递减,1.6<2.9,∴log 151.6>log 152.9.(2)∵y=log 2x 在(0,+∞)上单调递增,而1.7<3.5, ∴log 21.7<log 23.5.(3)借助y =log 12x 及y =log 15x 的图象,如图所示.在(1,+∞)上,前者在后者的下方, ∴log 123<log 153.(4)由对数函数性质知,log 130.3>0,log 20.8<0,∴log 130.3>log 20.8.9.已知log a (2a +3)<log a 3a ,求a 的取值范围. 解析:(1)当a >1时,原不等式等价于⎩⎪⎨⎪⎧ a >1,2a +3<3a ,2a +3>0,解得a >3.(2)当0<a <1时,原不等式等价于⎩⎪⎨⎪⎧0<a <1,2a +3>3a ,3a >0,解得0<a <1.综上所述,a 的范围是(0,1)∪(3,+∞).第21 页共21 页。
函数基础练习(题型大全)含答案一、选择题(本大题共17小题,共85.0分) 1. 函数f(x)=1lg(x+1)+√2−x 的定义域为( )A. (−1,0)∪(0,2]B. [−2,0)∪(0,2]C. [−2,2]D. (−1,2]2. 若函数f(x)={−x 13,x ≤−1x +2x −7,x >−1,则f[f(−8)]=( ) A. −2 B. 2 C. −4 D. 4 3. 函数f(x)=ln(x 2−2x −8)的单调递增区间是( )A. (−∞,−2)B. (−∞,−1)C. (1,+∞)D. (4,+∞)4. 设,,c =30.7,则a ,b ,c 的大小关系是( )A. a <b <cB. c <b <aC. b <c <aD. b <a <c 5. 在下列区间中,函数f(x)=e x +4x −3的零点所在的区间为( )A. (−2,−1)B. (−1,0)C. (0,12)D. (12,1)6. 已知函数f(x)=cosx e x,则函数f(x)的图象在点(0,f(0))处的切线方程为( )A. x +y +1=0B. x +y −1=0C. x −y +1=0D. x −y −1=07. 已知函数y ={x 2+1(x ⩽0)2x(x >0),若f(a)=10,则a 的值是( )A. 3或−3B. −3或5C. −3D. 3或−3或58. 若函数,且满足对任意的实数x 1≠x 2都有成立,则实数a 的取值范围是( ) A. (1,+∞) B. (1,8) C. (4,8) D. [4,8)9. 定义在R 上的奇函数f(x)满足f(x +2)=−1f(x),且在(0,1)上f(x)=3x ,则f(log 354)=( )A. 32B. 23C. −32D. −2310. 函数y =2x 2−e |x|在[−2,2]的图象大致为( )A.B.C.D.11. 设函数f(x)=ln(1+|x|)−11+x 2,则使得f(x)>f(2x −1)成立的x 的取值范围是( )A.B. (13,1) C. (−13,13)D.12. 若函数f(x)=lnx +ax +1x 在[1,+∞)上是单调函数,则a 的取值范围是( )A. (−∞,0]∪[14,+∞)B. (−∞,−14]∪[0,+∞)C. [−14,0]D. (−∞,1]13. 已知函数f(x)=ln(√1+x 2−x)+2,则f(lg5)+f(lg 15)=( )A. 4B. 0C. 1D. 214. 已知函数f(x)={14x +1,x ≤1lnx,x >1,则方程f(x)=ax 恰有两个不同的实数根时,实数a 的取值范围是( )A. (0,1e )B. [14,1e )C. (0,14]D. (14,e)15. 已知函数f(x)(x ∈R)满足f(−x)=2−f(x),若函数y =x+1x与y =f(x)图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则 ∑(x i +y i )=( )m i=1 A. 0B. mC. 2mD. 4m 16. 设函数f (x )=cos ⎝⎛⎭⎫π2-πx +(x +e )2x 2+e2的最大值为M ,最小值为N ,则(M +N -1)2019的值为( ) A.1 B.2 C.22019 D.3201917. 已知函数f (x )的导函数为f ′(x ),若2f (x )+f ′(x )>2,f (0)=5,则不等式f (x )-4e-2x>1的解集为( )A.(1,+∞)B.(-∞,0)C.(-∞,0)∪(1,+∞) D .(0,+∞)二、填空题(本大题共5小题,共25.0分)18. 函数y =log a (2x −3)+8的图象恒过定点P ,P 在幂函数f(x)的图象上,则f(4)= ______. 19. 求曲线f (x )=x 3−3x 2+2x 过原点的切线方程__________. 20. ∫(√1−x 2+x)dx =10________.21. 设函数f(x)={x +1,x ≤02x ,x >0,则满足f(x)+f(x −12)>1的x 的取值范围是______.22. 函数f(x)=lgx 2+1|x|(x ≠0,x ∈R),有下列命题:①f(x)的图象关于y 轴对称;②f(x)的最小值是2;③f(x)在(−∞,0)上是减函数,在(0,+∞)上是增函数; ④f(x)没有最大值.其中正确命题的序号是______ .(请填上所有正确命题的序号) 三、解答题(本大题共5小题,共60.0分)23. 已知函数f(x)=13x 3+ax 2+6x −1.当x =2时,函数f(x)取得极值. (I)求实数a 的值;(II)若1≤x ≤3时,方程f(x)+m =0有两个根,求实数m 的取值范围. 24. 设函数f(x)=ln(x +1)+a(x 2−x),其中a ∈R ,(Ⅰ)讨论函数f(x)极值点的个数,并说明理由; (Ⅱ)若∀x >0,f(x)≥0成立,求a 的取值范围.25.已知函数f(x)=x2−x,g(x)=e x−ax−1(e为自然对数的底数).(1)讨论函数g(x)的单调性;(2)当x>0时,f(x)≤g(x)恒成立,求实数a的取值范围.26.已知函数.(1)讨论函数f(x)的单调性;(2)若a=1,若f(x)有两个零点,求证:.27.已知函数f(x)=(x+1)lnx−ax+2.(1)当a=1时,求在x=1处的切线方程;(2)当a=2时求证:,n∈N∗.答案和解析1.【答案】A【解析】【分析】本题考查了函数的定义域,考查学生的计算能力,属于基础题. 由题意列出不等式组:{x +1>0x +1≠12−x ≥0,解出即可求解.【解答】解:由题意得:{x +1>0x +1≠12−x ≥0,解得−1<x ≤2且x ≠0, ∴函数的定义域为(−1,0)∪(0,2].故选A . 2.【答案】C【解析】【分析】本题主要考查了分段函数,考查了函数的定义域与值域.属于基础题, 利用分段函数函数值的计算得结论. 【解答】解:∵函数f(x)={−x 13,x ≤−1x +2x−7,x >−1, 又∵−8<−1,∴f(−8)=−(−8)13=2, ∵2>−1,∴f[f(−8)]=f(2)=2+22−7=−4.故选C . 3.【答案】D【解析】【分析】本题主要考查复合函数的单调性及对数函数的图象和性质,属于基础题.由x 2−2x −8>0得:x <−2或x >4,令t =x 2−2x −8,结合复合函数单调性“同增异减”的原则,可得答案. 【解答】解:由x 2−2x −8>0得:x <−2或x >4, 即f(x)的定义域为{x|x <−2或x >4}, 令t =x 2−2x −8,y =lnt 在t ∈(0,+∞)内单调递增,而x ∈(−∞,−2)时,t =x 2−2x −8为减函数,x ∈(4,+∞)时,t =x 2−2x −8为增函数, 故函数f(x)=ln(x 2−2x −8)的单调递增区间是(4,+∞). 故选D . 4.【答案】D【解析】【分析】本题考查指数函数、对数函数的单调性的应用,属于基础题.利用指数函数及对数函数的性质,借助中间量0或1即可求解. 【解答】解:0=log 71<a =log 73<log 77=1, b =log 137<log 131=0,c =30.7>30=1, ∴b <a <c . 故选D . 5.【答案】C【解析】【分析】本题考查函数零点存在性定理,属于基础题.若函数f(x)在[a,b]上是连续的,如果函数f(x)满足f(a)·f(b)<0,则f(x)在(a,b)上至少存在一个零点. 【解答】解:∵函数f(x)=e x +4x −3在上连续, 且f(0)=e 0−3=−2<0,f(12)=√e +2−3=√e −1=e 12−e 0>0,∴f(0)·f(12)<0,∴函数f(x)=e x +4x −3的零点所在的区间为(0,12).故选C . 6.【答案】B【解析】【分析】本题考查了基本函数导数公式,导数的四则运算,导数的几何意义,求已知切点的切线方程的方法,属基础题. 先求函数的导函数f′(x),再求所求切线的斜率即f′(0),由于切点为(0,1),故由点斜式即可得所求切线的方程. 【解答】 解:∵f(x)=cosx e x, ∴f′(x)=−sinx−cosxe ,∴f′(0)=−1,f(0)=1,即函数f(x)图象在点(0,1)处的切线斜率为−1, ∴图象在点(0,f(0))处的切线方程为y =−x +1, 即x +y −1=0. 故选B . 7.【答案】B【解析】【分析】本题考查了由分段函数的函数值求参数,解题的关键是确定f(a)的表达式,考查了运算求解能力和分类讨论思想,属于基础题.结合题意,需要对a 进行分类讨论,若a ≤0,则f(a)=1+a 2;若a >0,则f(a)=2a ,从而可求a . 【解答】解:由题意,函数y ={x 2+1(x ⩽0)2x(x >0), f(a)=10,若a ≤0,则f(a)=a 2+1=10,解得a =−3或a =3(舍去); 若a >0,则f(a)=2a =10, ∴a =5,综上可得,a =5或a =−3. 故选B .8.【答案】D【解析】【分析】本题考查的知识点是分段函数的应用,正确理解分段函数的单调性,是解答的关键,属于中档题. 根据函数单调性的定义,由f(x 1)−f(x 2)x 1−x 2>0恒成立,得到f(x)单调递增,则分段f(x)在各段上都是递增,且衔接处非减,得到不等式求解即可. 【解答】解:∵对任意的实数x 1≠x 2都有f(x 1)−f(x 2)x 1−x 2>0成立,∴函数f(x)={a x ,x ≥1(4−a 2)x +2,x <1在R 上单调递增, ∴{a >14−a 2>0a 1≥(4−a 2)×1+2 , 解得a ∈[4,8), 故选D . 9.【答案】C【解析】【分析】本题考查函数值的求法,指数函数、对数函数的运算与性质,函数的周期性及奇函数性质的综合应用,利用条件求出函数的周期以及利用函数的性质逐步转化自变量是解题的关键.由已知条件和函数周期性的定义求出函数的周期,利用函数的周期性、奇函数的性质和函数的解析式,逐步转化由运算性质求出f(log 354)的值. 【解答】解:由f(x +2)=−1f(x)得,f(x +4)=−1f(x+2)=f(x), 所以函数f(x)的周期是4,因为f(x)是定义在R 上的奇函数,且3<log 354<4, 则0<4−log 354<1, 且在(0,1)上,f(x)=3x ,所以f(log 354)=f(log 354−4)=−f(4−log 354).故选C .10.【答案】D【解析】【分析】本题考查的知识点是函数的图象,属于中档题.根据已知函数的解析式,分析函数的奇偶性,特殊点处的函数值以及单调性,利用排除法,可得答案. 【解答】解:∵f (x )=y =2x 2−e |x |,∴f(−x)=2(−x)2−e|−x|=2x2−e|x|,故函数为偶函数,当x=±2时,y=8−e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2−e x,f′(x)=4x−e x,设g(x)=4x−e x,g′(x)=4−e x,当x∈(0,ln4)时,g′(x)<0,g(x)单调递减,即f′(x)=4x−e x单调递减,当x∈(ln4,2)时,g′(x)>0,g(x)单调递增,即f′(x)=4x−e x单调递增,因为f′(0)=−1<0且f′(ln4)=4ln4−4>0,则f′(x)=4x−e x=0在[0,ln4]有解,设为x0,当x∈(0,x0)时,f′(x)<0,f(x)单调递减,当x∈(x0,ln4)时,f′(x)>0,f(x)单调递增,故函数y=2x2−e|x|在[0,ln4]不是单调的,又ln4<2,故函数y=2x2−e|x|在[0,2]不是单调的,排除C,故选D.11.【答案】B【解析】【分析】本题主要考查函数奇偶性和单调性的应用,考查函数性质的综合应用,运用偶函数的性质是解题的关键,属于中档题.根据函数的奇偶性和单调性之间的关系,将不等式进行转化即可得到结论.【解答】解:f(x)的定义域为R,,∴函数f(x)=ln(1+|x|)−11+x2为偶函数,且在x≥0时,f(x)=ln(1+x)−11+x2,而为[0,+∞)上的单调递增函数,且y=−11+x2为[0,+∞)上的单调递增函数,∴函数f(x)在[0,+∞)单调递增,∴f(x)>f(2x−1)等价为f(|x|)>f(|2x−1|),即|x|>|2x−1|,平方得3x2−4x+1<0,解得:13<x<1,所求x的取值范围是(13,1).故选B.12.【答案】B【解析】【分析】本题主要考查求导公式和法则,导数与函数单调性的关系,以及恒成立问题的转化,考查分离常数法,整体思想、分类讨论思想,属于较难题.由求导公式和法则求出f′(x),由条件和导数与函数单调性的关系分类讨论,分别列出不等式进行分离常数,再构造函数,利用整体思想和二次函数的性质求出函数的最值,可得a的取值范围.【解答】解:由题意得,f′(x)=1x +a−1x2,因为f(x)=lnx+ax+1x在[1,+∞)上是单调函数,所以f′(x)≥0或f′(x)≤0在[1,+∞)上恒成立,①当f′(x)≥0时,则1x +a−1x2≥0在[1,+∞)上恒成立,即a≥1x2−1x,设g(x)=1x2−1x=(1x−12)2−14,因为x∈[1,+∞),所以1x∈(0,1],当1x=1时,g(x)取到最大值是:0,所以a≥0,②当f′(x)≤0时,则1x +a−1x2≤0在[1,+∞)上恒成立,即a≤1x2−1x,设g(x)=1x2−1x=(1x−12)2−14,因为x∈[1,+∞),所以1x∈(0,1],当1x =12时,g(x)取到最小值是:−14,所以a≤−14,综上可得,a≤−14或a≥0,所以数a的取值范围是(−∞,−14]∪[0,+∞),故选B.13.【答案】A【解析】【分析】本题考查了对数的运算以及函数的性质,属于基础题.先得出f(x)+f(−x)=4,即可得出结果.【解答】解:∵f(x)=ln(√1+x2−x)+2,∴f(x)+f(−x)=ln(√1+x2−x)+2+ln(√1+x2+x)+2=ln1+4=4,则f(lg5)+f(lg15)=f(lg5)+f(−lg5)=4.故选A.14.【答案】B【解析】【分析】本题考查了函数的图象与性质、导数的应用问题,考查函数与方程的关系,属于中档题.题意转化为y=f(x)与y=ax有2个交点,画出函数的图象,观察满足题意的直线y=ax的条件,利用导数求出切线的斜率,结合图形得出a的取值范围.【解答】解:∵方程f(x)=ax恰有两个不同实数根,∴y=f(x)与y=ax有2个交点,画出y =f(x)的图象和y =ax 的图象,如图所示:其中l 1是直线y =ax 与对数部分图象相切时的情况,l 2是与x ≤1时函数的直线部分平行的直线, 由图可以看出,直线y =ax 的斜率a 应当在l 1与l 2的斜率之间,可以与l 2重合. 当x >1时,f(x)=lnx ,∴y ′=f ′(x)=1x , 设切点为P(x 0,y 0),则k =1x 0,∴切线方程为y −y 0=1x 0(x −x 0),而切线过原点,O(0,0)代入,得y 0=1,∴x 0=e ,k =1e , ∴直线l 1的斜率为1e ,又∵直线l 2与y =14x +1平行,∴直线l 2的斜率为14, ∴实数a 的取值范围是[14,1e ), 故选B . 15.【答案】B【解析】【分析】由条件可得f(x)+f(−x)=2,即有f(x)关于点(0,1)对称,又函数y =x+1x,即y =1+1x 的图象关于点(0,1)对称,即有(x 1,y 1)为交点,即有(−x 1,2−y 1)也为交点,计算即可得到所求和.本题考查抽象函数的运用:求和,考查函数的对称性的运用,以及化简整理的运算能力,属于中档题. 【解答】解:函数f(x)(x ∈R)满足f(−x)=2−f(x), 即为f(x)+f(−x)=2, 可得f(x)关于点(0,1)对称, 函数y =x+1x,即y =1+1x 的图象关于点(0,1)对称,即有(x 1,y 1)为交点,即有(−x 1,2−y 1)也为交点, (x 2,y 2)为交点,即有(−x 2,2−y 2)也为交点,…则有∑i =1m(x i +y i )=(x 1+y 1)+(x 2+y 2)+⋯+(x m +y m )=12[(x 1+y 1)+(−x 1+2−y 1)+(x 2+y 2)+(−x 2+2−y 2)+⋯+(x m +y m )+(−x m +2−y m )] =m .故选B .16.答案 A解析 由已知x ∈R ,f (x )=cos ⎝⎛⎭⎫π2-πx +(x +e )2x 2+e 2=sinπx +x 2+e 2+2e x x 2+e 2=sinπx +2e x x 2+e 2+1,令g (x )=sinπx +2e xx 2+e2,易知g (x )为奇函数,由于奇函数在对称区间上的最大值与最小值的和为0,M +N =f (x )max +f (x )min =g (x )max +1+g (x )min +1=2,(M +N -1)2019=1. 17.答案 D解析 设F (x )=e 2x f (x )-e 2x -4, 则F ′(x )=2e 2x f (x )+e 2x f ′(x )-2e 2x =e 2x [2f (x )+f ′(x )-2]>0,所以函数F (x )=e 2x f (x )-e 2x -4在R 上为增函数. 又f (0)=5,所以F (0)=f (0)-1-4=0. 又不等式f (x )-4e-2x>1等价于e 2x f (x )-e 2x -4>0,即F (x )>0,解得x >0, 所以不等式的解集为(0,+∞).18.【答案】64【解析】【分析】本题考查对数函数的性质和幂函数,属于基础题.先找到定点P 的坐标,通过P 点坐标求解幂函数f (x )=x b 的解析式,从而求得f(4). 【解答】解:由题意,令2x −3=1,则x =2, 故点P(2,8),设幂函数f(x)=x b , 则2b =8,解得b =3, 所以f(x)=x 3, 故f(4)=64, 故答案为64.19.【答案】y =2x 和y =−14x【解析】【分析】本题考查导数的几何意义:切点处的导数值是切线的斜率;注意“在点处的切线”与“过点的切线”的区别,属于基础题.求出函数的导数,利用导数的几何意义:切点处的导数值是切线的斜率,分原点是切点和原点不是切点两类求. 【解答】解:f ′(x)=3x 2−6x +2.设切线的斜率为k .(1)当切点是原点时,k =f ′(0)=2,所以所求曲线的切线方程为y =2x .(2)当切点不是原点时,设切点是(x 0,y 0),则有y 0=x 03−3x 02+2x 0,k =f ′(x 0)=3x 02−6x 0+2,①又k =y 0x 0=x 02−3x 0+2,②由①②得x 0=32,k =y 0x 0=−14. ∴所求曲线的切线方程为y =−14x.故答案为:y =2x 和y =−14x. 20.【答案】π+24【解析】【分析】本题考查了定积分的计算,巧用几何意义,由面积求积分,为中档题.【解答】解:∫01(√1−x 2+x)dx =∫01√1−x 2dx +∫01x dx=π4+12x 2|01=π4+12=π+24. 故答案为π+24.21.【答案】(−14,+∞)【解析】【分析】本题考查不等式的求解,结合分段函数的不等式,利用分类讨论的数学思想进行求解是解决本题的关键,属于中档题.根据分段函数的表达式,分别讨论x 的取值范围,进行求解即可.【解答】解:若x ≤0,则x −12≤−12,则f(x)+f(x −12)>1等价为x +1+x −12+1>1,即2x >−12,则x >−14,此时−14<x ≤0,当x >0时,f(x)=2x >1,x −12>−12,当x −12>0即x >12时,满足f(x)+f(x −12)>1恒成立,当0≥x −12>−12,即12≥x >0时,f(x −12)=x −12+1=x +12>12,此时f(x)+f(x−12)>1恒成立,综上x>−14,故答案为:(−14,+∞).22.【答案】①④【解析】【分析】本题考查复合函数的性质,属于中档题.从偶函数的角度可知是否关于y轴对称,先求x 2+1|x|的范围再求f(x)的范围,由复合函数的“同增异减”判断单调性.【解答】解:①f(−x)=lg x 2+1|x|=f(x),∴函数f(x)是偶函数,f(x)的图象关于y轴对称,故①正确;②x2+1|x|=|x|+1|x|≥2,∴f(x)=lg x2+1|x|≥lg2,∴f(x)的最小值是lg2,故②不正确;③函数g(x)=x2+1|x|=|x|+1|x|在(−∞,−1),(0,1)上是减函数,在(−1,0),(1,+∞)上是增函数,故函数f(x)=lg x 2+1|x|在(−∞,−1),(0,1)上是减函数,在(−1,0),(1,+∞)上是增函数,故③不正确;④由③知,f(x)没有最大值,故④正确;故答案为①④.23.【答案】解:(I)由f(x)=13x3+ax2+6x−1,则f′(x)=x2+2ax+6,因在x=2时,f(x)取到极值,所以f′(2)=0⇒4+4a+6=0,解得,a=−52;(II)由(I)得f(x)=13x3−52x2+6x−1,且1≤x≤3,则f′(x)=x2−5x+6=(x−2)(x−3),由f′(x)=0,解得x=2或x=3,f′(x)>0,解得x>3或x<2;f′(x)<0,解得2<x<3;∴f(x)的递增区间为:(−∞,2)和(3,+∞);f(x)递减区间为:(2,3),又f(1)=176,f(2)=113,f(3)=72,要f(x)+m=0有两个根,则f(x)=−m有两解,分别画出函数y=f(x)与y=−m的图象,如图所示.由图知,实数m 的取值范围:−113<m ≤−72. 24.【答案】解:(Ⅰ)函数f(x)=ln(x +1)+a(x 2−x),其中a ∈R ,x ∈(−1,+∞). f ′(x)=1x+1+2ax −a =2ax 2+ax−a+1x+1.令g(x)=2ax 2+ax −a +1,x ∈(−1,+∞).(1)当a =0时,g(x)=1,此时f′(x)>0,函数f(x)在(−1,+∞)上单调递增,无极值点.(2)当a >0时,Δ=a 2−8a(1−a)=a(9a −8).①当0<a ≤89时,Δ≤0,g(x)≥0,f′(x)≥0,函数f(x)在(−1,+∞)上单调递增,无极值点.②当a >89时,Δ>0,设方程2ax 2+ax −a +1=0的两个实数根分别为x 1,x 2,x 1<x 2. ∵x 1+x 2=−12, ∴x 1<−14,x 2>−14. 由g(−1)=1>0,可得−1<x 1<−14.∴当x ∈(−1,x 1)时,g(x)>0,f′(x)>0,函数f(x)单调递增; 当x ∈(x 1,x 2)时,g(x)<0,f′(x)<0,函数f(x)单调递减; 当x ∈(x 2,+∞)时,g(x)>0,f′(x)>0,函数f(x)单调递增. 因此当a >89时,函数f(x)有两个极值点.(3)当a <0时,Δ>0.由g(−1)=1>0,可得x 1<−1<x 2. ∴当x ∈(−1,x 2)时,g(x)>0,f′(x)>0,函数f(x)单调递增; 当x ∈(x 2,+∞)时,g(x)<0,f′(x)<0,函数f(x)单调递减. 因此当a <0时,函数f(x)有一个极值点.综上所述:当a <0时,函数f(x)有一个极值点;当0≤a ≤89时,函数f(x)无极值点;当a >89时,函数f(x)有两个极值点.(Ⅱ)由(Ⅰ)可知:(1)当0≤a ≤89时,函数f(x)在(0,+∞)上单调递增.∵f(0)=0,∴x ∈(0,+∞)时,f(x)>0,符合题意.(2)当89<a ≤1时,由g(0)=1−a ≥0,可得x 1,x 2≤0,函数f(x)在(0,+∞)上单调递增. 又f(0)=0,∴x ∈(0,+∞)时,f(x)>0,符合题意.(3)当1<a 时,由g(0)=1−a <0,可得x 2>0,∴x ∈(0,x 2)时,函数f(x)单调递减.又f(0)=0,∴x ∈(0,x 2)时,f(x)<0,不符合题意,舍去;(4)当a <0时,设ℎ(x)=x −ln(x +1),x ∈(0,+∞),ℎ′(x)=x x+1>0. ∴ℎ(x)在(0,+∞)上单调递增.因此x ∈(0,+∞)时,ℎ(x)>ℎ(0)=0,即ln(x +1)<x , 可得:f(x)<x +a(x 2−x)=ax 2+(1−a)x ,当x >1−1a 时,ax 2+(1−a)x <0,此时f(x)<0,不合题意,舍去. 综上所述,a 的取值范围为[0,1]. 25.【答案】解:(1)∵g(x)=e x −ax −1,∴g ′(x )=e x −a ,①若a ≤0,g ′(x )>0,g(x)在(−∞,+∞)上单调递增; ②若a >0,当x ∈(−∞,lna]时,g′(x )≤0,g(x)单调递减; 当x ∈(lna,+∞)时,g′(x )>0,g(x)单调递增,综合上述,若a ≤0,则g(x)在上单调递增;若a >0,则g(x)在(lna,+∞)上单调递增,在(−∞,lna]上单调减.(2)当x >0时,x 2−x ≤e x −ax −1,即a ≤e x x −x −1x +1, 令ℎ(x)=e x x −x −1x +1(x >0),则ℎ′(x)=e x (x−1)−x 2+1x 2,令φ(x)=e x (x −1)−x 2+1(x >0),则φ′(x)=x(e x −2),当x ∈(0,ln2)时,φ′(x)<0,φ(x)单调递减;当x ∈(ln2,+∞)时,φ′(x)>0,φ(x)单调递增,又φ(0)=0,φ(1)=0,∴当x ∈(0,1)时,φ(x)<0,即ℎ′(x)<0,∴ℎ(x)单调递减,当x ∈(1,+∞)时,φ(x)>φ(1)=0,即ℎ′(x)>0,∴ℎ(x)单调递增,∴ℎ(x)min =ℎ(1)=e −1,∴实数a 的取值范围是(−∞,e −1]. 26.【答案】解:(1)函数的定义域为(0,+∞), f′(x )=b x 2−1x =b−xx 2,当b ≤0,f′(x )<0在(0,+∞)上恒成立,当b >0时,f′(x )<0得x ∈(b,+∞);f′(x )>0得x ∈(0,b), 所以,当b ≤0时,f (x )在(0,+∞)上单调递减,当b >0时,f (x )在(0,b)上单调递增,在(b,+∞)单调递减;(2)证明:由题意知,f(x 1)=f(x 2)=0,即1x 1+lnx 1=1x 2+lnx 2, 于是x 2−x 1x 1x 2=ln x2x 1, 记x 2x 1=t ,t >1,则lnt =t−1tx 1,解得x 1=t−1tlnt ,于是,x 1+x 2=x 1+tx 1=(1+t)x 1=t 2−1tlnt , ∴x 1+x 2−2=t 2−1tlnt −2=2(t 2−12t −lnt)lnt , 记函数g(t)=t 2−12t −lnt ,∴g′(x )=(t−1)22t 2,当t >1时g′(t )>0,故g(t)在(1,+∞)上单调增.于是,t >1时,g(t)>g(1)=0.又lnt >0,所以即x 1+x 2>2成立.27.【答案】解:(1)当a =1时,f(x)=(x +1)lnx −x +2(x >0), f ′(x)=lnx +1x ,因为f ′(1)=1,f(1)=1,所以曲线f(x)在x =1处的切线方程为y =x .(3)当a =2时,f(x)在(1,+∞)上单调递增,所以当x ∈(1,+∞)时,f(x)>f(1)=0,即(x +1)lnx −2x +2>0,所以lnx >2(x−1)x+1在(1,+∞)上恒成立, 令x =n+1n ,得ln n+1n >2(n+1n −1)n+1n +1,化简得ln(n +1)−lnn >22n+1,所以ln2−ln1>22+1,ln3−ln2>24+1,…,ln(n +1)−lnn >22n+1,累加得ln(n +1)−ln1>23+25+⋯+22n+1,即13+15+17+⋯+12n+1<12ln(n +1),n ∈N ∗.。
第二章 函数2.5.1对数函数(题型战法)知识梳理一 对数的概念1.(1);(2) (3)2.. .二 对数的运算法则(1)积 (2)商 (3)幂 (4)换底公式:,推论:.三 对数函数的图像与性质(1)定义域是()0+∞,,因此函数图象一定在y 轴的右边. (2)值域是实数集R . (3)函数图象一定过点()1,0.(4)当a >1时,log a y x =是增函数;当0<a <1时,log a y x =是减函数. (5)对数函数的图象(6)对数函数log a y x =和1log ay x=的图象关于x 轴对称.题型战法题型战法一 对数与对数的运算log 10a =log 1a a =log log a b Na a N a N Nb ⎫=⇒=⎬=⎭N N lg log 10简记作log ln e N N 简记作()log log log a a a MN M N =+log log log aa a MM N N=-log log a a M M αα=)1,0(log log log ≠>=c c aMM c c a )1,0,1,0(log 1log ≠>≠>=b b a a ab b a典例1.计算:(1)7lg142lg lg 7lg183-+-; (2)求x 的值:5log (lg )1x =.变式1-1.计算求值(1)()362189-⎛⎫--- ⎪⎝⎭;(2)221lg lg2log 24log log 32+++; (3)已知623a b ==,求11a b-的值.变式1-2.计算:13341log 2log 278⎛⎫-⨯+ ⎪⎝⎭.变式1-3.计算: (1)ln 2ln 3ln 36+; (2)22lg 2lg 52lg 2lg 5++; (3)23log 9log 4⋅;(4)414log 28log 56+; (5)154311lglog 9log 125log 10032+--;(6)81log 32+(8)235111log log log 2589⋅⋅.变式1-4.计算:(1)230223482e lg 2lg 5log 4log 927---⎛⎫-+++⨯ ⎪⎝⎭; (2)若3log 21x =,求22x x -+的值.题型战法二 对数函数的概念典例2.已知函数①4x y =;①log 2x y =;①3log y x =-;①log y =①3log 1y x =+;①()2log 1y x =+.其中是对数函数的是( ) A .①①① B .①①① C .①① D .①①①变式2-1.给出下列函数:①223log y x =;①3log (1)y x =-;①(1)log x y x +=;①log e y x =.其中是对数函数的有( ) A .1个 B .2个 C .3个 D .4个变式2-2.下列函数是对数函数的是( ) A .y =ln x B .y =ln(x +1) C .y =log xe D .y =log xx变式2-3.函数()()25log a f x a a x =+- 为对数函数,则18f ⎛⎫⎪⎝⎭等于( )A .3B . 3-C .3log 6-D .3log 8-变式2-4.对数函数的图像过点M (125,3),则此对数函数的解析式为( ) A .y =log 5x B .y =15log x C .y =13log xD .y =log 3x题型战法三 对数函数的图像典例3.在同一坐标系中,函数2x y =与2log y x =的大致图象是( )A .B .C .D .变式3-1.函数()xf x a -=与()log a g x x =-在同一坐标系中的图像可能是( )A .B .C .D .变式3-2.如图是三个对数函数的图象,则a 、b 、c 的大小关系是( )A .a >b >cB .c >b >aC .c >a >bD .a >c >b变式3-3.已知函数()log 31a y x =++(0a >且1)a ≠,则函数恒过定点( ) A .()1,0 B .()2,0-C .()0,1D .()2,1-变式3-4.函数()log 231a y x =-+的图象恒过定点P ,则点P 的坐标是( )题型战法四 对数函数的定义域典例4.函数()()ln 2f x x =-的定义域为( ) A .[)0,2 B .(),2-∞ C .[)0,∞+ D .()0,2变式4-1.使式子(31)log (3)x x --有意义的x 的取值范围是( ) A .3x > B .3x < C .133x <<D .133x <<且23x ≠变式4-2.函数y = )A .[2,)+∞B .(,2]-∞C .[1,2]D .(1,2]变式4-3.函数()()01ln e 2xx f x -=-+) A .()1,2 B .()ln 2,2 C .()()ln2,11,2⋃ D .[)(]ln2,11,2⋃变式4-4.已知函数()21log xf x x-=,()1f x +的定义域为M ,()2f x 的定义域为N ,则( ) A .M N B .M N ⋂=∅C .M ⊆ND .N ⊆M题型战法五 对数函数的值域典例5.函数ln(2)1y x =-+的值域为( ) A .R B .(1,)+∞C .[1,)+∞D .(2,)+∞变式5-1.函数()2log 21xy =+的值域是( )A .[1,)+∞B .(0,1)C .(,0)-∞D .(0,)+∞变式5-2.函数()()1lg 4211x x f x +=-+的最小值是( ).A .10B .1C .11D .lg11变式5-3.若函数()()2ln ,0,2,03x a x f x x x x ⎧--≤<=⎨-+≤≤⎩的值域为[)3,∞-+,则a 的取值范围是( )A .)3e ,0⎡-⎣B .31e ,e ⎡⎫--⎪⎢⎣⎭C .31e ,e ⎡⎤--⎢⎥⎣⎦D .31e ,e ⎛⎫-- ⎪⎝⎭变式5-4.已知函数()23log y x m =+的值域为[2,)+∞,则实数m 的值为( )A .2B .3C .9D .27题型战法六 对数函数的单调性典例6.函数213log (2)y x x =-的单调减区间为( ) A .(0,1] B .(0,2) C .(1,2) D .[0,2]变式6-1.函数()()212log 6f x x x =-++的单调递增区间是( ) A .1,32⎛⎫⎪⎝⎭B .12,2⎛⎫- ⎪⎝⎭C .1,2⎛⎫-∞ ⎪⎝⎭D .1,2⎛⎫+∞ ⎪⎝⎭变式6-2.已知函数()()22log 45f x x x =--在(),a +∞上单调递增,则a 的取值范围是( ) A .(],1-∞- B .(],2-∞ C .[)2,+∞ D .[)5,+∞变式6-3.已知函数()log (3)a f x ax =-在[]0,1上是减函数,则a 的取值范围是( )A .()0,1B .()1,3C .()0,3D .()1,+∞变式6-4.已知()()()2213,2log 23,2a x a x a x f x x x ⎧--+≤⎪=⎨-->⎪⎩是(),-∞+∞上的减函数,那么a 的取值范围是( )A .5,62⎡⎤⎢⎥⎣⎦B .5,2⎡⎫+∞⎪⎢⎣⎭C .[]1,6D .51,2⎡⎤⎢⎥⎣⎦题型战法七 比较大小与解不等式典例7.若13π212log 3,log 3a b c ===,,则( ) A .c b a << B .c a b << C .b a c << D .a b c <<变式7-1.设2log 0.3a =,122log 5b =,0.30.4c =,则( )A .a b c >>B .b c a >>C .a c b >>D .b a c >>变式7-2.若0.80.60.80.6log log 0.2a b c ===,,则( )A .a b c >>B .a c b >>C .b a c >>D .c a b >>变式7-3.不等式()2log 311x +<成立的一个充分不必要条件是( ) A .1133x -<< B .0x < C .113x -<< D .103x <<变式7-4.设函数()133,12log ,1x x f x x x -⎧≤=⎨->⎩,则满足()3f x ≤的x 的取值范围是( )A .[)0,+∞B .[)1,+∞C .(),0-∞D .[)0,1题型战法八 对数函数的应用典例8.人们常用里氏震级e M 表示地震的强度,S E 表示地震释放出的能量,其关系式可以简单地表示为2lg 4.83e s M E =-,2021年1月4日四川省乐山市犍为县发生里氏4.2级地震,2021年9月16日四川省泸州市泸县发生里氏6.0级地震,则后者释放的能量大约为前者的( )倍.(参考数据:0.30.710~2.00,10 5.01=) A .180 B .270 C .500 D .720变式8-1.中国的5G 技术领先世界,5G 技术极大地提高了数据传输速率,最大数据传输速率C 取决于信道带宽W ,经科学研究表明:C 与W 满足2log (1)S C W N=+,其中S 是信道内信号的平均功率,N 是信道内部的高斯噪声功率,SN为信噪比.当信噪比比较大时,上式中真数中的1可以忽略不计.若不改变带宽W ,而将信噪比S N从1000提升至4000,则C 大约增加了( )(附:lg 20.3010≈) A .10%B .20%C .30%D .40%变式8-2.中国的5G 技术世界领先,其数学原理之一便是著名的香农公式:2log 1S C W N ⎛⎫=+ ⎪⎝⎭.它表示:在受噪声干扰的信道中,最大信息传递速率C (单位:bit/s )取决于信道宽度W (单位:HZ )、信道内信号的平均功率S (单位:dB )、信道内部的高斯噪声功率N (单位:dB )的大小,其中SN叫做信噪比,按照香农公式,若信道宽度W 变为原来2倍,而将信噪比SN从1000提升至4000,则C 大约增加了( )(附:lg 20.3≈) A .110% B .120% C .130% D .140%变式8-3.声音的等级()f x (单位:dB )与声音强度x (单位:2W /m )满足12()10lg110x f x -=⨯⨯. 喷气式飞机起飞时,声音的等级约为140dB ;一般说话时,声音的等级约为60dB ,那么喷气式飞机起飞时声音强度约为一般说话时声音强度的( ) A .105倍 B .108倍 C .1010倍 D .1012倍变式8-4.某工厂2015年生产某产品2万件,计划从2016年开始每年比上一年增产20%,从哪一年开始这家工厂生产这种产品的年产量超过6万件(已知lg20.3010=,1g30.4771=)( )A .2019年B .2020年C .2021年D .2022年题型战法九 反函数典例9.已知函数()2log f x x =,其反函数为( )A .()12xf x ⎛⎫= ⎪⎝⎭B .()21log f x x=C .()f x x =D .()2xf x =变式9-1.函数21()1(2)2f x x x =+<-的反函数是( )A .22(13)y x x =-≤<B .22(3)y x x =->C .22(13)y x x =--≤<D .22(3)y x x =-->变式9-2.设函数()x f x a b =+(0a >,且1a ≠)的图象过点()0,1,其反函数的图象过点()2,1,则a b +等于( ) A .2 B .3 C .4 D .5变式9-3.已知函数()3log f x x =与()g x 的图像关于y x =对称,则()1g -=( ) A .3 B .13C .1D .1-变式9-4.与函数14xy ⎛⎫= ⎪⎝⎭的图象关于直线y x =对称的函数是( )A .4x y =B .4x y -=C .14log y x= D .4log y x =第二章 函数2.5.1对数函数(题型战法)知识梳理一 对数的概念1.(1);(2) (3)2.. .二 对数的运算法则(1)积 (2)商 (3)幂 (4)换底公式:,推论:.三 对数函数的图像与性质(1)定义域是()0+∞,,因此函数图象一定在y 轴的右边. (2)值域是实数集R . (3)函数图象一定过点()1,0.(4)当a >1时,log a y x =是增函数;当0<a <1时,log a y x =是减函数. (5)对数函数的图象(6)对数函数log a y x =和1log ay x=的图象关于x 轴对称.题型战法题型战法一 对数与对数的运算典例1.计算:(1)7lg142lg lg 7lg183-+-; (2)求x 的值:5log (lg )1x =. 【答案】(1)0; (2)510.log 10a =log 1aa =log log ab Na a N a N Nb ⎫=⇒=⎬=⎭N N lg log 10简记作log ln e N N 简记作()log log log a a a MN M N =+log log log aa a MM N N=-log log a a M M αα=)1,0(log log log ≠>=c c aMM c c a )1,0,1,0(log 1log ≠>≠>=b b a a ab ba【解析】 【分析】(1)根据对数的运算法则计算即可;(2)根据对数的概念将对数式改为指数式即可求解.(1)原式()()()2lg 272lg7lg3lg7lg 32=⨯--+-⨯lg2lg72lg72lg3lg72lg3lg2=+-++--=0;(2)55log (lg )1lg 510x x x =⇒=⇒=. 变式1-1.计算求值 (1)()362189-⎛⎫--- ⎪⎝⎭;(2)221lg lg2log 24log log 32+++; (3)已知623a b ==,求11a b-的值. 【答案】(1)44 (2)92(3)1 【解析】 【分析】(1)由指数的运算法则计算 (2)由对数的运算法则计算 (3)将指数式转化为对数式后计算 (1)()33622023218323172271449-⨯⎛⎫---=⨯--=--= ⎪⎝⎭;(2)221lg lg 2log 24log log 32+++()32232lg 2lg 2log 38log 3log 3=-++⨯+- 2239log 33log 322=++-=; (3)6log 3a =,2log 3b =,则31log 6a =,31log 2b=;所以33311log 6log 2log 31a b-=-==.变式1-2.计算:13341log 2log 278⎛⎫-⨯+ ⎪⎝⎭.【答案】12-. 【解析】 【分析】根据指数与对数的运算性质即可求解. 【详解】原式213321132231log 2log lg 2lg 532⎡⎤⎛⎫=-⨯+⎢⎥ ⎪⎝⎭⎛⎫+ ⎪⎝⎢⎥⎣⎭⎦ ()3213log 2lo 132g lg 2lg522+⨯=-⨯⨯+ ()3213log 2l 13og 102lg 22+⨯=-⨯⨯ 132122=-+ =12-. 变式1-3.计算: (1)ln 2ln 3ln 36+; (2)22lg 2lg 52lg 2lg 5++; (3)23log 9log 4⋅;(4)414log 28log 56+; (5)154311lglog 9log 125log 10032+--;(6)81log 32+(8)235111log log log 2589⋅⋅.【答案】(1)12 (2)1 (3)4 (4)12- (5)92- (6)1- (7)ln3e (8)12- 【解析】 【分析】根据指数幂的运算性质及换底公式逐一计算即可. (1)解:ln 2ln 3ln 61ln 362ln 62+==; (2)解:()222lg 2lg 52lg 2lg5lg 2lg51++=+=; (3)解:()2323log 9log 42log 32log 24⋅=⋅=;(4)解:2141444224111log 28log 56log 28log 56log log 2log 2222-+=-===-=-;(5)解:154311lg log 9log 125log 10032+--2223515231lg10log log 5log 23---⎛⎫=+-- ⎪⎝⎭52232=---+92=-; (6)解:81log 32+32532log 2lg10-=+ 52133=-+=-; (7)1ln 3ln 3e ==+=;(8)解:235111log log log 2589⋅⋅232235log 5log 2log 3---=⋅⋅ 23512log 5log 2log 312=-⋅⋅=-.变式1-4.计算:(1)230223482e lg 2lg 5log 4log 927---⎛⎫-+++⨯ ⎪⎝⎭;(2)若3log 21x =,求22x x -+的值. 【答案】(1)14(2)103【解析】 【分析】(1)根据分数指数幂、对数的运算法则及换底公式计算可得;(2)根据换底公式的性质得到2log 3x =,再根据指数对数恒等式得到2x ,即可得解;(1)解:230223482e lg 2lg 5log 4log 927---⎛⎫-+++⨯ ⎪⎝⎭222322322lg 22lg 5log 2log 2783⎛⎫=---+⨯ ⎪⎝⎭()2333239122lg2lg52log 2log 3222442⎡⎤⎛⎫⎢⎥ ⎪=--+⎢+⋅=--⎝⎥+⎣=⎭⎦(2)解:3log 21x =,∴231log 3log 2x ==, ∴2o 3l g 223x ==,11022333x x -∴+=+=.题型战法二 对数函数的概念典例2.已知函数①4x y =;①log 2x y =;①3log y x =-;①log y =①3log 1y x =+;①()2log 1y x =+.其中是对数函数的是( ) A .①①① B .①①① C .①① D .①①①【答案】C 【解析】依据对数函数的定义即可判断. 【详解】根据对数函数的定义,只有符合log a y x =(0a >且1a ≠)形式的函数才是对数函数,其中x 是自变量,a 是常数.易知,①是指数函数;①中的自变量在对数的底数的位置,不是对数函数;①中313log log y x x =-=,是对数函数;①中0.04log log y x ==,是对数函数;①①中函数显然不是对数函数,由此可知只有①①是对数函数. 故选:C .变式2-1.给出下列函数:①223log y x =;①3log (1)y x =-;①(1)log x y x +=;①log e y x =.其中是对数函数的有( ) A .1个 B .2个C .3个D .4个【答案】A 【解析】 【分析】根据对数函数的特征判断即可得答案. 【详解】①①不是对数函数,因为对数的真数不是仅有自变量x ; ①不是对数函数,因为对数的底数不是常数;①是对数函数. 故选:A.变式2-2.下列函数是对数函数的是( ) A .y =ln x B .y =ln(x +1) C .y =log xe D .y =log xx【答案】A 【解析】 【分析】根据对数函数的定义判断. 【详解】A 是对数函数,B 中真数是1x +,不是x ,不是对数函数,C 中底数不是常数,不是对数函数,D 中底数不是常数,不是对数函数.变式2-3.函数()()25log a f x a a x =+- 为对数函数,则18f ⎛⎫⎪⎝⎭等于( )A .3B . 3-C .3log 6-D .3log 8-【答案】B 【解析】 【分析】可以先根据对数函数的性质来确定a 的取值范围,再带入18得出结果. 【详解】因为函数()f x 为对数函数,所以函数()f x 系数为1,即251a a +-=,即2a =或3-, 因为对数函数底数大于0, 所以2a =,()2log f x x =,所以138f ⎛⎫=- ⎪⎝⎭.【点睛】对数函数的系数等于一、真数大于0、底数大于0且不等于1.变式2-4.对数函数的图像过点M (125,3),则此对数函数的解析式为( ) A .y =log 5x B .y =15log xC .y =13log xD .y =log 3x【答案】A 【解析】 【分析】设对数函数y =log ax (a >0,且a ≠1),将点代入即可求解. 【详解】设函数解析式为y =log ax (a >0,且a ≠1). 由于对数函数的图像过点M (125,3), 所以3=log a 125,得a =5. 所以对数函数的解析式为y =log 5x . 故选:A.题型战法三 对数函数的图像典例3.在同一坐标系中,函数2x y =与2log y x =的大致图象是( )A .B .C .D .【答案】B 【解析】 【分析】根据题意,结合对数函数与指数函数的性质,即可得出结果. 【详解】由指数函数与对数函数的单调性知: 2x y =在R 上单调递增,2log y x =在()0+∞,上单调递增,只有B 满足. 故选:B.变式3-1.函数()xf x a -=与()log a g x x =-在同一坐标系中的图像可能是( )A .B .C .D .【答案】B 【解析】分别讨论1a >和01a <<时函数()xf x a -=与()log a g x x =-在的单调性和所过定点,利用排除法即可求解. 【详解】由对数和指数函数的性质可得0a >且1a ≠,当1a >时,()xf x a -=过点()0,1在R 上单调递减,()log a g x x =-过点()1,0在()0,∞+单调递减,所以排除选项C ,当01a <<时,()xf x a -=过点()0,1在R 上单调递增,()log a g x x =-过点()1,0在()0,∞+单调递增,所以排除选项AD , 故选:B.变式3-2.如图是三个对数函数的图象,则a 、b 、c 的大小关系是( )A .a >b >cB .c >b >aC .c >a >bD .a >c >b【答案】D 【解析】 【分析】根据对数函数的图象与单调性确定大小. 【详解】y =log ax 的图象在(0,+∞)上是上升的,所以底数a >1,函数y =log bx ,y =log cx 的图象在(0,+∞)上都是下降的,因此b ,c ①(0,1),又易知c >b ,故a >c >b . 故选:D .变式3-3.已知函数()log 31a y x =++(0a >且1)a ≠,则函数恒过定点( ) A .()1,0 B .()2,0-C .()0,1D .()2,1-【答案】D 【解析】 【分析】利用对数函数过定点求解. 【详解】令31+=x ,解得2x =-,1y =, 所以函数恒过定点()2,1-, 故选:D变式3-4.函数()log 231a y x =-+的图象恒过定点P ,则点P 的坐标是( ) A .()2,1 B .()2,0C .()2,1-D .()1,1【答案】A 【解析】 【分析】令真数为1,求出x 的值,再代入函数解析式可得定点P 的坐标. 【详解】令231x -=,可得2x =,此时log 111a y =+=,故点P 的坐标为()2,1. 故选:A.题型战法四 对数函数的定义域典例4.函数()()ln 2f x x =-的定义域为( ) A .[)0,2 B .(),2-∞C .[)0,∞+D .()0,2【答案】A【解析】 【分析】由对数函数的性质和二次根式的性质求解. 【详解】由题意020x x ≥⎧⎨->⎩,解得02x ≤<.故选:A .变式4-1.使式子(31)log (3)x x --有意义的x 的取值范围是( ) A .3x > B .3x < C .133x <<D .133x <<且23x ≠【答案】D 【解析】 【分析】对数函数中,底数大于0且不等于1,真数大于0,列出不等式,求出x 的取值范围. 【详解】由题意得:31031130x x x ->⎧⎪-≠⎨⎪->⎩,解得:133x <<且23x ≠.故选:D变式4-2.函数y =的定义域为( )A .[2,)+∞B .(,2]-∞C .[1,2]D .(1,2]【答案】D 【解析】 【分析】根据根式、对数函数的性质有011x <-≤,即可得定义域. 【详解】由题设,12log (1)0x -≥,即011x <-≤,可得12x <≤. 所以函数定义域为(1,2]. 故选:D变式4-3.函数()()1ln e 2x x f x -=-+)A .()1,2B .()ln 2,2C .()()ln2,11,2⋃D .[)(]ln2,11,2⋃【答案】C 【解析】 【分析】根据使函数有意义得到不等式组,解得即可; 【详解】解:因为()()01ln e 2x x f x -=-,所以e 201020x x x ⎧->⎪-≠⎨⎪->⎩,解得ln 22x <<且1x ≠,所以函数的定义域为()()ln2,11,2⋃; 故选:C变式4-4.已知函数()21log xf x x-=,()1f x +的定义域为M ,()2f x 的定义域为N ,则( ) A .M N B .M N ⋂=∅C .M ⊆ND .N ⊆M【答案】B 【解析】 【分析】分别求出()1f x +的定义域为M 和()2f x 的定义域为N 即可求解. 【详解】()21log 1xf x x -+=+,则{}10M x x =-<<, ()2122log 2xf x x -=,则102N x x ⎧⎫=<<⎨⎬⎩⎭,所以M N ⋂=∅,故选:B .题型战法五 对数函数的值域典例5.函数ln(2)1y x =-+的值域为( )A .RB .(1,)+∞C .[1,)+∞D .(2,)+∞【答案】A 【解析】 【分析】由ln y x =的值域为R 可得ln(2)1y x =-+的值域为R . 【详解】由对数函数ln y x =的值域为R ,向右平移2个单位得函数1ln(2)y x =-的值域为R , 则ln(2)1y x =-+的值域为R , 故选:A.变式5-1.函数()2log 21xy =+的值域是( )A .[1,)+∞B .(0,1)C .(,0)-∞D .(0,)+∞【答案】D 【解析】 【分析】利用指数函数的性质可求原函数的值域. 【详解】设21x t =+,则211x t =+>,故()2log 210x+>, 故()2log 21xy =+的值域为(0,+∞故选:D.变式5-2.函数()()1lg 4211x x f x +=-+的最小值是( ).A .10B .1C .11D .lg11【答案】B 【解析】 【分析】利用换元法,令14211x x t +=-+,则lg y t =,先求出t 的范围,从而可求出函数的最小值 【详解】设14211x x t +=-+,则lg y t =,因为()()221421122211211010x x x x x t +=-+=-⋅+=-+≥,所以lg lg101y t =≥=,所以()()1lg 4211x x f x +=-+的最小值为1,变式5-3.若函数()()2ln ,0,2,03x a x f x x x x ⎧--≤<=⎨-+≤≤⎩的值域为[)3,∞-+,则a 的取值范围是( )A .)3e ,0⎡-⎣B .31e ,e ⎡⎫--⎪⎢⎣⎭C .31e ,e ⎡⎤--⎢⎥⎣⎦D .31e ,e ⎛⎫-- ⎪⎝⎭【答案】C 【解析】 【分析】求出当03x ≤≤和0a x ≤<时的取值范围,结合值域关系建立不等式进行求解即可 【详解】当03x ≤≤ 时,22()2(1)1[3,1]f x x x x =-+=--+∈- 当0a x ≤< 时,()ln()[ln(),)f x x a =--∈--+∞ 要使()f x 的值域为[)3,∞-+则3ln()1a -≤--≤ ,31e ea ∴-≤≤-故选:C变式5-4.已知函数()23log y x m =+的值域为[2,)+∞,则实数m 的值为( )A .2B .3C .9D .27【答案】C 【解析】 【分析】根据对数型复合函数的性质计算可得; 【详解】解:因为函数()23log y x m =+的值域为[2,)+∞,所以2y x m =+的最小值为9,所以9m =;故选:C题型战法六 对数函数的单调性典例6.函数213log (2)y x x =-的单调减区间为( )A .(0,1]B .(0,2)C .(1,2)D .[0,2]【答案】A 【解析】先求得函数的定义域,利用二次函数的性质求得函数的单调区间,结合复合函数单调性的判定方法,即可求解. 【详解】由不等式220x x ->,即22(2)0x x x x -=-<,解得02x <<, 即函数()f x 的定义域为()0,2,令()22g x x x =-,可得其图象开口向下,对称轴的方程为1x =,当(0,1]x ∈时,函数()g x 单调递增,又由函数13log y x=在定义域上为单调递减函数, 结合复合函数的单调性的判定方法,可得函数213log (2)y x x =-的单调减区间为(0,1]. 故选:A.变式6-1.函数()()212log 6f x x x =-++的单调递增区间是( ) A .1,32⎛⎫⎪⎝⎭B .12,2⎛⎫- ⎪⎝⎭C .1,2⎛⎫-∞ ⎪⎝⎭D .1,2⎛⎫+∞ ⎪⎝⎭【答案】A 【解析】 【分析】同增异减”求得答案. 【详解】由题意,()2260602,3x x x x x -++>⇒--<⇒∈-,()212125log 24f x x ⎡⎤⎛⎫=--+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,按照“同增异减”的原则可知,函数的单调递增区间是1,32⎛⎫⎪⎝⎭.故选:A.变式6-2.已知函数()()22log 45f x x x =--在(),a +∞上单调递增,则a 的取值范围是( ) A .(],1-∞- B .(],2-∞ C .[)2,+∞ D .[)5,+∞【答案】D 【解析】复合函数单调性问题,第一步确定定义域,第二步同增异减,即可得到答案. 【详解】由2450x x -->,得1x <-或5x >,即函数()f x 的定义域为(,1)(5+)-∞-∞,, 令245t x x =--,则()229t x =--,所以函数t 在(),1-∞-上单调递减,在(5+)∞,上单调递增,又函数lg y t =在()0,+∞上单调递增, 从而函数()f x 的单调递增区间为(5+)∞,,由题意知(+)(5+)a ∞⊆∞,,,①5a ≥ . 故选:D.变式6-3.已知函数()log (3)a f x ax =-在[]0,1上是减函数,则a 的取值范围是( ) A .()0,1 B .()1,3 C .()0,3 D .()1,+∞【答案】B 【解析】 【分析】根据复合函数的单调性同增异减求得a 的取值范围. 【详解】由于0a >且1a ≠,所以3y ax =-为减函数, 根据复合函数的单调性同增异减可知1a >. 所以310131a a a -⨯>⎧⇒<<⎨>⎩.故选:B变式6-4.已知()()()2213,2log 23,2a x a x a x f x x x ⎧--+≤⎪=⎨-->⎪⎩是(),-∞+∞上的减函数,那么a 的取值范围是( )A .5,62⎡⎤⎢⎥⎣⎦B .5,2⎡⎫+∞⎪⎢⎣⎭C .[]1,6D .51,2⎡⎤⎢⎥⎣⎦【答案】A 【解析】 【分析】根据()f x 的单调性列不等式组,由此求得a 的取值范围. 【详解】因为()()()2213,2log 23,2a x a x a x f x x x ⎧--+≤⎪=⎨-->⎪⎩是(),-∞+∞上的减函数,所以()21221422130a a a a -⎧≥⎪⎪>⎨⎪--+≥⎪⎩,解得562a ≤≤.故选:A题型战法七 比较大小与解不等式典例7.若13π212log 3,log 3a b c ===,,则( ) A .c b a << B .c a b << C .b a c << D .a b c <<【答案】A 【解析】 【分析】根据对数函数和指数函数的单调性进行判断可. 【详解】因为103πππ221221,0log 1log 3log π=1,log log 103>==<<<=, 所以c b a <<, 故选:A变式7-1.设2log 0.3a =,122log 5b =,0.30.4c =,则( )A .a b c >>B .b c a >>C .a c b >>D .b a c >>【答案】B 【解析】 【分析】根据指数函数和对数函数的单调性进行求解判断即可. 【详解】因为22log 0.3log 10a =<=,122225log log log 2152b ==>=,0.3000.40.41c <=<=, 所以有b c a >>, 故选:B变式7-2.若0.80.60.80.6log log 0.2a b c ===,8,,则( )A .a b c >>B .a c b >>C .b a c >>D .c a b >>【答案】D 【解析】 【分析】根据对数函数与指数函数的性质判断. 【详解】由对数函数和指数函数性质得:0.6log 80<,0.80.8log 0.2log 0.81>=,0.800.61<<,所以b a c <<. 故选:D .变式7-3.不等式()2log 311x +<成立的一个充分不必要条件是( ) A .1133x -<< B .0x < C .113x -<< D .103x <<【答案】D 【解析】 【分析】. 【详解】由()211log 31133x x +<⇔-<<,由于1110333x x <<⇒-<<,而1133x -<<⇒103x <<,故不等式()2log 311x +<成立的一个充分不必要条件是103x <<,A 选项是充要条件,B 选项是既不充分也不必要条件,C 选项是必要不充分条件. 故选:D.变式7-4.设函数()133,12log ,1x x f x x x -⎧≤=⎨->⎩,则满足()3f x ≤的x 的取值范围是( )A .[)0,+∞B .[)1,+∞C .(),0-∞D .[)0,1【答案】A 【解析】 【分析】分1x ≤和1x >两种情况解不等式即可 【详解】当1x ≤时,由()3f x ≤,得133x -≤,得11x -≤,解得01x ≤≤, 当1x >时,由()3f x ≤,得32log 3x -≤,得13x ≥,所以1x >, 综上,0x ≥, 故选:A题型战法八 对数函数的应用典例8.人们常用里氏震级e M 表示地震的强度,S E 表示地震释放出的能量,其关系式可以简单地表示为2lg 4.83e s M E =-,2021年1月4日四川省乐山市犍为县发生里氏4.2级地震,2021年9月16日四川省泸州市泸县发生里氏6.0级地震,则后者释放的能量大约为前者的( )倍.(参考数据:0.30.710~2.00,10 5.01=) A .180 B .270 C .500 D .720【答案】C 【解析】 【分析】设前者、后者的里氏震级分别为e e M M '''、,前者、后者释放出的能量分别为E '、E '',根据已知关系式列式相减,利用对数运算法则可得. 【详解】设前者、后者的里氏震级分别为e e M M '''、,前者、后者释放出的能量分别为E '、E '',则其满足关系2lg 4.83e s M E ''=-和2 4.83e s M lgE ''''=-,两式作差可以得到22lg lg ,33e e s s M M E E ''''''-=-,即 2.710s sE E '''=,所以 2.730.3101010500s s E E '''==÷≈,故选:C .变式8-1.中国的5G 技术领先世界,5G 技术极大地提高了数据传输速率,最大数据传输速率C 取决于信道带宽W ,经科学研究表明:C 与W 满足2log (1)SC W N=+,其中S 是信道内信号的平均功率,N 是信道内部的高斯噪声功率,SN为信噪比.当信噪比比较大时,上式中真数中的1可以忽略不计.若不改变带宽W ,而将信噪比SN从1000提升至4000,则C 大约增加了( )(附:lg 20.3010≈) A .10% B .20%C .30%D .40%【答案】B 【解析】 【分析】 先计算1000S N=和4000SN =时的最大数据传输速率1C 和2C ,再计算增大的百分比211C C C -即可. 【详解】 当1000SN=时,122log 1001log 1000C W W =≈; 当4000SN=时,222log 4001log 4000C W W =≈. 所以增大的百分比为:2122112log 4000lg 4000lg 4lg10001111log 1000lg1000lg1000C C C W C C W -+=-=-=-=-lg 42lg 220.30100.220%lg100033⨯==≈≈=. 故选:B.变式8-2.中国的5G 技术世界领先,其数学原理之一便是著名的香农公式:2log 1S C W N ⎛⎫=+ ⎪⎝⎭.它表示:在受噪声干扰的信道中,最大信息传递速率C (单位:bit/s )取决于信道宽度W (单位:HZ )、信道内信号的平均功率S (单位:dB )、信道内部的高斯噪声功率N (单位:dB )的大小,其中SN叫做信噪比,按照香农公式,若信道宽度W 变为原来2倍,而将信噪比SN从1000提升至4000,则C 大约增加了( )(附:lg 20.3≈) A .110% B .120%C .130%D .140%【答案】D 【解析】 【分析】利用对数减法与换底公式可求得结果.【详解】 当1000SN=时,2log 1001C W =; 当40000SN=时,信道宽度W 变为原来2倍,22log 4001C W =. 因为222210002222log 4001log 10012log 400142log 10004114log 21lg 21 1.4log 1001log 1001log 10003W W W -+=-≈-=+=+≈.故选:D.变式8-3.声音的等级()f x (单位:dB )与声音强度x (单位:2W /m )满足12()10lg110x f x -=⨯⨯. 喷气式飞机起飞时,声音的等级约为140dB ;一般说话时,声音的等级约为60dB ,那么喷气式飞机起飞时声音强度约为一般说话时声音强度的( ) A .105倍 B .108倍 C .1010倍 D .1012倍【答案】B 【解析】首先设喷气式飞机起飞时声音强度和一般说话时声音强度分别为12,x x ,根据题意得出()1140f x =,()260f x =,计算求12xx 的值.【详解】设喷气式飞机起飞时声音强度和一般说话时声音强度分别为12,x x ,()111210lg140110x f x -=⨯=⨯,2110x =, ()221210lg60110x f x -=⨯=⨯,6210x -=,所以81210x x =, 因此,喷气式飞机起飞时声音强度约为一般说话时声音强度的810倍. 故选:B变式8-4.某工厂2015年生产某产品2万件,计划从2016年开始每年比上一年增产20%,从哪一年开始这家工厂生产这种产品的年产量超过6万件(已知lg20.3010=,1g30.4771=)( )A .2019年B .2020年C .2021年D .2022年【答案】D 【解析】 【分析】根据2016年开始每年比上一年增产20%,由()21206n +%>求解即可.【详解】2015年为初始值,再过1年,即2016年,产品的年产量为()2120%+, 再过n 年(n N ∈),这家工厂生产这种产品的年产量为()2120%n+,由()21206n +%>得,1.23n >,两边取对数得,lg1.2lg3n >, 即lg 3lg 3lg 30.4771 6.2lg1.2lg1212lg 2lg 310.60300.47711n >===≈-+-+-, 而n N ∈,故7n =,即2022年开始这家工厂生产这种产品的年产量超过6万件. 故选:D.【点睛】关键点点睛:本题的解题关键在于读懂函数模型,熟练掌握对数的运算,才能根据实际情况突破难点.题型战法九 反函数典例9.已知函数()2log f x x =,其反函数为( )A .()12x f x ⎛⎫= ⎪⎝⎭B .()21log f x x =C .()f xD .()2x f x = 【答案】D【解析】【分析】利用反函数定义求解.【详解】()2log f x x =的反函数为2log x y =,即2x y =,故其反函数为()2x f x =.故选:D变式9-1.函数21()1(2)2f x x x =+<-的反函数是( )A .3)y x =≤<B .3)y x =>C .3)y x =≤<D .3)y x =>【解析】【分析】 设211(2)2y x x =+<-,反解后可得反函数. 【详解】设211(2)2y x x =+<-,则3y >,且3)x y =>,故原函数的反函数为3)y x ==>, 故选:D.变式9-2.设函数()x f x a b =+(0a >,且1a ≠)的图象过点()0,1,其反函数的图象过点()2,1,则a b +等于( )A .2B .3C .4D .5【答案】A【解析】【分析】反函数过点(),m n ,则原函数过点(),n m【详解】()f x 反函数的图象过点(2,1),则)f 的图象过点(1,2) 所以0112a b a b ⎧+=⎨+=⎩,解得20a b =⎧⎨=⎩,所以2a b += 故选 :A变式9-3.已知函数()3log f x x =与()g x 的图像关于y x =对称,则()1g -=( ) A .3B .13C .1D .1- 【答案】B【解析】【分析】根据同底的指数函数和对数函数互为反函数可解.【详解】由题知()g x 是()3log f x x =的反函数,所以()3x g x =,所以()11133g --==.变式9-4.与函数14xy ⎛⎫= ⎪⎝⎭的图象关于直线y x =对称的函数是( ) A .4x y =B .4x y -=C .14log y x =D .4log y x =【答案】C【解析】【分析】 利用函数x y a =与log a y x =(0a >且1a ≠)互为反函数可得出结果.【详解】 因为函数x y a =与log a y x =(0a >且1a ≠)互为反函数,且这两个函数的图象关于直线y x =对称, 因此,与函数14xy ⎛⎫= ⎪⎝⎭的图象关于直线y x =对称的函数是14log y x =. 故选:C.。
高一数学对数函数题型及解题技巧
随着高一数学的学习深入,对数函数也成为了学习的重点内容之一。
下面我们来了解一下对数函数的题型和解题技巧。
一、对数函数的定义和性质
对数函数是指形如y=loga(x)的函数,其中a称为底数,x称为真数,y称为对数。
对数函数有以下性质:
1. 底数a必须大于0且不等于1.
2. 若a>1,则y随着x的增大而增大;若0<a<1,则y随着x的增大而减小。
3. 对于任何正数x,loga(a^x)=x,a^loga(x)=x。
二、对数函数的题型及解题技巧
1. 求解对数方程
对数方程通常形如loga(x)=b,其解法为将等式两边用底数a进行指数运算,得到x=a^b。
2. 求解不等式
求解不等式的关键是找到等式左右两边的交点。
对于对数函数的不等式,需要注意底数的大小关系。
3. 求解复合函数
复合函数是指将一个函数的输出作为另一个函数的输入,形如
f(x)=g(loga(x))。
解题时需要根据函数的定义和性质进行推导。
4. 求解导数和极值
对数函数的导数可以通过链式法则求解,即f'(x)=g'(u)*u'(x),
其中g(u)=loga(u),u(x)为x的函数。
极值的求解需要将导数等于0,并根据函数的定义和性质进行判断。
总之,对数函数的掌握需要不断的练习和思考,希望以上内容对你有所启发。