精馏塔设计使用说明
- 格式:doc
- 大小:2.95 MB
- 文档页数:71
乙醇精馏塔设计手册乙醇精馏塔设计手册1. 引言乙醇精馏塔是工业生产中常见的设备,用于乙醇的提纯和分离。
本文将探讨乙醇精馏塔的设计原理和操作指南,并提供一些有关乙醇精馏的实用建议。
2. 基本原理乙醇精馏是利用乙醇和水之间的沸点差异进行分离的过程。
在乙醇精馏塔中,乙醇和水混合物首先进入塔顶,经过加热,液体汽化为气体,然后向下运行到塔底。
在这个过程中,乙醇和水以及其他杂质逐渐分离,纯度更高的乙醇会向塔顶方向移动,而水和杂质则会向塔底方向移动。
3. 设计要点乙醇精馏塔的设计需要考虑以下几个要点:3.1 塔板设计塔板是乙醇精馏塔中实现液体和气体传质的关键结构。
塔板的数量和间距将直接影响乙醇的分馏效果。
一般情况下,塔板数目越多,分离效果越好。
然而,添加过多的塔板会增加系统的压降,从而影响塔的性能。
在设计中需要进行合理的平衡。
3.2 温度控制乙醇精馏塔中的温度控制对于分馏效果非常关键。
过高的温度会导致醇汽过量,降低乙醇纯度;过低的温度则会造成不完全汽化,减少塔的分离效果。
需要通过控制塔底和塔顶的温度来达到最佳的分馏效果。
3.3 精馏剂的选择精馏剂在乙醇精馏中发挥重要的作用,它不仅可以提高系统的分馏效率,还可以降低系统的能耗。
常用的精馏剂包括乙醇、水和乙二醇等。
选择适当的精馏剂需要考虑乙醇和精馏剂之间的相容性以及经济性。
4. 操作指南在操作乙醇精馏塔时,需要注意以下几个方面:4.1 塔顶和塔底压力控制塔顶和塔底的压力控制是确保乙醇精馏正常运行的关键。
过高的塔顶压力会导致乙醇冷凝回流,降低乙醇的纯度;而过低的塔顶压力则会影响分馏效果。
塔底压力的控制对于去除水和杂质也是至关重要的。
4.2 进料流量控制进料流量的控制也会直接影响乙醇精馏的效果。
过大的进料流量可能导致过度充填塔板,而过小的进料流量可能会导致塔板间的不连续汽液流动。
需要根据实际情况选择合适的进料流量。
4.3 塔板温度和液位监控塔板温度和液位的监控对于乙醇精馏的稳定运行非常重要。
塔板式精馏塔设计(图文表)(一)设计方案的确定本设计任务为乙醇-水混合物。
设计条件为塔顶常压操作,对于二元混合物的分离,应采用连续精馏流程。
酒精精馏与化工精馏过程不同点就在于它不仅是一个将酒精浓缩的过程,而且还担负着把粗酒精中50多种挥发性杂质除去的任务,所以浓缩酒精和除去杂质的过程在酒精工业中称为精馏。
物料中的杂质基本上是在发酵过程中生成的,只是很少数的杂质是在蒸煮和蒸馏过程中生成的。
本次设计的精馏塔用板式塔,内部装有塔板、降液管、各种物料的进出口及附属结构(如全凝器等)。
此外,在塔板上有时还焊有保温材料的支撑圈,为了方便检修,在塔顶还装有可转动的吊柱。
塔板是板式塔的主要构件,本设计所用的塔板为筛板塔板。
筛板塔的突出优点是结构简单造价低,合理的设计和适当的操作能使筛板塔满足要求的操作弹性,而且效率高,并且采用筛板可解决堵塞问题,还能适当控制漏液。
设计中采用泡点进料,将原料液通过预热器加热至泡点后送人精馏塔内。
塔顶上升蒸汽采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐。
该物系属不易分离物系,最小回流比较小,采用其1.5倍。
设计中采用图解法求理论塔板数,在溢流装置选择方面选择单溢流弓形降液管。
塔釜采用间接蒸汽加热,塔顶产品经冷却后送至储罐。
(二)精馏塔的物料衡算1.原料液及塔顶、塔底产品的摩尔分率乙醇的摩尔质量 M 乙醇=46kg/kmol纯水的摩尔质量 M 水 =18kg/kmolx F =18/65.046/35.046/35.0+=0.174x D =18/1.046/9.046/9.0+=0.779x W =46/995.018/005.018/005.0+=0.0022.原料液及塔顶、塔底产品的平均摩尔质量M F =0.174×46+18×(1-0.174)= 22.872 kg/kmol M D =0.779×46+18×(1-0.779)= 39.812 kg/kmol M W =0.002×46+18×(1-0.002)= 18.056 kg/kmol3.物料衡算 D=30024812.3948000000⨯⨯=167.454 kmol/hF=D+WF ·x F =D ·x D +W ·x W解得 F=756.464 kmol/h W=589.01 kmol/h{(三)塔板数的确定1.回流比的选择由任务书提供的乙醇-水物系的气液平衡数据绘出x-y 图;由于设计中选用泡点式进料,q=1,故在图中对角线上自点a(x D,x D)作垂线,与Y轴截距oa=x D/(R min+1)=0.415 即最小回流比R min=x D/oa-1=0.877取比例系数为1.5,故操作回流比R为R=1.5×0.877=1.3162.精馏塔的气液相负荷的计算L=RD=1.316×167.454=220.369 kmol/hV=L+D=(R+1)D=2.316×167.454=387.823 kmol/h L ’=L+qF=220.369+756.464=976.833 kmol/h V ’=V+(q-1)F=V=387.823 kmol/h3.操作线方程精馏段操作线方程为 y=1+R R x+11+R x D =1316.1316.1+x+11.3161+×0.779即:y=0.568x+0.336提馏段操作线方程为y=F q D R qF RD )1()1(--++x-F q D R DF )1()1(--+-x W=1.316*167.454+1*756.464(1.316+1)*167.454x-756.464167.454(1.3161)*167.454-+×0.002 即:y=2.519x-0.0034.采用图解法求理论塔板数塔顶操作压力P D=101.3 KPa单板压降△P=0.7 kPa进料板压力P F=0.7×18+101.3=113.9 kPa塔底操作压力P W=101.3+0.7×26=119.5 kPa精馏段平均压力P m=(101.3+113.9)/2=107.6 kPa 压力P m=(113.9+119.5)/2=116.7 kPa2.操作温度计算计算全塔效率时已知塔顶温度t D=78.43 o C进料板温度 t F=83.75 o C塔底温度t W=99.53 o C精馏段平均温度t m=(t D+t F)/2=(78.43+83.75)/2=81.09 o C提馏段平均温度t m=(t W+t F)/2=(99.53+83.75)/2=91.64 o C3.平均摩尔质量计算塔顶平均摩尔质量计算由x D=y1=0.779 查上图可得x1=0.741M VDm=0.779×46+(1-0.779)×18=39.812 g/molM LDm=0.741×46+(1-0.741)×18=38.748 g/mol进料板平均摩尔质量计算 t f=83.74 o C由y F=0.518 查上图可得x F=0.183M VFm =0.518×46+(1-0.518)×18=32.504 g/mol M LFm =0.183×46+(1-0.183)×18=23.124 g/mol 精馏平均摩尔质量M Vm =( M VDm + M VFm )/2=36.158 g/molM Lm =( M LDm + M LFm )/2=30.936 g/mol4.平均密度计算气相平均密度计算由理想气体状态方程计算,即ρVm =RT PMv =)15.27309.81(314.8158.366.107+⨯⨯=1.321 kg/m 3 液相平均密度计算液相平均密度依1/ρLm =∑αi /ρi 计算 塔顶液相平均密度计算t D =78.43 o C 时 ρ乙醇=740 kg/m 3 ρ水=972.742 kg/m 3ρLDm =)742.972/1.0740/9.0(1+=758.14 kg/m 3进料板液相平均密度计算t F =83.75 o C 时 ρ乙醇=735 kg/m 3 ρ水=969.363 kg/m 3ρLFm =)363.969/636.0735/364.0(1+=868.554 kg/m 3塔底液相平均密度计算t W =99.53 o C 时 ρ乙醇=720 kg/m 3 ρ水=958.724 kg/m 3ρLWm =)724.958/995.0720/005.0(1 =957.137 kg/m 3精馏段液相平均密度计算ρLm =(ρLFm +ρLDm )/2=(758.14+868.554)/2=813.347 kg/m 3提馏段液相平均密度计算ρLm =(ρLFm +ρLWm )/2=(957.137+868.554)/2=912.846 kg/m 35.液体平均表面张力计算液体平均表面张力依σLm =∑x i σi 计算塔顶液相平均表面张力计算t D =78.43时 σ乙醇=62.866 mN/m σ水=17.8 mN/m σLDm =0.779×17.8+0.221×62.886=84.446 mN/m 进料板液相平均表面张力计算t F =83.75时 σ乙醇=61.889 mN/m σ水=17.3 mN/m σLFm =0.183×17.3+0.817×61.889=53.729 mN/m 塔底液相平均表面张力计算t W =99.53时 σ乙醇=58.947 mN/m σ水=15.9 mN/m σLWm =0.005×15.9+0.995×58.947=58.732 mN/m 精馏段液相平均表面张力计算σLm =(84.446+53.729)/2=69.088 mN/m 提馏段液相平均表面张力计算σLm =(58.732+53.729)/2=56.231 mN/m6.液体平均粘度计算液体平均粘度依lgμLm=∑x i lgμi计算塔顶液相平均粘度计算t D=78.43o C时μ乙醇=0.364mPa·s μ水=0.455 mPa·slgμLDm=0.779lg(0.455)+0.221lg(0.364)=-0.363μLDm =0.436 mPa·s进料液相平均粘度计算t F=83.75 o C时μ乙醇=0.341mPa·s μ水=0.415 mPa·slgμLFm=0.183lg(0.415)+0.817lg(0.341)=-0.452μLFm=0.353 mPa·s塔底液相平均粘度计算t W=99.53 o C时μ乙醇=0.285mPa·s μ水=0.335 mPa·slgμLWm=0.002lg(0.335)+0.998lg(0.285)=-0.544μLWm=0.285 mPa·s精馏段液相平均粘度计算μLm=(0.436+0.353)/2=0.395 mPa·s提馏段液相平均粘度计算μLm=(0.285+0.353)/2=0.319 mPa·s(五)精馏塔的塔体工艺尺寸计算1.塔径的计算精馏段的气液相体积流率为V S =ρ3600VM =2.949 m 3/s L S =ρ3600LM =0.0023 m 3/s 查史密斯关联图,横坐标为Vh Lh (vlρρ)21=949.20023.0(321.1347.813) 1/2=0.0196取板间距H T =0.45m ,板上液层高度h L =0.06m , 则H T -h L =0.39m 查图可得C 20=0.08 由C=C 20(20L σ)0.2=0.08(69.088/20)0.2=0.103u max =C (ρL -ρV )/ ρV =2.554 m/s取安全系数为0.7,则空塔气速为 u=0.7u max =1.788 m/sD=4V s /πu=788.1/14.3/949.2*4=1.39 m 按标准塔径元整后 D=1.4 m 塔截面积A T =(π/4)×1.42=1.539 ㎡ 实际空塔气速为 u=2.717/1.539=1.765 m/s 2.精馏塔有效高度的计算精馏段有效高度为Z 精=(N 精-1)H T =7.65 m 提馏段有效高度为Z 提=(N 提-1)H T =3.15 m在进料板上方开一人孔,其高度为 1m 故精馏塔的有效高度为 Z=Z 精+Z 提+1=7.65+3.15+1=11.8 m(六)塔板主要工艺尺寸的计算1.溢流装置计算因塔径D=1.4 m ,可选用单溢流弓形降液管 堰长l W =0.7×1.4=0.98 m 2.溢流强度i 的校核i=L h /l W =0.0023×3600/0.98=8.449≤100~130m 3/h ·m 故堰长符合标准 3.溢流堰高度h W平直堰堰上液层高度h ow =100084.2E (L h /l W )2/3由于L h 不大,通过液流收缩系数计算图可知E 近似可取E=1h ow =100084.2×1×(L h /l W )2/3=0.0119 mh W =h L -h ow =0.06-0.0119=0.0481 m 4.降液管尺寸计算查弓形降液管参数图,横坐标l W /D=0.7 可查得A f /A T =0.093 W d /D=0.151 故 A f =0.093A T =0.143 ㎡ W d =0.151W d =0.211 ㎡留管时间θ=3600A T H T /L H =27.64 s >5 s 符合设计要求5.降液管底隙高度h oh O =L h /3600l W u 0’=0.0023/0.98×0.08=0.03 m h W -h O =0.0481-0.03=0.0181 m >0.006 m 6.塔板布置塔板的分块 D=1400 mm >800 mm ,故塔板采用分块式。
乙醇_水精馏塔设计说明
1.设备选型
2.工艺流程
(1)加热阶段:将乙醇_水混合物加热到沸点,使其部分汽化,进入下一个阶段。
(2)蒸馏阶段:乙醇和水在塔内进行汽液两相的分离,高纯度的乙醇向上升腾,低纯度的水向下流动。
(3)冷凝阶段:将高纯度的乙醇气体冷凝成液体,便于收集和储存。
(4)分离阶段:将冷凝后的液体进一步分离,得到纯度较高的乙醇和水。
3.操作参数
(1)温度控制:加热阶段需要将混合物加热到适当的沸点,通常控制在80-100摄氏度。
而在蒸馏阶段,控制塔顶和塔底的温度差异,有助于提高分离效果。
(2)压力控制:塔的进料和出料口通常需要控制一定的压力,以保证流量的稳定。
(3)流量控制:塔内液体的流速对塔的操作效果有较大影响,需保持适当的流速,通常通过调节塔顶和塔底的流量或液位来实现。
4.塔的结构及内件设计
乙醇_水精馏塔的结构包括塔壳、进料装置、分离器、冷凝器、再沸器、集液器等。
其中,塔内需要配置一些内件,如填料和板式塔板等,以
提高传质和传热效果。
填料可采用金属或塑料材料,板式塔板可选用槽式、波纹式等不同形式。
通过合理配置和设计这些内件,提高乙醇_水分离效果。
综上,乙醇_水精馏塔的设计需要综合考虑设备选型、工艺流程、操
作参数以及塔的内部结构等因素。
通过合理的设计和选择,可以实现高效
分离乙醇和水的目的。
精馏塔说明书一、产品介绍精馏塔是一种用于分离液体混合物的设备,广泛应用于化工、石油、食品等领域。
本说明书将详细介绍精馏塔的结构、工作原理、操作方法以及注意事项。
二、结构与工作原理精馏塔主要由塔体、进料口、出料口、塔板、冷凝器、再沸器等组成。
其工作原理是基于物质的沸点差异,通过加热和冷凝的方式实现液体混合物的分离。
具体来说,精馏塔内的液体混合物经过加热后,部分组分会蒸发并随上升蒸汽进入塔顶的冷凝器,在那里被冷却液化。
而未蒸发的组分会继续留在塔内,通过再沸器加热后再次蒸发,如此反复,直至达到所需的分离效果。
三、操作方法1、开启前检查:检查精馏塔及相关设备是否完好,管道、阀门有无泄漏,冷凝器、再沸器是否正常工作。
2、开启进料口:将待分离的液体混合物加入进料口,注意流量控制,保持稳定。
3、开启加热系统:根据需要调整再沸器的加热温度,使液体混合物在塔内蒸发并上升至冷凝器。
4、开启冷凝器:调整冷凝器的冷却水流量,使上升的蒸汽在冷凝器中被液化。
5、收集产品:将冷凝器下方收集到的液体产品通过出料口导出。
6、调整操作参数:根据实际分离效果,调整加热温度、进料流量等参数,以达到最佳分离效果。
四、注意事项1、操作过程中要保持设备密封性良好,防止泄漏。
2、严格控制加热温度,防止过热引起物料分解或设备损坏。
3、定期检查设备及相关管道,发现泄漏或其他异常情况应及时处理。
4、在操作过程中要保持安全距离,避免直接接触高温设备和液体。
5、如遇紧急情况,应立即停车并采取相应措施。
五、维护与保养1、定期检查设备及相关管道的密封性,发现泄漏应及时处理。
2、定期清理设备内部杂物及沉积物,保持设备清洁。
3、定期检查加热系统和冷却系统的工作情况,确保设备正常运行。
4、根据实际使用情况,适时调整设备的操作参数,以达到最佳分离效果。
5、在停车期间,应对设备进行全面检查和维护,确保设备良好运行。
六、常见问题及解决方案1、分离效果不佳:可能是由于加热温度、进料流量等参数调整不当所致。
前言这次毕业设计是学生在大学期间的最后一次运用4年所学的知识,进行的一个综合性设计。
作为过程装备与控制工程专业的本科生,不仅需要牢固掌握基本的理论知识,还要在设计,实践的过程中学会应用。
正因为如此,认真地去做设计肯定对将来的工作的一次练兵,为今后的发展起到铺垫作用。
课题题目是Φ4500mm常压塔机械设计。
工作介质是原油,地点武汉,最高工作温度360℃,最高工作压力为0.15Mpa。
此常压蒸馏塔应用于炼油工艺过程中期,是最常用的一种单元设备之一。
由于原油具有其独特性,因此在设计时也很有必要去注意一些实际问题。
本设计说明书介绍了设计的主要过程,包括设计的思路。
从材料的选取,结构参数设计和选型,厚度计算,强度与稳定性校核,开孔补强设计,以及主要零部件的制造工艺等,都有基本的叙述。
为做到设计的正确性,合理性,就要严格按照设计原则进行,所有数据必须经过查表和计算得到,同时要考虑实际中存在的问题,比如安装吊运、检修等。
考虑到设备和生产的经济性,设计中遵循最优原则,即在满足基本要求的前提下最大限度地提高经济性和效率。
此书是对整个设计过程的记录以及整合。
全书分为五章,与装配图紧密相连,互成整体。
这次设计工作是由陈世民同学在何家胜副教授的指导以及同学的帮助合作下完成的,在此对提供过帮助的老师和同学表示谢意!但是由于设计者水平有限,肯定会有不妥甚至错误之处,如有发现,请读者指正为谢!编者2010.06.01摘要原油常压蒸馏作为原油加工的一次加工工艺,在原有加工流程中占有举足轻重的作用,其运行的好坏直接影响到整个原有加工的过程。
而在蒸馏加工的过程中最重要的分离设备就是常压塔。
因此,常压塔的设计好坏对能否获得高收益,搞品质的成品油油着直接的影响。
本次设计的常压塔是原油炼制工艺过程的中期塔设备。
设计时要考虑实际要求,遵循塔设备的设计原则,要经历需求分析、目标界定、总体结构设计、零部件结构设计、参数设计和设计实施这几个过程。
符号说明:英文字母Aa---- 塔板的开孔区面积,m2A f---- 降液管的截面积, m2A T----塔的截面积 mC----负荷因子无因次C20----表面力为20mN/m的负荷因子d o----阀孔直径D----塔径e v----液沫夹带量 kg液/kg气E T----总板效率R----回流比R min----最小回流比M----平均摩尔质量 kg/kmolt m----平均温度℃g----重力加速度 9.81m/s2F----阀孔气相动能因子 kg1/2/(s.m1/2)h l----进口堰与降液管间的水平距离 mh c----与干板压降相当的液柱高度 mh f----塔板上鼓层高度 mh L----板上清液层高度 mh1----与板上液层阻力相当的液注高度 m ho----降液管底隙高度 mh ow----堰上液层高度 mh W----溢流堰高度 mh P----与克服表面力的压降相当的液注高度mH-----浮阀塔高度 mH B----塔底空间高度 mH d----降液管清液层高度 mH D----塔顶空间高度 mH F----进料板处塔板间距 m H T·----人孔处塔板间距 mH T----塔板间距 ml W----堰长 mLs----液体体积流量 m3/sN----阀孔数目P----操作压力 KPa△P---压力降 KPa△Pp---气体通过每层筛的压降 KPa N T----理论板层数u----空塔气速 m/sV s----气体体积流量 m3/sW c----边缘无效区宽度 mW d----弓形降液管宽度 mW s ----破沫区宽度 m希腊字母θ----液体在降液管停留的时间 s υ----粘度 mPa.sρ----密度 kg/m3σ----表面力N/mφ----开孔率无因次X`----质量分率无因次下标Max---- 最大的Min ---- 最小的L---- 液相的V---- 气相的m----精馏段n-----提馏段D----塔顶F-----进料板W----塔釜一、概述乙醇~水是工业上最常见的溶剂,也是非常重要的化工原料之一,是无色、无毒、无致癌性、污染性和腐蚀性小的液体混合物。
精馏塔设计方案的确定和流程说明下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!精馏塔设计的确定与流程详解在化学工程中,精馏塔是一种常见的分离设备,用于将混合物中的各组分通过汽液相间的多次接触实现分离。
Φ800甲醇精馏塔设计在甲醇生产中,甲醇精馏塔是一个重要的设备,用于将甲醇从原料中分离出来。
本文将对Φ800甲醇精馏塔的设计进行详细说明。
首先,我们需要了解甲醇精馏过程的基本原理。
甲醇精馏过程是在常压下进行的,通过不同馏分的沸点差异来分离甲醇。
在甲醇精馏塔中,原料进入塔底,经过加热和汽化后,将沸点较低的甲醇汽相逐渐冷凝成液相,然后从塔顶蒸出。
同时,在塔中还有一系列的塔板,用于增加接触面积,加快蒸馏过程。
接下来,我们对Φ800甲醇精馏塔的设计进行具体说明。
首先,我们需要确定塔的高度。
塔的高度与分离效果息息相关。
一般来说,塔的高度越高,分离效果越好。
在实际设计中,可以根据甲醇精馏过程的需求来确定塔的高度。
另外,塔的宽度也需要确定,一般来说,塔的宽度越大,分离效果越好。
在Φ800甲醇精馏塔的设计中,塔的高度可以根据经验值进行初步确定。
其次,我们需要确定塔板的数量。
塔板的数量越多,分离效果越好。
在设计中,可以根据甲醇精馏过程的需求及经验值来确定塔板的数量。
另外,塔板的布置也需要考虑。
在Φ800甲醇精馏塔的设计中,可以采用均匀布置的塔板,以提高分离效果。
然后,我们需要确定塔板的尺寸。
塔板的尺寸与甲醇精馏过程的需求及塔的尺寸有关。
在实际设计中,可以根据塔板上液相和汽相的流动速度来确定塔板的尺寸。
同时,还需要考虑气液分布的均匀性,可以采用分散器等设备来改善气液分布情况。
最后,我们需要确定加热方式和冷凝方式。
在Φ800甲醇精馏塔的设计中,可以采用外加热的方式,通过外部加热器对原料进行加热。
同时,可以采用冷凝器对甲醇汽相进行冷凝。
在实际设计中,可以根据加热和冷凝的需求来选择合适的设备。
综上所述,Φ800甲醇精馏塔的设计需要考虑塔的高度、宽度、塔板的数量和尺寸,以及加热和冷凝方式等因素。
在设计过程中,需要根据甲醇精馏过程的需求及经验值来进行合理的确定。
同时,还需要注意安全和运行稳定性等方面的考虑,以保证甲醇精馏塔的正常运行。
精馏塔设计说明书1.1 塔型选择根据生产任务,若按年工作日330天,每天开动设备24小时,由于产品粘度较小,流量较大,为减少造价,降低生产过程中压降和塔板液面落差的影响,提高生产效率,选用浮阀塔。
1.2 有关的工艺计算 1.2.1 精馏塔的物料衡算以年工作日为330天,每天开车24小时计,进料量为:3200000101104/3302422.86F kmol h ⨯==⨯⨯由全塔的物料衡算方程可写出: 总物料 F D W =+易挥发组分 F D W Fx Dx Wx =+将0.1736,0.8182,0.0004,1104FD W kmolx x x F h ====代入全塔物料衡算方程得:D=234 kmol h ,W=870 kmol h塔顶易挥发组分的回收率=100%99.99%DFDx Fx ⨯= 塔底难挥发组分的回收率=(1)100%95.28%(1)W F W x F x -⨯=-1.2.2 塔板数的确定1.2.2.1 最小回流比及操作回流比的确定由于是泡点进料,0.1736e F x x ==,即过点(0.1736,0.1736)做直线0.1736x =交平衡线于点e ,由点e 可读得0.495e y =,因此:min 0.81820.4951.00560.4950.1736D e e e x y R y x --===--R (适宜)=(1.1~2)min R所以可取操作回流比 1.5R =理论塔板数的确定精馏段操作线方程:10.60.32711D n n n x Ry x x R R +=+=+++ 提馏段操作线方程:1 2.490.0006n m W m L W y x x x L W L W+''=-=-''--回流比R=1,则 1.557.8986.835kmol L RD h ==⨯=;因为是饱和液体进料,则q=1,86.835273.4360.235kmol L L F h'=+=+=q 线方程:0.1736x =在~y x 相图中分别画出上述直线,利用图解法可以求出T N =13 块(含塔釜)其中,精馏段11块,提馏2段块。
广州大学化学化工学院《化工原理》课程设计精馏塔设计设计项目:甲醇—水混合溶液精馏塔设计姓名:班级:11精工学号:1105200071指导教师:林璟设计日期:2014年1月6日~14日目录前言 (5)课程设计任务书 (6)第一章设计方案的确定 (7)1.1 概述 (7)1.2基本原理 (7)1.3设计方案原则 (7)1.4 设计步骤 (7)1.5设计方案的内容 (8)1.6操作压力 (8)1.7加热方式 (8)1.8进料状态 (8)1.9回流比 (8)1.10热能利用 (8)第二章精馏塔全塔物料衡算 (9)2.1精馏塔全塔物料衡算 (9)2.2塔板数的确定 (10)第三章精馏塔的工艺条件及有关物性数据的计算 (16)3.1操作压力的计算 (16)3.2操作温度的计算 (16)3.3平均摩尔质量计算 (16)3.4平均密度计算 (17)3.5液体平均张力计算 (19)3.6液体平均粘度计算 (19)第四章精馏塔的塔体工艺尺寸计算 (20)4.1 塔径 (20)4.2精馏塔有效高度计算 (23)第五章溢流装置的计算 (24)5.1 溢流堰 (24)5.2受液盘 (25)5.3 弓形降液管的宽度和横截面积 (26)5.4降液管底隙高度h0 (27)5.5塔板布置及浮阀数目与排列 (28)第六章塔板的流体力学计算 (32)6.1 精馏段流体力学验算 (32)6.2提馏段流体力学验算 (34)第七章塔板负荷性能图 (37)7.1 精馏段塔板负荷性能图 (37)7.2 提馏段塔板负荷性能图 (41)第八章热量衡算 (46)8.1加热介质的选择 (46)8.2冷却剂的选择 (46)8.3热量衡算 (46)第九章精馏塔的结构设计 (51)9.1筒体与封头 (51)9.2 裙座 (53)9.3人孔 (55)9.4吊柱 (55)9.5除沫器 (56)9.6操作平台与梯子 (58)9.7塔板结构 (58)9.8接管 (59)9.9法兰的选择 (60)9.10冷凝器 (60)9.11 塔总体高度设计 (61)第十章设计结果的讨论和说明 (73)参考文献 (65)结束语 (65)附录 (66)前言塔设备是炼油、化工、石油化工等生产中广泛应用的气液传质设备。
根据塔内气液接触部件的结构型式,可分为板式塔和填料塔。
板式塔内设置一定数目的塔板,气体以鼓泡或喷射形式穿过板上液层进行质热传递,气液相组成呈阶梯变化,属逐级接触逆流操作过程。
填料塔内装有一定高度的填料层,液体自塔顶沿填料表面下流,气体逆流向上(也有并流向下者)与液相接触进行质热传递,气液相组成沿塔高连续变化,属微分接触操作过程。
板式塔大致可分为两类:(1)有降液管的塔板,如泡罩、浮阀、筛板、导向筛板、新型垂直筛板;(2)无降液管的塔板,如穿流式筛板(栅板)、穿流式波纹板等。
工业应用较多的是有降液管的塔板,如浮阀、筛板、泡罩塔板等。
浮阀塔广泛用于精馏、吸收和解吸等过程。
其主要特点是在塔板的开孔上装有可浮动的浮阀,气流从浮阀周边以稳定的速度水平地进入塔板上液层进行两相接触。
浮阀可根据气体流量的大小而上下浮动,自行调节。
浮阀有盘式、条式等多种,国内多用盘式浮阀,其中F-1型浮阀结构较简单、节省材料,制造方便,性能良好,故在化工及炼油生产中普遍应用,已列入部颁标准(JB-1118-81)。
一般采用重阀,因其操作稳定性好。
浮阀塔的主要优点是生产能力大,操作弹性较大,塔板效率高,气体压强降及液面落差较小,塔的造价低。
化工生产常需进行二元液相混合物的分离以达到提纯或回收有用组分的目的,精馏是利用液体混合物中各组分挥发度的不同并借助于多次部分汽化和多次部分冷凝达到轻重组分分离目的的方法。
精馏操作在化工、石油化工、轻工等工业生产中占有重要的地位。
为此,掌握气液相平衡关系,熟悉各种塔型的操作特性,对选择、设计和分析分离过程中的各种参数是非常重要的。
塔设备是化工、炼油生产中最重要的设备类型之一。
本次设计的浮阀塔是化工生产中主要的气液传质设备。
此设计针对二元物系的精馏问题进行分析、选取、计算、核算、绘图等,是较完整的精馏设计过程,该设计方法被工程技术人员广泛的采用。
本设计书对甲醇和甲醇的分离设备─浮阀精馏塔做了较详细的叙述,主要包括:工艺计算,辅助设备计算,塔设备等的附图等。
化工原理课程设计任务书班级11精工姓名学号设计题目:甲醇—水连续精馏塔的设计一、设计任务:试设计一连续浮阀精馏塔以分离甲醇-水混合物。
具体工艺参数如下:1、原料处理量:年处理80000+600×17吨甲醇-水混合物。
2、原料液中含甲醇(30+0.6×17)%(质量),其余为水。
3、产品要求:馏出液中的甲醇含量为x D = 97 %(质量)。
釜液中的甲醇含量不高于x W = 1% (质量)。
设备的年运行时间平均为300天。
二、设计条件:1、加热方式:直接蒸汽加热,蒸汽压力为3.0~5.0kg/cm2(绝压)。
2、操作压力:常压。
3、进料状况:泡点进料。
4、冷却水进口温度:25℃,出口温度自定。
5、塔板形式:浮阀塔板。
三、应完成的工作量:1、确定全套精馏装置的流程,绘制工艺流程示意图,标明所需的设备、管线及有关控制或观测所需的主要仪表与装置。
2、精馏塔的工艺设计,塔的结构尺寸设计。
3、辅助装置的设计和选型;估算冷却水用量和冷凝器的换热面积、水蒸气用量。
4、编写设计说明书一份。
5、绘制精馏塔的装配图一张(一号图纸)。
指导老师:林璟2014年1月 6 日第一章设计方案的确定1.1概述精馏是分离液体混合物(含可液化的气体混合物)最常用的一种单元操作,精馏过程在能量剂驱动下(有时加质量剂),使气、液两相多次直接接触和分离,利用液相混合物中各组分挥发度的不同,使易挥发组分由液相向气相转移,难挥发组分由气相乡液相转移,实现原料混合液中各组分的分离。
该过程是同时进行传热、传质的过程。
精馏在化工、炼油、石油化工等工业中得到广泛应用。
1.2基本原理蒸馏是分离液体混合物的典型单元操作,它通过加热造成气、液两相物系,利用物系的各组分挥发度不同的特性以实现分离的目的。
当混合物中各组分的挥发度相差不大,而又有较高的分离要求时,宜采用精馏。
由于甲醇比水在同样的条件下更容易挥发,所以本设计采用精馏,其中甲醇为易挥发组分,水为难挥发组分。
1.3确定设计方案原则精馏塔是精馏装置的主体核心设备,气、液两相在塔内多级逆向接触进行传质、传热、实现混合物的分离。
为保证精馏过程能稳定、高效地操作,适宜的塔型及合理的设计是十分关键的。
为使精馏塔具有优良的性能以满足生产的需要,通常考虑以下几个方面因素:(1)生产能力大:即单位塔截面可通过较大的汽、液相流量,不会产生液泛等不正常流动。
(2)效率高:汽、液两相在塔内流动时能保持充分的密切接触,具有较高的塔板效率或较大的传质速率。
(3)流动阻力小:液体通过塔设备的阻力小,可以节省动力费用,在减压操作时易于达到所要求的真空度、(4)有一定的操作弹性:当气、液相流量有一定波动时,两相均能维持正常的波动,且不会使效率产生较大的变化。
(5)结构简单、造价低,安装检修方便(6)能满足物系某些工艺特性,如腐蚀性、热敏性及起泡性等特殊要求。
1.4设计步骤板式精馏塔的设计大体按以下步骤进行:(1) 确定设计方案;(2) 平衡级计算和理论塔板的确定;(3) 塔板的选择;(4) 实际板数的确定;(5) 塔体流体力学计算;(6) 管路及附属设备的计算与选型;(7) 撰写设计说明书和绘图。
1.5设计方案的内容设计方案包括精馏流程、设备的结构类型和操作参数等的确定。
例如组分的分离顺序(多组分体系)、塔设备的形式、操作压力、进料热状态、塔顶蒸气的冷凝方式、调节机构和测量控制仪表的设置等。
限于篇幅,仅对其中一些内容作些阐述,其他内容可见参考文献。
1.6操作压力塔内操作压力的选择不仅牵涉到分离问题,而且与塔顶和塔底温度的选取有关。
根据所处理的物料性质,兼顾技术上的可行性和经济上的合理性来综合考虑,本设计选择常压操作。
1.7加热方式塔釜一般采用间接蒸汽加热,但对塔底产物基本是水,且在低浓度时的相对挥发度较大的体系,也可采用直接蒸汽加热。
直接蒸汽加热的优点是:可利用压力较低的蒸汽加热,塔釜只须安装鼓泡管,一般可节省设备费用和操作费用。
但由于直接蒸汽加入,对釜内溶液起一定稀释作用,在进料条件和产品纯度、轻组分收率一定的前提下,釜液浓度相应降低,故需在提馏段增加塔板以达到生产要求。
间接加热方式的优点是可以提供足够的热量,而且不会稀释釜内溶液的浓度。
本次设计采用直接加热。
1.8进料状态进料状态有5种,可用进料状态参数q 值来表示。
进料为过冷液体:q>1;饱和液体(泡点):q=1;气、液混合物:0<q<1;饱和蒸气(露点):q=0;过热蒸气:q<0。
泡点进料时的操作比较容易控制,且不受季节气温的影响;此外,泡点进料时精馏段和提馏段的塔径相同,设计和制造时比较方便。
本次设计以泡点进料方式进料。
1.9回流比先求出最小回流比Rmin,根据经验取操作回流比为最小回流比的1.1~2倍,即R=(1.1~2)Rmin。
适宜回流比应通过经济核算决定,即操作费用和设备折旧费之和为最低时的回流比为适宜回流比。
本设计中,选1.1~2倍的回流比,分别计算出操作费用和设备费用,选和最小时的回流比。
1.10热能利用精馏过程的热效率很低,进入塔的能量的95%以上被塔顶冷凝器中冷却介质带走,仅约5%的能量被有效地利用。
采用热泵技术可使塔顶蒸气温度提高,提高了温度的蒸气再用于加热釜液,使釜液蒸发的同时,塔顶蒸气冷凝。
该方法不仅可节省大量的加热蒸汽,而且还节省了大量的冷却介质。
当然,塔顶蒸气可用作低温系统的热源,或通入废热锅炉产生低压蒸汽,供别处使用。
在考虑充分利用热能的同时,还应考虑到所需增加设备的投资和由此给精馏操作带来的影响。
第二章 精馏塔全塔物料衡算2.1精馏塔全塔物料衡算2.1.1原料液及塔顶、塔底产品的摩尔分数甲醇的摩尔质量………. 32kg /kmol A M =水的摩尔质量……… 18kg /kmol B M =40.2/320.274440.2/3259.8/18F x ==+ 97/320.947997/323/18D x ==+ 1/320.00561/3299/18W x ==+ 2.1.2.原料液及塔顶、塔底产品的平均摩尔质量0.2744320.72561821.8416F M =⨯+⨯=0.9479320.05211831.2706D M =⨯+⨯=0.0056320.99441818.0784W M =⨯+⨯=2.1.3.物料衡算原料处理量 ………….30.4020.5989020010()3218573.48kmol /h 30024F ⨯⨯+==⨯ 总物料衡算………….{F D W F D W Fx Dx Wx =+=+{573.48573.480.27440.94790.0056D W D W=+⨯=+ 解得:D=163.44kmol/h ,W=410.04kmol/h式中F ------原料液流量D------塔顶产品量W------塔底产品量表2-1 物料衡算表进出项目数量(kmol/h)项目数量(kmol/h)进料F 573.48 产品D 163.44 塔底出量W 410.04合计573.48 573.482.2塔板数的确定2.2.1.理论塔板数NT的求取所谓理论板就是离开某块塔板的气液两相互成平衡,且塔板上的液相组成也是均匀的。